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Abstract. In this paper we study the second mean curvature for different
hypersurfaces in space forms. We furnish some examples and we remind
some connections betweenII-minimality and biharmonicity. The main re-
sult consists in proving that there are noII-minimal translation surfaces in
the Euclidean 3-space.

1. Introduction

The study of the second fundamental formII was initiated through the early pa-
pers of J. Weingarten [13], G. Darboux [3] and E. Cartan [2] where appeared for the
first time notions like connection or curvature associated toII. Later on, P. Erard
[5] introduced the second fundamental form as metric on the surface. This is pos-
sible only whenII is non-degenerate and hence it can be regarded as a (pseudo)-
Riemannian metric on the surface. At this point one can consider a connected
smooth surfaceM endowed withII as metric in order to study new characteristics
associated to(M, II). In the classical case when the metric on the surface is given
by the first fundamental formI, i.e. for (M, I), there are well known formulae
to compute the Gaussian curvatureK and the mean curvatureH in order to ana-
lyze the properties ofM that arise from this"measures". In a similar manner, the
second Gaussian curvaturedenotedKII and thesecond mean curvature, denoted
HII , were introduced. In [2],KII was introduced for the first time by E. Cartan,
as the analogous of the Gaussian curvature. ConcerningHII , it was defined by
E. Glässner in [6]. An overview over the literature dedicated to the second fun-
damental form and the associated curvatures for different type of submanifolds in
different ambient spaces can be found in [12] and its references. Regarding the
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second mean curvature, the critical points of the area functional of the second fun-
damental form are those surfaces for which the mean curvature of the second fun-
damental form vanishes. A non-developable surface is said to beII-flat if KII = 0
and respectivelyII-minimal if HII = 0. Consequently, the well known result that
there are no compact minimal submanifolds in Euclidean space was discussed also
in the case of the second mean curvature and in [6] it is proved thatdo not exist
compact II-minimal surfaces in Euclidean space.Despite this non-existence result
confirmed also in some other particular ambient spaces, in [12] it is proved that
compact II-minimal surfaces may exist in some general ambient spaces.

In the present paper we are interested in the study of the second mean curvature
for different examples of submanifolds. More exactly we study theII-minimality
property, equivalently, the conditionHII = 0. The classical examples in the the-
ory of harmonic and biharmonic maps are proved to be also interesting examples
concerning theII-minimality property. Let us remind the following situations of
classical biharmonic maps which are alsoII-minimal, namely the standard em-
bedding Sn( 1√

2
) ⊂ Sn+1 and the hypersurfaceSk( 1√

2
) × Sn−k( 1√

2
) ⊂ Sn+1 for

k = 1, n− 1 (see [12]). In the sequel we formulate some generalizations of these
results.

Returning to the theory of surfaces, in [8] it is proved that a ruled surface with
nowhere vanishing Gaussian curvature is II-minimal if and only if is a piece of
helicoid. A study on II-minimal affine translation surfaces written as a sum of
two curves is contained in [9]. Here it is stated thatthere are no affineII-minimal
translation surfaces of this type. As a particular case it is suggested that one can re-
trieve the same non-existence result concerningII-minimal translation surfaces in
Euclidean 3-space. The aim of this article is to give a proof of this result in the case
when the two curves are situated in orthogonal planes. This result is contained in
Section 3, after we acquaint the reader with the basic notions about translation sur-
faces andII-minimality in thePreliminariesof this article. Moreover, we provide
also interesting examples ofII-minimal hypersurfaces in different space forms.

2. Preliminaries

In the general theory of surfaces and hypersurfaces ordinary denotedM , isometri-
cally immersed in some ambient space(M̃, g̃), one can associate different"mea-
sures". Naturally, a way of describe ametricg onM is taking the restriction toM
of the matricg̃ from the ambient space.

Thinking now the immersion(M, g) ↪→ (M̃, g̃) whereM is a hypersurface, i.e.has
codimension 1, we have the Gauss and Weingarten formulas

(G) ∇̃XY = ∇XY + II(X,Y ) N

(W) ∇̃XN = −AX
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for everyX, Y tangent toM . The corresponding Levi-Civita connections on the
ambient space and on the surface are denoted by∇̃ and∇, respectively. More-
over II is a symmetric(1, 2)-tensor field calledthe second fundamental formof
the surfaceM andA is a symmetric(1, 1)-tensor field denoting the shape oper-
ator associated to the unit normal to the surfaceN . The following relation holds
II(X, Y ) = g(X, AY ), whereX,Y are vector fields tangents toM .

Concerning the curvature tensorR on the surface and using the previous notations,
recall that we use the following sign conventionR(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ]

for anyX, Y ∈ T (M).
Having now some basic working tools onM we can construct its intrinsic and
extrinsic geometry by means of the characterization of the curvatures. The most
used metrics on a surface is given by the first fundamental formI associated to the
immersion which gives the parametrization. But, one can think of rebuilding all
the corresponding geometry toI by taking the second fundamental form as a new
metric on the surface. One elementary condition thatII must satisfy consists of
non-degeneracy, namely the surface must be non-developable.

2.1. Translation surfaces

Let us consider a surface having the Cartesian parametrization given by

(
x
y

)
7→ A(x)




f(y)
g(y)
h(y)


 +




a(x)
b(x)
c(x)




whereA(x) ∈ SO(3) (sometimes inO(3)). This surface represents a union of
"equal" curves i.e. it is the image of one curve, calledgeneratrix, obtained by
isometries of the space. Some authors call this kind of surface asurface of Dar-
boux. Some known examples are to be mentioned, namely

1. A = I3 : translation surfaces
2. A = matrix of rotation (axe and angle are fixed),a = b = c = 0 : rotation

surfaces
3. A = matrix of rotation (axēn and angle are fixed),(a, b, c) = x n̄ : heli-

coidal surfaces

If the generatrix is

a. a straight line :ruled surfaces

b. a circle : circled surfacesincluding e.g. tubes. For a smooth curveγ, the
tube of radius 1 around it is given by

r(s, t) = γ(t) + cos s N(t) + sin s B(t)
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wheres is the arclength parameter,N(s) and B(s) are respectively the
normal and the binormal of the curve. As a Darboux surface, a tube can be
written as

r(s, t) = γ(t) + A(t) S1

where byS1 we mean the unit circle.

The special Euclidean group of then-dimensional space or the Euclidean motion
groupSE(n) is the semi-direct product ofRn with the special orthogonal group
SO(n). In the3-dimensional caseSE(3) = R3 o SO(3). To be more precise, for
two elementsg = (a,A) andh = (b,B) in SE(3), the group multiplication and
the inverse are given byg ◦ h = (a + Ab,AB), respectivelyg−1 = (−AT a, AT ).
It is also possible to represent any element ofSE(n) as an(n + 1) × (n + 1)

homogeneous transformation matrix of the form
(

A a
O 1

)
(see e.g. [11], p.45).

A Darboux surface can be thought as the action of the 1-parameter family ofSE(3)
to a given curve.

As we have seen, a translation surface is a "sum" of two curves. If the two curves
are situated in orthogonal planes the surface can be represented as

(x, y) 7−→ (x, y, f(x) + g(y)). (1)

Examples: planes, cylinders, hyperbolic and elliptic paraboloids, the egg box sur-
face, Scherk surface (the only minimal translation surface inE3).

2.2. II-minimality

We dedicate this section to some very nice examples of II-minimal hypersurfaces
immersed in the sphereSn and we give a nonexistence result in the case of II-
minimal hypersurfaces in the hyperbolic spaceHn. The motivation comes from an-
other interesting property of these immersions intensively studied in recent years,
namely the biharmonicity. Similar to the variational characterization of the mean
curvatureH, the curvature of the second fundamental form, denoted byHII is
introduced as a measure for the rate of change of the II-area under a normal de-
formation. Let us denoteM am-dimensional hypersurface in a semi-Riemannian
manifold (M̃, g̃) with the second fundamental form as semi-Riemannian metric.
Accordingly to [12], the mean curvature associated to the second mean curvature,
HII is given by

HII =
1
2

(
mH −

m∑

i=1

g̃(R̃(Vi, N)Vi, N)κi +
α

2
∆II log |det A| − α divIIZ

)
.

Let us explain in few words the notations used above. The classical mean curvature
of the first fundamental form is denoted byH, the unit normal is calledN and byA
we mean the shape operator ofM . Moreover,Vi, i = 1,m is an orthonormal basis
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on M with respect toII and by definitionκi = II(Vi, Vi) = ±1, i = 1,m. The

vector fieldZ in T (M) is defined asZ = trII B =
m∑

i=1

B(Vi, Vi)κi, where the ten-

sorB : T (M)×T (M) → T (M) is defined as(V, W ) 7→ A−1

{(
R̃(V, N)W

)t
}

.

Here, byt we denoted the tangential component of the corresponding vector field.
The shape operator is thought here as a field of endomorphisms of each tangent
spaces in points ofM , namelyA : T (M) → T (M), V 7→ −∇̃V N .
If the ambient space is a space form (its sectional curvature is constant), then the
tensorB vanishes and henceZ = 0. Moreover, if in addition the shape operator
has constant determinant (and this often happens) the second mean curvature can
be computed by an easier formula, namely

HII =
1
2

(
mH −

m∑

i=1

g̃(R̃(Vi, N)Vi, N)κi

)
. (2)

In the sequel we present some examples ofII-minimal hypersurfaces in spheres.

Example 1. The standard embeddingSn−1(r) ↪→ Sn(1) is II minimal if and only
if r = 1√

2
.

Proof: Let (x0, x1, . . . , xn) be global coordinates inEn+1 and denote byp ei-
ther the point or the position vector inEn+1. Without loss of the generality one
can think the sphereSn−1(r) as obtained by cutting the unit sphereSn by the
hyperplanex0 =

√
1− r2. Thus, an arbitrary vector field tangent toSn−1(r)

can be expressed asX = (0, X1, . . . , Xn), whereXi are smooth functions de-

pending onx1, . . . , xn such that
n∑

i=1
Xixi = 0. In order to compute the sec-

ond mean curvature, one can express first the unit normal of the embedding as
ν = ±

(
−r,

√
1−r2

r (x1, . . . , xn)
)
. Fixing an orientation we choose e.g. the "plus"

sign. The second fundamental form is given byII(X,Y ) = −
√

1−r2

r 〈X, Y 〉 for
all X, Y ∈ T (Sn−1(r)), where〈 , 〉 denotes the usual Euclidean scalar product.
Note thatII is negatively defined. We are able now to obtain the second mean
curvature. After straightforward computations in (2) one gets

HII =
1
2

(
r√

1− r2
−
√

1− r2

r

)
. (3)

Under the assumption ofII-minimality, HII = 0 is equivalent withr = 1√
2
.

Hence the conclusion.
¤

More generally we have
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Example 2. The embeddingSn−1(r) ↪→ Sn(R) is II-minimal if and only ifr =
R√

R2+1
.

Proof: Similar computations as in previous example. ¤

Remark 1. The following chain of embeddings

S1
( 1√

n

)
↪→ S2

( 1√
n− 1

)
↪→ · · · ↪→ Sn−1

( 1√
2

)
↪→ Sn(1)

is such that each embeddingSk
(

1√
n−k+1

)
↪→ Sk+1

(
1√
n−k

)
is II-minimal for any

k ∈ {1, ..., n− 1}.

Let us give another example of aII-minimal surface in the unit sphereS3.

Example 3. Let us consider the following parametrization

r : M −→ S3(1) , r(s, t) = (cos s cos t, sin s cos t, cos s sin t, sin s sin t).

Then second mean curvature of the surfaceM vanishes identically.

Proof: The proof of this statement is straightforward. ¤
The next example ends the series ofII-minimal surfaces in spheres presented in
this paper.

Example 4. Let M = Sm1(r1)× Sm2(r2) ↪→ Sm+1(r) = M̃ be the usual embed-
ding with r2

1 + r2
2 = r2 andm1 + m2 = m. Then,M is II-minimal in M̃ if and

only if r1 = r
√

m1+m2r2

m(r2+1)
andr2 = r

√
m2+m1r2

m(r2+1)
.

Proof: Consider(x0, x1, . . . , xm1) and (y0, y1, . . . , ym2) global coordinates on

Rm1+1, respectively onRm2+1. The unit normal isν = 1
r

(
− r2

r1
x, r1

r2
y
)

where

x = (x0, x1, . . . , xm1) andy = (y0, y1, . . . , ym2). Hence the Weingarten operator
can be expressed as

A =




r2
rr1

Im1 O

O − r1
rr2

Im2




whose determinant is constant. ByIk we denoted the identityk × k matrix. After
straightforward computations we get from (2) that the second mean curvature is
given by

HII =
1

2rr1r2

(
m1r

2
2 −m2r

2
1 −m1r

2r2
1 + m2r

2r2
2

)
. (4)

Hence the conclusion. ¤
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Remark 2. In particular, ifm = 2 andr = 1 we get that the Clifford torus

S1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1)

is II-minimal.

Proof: See for example [7]. ¤

Having in mind these results, there is another interesting property involving the
curvatures of a surface that we can study, the Weingarten property. IfA,B are
two different type curvatures of a (non-developable) surface, and if there is a non-
trivial functional relation betweenA andB, then the surface is called an{A,B} –
generalized Weingarten surface. See for details [4].

Remark 3. The Clifford torus is a{H, HII}-generalized Weingarten surface.

Proof: Easy computations yield the following relation:HII = 2H, namely, the
mean curvature corresponding to the first fundamental formH and the mean cur-
vature corresponding to the second fundamental formHII are proportional. ¤
Seeing all these nice examples for spheres, we wonder what happens when the
ambient is the hyperbolic space. At this point, if we consider similar problems,
e.g. II-minimality, in the hyperbolic spaces, we get the following non-existence
result:

Proposition 1. There is nor > 0 such thatHn−1(−r) ↪→ Hn(−1) is II-minimal.
HereHk

R := Hk(−R) = {x ∈ Rk+1
1 ; 〈x, x〉1 = −R2, x0 > 0} (R > 0) where

〈 , 〉1 denotes the usual Lorentzian scalar product with signature(−+ · · ·+).

Proof: After similar computations as in the previous examples we find the expres-
sion of the second mean curvature, but under the restriction ofII-minimality we
reach a contradiction!

¤
Having in mind all these examples in spheres and in hyperbolic spaces, let us recall
now another interesting property for surfaces and hypersurfaces, thebiharmonicity.
As the aim of our article does not consist in the study of biharmonicity, the reader
is invited to check [1] for more details on the subject.
In the end of this section we wold like to bring into attention some classical results
concerning the biharmonicity of the surfaces and hypersurfaces above studied form
the II-minimality point of view. Concerning the spheres, it is known that the
proper biharmonic surfaces inS3 are alsoII-minimal surfaces. Moreover, the
hyperspheresSm

(
1√
2

)
and the generalized Clifford toriSm1

(
1√
2

)
× Sm2

(
1√
2

)
,

m1 6= m2 are the only known examples of proper biharmonic hypersurfaces in
Sm+1.
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If the problem is considered in hyperbolic spaces, only few results are obtained.
For example [1], there exist no proper biharmonic hypersurfaces inH4.

3. II-minimal translation surfaces

In this section we analyze II-minimal translation surfaces with Riemannian second
fundamental form, namely we study under which conditions the second mean cur-
vature vanishes, i.e.HII = 0. Having in mind the usual technique for computing
the second mean curvature by using the normal variation of the area functional one
gets for surfaces inE3

HII = H +
1
4
∆II log(K)

whereK andH denote the usual Gaussian, respectively mean curvatures of our
surface and∆II is the Laplacian for functions computed with respect to the second
fundamental form as metric.HII can be equivalently expressed as

HII = H +
1

2
√

det II

∑

i,j

∂

∂ui

(√
det II hij ∂

∂uj
(ln
√

K)
)

. (5)

HereII denotes the second fundamental form,(hij) is the associated matrix with
its inverse(hij), the indicesi, j belong to{1, 2} and the parametersu1, u2 arex,
respectivelyy from the parametrization (1). Moreover,II becomes a metric on
the surface if it is positive definite (or, more generally, if it is non-degenerated).
Sometimes, the second mean curvature is taken with the opposite sign (see [12]).

Accordingly to parametrization (1) of a translation surface and denotingr the cor-
responding immersion in the Euclidean 3-space endowed with the Euclidean scalar
product〈 , 〉, namelyr : M → E3, (x, y) 7→ r(x, y) = (x, y, f(x) + g(y)) one
easily computes its first fundamental form

I = Edx2 + 2Fdxdy + Gdy2

whereE, F , G - the coefficients ofI - are given byE = 〈rx, rx〉, F = 〈rx, ry〉,
G = 〈ry, ry〉 and the second fundamental form

II = Ldx2 + 2Mdxdy + Ndy2

with the coefficients given byL = (rx,ry ,rxx)√
EG−F 2

, M = (rux,ry,rxy)√
EG−F 2

andN = (rx,ry ,ryy)√
EG−F 2

.

Denotingf ′ = α andg′ = β, we get

I =
(
1 + α(x)2

)
dx2 + 2α(x)β(y)dx dy +

(
1 + β(y)2

)
dy2

II =
1√
∆

(
α′(x) dx2 + β′(y) dy2)

where∆ = 1 + α(x)2 + β(y)2.
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The inverse matrix(hij) of the second fundamental form of a translation surface
has the following expression

(
hij

)
i,j

=




√
1+α2+β2

α′ 0

0
√

1+α2+β2

β′


 .

The curvatures corresponding to the first fundamental form, the Gaussian curvature
K = LN−M2

EG−F 2 and and the mean curvatureH = EN−2FM+GL
EG−F 2 become in this case

K =
α′(x)β′(y)

∆2

and

H =
(1 + β2(y))α′(x) + (1 + α2(x))β′(y)

2∆3/2
.

After straightforward computations, the sum in (5) has the following expression
∑

i,j

= 1
4∆2

√
β′
α′

(
2α′α′′′−3α′′2

α′2 ∆2 + (−4αα′′ − 8α′2)∆ + 16α2α′2
)

+

+ 1
4∆2

√
α′
β′

(
2β′β′′′−3β′′2

β′2 ∆2 + (−4ββ′′ − 8β′2)∆ + 16β2β′2
)

.

Notice thatα′β′ > 0 since the second fundamental form is positive definite, so the
square roots are defined.
We are interested to findII–minimal translation surfaces in the Euclidean 3-space.
Having now all the necessary tools, the conditionHII = 0 for a translation surface
is equivalent to

2α′α′′′ − 3α′′2

2α′3
+

2β′β′′′ − 3β′′2

2β′3
− 2

∆

(
α′2 + αα′′

α′
+

β′2 + ββ′′

β′

)
+

+
6

∆2
(α2α′ + β2β′) = 0. (6)

The first two terms in (6) are functions only ofx respectively ofy, hence we take
the derivatives in the previous equation successively w.r.t.x andy.

Denoting by

φ(x) =
α′2 + αα′′

α′
, ψ(y) =

β′2 + ββ′′

β′
, p(x) = α2α′ andq(y) = β2β′

we get
∂

∂y

∂

∂x

(
− 2

∆
(φ + ψ) +

6
∆2

(p + q)
)

= 0.

After straightforward computations and multiplying with∆3

8αα′ββ′ it follows

(F + G)∆2 − 2(P + Q)∆ + 18(p + q) = 0 (7)
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whereF (x) =
φ′

2αα′
, G(y) =

ψ′

2ββ′
, P (x) = φ +

3p′

2αα′
andQ(y) = ψ +

3q′

2ββ′
.

Repeating similar operations, namely taking the two partial derivatives and divid-
ing by4αα′ββ′ one gets

(A + B)∆ + a + b = 0 (8)

whereA(x) =
F ′

2αα′
, B(y) =

G′

2ββ′
, a(x) = F − P ′

2αα′
andb(y) = G− Q′

2ββ′
.

Finally, using the same technique, we should have

A′

2αα′
= c

B′

2ββ′
= −c, c ∈ R.

Solving the above equations we obtainA(x) = cα2 + d1 andB(y) = −cβ2 + d2.
Replacing these expressions in the previous ODEs we find that

F (x) = c
2α4 + d1α

2 + µ1

G(y) = − c
2β4 + d2β

2 + µ2

φ(x) = c
6α6 + d1

2 α4 + µ1α
2 + τ1

ψ(y) = − c
6β6 + d2

2 β4 + µ2β
2 + τ2

α′(x) = c
42α6 + d1

10α4 + µ1

3 α2 + τ1 + ρ1

α

β′(y) = − c
42β6 + d2

10β4 + µ2

3 β2 + τ2 + ρ2

β

p(x) = c
42α8 + d1

10α6 + µ1

3 α4 + τ1α
2 + ρ1α

q(y) = − c
42β8 + d2

10β6 + µ2

3 β4 + τ2β
2 + ρ2β

P (x) = 19c
42 α6 + 7d1

5 α4 + 3µ1α
2 + 4τ1 + 3ρ1

2α

Q(y) = −19c
42 β6 + 7d2

5 β4 + 3µ2β
2 + 4τ2 + 3ρ2

2β

a(x) = −6c
7 α4 − 9d1

5 α2 − 2µ1 + 3ρ1

4α3

b(y) = 6c
7 β4 − 9d2

5 β2 − 2µ2 + 3ρ2

4β3

whered1, d2, µ1, µ2, τ1, τ2, ρ1, ρ2 ∈ R. In order to determine all these integration
constants, we substitute the corresponding expressions in (8), obtaining a sum of
polynomials inα andβ equals to 0. This means that there existsξ ∈ R such that

c

7
α4 +

(
c− 4

5
d1 + d2

)
α2 +

3ρ1

4α3
+ d1 − 2µ1 − ξ = 0

− c

7
β4 +

(
−c + d1 − 4

5
d2

)
β2 +

3ρ2

4β3
+ d2 − 2µ2 + ξ = 0.
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At this point, by the same argument as in previous section, all the coefficients in
the above (algebraic) expressions must be zero and consequently we getc = 0,
d1 = d2 = 0, ρ1 = ρ2 = 0, µ1 = − ξ

2 andµ2 = ξ
2 . Thus, the previous expressions

can be expressed in a simpler form

F (x) = − ξ
2 G(y) = ξ

2

φ(x) = − ξ
2α2 + τ1 ψ(y) = ξ

2β2 + τ2

α′(x) = − ξ
6α2 + τ1 β′(y) = ξ

6β2 + τ2

p(x) = − ξ
6α4 + τ1α

2 q(y) = ξ
6β4 + τ2β

2

P (x) = −3ξ
2 α2 + 4τ1 Q(y) = 3ξ

2 β2 + 4τ2

a(x) = ξ b(y) = −ξ.

(9)

Let us take a look in (7). By the same reasoning as above we deduce

(3ξ + 10τ1 − 8τ2)α2 − 8τ1 = η

(−3ξ − 8τ1 + 10τ2)β2 − 8τ2 = −η

for an arbitraryη ∈ R. Moreover, the integration constants should beτ1 = −η
8 ,

τ2 = η
8 , ξ = 3η

4 and we can conclude thatα′ = −η
8 (α2 + 1) andβ′ = η

8 (β2 +
1). Finally α and β must satisfy also the condition (6). After straightforward
computations it follows thatη = ξ = 0.

The conclusion isα′ = β′ = 0, which cannot occur since if this happened the sec-
ond fundamental form would vanish identically. Hence the second mean curvature
is not defined and we end this section with the following non-existence theorem.

Theorem 1. There are no II-minimal translation surfaces in Euclidean 3-space.
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