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Abstract. In this paper we study the second mean curvature for different
hypersurfaces in space forms. We furnish some examples and we remind
some connections betwedni-minimality and biharmonicity. The main re-

sult consists in proving that there are hb-minimal translation surfaces in

the Euclidean 3-space.

1. Introduction

The study of the second fundamental fofthwas initiated through the early pa-
pers of J. Weingarten [13], G. Darboux [3] and E. Cartan [2] where appeared for the
first time notions like connection or curvature associatefiltoLater on, P. Erard

[5] introduced the second fundamental form as metric on the surface. This is pos-
sible only whenl I is non-degenerate and hence it can be regarded as a (pseudo)-
Riemannian metric on the surface. At this point one can consider a connected
smooth surfacd/ endowed with/ I as metric in order to study new characteristics
associated toM, 7). In the classical case when the metric on the surface is given
by the first fundamental fornd, i.e. for (M, I), there are well known formulae

to compute the Gaussian curvatuteand the mean curvatuté in order to ana-

lyze the properties o#/ that arise from thiSmeasures!" In a similar manner, the
second Gaussian curvatudenotedk’;; and thesecond mean curvaturdenoted

Hyy, were introduced. In [2]K;; was introduced for the first time by E. Cartan,

as the analogous of the Gaussian curvature. Conceffdjiagit was defined by

E. Glassner in [6]. An overview over the literature dedicated to the second fun-
damental form and the associated curvatures for different type of submanifolds in
different ambient spaces can be found in [12] and its references. Regarding the
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second mean curvature, the critical points of the area functional of the second fun-
damental form are those surfaces for which the mean curvature of the second fun-
damental form vanishes. A non-developable surface is saidliefla¢ if K;; =0

and respectivelyi-minimal if H;; = 0. Consequently, the well known result that
there are no compact minimal submanifolds in Euclidean space was discussed also
in the case of the second mean curvature and in [6] it is provedithabt exist
compact lI-minimal surfaces in Euclidean spabPespite this non-existence result
confirmed also in some other particular ambient spaces, in [12] it is proved that
compact ll-minimal surfaces may exist in some general ambient spaces.

In the present paper we are interested in the study of the second mean curvature
for different examples of submanifolds. More exactly we study/theninimality
property, equivalently, the conditiolH;; = 0. The classical examples in the the-

ory of harmonic and biharmonic maps are proved to be also interesting examples
concerning thd I-minimality property. Let us remind the following situations of
classical biharmonic maps which are alEbminimal, namely the standard em-
bedding Sn(%) C S**! and the hypersurfac&k(%) X S”—k(%) C S™*! for
k=1,n—1(see[12]). Inthe sequel we formulate some generalizations of these
results.

Returning to the theory of surfaces, in [8] it is proved that a ruled surface with
nowhere vanishing Gaussian curvature is Il-minimal if and only if is a piece of
helicoid. A study on Il-minimal affine translation surfaces written as a sum of
two curves is contained in [9]. Here it is stated tttadre are no affind /-minimal
translation surfaces of this typ@s a particular case it is suggested that one can re-
trieve the same non-existence result concerdifigninimal translation surfaces in
Euclidean 3-space. The aim of this article is to give a proof of this result in the case
when the two curves are situated in orthogonal planes. This result is contained in
Section 3after we acquaint the reader with the basic notions about translation sur-
faces and I-minimality in thePreliminariesof this article. Moreover, we provide
also interesting examples &f-minimal hypersurfaces in different space forms.

2. Preliminaries

In the general theory of surfaces and hypersurfaces ordinary dehbtesbmetri-
cally immersed in some ambient spdde, ), one can associate differemhea-
sures” Naturally, a way of describeraetricg on M is taking the restriction ta/

of the matricg from the ambient space.

Thinking now the immersioM, g) — (]\7,5}) whereM is a hypersurface, i.e.has
codimension 1, we have the Gauss and Weingarten formulas

(G) VxY =VxY +II(X,Y)N

(W) VxN = —AX
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for every X, Y tangent to)M. The corresponding Levi-Civita connections on the
ambient space and on the surface are denote¥ land V, respectively. More-
over I] is a symmetriq 1, 2)-tensor field calledhe second fundamental foraf

the surfacel and A is a symmetriq(1, 1)-tensor field denoting the shape oper-
ator associated to the unit normal to the surfateThe following relation holds
I1(X,Y) = g(X,AY), whereX, Y are vector fields tangents fd.

Concerning the curvature tensiron the surface and using the previous notations,
recall that we use the following sign conventi®iX,Y’) = [Vx,Vy] — Vxy
foranyX,Y € T'(M).

Having now some basic working tools ai we can construct its intrinsic and
extrinsic geometry by means of the characterization of the curvatures. The most
used metrics on a surface is given by the first fundamental foassociated to the
immersion which gives the parametrization. But, one can think of rebuilding all
the corresponding geometry fdby taking the second fundamental form as a new
metric on the surface. One elementary condition #Hamust satisfy consists of
non-degeneracy, namely the surface must be non-developable.

2.1. Translation surfaces

Let us consider a surface having the Cartesian parametrization given by

(2 A >(f(<y)>) (bﬁ))
— Az gy + T
Y h(y) c(z)

where A(z) € SO(3) (sometimes in0D(3)). This surface represents a union of
"equal" curves i.e. it is the image of one curve, caltgheratrix obtained by
isometries of the space. Some authors call this kind of surfaeface of Dar-
boux Some known examples are to be mentioned, namely

1. A = I3 : translation surfaces

2. A = matrix of rotation (axe and angle are fixed)= b = ¢ = 0 : rotation
surfaces

3. A = matrix of rotation (axe: and angle are fixed)a,b,c) = = n : heli-
coidal surfaces

If the generatrix is

a. a straight line ruled surfaces

b. a circle : circled surfacesncluding e.g. tubes. For a smooth curyethe
tube of radius 1 around it is given by

r(s,t) = y(t) + coss N(t) + sin s B(t)
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where s is the arclength parametelN (s) and B(s) are respectively the
normal and the binormal of the curve. As a Darboux surface, a tube can be
written as

r(s,t) = y(t) + A(t) St
where byS' we mean the unit circle.

The special Euclidean group of thedimensional space or the Euclidean motion
group SE(n) is the semi-direct product &&™ with the special orthogonal group
SO(n). In the3-dimensional cas8E(3) = R x SO(3). To be more precise, for
two elementg; = (a, A) andh = (b, B) in SE(3), the group multiplication and
the inverse are given byo h = (a + Ab, AB), respectivelyy =t = (—ATa, AT).

It is also possible to represent any elementSéf(n) as an(n + 1) x (n + 1)

homogeneous transformation matrix of the fo(rrg1 (11 > (see e.g. [11], p.45).

A Darboux surface can be thought as the action of the 1-parameter fansily(@)

to a given curve.

As we have seen, a translation surface is a "sum" of two curves. If the two curves
are situated in orthogonal planes the surface can be represented as

(z,y) — (z,y, f(z) + 9(y)). (1)

Examples: planes, cylinders, hyperbolic and elliptic paraboloids, the egg box sur-
face, Scherk surface (the only minimal translation surfad&jn

2.2. ll-minimality

We dedicate this section to some very nice examples of II-minimal hypersurfaces
immersed in the sphei® and we give a nonexistence result in the case of II-
minimal hypersurfaces in the hyperbolic sp&€e The motivation comes from an-
other interesting property of these immersions intensively studied in recent years,
namely the biharmonicity. Similar to the variational characterization of the mean
curvatureH, the curvature of the second fundamental form, denotedpyis
introduced as a measure for the rate of change of the ll-area under a normal de-
formation. Let us denoté/ am-dimensional hypersurface in a semi-Riemannian
manifold (]\7, g) with the second fundamental form as semi-Riemannian metric.
Accordingly to [12], the mean curvature associated to the second mean curvature,
Hjy is given by

Hi =~ <mH Zg (Vi, N)Vi, N)k; + AU log|det A| — « le]]Z>

Let us explain in few WOI‘dS the notations used above. The classical mean curvature
of the first fundamental form is denoted B, the unit normal is called@ and by A
we mean the shape operatoridi Moreover,V;, i = 1, m is an orthonormal basis
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on M with respect td/ I and by definitiors; = I1(V;,V;) = £1, ¢ = 1,m. The
vector fieldZ in T'(M ) is defined asg = tr;; B = Z B(V;, V;)k;, where the ten-

i=1

~ t

sorB : T(M) x T(M) — T(M) is defined agV, W) — A~ {(R(V, N)W) }
Here, by* we denoted the tangential component of the corresponding vector field.
The shape operator is thought here as a field of endomorphisms of each tangent
spaces in points af/, namelyA : T(M) — T(M), V +— —VyN.
If the ambient space is a space form (its sectional curvature is constant), then the
tensorB vanishes and henc& = 0. Moreover, if in addition the shape operator

has constant determinant (and this often happens) the second mean curvature can
be computed by an easier formula, namely

H11_<mH Zg (Vi, N)V; N)/@Z). (2)

In the sequel we present some exampIeEIefnlnlmal hypersurfaces in spheres.
Example 1. The standard embeddisg—!(r) < S™(1) is IT minimal if and only

H _ 1

|f T = %

Proof: Let (2%, 2!,...,2") be global coordinates ifi"*! and denote by ei-
ther the point or the position vector i+, Without loss of the generality one
can think the spher8"~1(r) as obtained by cutting the unit sphe$& by the
hyperplanez’ = /1 —r2. Thus, an arbitrary vector field tangent $8—(r)
can be expressed & = (0, X!,...,X"), whereX' are smooth functions de-
pending onz', ... 2" such that}. X’z* = 0. In order to compute the sec-

=1
ond mean curvature, one can express first the unit normal of the embedding as
v=+ (—r, VAZZ (g1 73;”)). Fixing an orientation we choose e.g. the "plus”
sign. The second fundamental form is giveny X,Y) = —¥1== = (X,Y) for
all X,Y € T(S"1(r)), where( , ) denotes the usual Euclldean scalar product.

Note that/! is negatively defined. We are able now to obtain the second mean
curvature. After straightforward computations in (2) one gets

1 ViR
Hip= - - . (3)
2 \v1—r2 r
Under the assumption df/-minimality, H;; = 0 is equivalent withr = %
Hence the conclusion.
O

More generally we have
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Example 2. The embedding™ ' (r) — S™(R) is II-minimal if and only ifr =
R
VRI1

Proof: Similar computations as in previous example. a

Remark 1. The following chain of embeddings

$'(2) = (=) = = 87 (5) = )
is such that each embeddiﬁ@(ﬁ) < SkH (\/nlj) is II-minimal for any

ke{l,...,n—1}.
Let us give another example offd-minimal surface in the unit spheg.
Example 3. Let us consider the following parametrization

r: M — S3(1), r(s,t) = (cos scost,sin s cost, cos ssint, sin s sin t).

Then second mean curvature of the surfateanishes identically.

Proof: The proof of this statement is straightforward. O

The next example ends the series/éfminimal surfaces in spheres presented in
this paper.

Example 4. Let M = S™ (1) x S™2(ry) < S™+1(r) = M be the usual embed-
ding withrf + r3 = r? andmy + ma = m. Then,M is I1-minimal in M if and
only if ri = r /™S andry = r | /T2,
Proof: Consider(z?,z!,..., 2™) and (3°,%",...,4™2) global coordinates on
R™*1 respectively orR™2*1. The unit normal is/ = % (—:—2 x, L y) where

1 r2

r=(2%2', ..., 2™)andy = (°,%',...,5™2). Hence the Weingarten operator

can be expressed as
T2 0
rry T
A - ( O - - I )
rrg T2

whose determinant is constant. Bywe denoted the identity x k& matrix. After
straightforward computations we get from (2) that the second mean curvature is
given by
1
Hir = 5 (mir3 — mar? — myr®r? + mar?r3). 4)
rriro

Hence the conclusion. O
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Remark 2. In particular, ifm = 2 andr = 1 we get that the Clifford torus
1 1
st () x S () S3(1
7 i) (1)

Proof: See for example [7]. O

is II-minimal.

Having in mind these results, there is another interesting property involving the
curvatures of a surface that we can study, the Weingarten property, Bfare

two different type curvatures of a (non-developable) surface, and if there is a non-
trivial functional relation betweed and B, then the surface is called da, B} —
generalized Weingarten surface. See for details [4].

Remark 3. The Clifford torus is & H, H;; }-generalized Weingarten surface.

Proof: Easy computations yield the following relatioff;; = 2H, namely, the
mean curvature corresponding to the first fundamental fAriand the mean cur-
vature corresponding to the second fundamental tAinare proportional. [

Seeing all these nice examples for spheres, we wonder what happens when the
ambient is the hyperbolic space. At this point, if we consider similar problems,
e.g. I7-minimality, in the hyperbolic spaces, we get the following non-existence
result:

Proposition 1. There is na- > 0 such thatl"~!(—r) < H"(—1) is II-minimal.
HereH%, := H*(—R) = {x € R¥"™; (2,2); = —R?, 29 > 0} (R > 0) where
(, )1 denotes the usual Lorentzian scalar product with signdture - - - +).

Proof: After similar computations as in the previous examples we find the expres-
sion of the second mean curvature, but under the restrictidd-ofinimality we
reach a contradiction!

O

Having in mind all these examples in spheres and in hyperbolic spaces, let us recall
now another interesting property for surfaces and hypersurfacdshtmenonicity

As the aim of our article does not consist in the study of biharmonicity, the reader
is invited to check [1] for more details on the subject.

In the end of this section we wold like to bring into attention some classical results
concerning the biharmonicity of the surfaces and hypersurfaces above studied form
the I7-minimality point of view. Concerning the spheres, it is known that the

proper biharmonic surfaces Bf are alsol//-minimal surfaces. Moreover, the
hypersphere§™ (%) and the generalized Clifford toﬁ.ml (%) x Sm2 (%) |
my # my are the only known examples of proper biharmonic hypersurfaces in
Sm,
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If the problem is considered in hyperbolic spaces, only few results are obtained.
For example [1], there exist no proper biharmonic hypersurfacis in

3. ll-minimal translation surfaces

In this section we analyze lI-minimal translation surfaces with Riemannian second
fundamental form, namely we study under which conditions the second mean cur-
vature vanishes, i.el{;; = 0. Having in mind the usual technique for computing
the second mean curvature by using the normal variation of the area functional one
gets for surfaces ifi®

1
Hir=H+ ZAII 10g(K)
where K and H denote the usual Gaussian, respectively mean curvatures of our
surface and\;; is the Laplacian for functions computed with respect to the second
fundamental form as metrid;; can be equivalently expressed as

Hy=H (\/det 11 hY %(m \/E)) : (5)

n 1 Z 0
2Vdet IT 55 Ou'
HereII denotes the second fundamental fo(f,) is the associated matrix with
its inverse(h), the indices, j belong to{1,2} and the parameters , u? arez,
respectivelyy from the parametrization (1). Moreovel] becomes a metric on
the surface if it is positive definite (or, more generally, if it is non-degenerated).
Sometimes, the second mean curvature is taken with the opposite sign (see [12]).
Accordingly to parametrization (1) of a translation surface and denetthg cor-
responding immersion in the Euclidean 3-space endowed with the Euclidean scalar
product( , ), namelyr : M — E?, (2,y) — r(z,y) = (z,y, f(z) + g(y)) one
easily computes its first fundamental form

I = Edz? 4+ 2Fdady + Gdy?

whereE, F, G - the coefficients of - are given byE = (ry,ry), F = (ry,1y),
G = (ry, ry) and the second fundamental form
II = Ld2? 4+ 2Mdzdy + Ndy?
: . . _ (ra,ry,rzz) _ (rumry,roy)  (ra,ry,ryy)
with the coefficients given by = N M = VR andN = Ve ek
Denotingf’ = o andg’ = 3, we get

I= (1 + a(x)Q) dz? 4 2a(z)B(y)dx dy + <1 + ﬁ(y)Q) dy?

II = \/15 (o (z) d2?® + B/ (y) dy?)
whereA =1+ a(z)? + B(y)?.
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The inverse matrixh/) of the second fundamental form of a translation surface
has the following expression

V/ 1+a2+ 52 0
(n7) = o
i, 0 V1+a2+32
ﬂl

The curvatures corresponding to the first fundamental form, the Gaussian curvature
_ LN-M? _ EN—-2FM+GL ; ;
K = F5=F= and and the mean curvatuke = ===-"7-= become in this case
o/ (z)3'(y)
K= A2
and ) )
(1+ 55 (y)a'(z) + (1 + ()5 (y)
2A3/2
After straightforward computations, the sum in (5) has the following expression
Z _ & /% (20/0/”—30/’2 A2 + (—40404” o 80/2)A + 16a2a’2) +

o'?
1/’-]

H =

7 QI __ Q32
+ar /5 (2L A% 4 (—488" — 85)A + 165257 .
Notice thato/ 3’ > 0 since the second fundamental form is positive definite, so the
square roots are defined.

We are interested to fintl—minimal translation surfaces in the Euclidean 3-space.
Having now all the necessary tools, the conditiépy = 0 for a translation surface
is equivalent to

20/ — 30/ Qﬂ/ﬂ/// _ 3ﬂ"2 2 (O/2 + ao N ﬂ’2 + ﬂﬁ”) N
/

2a/3 25/3 A o ﬁ
6
+32 (o 4+ 326) = 0. (6)

The first two terms in (6) are functions only ofrespectively ofy, hence we take
the derivatives in the previous equation successively w.andy.

Denoting by
12 " /2 /!
p(x) = % VYY) = ﬁ;,ﬁﬁ ,p(z) = o’ andq(y) = 5°4'
we get
o0 [ 2 6
55 (-2 G+ + 35 +a)) =0

. . . . . A3 .
After straightforward computations and multiplying W%QW it follows
(F+G)A? —2(P+Q)A+18(p+¢q) =0 (7)
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¢/ B w/ 3 3 /
2aa* OW) = 555 Pl@) =9 (y) = ¢—F2ﬁﬁ,-

Repeating similar operations, namely taking the two part|al derivatives and divid-
ing by 4a’ 3’ one gets

whereF(z) =

(A+ B)A+a+b=0 (8)
F/ G/ P/ Ql
whereA(x) = Yacl , B(y) = 537 ya(z) =F — ey andb(y) = G — 257
Finally, using the same technique, we should have
A B’
w =C W = —C, S R.

Solving the above equations we obtaifr) = ca? + d; andB(y) = —cB3? + da.
Replacing these expressions in the previous ODEs we find that

F(x) = 2a +dio® +
G(y) = —§6* + daf5* + p2

o(x) = 604 + dla + o+ 1

Y(y) = + LB+ B+

o (z) = 4204 + 8ot 4 Bla? 4y 4 2
Bly) = + RO B+
p(z) = S8+ “ab + Lot + 1102 + pra
q(y) = —50° + *ﬁG B23% 4+ 732 + pof3
P(z) = a4 7d1 ot + 3p10? + 41 + 3p1
Qy) = — 16 + 7d2 54 4 3932 + A7y + 3/)2
o) = 0t~ Mha? 20 + 2}

) = 59 9d262—2u2+i’%

wheredy, da, 41, 42, 71, T2, p1, p2 € R. In order to determine all these integration
constants, we substitute the corresponding expressions in (8), obtaining a sum of
polynomials incc and g equals to 0. This means that there ex{sts R such that

C

4 3p1
a4+<c—d1+d2)a +7+d1—2u1 £E=0

7 403
c 3p2
—7544-( C+d1—5d2)52+455+d2—2u2+§—0
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At this point, by the same argument as in previous section, all the coefficients in
the above (algebraic) expressions must be zero and consequently we=get

di=dy=0,p1 =p2=0,u1 =—35andus = % . Thus, the previous expressions
can be expressed in a simpler form

Fx) = —§ Gly) = §

¢(z) = —§a% +m W(y) = 5§52+ 7

o'(x) = —§a® + 1 Bly) =562+ o

p(r) = —ga* + o q(y) = §8* + mf?

P(z) = —%a® + 47 Qy) = 507 + 4m

a(z) =§ b(y) = —¢.

Let us take a look in (7). By the same reasoning as above we deduce
(3¢ + 101 — 8m)a? — 811 =17
(=3¢ — 871 +1072)3% — 819 = —1

for an arbitraryy € R. Moreover, the integration constants shouldrpe= —2 ,

7 =1, ¢ = 31 and we can conclude that = —%(a? + 1) andf' = 2(3% +

1). Finally o and § must satisfy also the condition (6). After straightforward
computations it follows thag = £ = 0.

The conclusion is’ = 3 = 0, which cannot occur since if this happened the sec-
ond fundamental form would vanish identically. Hence the second mean curvature
is not defined and we end this section with the following non-existence theorem.

Theorem 1. There are no Il-minimal translation surfaces in Euclidean 3-space.
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