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Abstract. The lattice Boltzmann method (LBM) is becoming increasingly popular in the fluid mechanics
society because it provides a relatively easy implementation for an incompressible fluid flow solver.
Furthermore the particle based LBM can be applied in microscale flows where the continuum based
Navier-Stokes solvers fail. Here we present the validation and verification of a two-dimensional in-house
lattice Boltzmann solver with two different collision models, namely the BGKW and the MRT models [1].
Five different cases were studied, namely: (i) a channel flow was investigated, the results were compared
to the analytical solution, and the convergence properties of the collision models were determined; (ii)
the lid-driven cavity problem was examined [2] and the flow features and the velocity profiles were
compared to existing simulation results at three different Reynolds number; (iii) the flow in a backward-
facing step geometry was validated against experimental data [3]; (iv) the flow in a sudden expansion
geometry was compared to experimental data at two different Reynolds numbers [4]; and finally (v) the
flow around a cylinder was studied at higher Reynolds number in the turbulent regime. The first four
test cases showed that both the BGKW and the MRT models were capable of giving qualitatively and
quantitatively good results for these laminar flow cases. The simulations around a cylinder highlighted
that the BGKW model becomes unstable for high Reynolds numbers but the MRT model still remains
suitable to capture the turbulent von Kármán vortex street. The in-house LBM code has been developed
in C and has also been parallelised for GPU architectures using CUDA [5] and for CPU architectures
using the Partitioned Global Address Space model with UPC [6].
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1 Introduction

McNamara and Zanetti introduced the lattice Boltzmann Method (LBM) as a cure to remove the statis-
tical noise encountered in its predecessor, the Lattice Gas Cellular Automata (LGCA) [7]. At the time,
the impact of the LBM on research related to fluid dynamics could not have been foreseen. Almost three
decades after its introduction, the LBM has enjoyed a wide range of applications including multiphase,
porous media, magnetohydrodynamics, acoustics, medical and turbulent flows [8, 9] and of course the
automotive industry [10, 11, 12]. The fast grown popularity stems from its ease of implementation and
treatment of complex domains, including multi-physics problems which otherwise would require rather
sophisticated numerical tools. At its core, it represents a discretised version of the Boltzmann equation
and can be shown, via the Chapman–Enskog expansion, to adhere to the incompressible Navier–Stokes
equations [13]. Therefore, the LBM exhibits favourable traits of a particle method, such as the ease of
implementation for complex systems, while the modified Boltzmann equation represents a single, linear
transport equation that only needs 10-20% of the computational time required by a conventional Navier–
Stokes solver [14].
In this work we present the results we have obtained from a two-dimensional lattice Boltzmann solver
with two different collision models, namely the BGKW and the MRT models [1]. We validate our solver
against reference data for (i) a channel flow where the results are compared to the analytical solution,
and the convergence properties of the collision models are determined; (ii) the lid-driven cavity prob-
lem [2] where the flow features and the velocity profiles are compared to existing simulation results at
three different Reynolds number; (iii) the flow in a backward-facing step geometry is validated against
experimental data [3]; (iv) the flow in a sudden expansion geometry is compared to experimental data
at two different Reynolds numbers [4]; and finally (v) the flow around a cylinder is studied at higher
Reynolds number in the turbulent regime.
With the current transistor technology plateauing, focus has shifted towards parallel scientific computing.
A number of parallel software and hardware environments have emerged and combinations of these have
been proposed in an attempt to tackle large scale problems accurately and efficiently [15]. Our LBM
solver has further been parallelised using two different parallel computing environments and paradigms.
The first approach relies of graphical processing units (GPUs) and utilises the Compute Unified Device
Architecture (CUDA) framework [5] which has recently found interest in fluid dynamics, see for exam-
ple Kuznik et al. [16]. The second approach relies on traditional central processing units and utilises the
Unified Parallel C (UPC) framework [6]. UPC is based on the Partitioned Global Address Space (PGAS)
programming model that aims to simplify the programming by abstracting the memory address space,
hence allowing the programmer to concentrate on the solution of the underlying scientific problem. We
further discuss the scalability of our solver for both parallelisation strategies followed.

2 Governing equations and computational methodology

To discretise the Boltzmann equation, particles are first represented by a Density Distribution Function
(DDF) which is then restricted to propagate only in certain directions. These directions are determined by
the chosen speed model. For the purposes of our study we have employed the D2Q9 speed model, which
is a 2–dimensional model with 9 velocity directions. This model, presented in Figure 1, is a common
choice for two-dimensional problems. The discretised Boltzmann transport equation is then formulated
as

∂fi(x, t)

∂t
+ (ci · ∇)fi(x, t) = Ωi(fi) (1)

where i is the index of the restricted streaming direction and fi(x, t) is the DDF depending both on space
and time. The discrete velocities, denoted by ci, take binary values and are defined by
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Figure 1: The D2Q9 speed model within a square lattice

ci =


0, i = 0

(cos [(i− 1)π/2] , sin [(i− 1)π/2]) , i = 1, 2, 3, 4√
2 (cos [(i− 5)π/2 + π/4] , sin [(i− 5)π/2 + π/4]) . i = 5, 6, 7, 8

(2)

Hence the LBM can be separated into two steps: collision and streaming. The advection is represented
by (ci · ∇)fi(x, t) where the DDF is streaming to its neighbouring lattice sites. The collision is rep-
resented by Ωi(fi) and it is, unlike in the LGCA where a explicit collision treatment is possible, not
straightforward. The collision can, at best, be approximated and different models have been proposed.
We will limit ourselves to the Single Relaxation Time (SRT) scheme of Bhatnagar, Gross and Krook [17]
(also referred to as the BGK or BGKW scheme due to the contribution of Welander [18]) and the Multi
Relaxation Time (MRT) scheme of D’Humieres [19, 20]. Boundary conditions must be formulated for
the DDF which are not readily available for incoming directions. We have followed the approach of Zou
and He [21] which can be written in a compact form as

fc = opp(fc)±
2

3
%u⊥, (3)

f+ = opp(f+) +
1

2
(fIP− − fIP+)± 1

6
%u⊥ ±

1

2
%u‖, (4)

f− = opp(f−)− 1

2
(fIP− − fIP+)± 1

6
%u⊥ ±

1

2
%u‖. (5)

We have introduced fc, f+ and f− as the unknown distribution functions on the boundary where fc
denotes the central one and f± its right and left neighbours, respectively. The function opp() returns the
DDF pointing in the opposite direction while fIP± is the inplane DDF, i.e. parallel to the boundary. The
boundary’s normal and parallel velocity component are denoted by u⊥ and u‖ and the sign is positive if
its component is pointing in the positive coordinate direction. The density on the boundary is obtained
from

% =
1

1± u⊥

f0 +

inplane∑
i

fi + 2

outside∑
j

fj

 , (6)

where we sum over the DDFs on the boundary (inplane) and outside of the boundary. Dirichlet or
Neumann type boundary conditions may be applied to open boundaries to obtain the velocity components
required in Eq.(3) through Eq.(5). For solid boundaries, the simple bounce-back scheme suffices and we
have incorporated the treatment of Bouzidi [22] for curved boundaries. The macroscopic quantities at
the end of each time step are obtained from
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% =
8∑

i=0

fi, (7)

p =
%

3
, (8)

u =
8∑

i=0

fici
%
. (9)

We have built on the work of [23] and implemented the above mentioned procedure using the C lan-
guage for better binding with our parallel approaches. The implementation has been augmented in order
to increase its computational performance and lower the memory requirements where possible. The
parallel implementations of our solver can run either on GPUs using CUDA or CPUs using UPC. The
corresponding validation results along with parallel scalability information are presented in the following
section.

3 Results and discussion

In this section we present the verification and the validation of our LBM solver through a set of five
different test cases. The geometries of the investigated domains and the applied boundary conditions
are presented in Figure 2. In our discussion we will limit ourselves to only presenting results obtained
with our serial LBM solver, upon which we rely when performing the relevant verification and validation
studies. Our parallel implementations in CUDA and UPC have been verified by ensuring that they
reproduce the same results as the serial solver. Finally we discuss the parallel strategies and present their
scaling behaviour.

3.1 Laminar Flow in a Channel

Our first validation case is the widely used laminar channel flow where we can compare our results to
an analytic velocity profile. It further lends itself to a detailed grid convergence study as we can make
predictions about its exact profile.
Table 1 shows the results obtained for the non-dimensional peak velocity at the centre of the channel for
three different grids. We have given the normalised grid spacing in parenthesis, based on the finest grid,
and further calculated the extrapolated value of the peak velocity for a grid independent domain. As
discussed in detail in Roache [24], we have calculated the Grid Convergence Index (GCI) for the coarse-
medium (1,2) and medium-fine (2,3) mesh and calculated the apparent order pa to judge the accuracy of
the solution. We can see from Table 1 that the BGKW collision model initially performs better compared
to the MRT scheme, however, the extrapolated value shows that the MRT scheme approaches the exact
solution faster. This is also reflected by the step decrease of the GCI when compared to the convergence

Table 1: Grid convergence study of the non-dimensional center (peak) velocity. The normalized grid spacing has
been given in parenthesis and a grid independent peak velocity has been extrapolated. The GCI and apparent order
is given from the coarse to medium (1,2) and medium to fine (2,3) mesh.

u/umax[−] GCI1,2 GCI2,3 pa

nx × ny 400× 20 (4) 800× 40 (2) 1600× 80 (1) extrapolated

BGKW 0.9459 0.9761 0.9856 0.9899 1.77 0.55 1.67

MRT 0.7302 0.9191 0.9732 0.9948 10.29 2.78 1.81

1049
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HCh

20HCh

wall

inlet

wall

outlet

(a) Channel (Ch), 800× 40 lattices

HBFS

18HBFS

HBFS

2HBFS

wall

inlet wall

outlet

(b) Backward facing step (BFS), 800× 80 lattices

HSE

28HSE

HSE

HSE

2HSE

wall

inlet

wall

outlet

(c) Sudden expansion (SE), 800× 80 lattices

1.5D

22D

D

1.5D

1.5D

wall
inlet

wall

outlet

(d) Cylinder (Cyl), 880× 160 lattices

HLid

HLid

u Lid

wall

wall wall

inlet

(e) Lid-driven cavity (LC), 400× 400 lattices

Figure 2: Computational domains with their dimensions and boundary conditions. Open or moving boundaries are
given by dashed lines

behaviour of the BGKW scheme and the apparent order confirms this, which is a measure of how fast
the error diminishes.
The obtained velocity profile at the channel’s outlet is presented in Figure 3(a) for the fine mesh. Fig-
ure 3(b) shows the convergence of the peak velocity over the normalised grid spacing. Figure 3(a) shows
that both collision models produce qualitatively the same velocity profile and capture the correct be-
haviour. In Figure 3(b) we have summarised our findings mentioned above and show the convergence
properties of the BGKW and MRT scheme. In the limit of a grid independent result, the MRT scheme
asymptotically approaches the theoretical value closer than the BGKW scheme which, however, pro-
duces more accurate results on the coarse grid. Although not evident from our presented results, it has to
be noted that the MRT scheme is able to simulate lower lattice viscosities than the BGKW model which
suffers from numerical instabilities. This is due to the nature of the model itself. While all DDFs are
relaxed at the same rate in the BGKW model, the MRT scheme relaxes all of its DDFs in a transformed
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momentum space separately. Therefore it can treat each direction (Figure 1) individually and it is less
prone to numerical instabilities. The lattice viscosity is used to calculate the Reynolds number and hence
the BGKW scheme is not suited for high Reynolds number flows.
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Figure 3: Validation of the solver on the channel flow

3.2 Flow over a backward facing step

The Backward Facing Step (BFS) is another classical example for which an abundance of numerical and
experimental data is available. We have examined the laminar flow at a Reynolds number of Re = 100
and we have chosen the experimental results of Armaly et al. [3] for our comparison.
Figure 4(a) shows the normalised velocity magnitude, superimposed by the streamlines as a visual guide.
We only show the contour plot obtained for the MRT model as the BGKW results were qualitatively in-
distinguishable. A fully developed channel flow profile is present at the exit location of the smaller
channel at x/HBFS = 0 which then transitions into the bigger channel. A circulation area is formed
downstream which is fed by the upstream channel. We have plotted the velocity profiles at various loca-
tions downstream of the channel and compared the results to the experimental data. We can see the fully
developed velocity profile at the exit of the smaller channel, as indicated before, and then the develop-
ment of the downstream profiles. Both the BGKW and MRT model under-predict the velocity profiles
in the vicinity of the recirculation area and only approach the experimental data further downstream.
Specifically, the magnitude of the velocity of the reverse flow and the jet are both under-estimated. Both
collision models performed with little to chose between the two, which is also shown in the reattachment
length error with −6.13% for the BGKW model and −5.48% for the MRT model, respectively.
We conclude that our solver closely reproduces the velocity field and predicts the reattachment length
within a few percent compared to the experimental data.

3.3 The bifurcation behaviour via a sudden expansion

The Sudden Expansion (SE) is a test case which provides further physical insight into the performance of
our LBM solver. While its geometry is symmetrical, as seen in Figure 2(c), two different and distinct flow
patterns are encountered for different Reynolds numbers. This is caused by the bifurcation of the fluid
and is attributed to the non-linear behaviour of the Navier–Stokes equations. Hence, it is an interesting
test case as the governing equation of the lattice Boltzmann method (Eq.(1)) is linear in nature. We
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(a) Developed velocity field after the BFS (MRT)
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(b) Velocity profiles after the BFS

Figure 4: Validation of the solver on the BFS test case at Re = 100

therefore performed simulations at Reynolds numbers of Re = 25, for a symmetrical flow field and
Re = 80, for an anti-symmetrical, and compared our results against experimental data published by
Fearn et al. [4].
Figures 5(a) and 5(b) show the normalised velocity plots for both the Re = 25 and Re = 80 cases and
we have again shown the streamlines as a visual guide. For the symmetrical flow field we can identify
two recirculation zones of the same magnitude, located in the lower and upper corner while the jet is
expanding symmetrically downstream. The Re = 80 case is showing the expected symmetry breaking
effect at higher Reynolds numbers and two distinct recirculation areas are formed. A third one, charac-
teristic for even higher Reynolds numbers, is starting to form at the top before the jet is returning to a
symmetric velocity profile. Figures 5(c) and 5(d) show the velocity profile compared to the experimental
data at three different downstream locations. Qualitatively the results are matched although we see again

1052
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(a) Developed velocity field after the SE at Re = 25 (MRT)

(b) Developed velocity field after the SE at Re = 80 (MRT)
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(c) Velocity profiles after the SE at Re = 25
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(d) Velocity profiles after the SE at Re = 80

Figure 5: Validation of the solver on the SE test case at Re = 25 and at Re = 80

an under-prediction of the velocity magnitude in the transversal locations. The discrepancies are mainly
found in the centre while the flow near the wall is resolved more closely. Interestingly, the Re = 80 case
with the bifurcation exhibits closer agreement between the experimental and numerical results in terms
of velocity profiles. Both the BGKW and MRT collisions models match well the experimental result.
In Table 2 we present the reattachment length Lre in non-dimensional units (normalised by HSE , see
Figure 2(c)) and its relative deviation to the experimental results. For both cases and for both recirculation
zones in the Re = 80 case, the reattachment length has been under-predicted which is consistent with
the observation of the backward facing step. However, we can see close agreement with the reference
data. For the Re = 25 case we have less than 4% difference. The Re = 80 also shows acceptable

1053
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Table 2: Sudden expansion flow for two different Reynolds numbers. The Re = 25 is symmetrical and only one
reattachment length needs to be calculated while the Re = 80 case produces a non symmetrical flow field which
has two distinct (i.e. primary and secondary) vortex and hence two distinct reattachment lengths. The relative error
corresponds to comparisons with Fearn et al. [4].

Re = 25 Re = 80 (primary) Re = 80 (secondary)

Lre [-] εrelative [%] Lre [-] εrelative [%] Lre [-] εrelative [%]

BGKW 3.35 -2.33 3.45 -6.25 10.65 -9.44

MRT 3.30 -3.79 3.56 -3.26 10.60 -9.86

deviations of less than 7% for the primary and 10% for the secondary recirculation area, respectively.
Hence the symmetric case was more accurately resolved which correlated well with the reattachment
length prediction of the similar flow pattern over the backward facing step. The symmetry breaking at
higher Reynolds numbers was captured, which is not surprising as the governing equation reproduces
the Navier–Stokes equations via the Chapman–Enskog expansion, as mentioned in the introduction.
However, it remains a linear equation and thus the higher difference compared to the symmetric case, in
terms of reattachment length, is not surprising.
We can conclude that our solver performed well for the symmetric case and is capable of capturing the
bifurcation behaviour of a fluid.

3.4 Flow structures in a lid-driven cavity flow

We now investigate the lid driven cavity flow which consists of simple boundary conditions. These can
be accurately described and hence we can focus on the physical behaviour of the solver. We compare
our results with the numerical data from Ghia et al. [2], where the vorticity-stream function approach
was chosen to solve the 2D Navier–Stokes equations. It is of interest because it offers 2D data without
any turbulence models, hence, we can validate our data against a Navier–Stokes solver which obtained
results under the same conditions.
Figures 6(a)–6(c) show the streamlines obtained from the reference solutions (left) and our simulations
(right) at Re = 100, Re = 1000 and Re = 3200, respectively. We see that the primary and sec-
ondary vortices in the lower corners are well-resolved for the Re = 100 and Re = 1000 case while
the movement of the main vortex towards the centre is captured. For the high Reynolds number flow at
Re = 3200, a tertiary vortex is formed near the lid which is consistent with the reference solution. Our
simulations compare well with the reference data by pure visual means.
We further investigate the velocity profiles at the centerlines of the box, i.e. horizontally and vertically,
and present our results in Figure 7(a)–7(c). For all investigated cases we see a good agreement between
the velocity profiles of the reference data and both the BGKW and MRT scheme. Minor differences
exist which can be either due to the numerical scheme used in the reference solution or the accuracy in
the boundary condition imposition. The order of accuracy at the wall depends on the placement of the
lattice, i.e. either coinciding with the DDFs or in-between them. See Succi [1] for a discussion.
We conclude that the two-dimensional flow features are accurately resolved and good agreement could
be obtained with respect to the reference data.

3.5 Turbulent Flow around a cylinder

The solver presented in [23] has been extensively tested for the laminar flow around the channel. The
von Kármán vortex street has been properly resolved and thus the sinusoidal lift and drag behaviour
recovered. Here we present initial results for our LBM solver applied to the same cylinder flow at
Re = 10000 to demonstrate the capabilities of the solver to resolve turbulent structures. The cylinder
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(a) Re = 100

(b) Re = 1000

(c) Re = 3200

Figure 6: Velocity field comparison between Ghia et al. [2] (left) and the results obtained with the MRT collision
model (right)

itself is an interesting test case as it consists of curved boundaries. Despite the stair-stepping profile
around the cylinder, the treatment of Bouzidi et al. [22] accounts for the curvature of the geometry which
is seen by the smooth vorticity distribution around the cylinder.
The presented results were obtained by the MRT collision model as the BGKW, as mentioned in sec-
tion 3.1, is not suitable for high Reynolds number flows due to its inherent numerical instabilities. Fig-
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(b) Re = 1000
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Figure 7: Velocity profiles at the horizontal and vertical centerline of the lid driven cavity atRe = 100,Re = 1000
and Re = 3200, respectively

ure 8 shows the contours of instantaneous, normalised vorticity magnitude in the downstream cylinder
location. We can see that vortices are forming just downstream of the cylinder which then detach and
are convected into the wake region. We show positive rotation in red and negative in blue so as to show
the asymmetric vortex formation at the cylinder and its pairwise existence close to it, before turbulent
mixing diffuses the overall vorticity.
In this proof of concept study we wanted to show the applicability of our solver to curved boundaries and
high Reynolds number flows. Before we can properly validate our solver for turbulent flows, the solver
needs to be extended to three dimensions.

3.6 Scaling behaviour of the solver

We conclude our discussion on validation and verification with the scaling behaviour of our parallel LBM
solvers. We start by introducing the notions of parallel speed-up PSU and parallel efficiency PE which
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Figure 8: Flow past a circular cylinder at Re = 10000 showing the normalised vorticity magnitude

are defined respectively as
PSU = tserial/tparallel (10)

and
PE = (PSU/ncores)100% = tserial/(tparallel · ncores)100% (11)

By tserial we denote the time required for a simulation to complete serially, by tparallel we denote the time
required for a parallel simulation to complete and by ncores we denote the number of cores employed
during a parallel simulation. We have tested our solver on the lid driven cavity flow for which we have
created four different meshes with increasing number of points: the spatial resolutions 1282, 2562, 5122,
and 10242 correspond to the coarse, medium, fine and ultrafine grids, respectively. The results for the
UPC and CUDA strategy are summarised in Figure 9 and Figure 10 respectively.
The UPC implementation shows that the parallel efficiency can be greater than 100%. Opposed to the
serial computation, tasks can be overlapped in the UPC environment which enables the solver to achieve
such high rates of efficiency. However, we also see that it drops for a larger amount of threads and all,
except the fine mesh, experience degeneration of the efficiency due to increasing overheads. The fact
that the fine mesh does not follow this trend may have several roots. Although PGAS gives a coherent
view on memory, physically it is still separated. The way the partitioning and communications are done
in the background may explain the trend of the fine grid in Figure 9 but also highlights the need for code
profiling and compiler optimisation. Results obtained with the BGKW and the MRT models show similar
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Figure 9: Parallel performance of the parallel UPC code using double precision arithmetic
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Figure 10: Speed-up evaluation of the parallel codes using single precision arithmetic on two different GPUs

parallel efficiency trends as seen in Figure 9(a) and 9(b). It is worth to mention that the performance,
measured with single and double precision, showed only marginal differences.
Figure 10 presents the speed-up of the CUDA implementation. We have tested the code on two differ-
ent GPUs; the GTX550Ti which is targeted as a consumer graphics card and the Tesla M2050 which is
purely designed for scientific computations. We have given speed-ups obtained with UPC for 16 threads
on all four grid levels as a reference. The Tesla M2050 consistently yielded higher speed-ups compared
to the GTX550Ti which were about twice as much. While the UPC approach yielded a speed-up approx-
imately equal to its number of cores, the CUDA implementation, due to its different architecture, was
able to achieve speed-ups of up to 45 compared to the serial code, see Figure 10(a). In the case of the
CUDA implementation we experienced a significant drop for double precision computations which only
yielded about one third of the single precision speed-ups. We measured a relatively high speed-up and
strong scalability on the GPUs with the BGKW model, however, a considerable performance drop was
experienced with the MRT collision model when we compare Figures 10(a) and 10(b).
The profiling results, presented in Figure 11, help to understand the speed-up behaviour of the solver. In
Figure 11(c) we can see that the collision is the most computationally expensive operation in the case of
the MRT collision model. As a matter of fact in the case of the CUDA implementation it takes approx-
imately 60% of every time step, seen in Figure 11(d). While the performance difference between the
BGKW and the MRT model seems to be negligible based on the serial profiling results of Figure 11(a)
and Figure 11(c), the MRT collision step is the bottleneck of the time marching on the GPUs as can bee
seen in Figure 11(b) and Figure 11(d). The distribution functions are stored in physically different loca-
tions for the MRT collision model. Hence, during the summation of all nine discrete velocity directions,
data needs to be transferred via the global memory which has a relatively low bandwidth. Therefore,
the MRT scheme exhibits a slower computational time, compared to the BGKW model, which could be
circumvented by using shared memory on the GPU side.

4 Conclusions

In this study, we have validated our 2-dimensional lattice Boltzmann solver against the classical bench-
mark problems of a channel, backward facing step, sudden expansion, lid driven cavity and turbulent
cylinder flow. We have shown that our solver is capable of treating complex geometries with curved
boundaries at high Reynolds number flows and have demonstrated the accuracy of our solver to be
within a small percentage of reference data. We extended our solver with high performance capabilities
and included CUDA as a GPU-based, and UPC, as a CPU-based parallelsiation strategy, respectively.
High efficiencies were obtained for the UPC approach for moderate numbers of CPUs while overheads
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Figure 11: Profiling results on the medium mesh using single precision arithmetic

were introduced at higher numbers. CUDA was able to give speed-ups as high as 45 compared to the
serial solver which decreased drastically for double precision computations. The extension of solver to
three dimensions is left to the future which will allow for turbulent flow applications.
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