Usage
  • 229 views
  • 281 downloads

Nanoscale resonators fabricated from metallic alloys, and modeling and simulation of polycrystalline thin film growth

  • Author / Creator
    Ophus, Colin L
  • Part I - We have designed a binary metallic alloy for nanoscale resonator applications. We used magnetron sputtering to deposit films with different stoichiometries of aluminum and molybdenum and then characterized the microstructure and physical properties of each film. A structure zone map is proposed to describe the dependence of surface and bulk structure on composition. We then fabricated proof of principle resonators from the Al-32 at%Mo composition, selected for its optimized physical properties. An optical interferometer was used to characterize the frequency response of our resonators.

    Part II - We investigate the growth of faceted polycrystalline thin films with modeling and simulations. A new analytic model is derived for the case of orientation dependent facet growth velocity and the dependence of growth on initial grain orientations is explicitly calculated. Level set simulations were used to both confirm this analytic model and extend it to include various angular flux distributions, corresponding to different deposition methods. From these simulations, the effects of self-shadowing on polycrystalline film growth are quantitatively evaluated.

  • Subjects / Keywords
  • Graduation date
    Spring 2010
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3KT6P
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Michael Eikerling (Physics, Simon Fraser University)
    • Hao Zhang (Chemical and Materials Engineering)
    • John Nychka (Chemical and Materials Engineering)
    • Ken Cadien (Chemical and Materials Engineering)
    • Michael Brett (Electrical and Computer Engineering)