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ABSTRACT
Estimating and comparing microbial diversity are statistically challenging due to

limited sampling and possible sequencing errors for low-frequency counts,

producing spurious singletons. The inflated singleton count seriously affects

statistical analysis and inferences about microbial diversity. Previous statistical

approaches to tackle the sequencing errors generally require different parametric

assumptions about the sampling model or about the functional form of frequency

counts. Different parametric assumptions may lead to drastically different diversity

estimates. We focus on nonparametric methods which are universally valid for all

parametric assumptions and can be used to compare diversity across communities.

We develop here a nonparametric estimator of the true singleton count to replace

the spurious singleton count in all methods/approaches. Our estimator of the true

singleton count is in terms of the frequency counts of doubletons, tripletons and

quadrupletons, provided these three frequency counts are reliable. To quantify

microbial alpha diversity for an individual community, we adopt the measure of

Hill numbers (effective number of taxa) under a nonparametric framework. Hill

numbers, parameterized by an order q that determines the measures’ emphasis on

rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1,

the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of

Simpson index). A diversity profile which depicts the Hill number as a function of

order q conveys all information contained in a taxa abundance distribution. Based

on the estimated singleton count and the original non-singleton frequency counts,

two statistical approaches (non-asymptotic and asymptotic) are developed to

compare microbial diversity for multiple communities. (1) A non-asymptotic

approach refers to the comparison of estimated diversities of standardized samples

with a common finite sample size or sample completeness. This approach aims to

compare diversity estimates for equally-large or equally-complete samples; it is

based on the seamless rarefaction and extrapolation sampling curves of Hill

numbers, specifically for q = 0, 1 and 2. (2) An asymptotic approach refers to

the comparison of the estimated asymptotic diversity profiles. That is, this

approach compares the estimated profiles for complete samples or samples

whose size tends to be sufficiently large. It is based on statistical estimation of the

true Hill number of any order q � 0. In the two approaches, replacing the

spurious singleton count by our estimated count, we can greatly remove the

positive biases associated with diversity estimates due to spurious singletons

and also make fair comparisons across microbial communities, as illustrated in our
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simulation results and in applying our method to analyze sequencing data from

viral metagenomes.

Subjects Biodiversity, Ecology, Microbiology, Statistics

Keywords Extrapolation, Hill numbers, Microbial diversity, Rarefaction, Sample coverage,

Standardization, Good–Turing frequency theory, Spurious singleton, Sequencing error

INTRODUCTION
Advances in high-throughput DNA sequencing have opened a novel way to assess highly

diverse microbial communities (Sogin et al., 2006; Roesch et al., 2007; Fierer et al., 2008;

Turnbaugh & Gordon, 2009). However, the measurement and comparison of microbial

diversity are challenging issues due to sampling limitations (Bohannan & Hughes, 2003;

Schloss & Handelsman, 2006; Schloss & Handelsman, 2008; Øvreås & Curtis, 2011). These

issues become more challenging when sequencing errors generate spurious low frequency

counts especially singletons (Quince et al., 2009; Dickie, 2010; Kunin et al., 2010; Quince

et al., 2011; Bunge et al., 2012a; Bunge et al., 2012b). In this paper, we use “species” to refer

to taxa or operational taxonomic units (OTUs) under a pre-specified percentage of

identity of sequences (Schloss & Handelsman, 2005; Schloss & Handelsman, 2008). We also

use “individuals” to refer to sequences or any sampling unit.

In macro-ecology, Hill numbers have been increasingly used to quantify species

diversity. An Ecology Forum led by Ellison (2010) (and papers that followed it)

surprisingly achieved a consensus in the use of Hill numbers as the proper choice of

diversity measure, despite intense debates existing in earlier literature regarding this issue.

Hill numbers (or the effective number of species) are a mathematically unified family

of diversity indices differing among themselves only by an exponent q that determines

the measure’s sensitivity to species relative abundances. This family includes the three

most important diversity measures: species richness (q = 0), Shannon diversity (q = 1,

the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of

Simpson index). See below for its mathematical formula and interpretation. Hill

numbers were first used in ecology by MacArthur (1965), developed by Hill (1973), and

reintroduced to ecologists by Jost (2006) and Jost (2007). Hill numbers have been extended

to incorporate evolutionary history and species traits; see Chao, Chiu & Jost (2014) for a

recent review.

Various ecological measures have been applied to quantify the diversity of microbial

communities (Hughes et al., 2001; Curtis, Sloan & Scannell, 2002). Hill et al. (2003)

reviewed and discussed the suitability of a wide range of ecological diversity measures for

use with highly diverse bacterial communities. Members of Hill numbers are also proposed

as promising measures for quantifying microbial diversity. For example, Haegeman et al.

(2008), Haegeman et al. (2013) and Haegeman et al. (2014) recommended the use of

Shannon diversity and Simpson diversity to measure and compare microbial diversity;

Doll et al. (2013) suggested using a continuous diversity profile, a plot of Hill numbers as a

continuous function of q � 0. In this paper, we adopt the general framework of Hill

numbers and use continuous profiles to quantify microbial diversity. The diversity profile
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for q � 0 conveys all information contained in a species relative abundance distribution if

community parameters (species richness and relative abundances) are known. In practice,

however, community parameters are unknown and thus the true diversity must be

estimated from sampling data, meaning that statistical methods are required.

In this paper, we propose two statistical approaches (non-asymptotic and asymptotic)

to make fair comparisons of microbial diversity across multiple communities. A non-

asymptotic approach refers to the comparison of estimated diversities of standardized

samples with a common finite sample size or sample completeness (as measured by sample

coverage; see below). This approach aims to compare diversity estimates for equally-large

or equally-complete samples; it is based on the seamless rarefaction and extrapolation

sampling curves of Hill numbers, specifically for q = 0, 1 and 2. Traditional sample-

size-based rarefaction for species richness has been widely applied in ecology as a

standardization method and also suggested by Dickie (2010) for molecular surveys. For

species richness, Colwell et al. (2012) proposed an integrated rarefaction and extrapolation

sampling curve for standardizing sample size; Chao & Jost (2012) proposed the

corresponding curve for standardizing sample completeness. Hill numbers calculated from

a sample, like species richness, are an increasing function of sampling effort and thus tend

to increase with sample completeness. Chao et al. (2014) generalized previous papers

(Chao & Jost, 2012; Colwell et al., 2012) on species richness to the family of Hill numbers

and developed two types of standardization methods (sample-size- and sample-coverage-

based). The sample-size- and sample-coverage-based integration of rarefaction and

extrapolation together represent a unified non-asymptotic and non-parametric framework

for estimating diversity and for making statistical inferences based on these estimates. The

rarefaction and extrapolation curves formeasures of small value of q (say, 0� q< 2) heavily

depend on the low frequency counts, especially singletons (Chao et al., 2014).

An asymptotic approach refers to the comparison of the estimated asymptotic diversity

profiles. That is, this approach compares the estimated profiles for samples with size

tending to be sufficiently large or samples with sample completeness tending to unity. It is

based on statistical estimation of the true Hill number of any order q � 0. This profile is

typically generated by substituting species sample proportions into the diversity formula.

However, this empirical approach generally underestimates the true profile, because

samples usually miss some of the community’s species due to under-sampling. Finding an

analytic reduced-bias continuous diversity profile has been a long-standing challenge.

Chao & Jost (2015) recently proposed a resolution to obtain a diversity profile estimator,

which infers the asymptotic or true diversities. By applying their diversity profile

estimator, the negative bias associated with the empirical diversity curve due to

undetected species can be greatly reduced. The authors also used real data sets to

demonstrate that the empirical and their estimated diversity profiles may give

qualitatively different answers when comparing biodiversity surveys. Chao & Jost’s (2015)

diversity profile estimator for low values of q (0 � q < 2) is strongly affected by the low

frequency counts. This is mainly because the observed rare species that produce low

frequencies carry nearly all the information about the undetected species and play an

important role in almost all statistical inferences in diversity estimation.
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However, unlike macro-community ecological data, the low frequency counts,

especially singletons from high-throughput DNA sequencing, are subject to various types

of sequencing errors at different stages of processing (Quince et al., 2009; Huse et al., 2010;

Quince et al., 2011). Some sequences may be misclassified as new taxa, and, accordingly,

are also misclassified as singletons. Consequently, the observed singletons are greatly

inflated and can comprise more than 60% of taxa in a sample (Buee et al., 2009). Since

singletons play crucial roles in both asymptotic and non-asymptotic analyses as described

above, our suggested approaches will be seriously affected if the inflated singleton count is

not adjusted. A wide range of methods have been developed to reduce or correct

sequencing errors (Buee et al., 2009; Quince et al., 2011) at the bioinformatics-processing

stage. Without knowledge of the sources of measurement errors, statistical sampling-

based methods have also recently been proposed to correct the number of spurious

singletons and estimate diversity. Bunge et al. (2012a) and Bunge, Willis & Walsh (2014)

proposed a parametric mixture model and a method using “left-censored” data; Willis &

Bunge (2015) proposed an approach using the ratio of two successive frequency counts.

These statistical approaches generally require different parametric assumptions about the

sampling models or about the functional form of the ratio of frequency counts. Some of

these parametric assumptions may not be reliably tested, and the different parametric

assumptions may disallow comparisons across communities.

In this paper, we propose a novel nonparametric approach to estimate the true number

of singletons in the presence of sequencing errors. Here we derive a relationship between

the expected frequency of singletons and the expected frequencies of doubletons, tripletons

and quadrupletons, based on a modified Good–Turing frequency formula originally

developed by the founder of modern computer science Alan Turing, and his colleague

Good (1953) and Good (2000). Our estimator of singleton count is thus expressed in terms

of the observed frequency counts of doubletons, tripletons and quadrupletons, provided

these three frequency counts are reliable. Simulation results are reported to demonstrate an

important finding about our proposed singleton count estimator. That is, when there are

no sequencing errors and sample sizes are reasonably large, our estimator differs from the

true singleton count only to a limited extent; when there are sequencing errors, our

estimator is substantially lower than the observed singleton count. Therefore, the

discrepancy between the estimated and the observed singleton counts can also be used to

assess whether or not sequencing errors were present in the observed data.

Throughout the paper, “adjusted data/estimators” refer to those with the observed

singleton count being replaced by the estimated count (the observed singleton count is

discarded), whereas “original or observed data” refer to the observed data with spurious

singletons possibly present. To quantify and compare microbial diversity, here we propose

applying both non-asymptotic and asymptotic analyses to the adjusted data whenever the

singleton count is uncertain in measurement. That is, for adjusted data, we present

seamless sample-size- and coverage-based rarefaction and extrapolation sampling curves

of Hill numbers (focusing on measures of q = 0, 1, and 2) and a continuous diversity

profile estimator. Simulation results based on various taxa abundance distributions are

reported to examine the performance of our method and to compare our results with
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those obtained from a previous ratio-based method (Bunge, Willis & Walsh, 2014;Willis &

Bunge, 2015). Sequencing data from viral metagenomes (Allen et al., 2011; Allen et al.,

2013) are used for illustration and comparison. The generalization of our methods to

phylogenetic diversity is discussed.

METHODS
Model framework based on Hill numbers
Assume in a community that there are S species indexed by 1, 2, : : : , S, where S is an

unknown parameter. Let pi be the unknown species relative abundance of the ith species

or detection probability of the ith species in any randomly observed individual, i = 1,

2, : : : , S,
PS

i¼1 pi ¼ 1, and Xi be the number of individuals of the ith species detected in

the sample of size n. Let fk (abundance frequency counts), k = 1, 2, : : : , n, be the number of

species that are observed exactly k times or with k individuals in the sample. Here, the

unobservable f0 denotes the number of undetected species in the sample; f1 denotes the

number of singletons and f2 denotes the number of doubletons observed in the sample.

Given a species relative abundance set {p1, p2, : : : , pS}, the Hill number of order q is

defined as:

qD ¼
XS
i¼1

p
q
i

 !1=ð1�qÞ
; q � 0; q 6¼ 1: (1a)

For all q � 0, if qD = k, then the diversity of order q of the actual community with

relative abundance set {p1, p2, : : : , pS} is the same as that of an equivalent reference

community with k equally abundant species (i.e., with relative abundance set {1/k,

1/k, : : : , 1/k}). This is why Hill numbers are referred to as the effective number of species

or as species equivalents. Since the Lp norm is widely used in various disciplines, we here

provide a very simple and intuitive connection between the Lp norm and Hill numbers.

Note that the Lp norm for the relative abundance set of the actual community is

ðPS
i¼1 p

q
i Þ1=q, whereas the corresponding Lp norm for the equally abundant reference

community is ðPk
i¼1 ð1=kÞqÞ1=q ¼ kð1�qÞ=q. If the two Lp norms are equal, then we have

ðPS
i¼1 p

q
i Þ1=q ¼ kð1�qÞ=q, implying k ¼ ðPS

i¼1 p
q
i Þ1=ð1�qÞ

, which is the formula of the Hill

number of order q in Eq. (1a).

The parameter q determines the sensitivity of the measure to the relative abundance.

When q = 0, the abundances of individual species do not contribute to the sum in

Eq. (1a). Rather, only presences are counted, so that 0D is simply species richness, which

counts species equally without regard to their relative abundances. For q = 1, Eq. (1a) is

undefined, but its limit as q tends to 1 is the exponential of the familiar Shannon index,

referred to as Shannon diversity (Chao et al., 2014):

1D ¼ lim
q!1

qD ¼ exp �
XS
i¼1

pi log pi

 !
: (1b)

The measure for q = 1 counts individuals equally and thus counts species in

proportional to their abundances; the measure 1D can be interpreted as the effective
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number of common species in the community. The measure for q = 2 discounts all but the

dominant species and can be interpreted as the effective number of dominant species in

the community. Hill (1973), Tóthmérész (1995), Gotelli & Chao (2013), Doll et al. (2013)

and others suggested that biologists should use all the information contained in their data

by plotting the diversity as a continuous function of q � 0. If the profiles of two

communities do not cross, then one of the assemblages is unambiguously more diverse

than the other. If they cross, only statements conditional on q can be made about their

ranking. In most applications, the diversity profiles are plotted for all values (including

non-integers) of q from 0 to q = 3 or 4, beyond which it generally does not change much.

Thus, our diversity profile is mainly focused on the range of 0 � q � 3.

Modified Good–Turing frequency formula
The original Good–Turing frequency formula was developed during World War II

cryptographic analyses by Alan Turing and I. J. Good. Turing never published the theory

but gave permission to Good to publish it. Two influential papers by Good (1953) and

Good & Toulmin (1956) presented Turing’s wartime statistical work on the frequency

formula and related topics. In an ecological context, the Good–Turing frequency theory

answers a question as follows: For those species that appeared r times, r = 0, 1, : : : , in a

sample of size n, how can one estimate the true mean relative abundance ar of those species?

Good and Turing focused on the case of small r, i.e., rare species (or rare code elements, in

Turing’s case). Mathematically, �r ¼
PS

i¼1 piIðXi ¼ rÞ=fr , where I(A) is the indicator
function, i.e., I(A) = 1 if the event A occurs, and 0 otherwise. Ecologists have been using the

sample fraction r/n to infer ar , but the Good–Turing frequency formula states that ar

should be estimated by r�/n, where r� ¼ ðr þ 1Þfrþ1=fr . That is, their estimator is

~�r ¼ ðr þ 1Þ
n

frþ1

fr
� r�

n
; r ¼ 0; 1; :::; (2a)

The above Good–Turing frequency formula has found a wide range of applications in

biological sciences, statistics, computer sciences, information sciences, and linguistics,

among others. Good (1953) used a Bayesian approach to theoretically justify Eq. (2a)

whereas Robbins (1968) derived it as an empirical Bayes estimator. Good (2000) wrote

“when preparing my 1953 article, I had forgotten Turing’s somewhat informal proof in

1940 or 1941, which involved cards or urn models in some way, and I worked out a

separate proof (Bayes estimator). I still don’t recall Turing’s proof.” Nevertheless, Good

(1983, p. 28) provided a very intuitive justification of the Good–Turing frequency formula

as follows: Given an original sample of size n, consider the probability of the event that the

next individual will be a species that had appeared r times in the original sample.

(Mathematically, this probability is simply
PS

i¼1 piIðXi ¼ rÞ ¼ �r fr). If this event occurs,

then the species to which the additional individual belongs must appear r+1 times in the

enlarged sample of size n+1. Since the order in which individuals were sampled is

assumed to be irrelevant, the total number of individuals in the enlarged sample of size

n+1 for those species (that had appeared r times in the original sample) is (r+1)fr+1. Thus,

the probability of the aforementioned event in the enlarged sample of size n+1 is
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(r+1)fr+1/(n+1) ≈ (r+1)fr+1/n. Dividing this by the number of such species, fr , we obtain

the mean relative abundance ar of those species, which is given in Eq. (2a). Chiu et al.

(2014) modified the Good–Turing estimator to obtain a more accurate estimator:

�̂r ¼ ðr þ 1Þfrþ1

ðn� rÞfr þ ðr þ 1Þfrþ1

; r ¼ 0; 1; ::: : (2b)

This modified formula will be used below in deriving our estimator of the true singleton

count.

Singleton count estimation
An intuitive and basic concept in estimating the number of undetected species is that

abundant species (which are certain to be detected in samples) contain almost no

information about undetected species richness, whereas rare species (which are likely to be

either undetected or infrequently detected) contain almost all the information about

undetected species richness. Therefore, most nonparametric estimators of the number

of undetected species are based on counts of detected rare species, especially the numbers

of singletons and doubletons. Chao (1984) derived a lower bound of undetected species

richness in terms of counts of singletons and doubletons; the corresponding lower bound

of species richness given below is referred to as the Chao1 estimator: (Colwell &

Coddington, 1994)

ŜChao1 ¼ Sobs þ ½ðn� 1Þ=n�½f 21 =ð2f2Þ�; if f2 > 0;
Sobs þ ½ðn� 1Þ=n�f1ðf1 � 1Þ=2; if f2 ¼ 0:

�

Applying a similar concept and derivation, we propose below an estimator of singleton

count. Given {p1, p2, : : : ,pS} a general expectation formula for the k-th order frequency

count is:

EðfkÞ ¼
XS
i¼1

n

k

� �
pki ð1� piÞn�k; k ¼ 0; 1; :::; n: (3)

Based on this formula, the Cauchy-Schwarz inequality

XS
i¼1

pið1� piÞn�1

 ! XS
i¼1

p3i ð1� piÞn�3

 !
�

XS
i¼1

p2i ð1� piÞn�2

 !2

leads to

Eðf1Þ
n

� 6Eðf3Þ
nðn� 1Þðn� 2Þ �

2Eðf2Þ
nðn� 1Þ
� �2

;

which implies

Eðf1Þ � 2ðn� 2Þ½Eðf2Þ�2
3ðn� 1ÞEðf3Þ : (4a)
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Replacing the expectation terms by observed data, we obtain a preliminary lower bound

for the true singleton frequency count:

~f1 ¼ 2ðn� 2Þðf2Þ2
3ðn� 1Þf3 : (4b)

To obtain a more accurate estimator, we evaluate the magnitude of the bias of the

preliminary lower bound in Eq. (4b) as

bias ð~f 1Þ
�� �� 	 Eðf1Þ � 2ðn� 2Þ½Eðf2Þ�2

3ðn� 1ÞEðf3Þ :

Using the definition of ar in the Good–Turing frequency formula, we obtain the

following two approximation formulas:

Eðf1Þ
n

¼
XS
i¼1

1� pi

pi

n

2

� ��1

E½IðXi ¼ 2Þ� 	 1� �2

�2

n

2

� ��1

Eðf2Þ;

2Eðf2Þ
nðn� 1Þ ¼

XS
i¼1

1� pi

pi

n

3

� ��1

E½IðXi ¼ 3Þ� 	 1� �3

�3

n

3

� ��1

Eðf3Þ:

Substituting the above two approximations into the bias formula, we obtain the

magnitude of bias:

bias ð~f 1Þ
�� �� 	 2

n� 1

1� �2

�2

� 1� �3

�3

� �
Eðf2Þ:

The right hand side of the above formula will be positive for reasonably large sample

sizes, because species that are observed three times in a sample should have a larger mean

abundance than that of doubletons (i.e., a3 is larger than a2). Applying the modified

Good–Turing estimates in Eq. (2b) for a3 and a2, we then obtain an estimator of the true

number of singletons in terms of (f2, f3, f4) for large sample size n:

f̂1 ¼ 2f 22
3f3

þ 2f2
f2

3f3
� f3

4f4

� �
: (5)

When there are spurious singletons, we can adjust the Chao1 estimator (Chao, 1984)

by replacing the observed singleton count f1 with the estimated singleton count f̂1.

Then we have the Chao1 estimator of species richness based on the adjusted data

if f2> 0:

ŜadjChao1 ¼ Sobs � f1 þ f̂1 þ
ðn� 1Þ

n

f̂ 21
2f2

; (6a)

where Sobs denotes the number of species in the original data. When f2 = 0, a bias-

corrected estimator is suggested:

Ŝ�adjChao1 ¼ Sobs � f1 þ f̂1 þ f̂1ðf̂ 1 � 1Þ
2ðf2 þ 1Þ : (6b)
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The variance of the adjusted Chao1 estimator and the corresponding 95% confidence

intervals via a log normal transformation can be obtained using similar derivations as

those for the classic Chao1 estimator (Chao, 1987).

Non-asymptotic approach: rarefaction and extrapolation based
on adjusted data
It is well known that species richness based on sampling data is highly dependent on

sample size and sample completeness (Colwell & Coddington, 1994). Chao et al. (2014)

showed that empirical Shannon diversity is moderately dependent and that Simpson

diversity is weakly dependent on sample size and inventory completeness. They

proposed two standardization methods for Hill numbers to compare non-asymptotic

diversities across multiple assemblages as described below. For each type of

standardization, we here mainly focus on the three measures of q = 0, 1 and 2 based on

the adjusted data.

1. Sample-size-based rarefaction and extrapolation up to a maximum size. For each

diversity measure, we standardize all samples by estimating diversity for a standard

sample size, which can be smaller than an observed sample (traditional rarefaction) or

larger than an observed sample (extrapolation). Then we construct for each sample an

integrated rarefaction and extrapolation sampling curve as a function of sample size.

For species richness, the size can be extrapolated at most to double or triple the

minimum observed sample size. For Shannon diversity and Simpson diversity, if data

are not too sparse, the extrapolation can be reliably extended to infinity to attain the

estimated asymptote given below in Eq. (7).

2. Coverage-based rarefaction and extrapolation up to a maximum coverage. Chao &

Jost (2012) proposed standardizing samples by matching their sample completeness,

which is measured by sample coverage, an objective measure of sample completeness

due to Turing and Good (1953) and Good (2000). The sample coverage of a given sample

is defined as the fraction of the individuals in an assemblage that belong to the species

observed in the sample. Contrary to intuition, sample coverage for the observed

sample, rarified samples, and extrapolated samples can be accurately estimated by the

observed data themselves. The coverage-based rarefaction and extrapolation curve plots

the diversity estimates as a function of sample coverage up to a maximum coverage. For

species richness, the maximum coverage is selected as the coverage of the maximum size

used in the sample-size-based sampling curve. For Shannon diversity and Simpson

diversity, if data are not sparse, the extrapolation can often be extended to the coverage

of unity to attain the estimated asymptote given below in Eq. (7).

Chao et al. (2014) introduced a bootstrap method to construct 95% confidence

intervals associated with each estimated diversity measure. Generally, for any fixed sample

size or any degree of completeness in the comparison, if the 95% confidence intervals do

not overlap, then significant differences at a level of 5% among the expected diversities

(whether interpolated or extrapolated) are guaranteed. However, overlapped intervals do

not guarantee non-significance (Colwell et al., 2012); in this case, data are inconclusive.
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The sample-size-based approach plots the estimated diversity as a function of sample

size, whereas the corresponding coverage-based approach plots the same diversity with

respect to sample coverage. Therefore, the two types of sampling curves can be bridged by

a sample completeness curve, which shows how the sample coverage varies with sample size

and also provides an estimate of the sample size needed to achieve a fixed degree of

completeness. This curve and all the rarefaction and extrapolation estimators along with

their confidence intervals can be obtained using the R package “iNEXT” which can be also

downloaded from Anne Chao’s website at http://chao.stat.nthu.edu.tw/software-

download/.

Asymptotic approach: diversity profile estimation based on
adjusted data
The Chao & Jost (2015) diversity profile estimator of qD (Eq. 1a) based on the adjusted

singleton count f̂1 and the original non-singleton frequency counts can be expressed as

qD̂adj¼
Xn�1

k¼0

q�1

k

� �
ð�1Þk�̂ðkÞ þ f̂ 1

n
ð1�AÞ�nþ1

Aq�1�
Xn�1

r¼0

q�1

r

� �
ðA�1Þr

" # !1=ð1�qÞ
; q�0;

(7)

where �̂ð0Þ¼1;

�̂ðkÞ ¼
X

1�Xi�n�k

n�k�1

Xi�1

� �
n

Xi

� � ¼
X

1�j�n�k

n�k�1

j�1

� �
n

j

� � fj ; k ¼ 1; 2; :::; n�1;

and

A ¼
2f2=½ðn�1Þf̂ 1 þ 2f2�; if f2>0;

2=½ðn�1Þðf̂ 1�1Þ þ 2�; if f2 ¼ 0; f̂ 1 6¼ 0;

1; if f2 ¼ f̂ 1 ¼ 0:

8>><
>>:

The diversity estimator of order q in each profile represents the asymptote in the

rarefaction and extrapolation curves described above. To compute the profile estimator in

Eq. (7) and the corresponding 95% bootstrap confidence interval, we provide R code

(Supplemental Text S1) which is a modified version from the script provided in Chao &

Jost (2015). We consider the three special cases of q = 0, 1 and 2 below.

For q = 0, the estimator in Eq. (7) reduces to the adjusted Chao1 estimator given

in Eq. (6a). Thus, it is generally a minimum number of species. For q = 1, the

estimation of the Shannon diversity from incomplete samples is surprisingly nontrivial

and has been extensively discussed in many research fields; see Chao, Wang & Jost

(2013) for a review and a low-bias estimator. The estimator (7) for q = 1 reduces to

their Shannon diversity estimator (given below), which can be compared across

communities.
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1D̂adj ¼ exp
X

1�Xi�n�1

Xi

n

Xn�1

k¼Xi

1

k

 !
þ f̂ 1

n
ð1� AÞ�nþ1 � logA�

Xn�1

r¼1

ð1� AÞr
r

" # !
:

This estimator greatly reduces the negative bias associated with the empirical Shannon

diversity. For q = 2, the Simpson diversity only counts dominant ones, and dominant

species always appear in samples and undetected classes are discounted. Thus the Simpson

diversity can often be accurately measured and compared across multiple communities.

The estimator (7) for q = 2 becomes the nearly unbiased estimator of Simpson diversity

(Gotelli & Chao, 2013):

2D̂adj ¼
X
Xi�2

XiðXi � 1Þ
nðn� 1Þ

 !�1

:

Notice that singleton count is not involved in the above formula, but the sample size n

is affected by the adjusted singleton count. Consequently, the effect of spurious singleton

count is much less pronounced than that for measures of q = 0 and 1.

SIMULATION RESULTS
Since both non-asymptotic and asymptotic analyses depend on the quality of the

estimated singleton count, it is essential to investigate the performance of the proposed

estimator in Eq. (5). We conducted a simulation by generating data from six species

abundance distributions with various degrees of heterogeneity in species relative

abundances (details are provided in Supplemental Text S2). In each model, we fixed the

number of species at S = 2,000 to mimic microbial communities. Then for each given

model, we considered a range of sample sizes (n = 2,000 to 10,000 in an increment of

2,000). The degree of heterogeneity in species relative abundances is quantified by the CV

(which is the ratio of the standard deviation over the mean) of species relative

abundances. When all species relative abundances are equal, CV = 0. A larger value of CV

indicates a higher degree of heterogeneity among species abundances.

For each combination of abundance model and sample size, we generated two types of

data: (i) data without sequencing errors, and (ii) spurious data with a sequencing error

rate of 10%, i.e., there was a 10% chance that a sampled individual was misclassified to a

new species and thus became a spurious singleton. In Fig. 1, we show the plots of the

average values (over 1,000 simulation trials) of four singleton counts as a function of

sample size that was used in data generation. The four singleton counts include the true

singleton count generated from the data without sequencing error, the spurious singleton

count generated from the data with sequencing error, the adjusted singleton count based

on Eq. (5), and the count obtained from the ratio-based method of Bunge, Willis &

Walsh (2014) and Willis & Bunge (2015) through the R package “breakaway,” available

from CRAN (Comprehensive R Archive Network). In Fig. 2, the corresponding root mean

squared errors (RMSEs) for the ratio-based and the proposed methods are shown. The

patterns revealed by these plots are summarized below.
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Figure 1 Comparison of the average values of four singleton counts as a function of sample size that

was used in data generation. The four singleton counts include the true singleton count generated from

the data without sequencing error, the spurious singleton count generated from the data with sequencing

error, the adjusted singleton count based on Eq. (5), and the count obtained from the ratio-based

method of Bunge, Willis & Walsh (2014) andWillis & Bunge (2015) through the R package “breakaway,”

available from CRAN. All values are averaged over 1,000 simulation trials under six species abundance

models with various degrees of heterogeneity of the species abundances, as reflected by the CV value (the

ratio of the standard deviation over the mean); see Supplemental Text S2 for details.
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Figure 1 reveals that the number of singletons for the data without sequencing error

(dotted curve in each panel) generally declines with sample size when sample size becomes

sufficiently large, whereas the number of singletons for data with sequencing error (dash-

dotted curve in each panel) always increases with sample size, revealing a drastically

different pattern; see Dickie (2010) for a similar finding. This pattern can be used to detect

whether sequencing error exists in the original data when an empirical accumulation

curve for the singleton count can be recorded in the data-collecting procedures.

Simulation results also show that when heterogeneity is low as reflected by low CV

values (Model 1 to Model 4) the ratio-based method (dashed curve) and our proposed

method (solid curve) yield similar singleton counts that are close to the true data (i.e.,

data without sequencing error, dotted curve). The RMSEs of the two methods are thus

generally comparable (Fig. 2). However, in the highly heterogeneous cases as reflected by

relatively high CV values (Model 5 andModel 6), the ratio-method produces much higher

singleton counts compared to the true data and thus much larger root mean squared

errors than the proposed method, as shown in Fig. 2. In these high-CV cases, our

estimator of singleton count still closely matches the true number of singletons, although

it exhibits negative bias when sample size is relatively small especially when species

abundances are highly heterogeneous.

These simulation results thus imply (i) when there are no sequencing errors (so that the

dotted curves represent the singleton counts for data), our estimator differs only to a

limited extent from the true data, yielding almost the same diversity inference; (ii) when

there are sequencing errors (so that the dash-dotted curves represent the spurious

singleton counts for data), our estimator can greatly reduce the raw singleton count and

make proper corrections. Therefore, the discrepancy between our proposed estimator of

singleton count and the singleton count from the observed data can be used to assess

whether sequencing errors were present in data processing. Moreover, this implies that

whenever the singletons are uncertain or in doubt, it is worth applying our proposed

estimator of singleton count. More simulation results on the effect of spurious singletons

on the estimation of asymptotic diversities are provided in Supplemental Text S2; see

Discussion.

APPLICATION RESULTS
A number of data sets on frequency counts of contig (contiguous groups of sequences)

spectra of viral phage metagenomes from similar or different environments were analyzed

in Allen et al. (2013). We select two samples with different environments to illustrate the

use of our methods: one sample includes the pooled contig spectra from seven non-

medicated swine feces, and the other sample includes the pooled contig spectra from four

reclaimed fresh water samples. For simplicity, these two samples/viromes are respectively

referred to as “swine feces” sample/virome and “reclaimed water” sample/virome in the

following analysis. The frequency counts for the two samples originally provided in the

additional file of Allen et al. (2013) are reproduced in Table 1. The empirical diversities

and asymptotic analyses are shown in Table 2.
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Figure 2 Comparison of the average root mean squared error (RMSE) for two singleton counts (the

proposed and ratio-based estimators) as a function of the sample size that was used in data

generation. The proposed method is based on Eq. (5), and the results for the ratio method (Bunge,

Willis & Walsh, 2014; Willis & Bunge, 2015) were computed using the R package “breakaway.” All

values are averaged over 1,000 simulation trials under six species abundance models with various degrees

of heterogeneity of the species abundances, as reflected by the CV value (the ratio of the standard

deviation over the mean); see Supplemental Text S2 for details.
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In the swine feces original data, there were 8,833 taxa among 9,988 individuals

(sequences); the number of singletons was f1 = 8,025, and the number of doubletons was

f2 = 605. In the reclaimed water data, there were 8,739 taxa among 9,973 individuals, and

the first two frequency counts are f1 = 7,986 and f2 = 518. In these two original samples,

most of the frequencies are concentrated on singletons. Consequently, based on the

original data, the Chao1 lower bounds, 62,057 and 70,299 respectively for swine feces and

reclaimed water viromes, are greatly inflated due to the presence of spurious singletons.

Using Eq. (5), we obtain an estimated singleton count of 2,831 for the swine feces sample,

and 2,105 for the reclaimed water sample (Table 1). For each sample, the estimated

singleton count is substantially less than the observed singleton count, indicating that

sequencing errors were present. The empirical and estimated diversities for the original

and adjusted data are shown in Table 2. We also compare in Table 2 our estimates with

those based on a ratio-based method (Bunge, Willis & Walsh, 2014;Willis & Bunge, 2015),

and with those proposed in Allen et al. (2013) based on the CatchAll software.

From Table 2, as expected, the estimated diversity (species richness, Shannon

diversity and Simpson diversity) based on the adjusted data for each sample is much lower

Table 1 Frequency counts on contig spectra of phage metagenomic data (Allen et al., 2011; Allen

et al., 2013).

Sample Original n Adj. n f1 f̂1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Swine feces 9,988 4,794 8,025 2,831 605 129 41 16 8 4 2 1 1 1 0 0

Reclaimed

water

9,973 4,092 7,986 2,105 518 129 50 24 12 7 5 3 2 1 1 1

Notes:
Swine feces sample, pooled data from seven swine non-medicated feces; Reclaimed water sample, pooled data from four
reclaimed water samples; fk , number of taxa with k sequences in the original data; f̂1, estimated number of singletons
based on Eq. (5); Adj. n, sample size based on the adjusted data (i.e., the original data with the observed singleton count
being replaced by the estimated value).

Table 2 Comparison of empirical diversities and estimated diversities (with SE) for the original data, the adjusted data, and two previous

methods, based on the phage metagenomics data (Table 1). Previous methods include species richness estimates obtained from CatchAll

software (Allen et al., 2013) and from a ratio-based method (Willis & Bunge, 2015). The adjusted data are the original data with the observed

singleton count being replaced by the estimated value given in Table 1.

Diversity

Original data Adjusted data Previous methods

Empirical

diversity

Estimated

diversity (SE)

Empirical

diversity

Estimated

diversity (SE)

CatchAll

(SE)

Ratio-based

method (SE)

Swine feces sample

Species richness (q = 0) 8,833 62,057 (1,814) 3,639 10,261 (376) 1,990 (206) 846,113 (249,481)

Shannon diversity (q = 1) 8,289 53,835 (1,365) 3,250 9,081 (203)

Simpson diversity (q = 2) 7,348 27,801 (867) 2,742 6,404 (180)

Reclaimed water sample

Species richness (q = 0) 8,739 70,299 (1,973) 2,858 7,134 (273) 1,428 (140) 53,029 (257,637)

Shannon diversity (q = 1) 8,066 56,853 (1,451) 2,440 5,849 (130)

Simpson diversity (q = 2) 6,817 21,535 (870) 1,922 3,625 (116)
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than that based on the original data. For species richness, the CatchAll software yields

excessively low estimates, even lower than the observed richness of the adjusted data.

The ratio-based method, however, yields extremely large estimates for the number of

species. In our simulations on species richness as described in Supplemental Text S2,

we show that the ratio-based method might severely overestimate the true species richness

when the heterogeneity among species abundance is relatively high. The empirical CV

values for the swine feces and reclaimed water samples for adjusted date are respectively

0.62 and 0.79. As there are many undetected rare species, the true CV should be much

higher than the empirical CV, leading to extremely large species richness estimates for the

ratio-based method. All the following analyses are based on our adjusted data, unless

otherwise stated.

Before we present the non-asymptotic analyses, we plot in Fig. 3 the sample

completeness curve as a function of sample size. The sample completeness of the adjusted

swine feces sample is 41%, which is lower than that for the adjusted reclaimed water

sample, 48.6%. When the sample size is extrapolated to a size of 10,000 (approximately

double the adjusted sample size for swine feces), the coverage of the swine feces sample is

increased from 41.0% to 62.9%, whereas the coverage of the reclaimed water sample is

increased from 48.6% to 74.7%. For any standardized sample size, Fig. 3 shows that the

sample completeness of the swine feces sample is lower than that for the reclaimed water

sample of the same size.

For non-asymptotic analysis, we present in Fig. 4 the sample-size- and coverage-based

rarefaction and extrapolation curves along with 95% confidence intervals for three

measures: q = 0, 1 and 2. The sample-size-based sampling curve is extrapolated up to a

maximum size of 10,000, whereas the coverage-based sampling curve is extended up to the

coverage of the size 10,000, i.e., the maximum coverage is up to 62.9% for the swine feces

sample and 74.7% for the reclaimed water sample.

All plots in Fig. 4 exhibit a consistent pattern, with the diversity curve for the swine

feces samples lying above the curve of the reclaimed water sample. In all plots, the 95%

confidence intervals for the two samples in any rarefaction/extrapolation curve are

disjoint, implying a significant difference. As stated earlier, the extrapolation for Shannon

and Simpson diversity, unlike that of species richness, can often be reliably extended to

infinity size or complete coverage to reach the asymptotic diversity estimate. Therefore,

for Shannon diversity (common taxa richness) and Simpson diversity (dominant taxa

richness), the data indicate that the swine feces virome is significantly more diverse than

the reclaimed water virome. This is valid not only for the standardized sample size and

sample coverage values plotted in Fig. 4, but also for entire viromes. (This is also

supported by the asymptotic analysis below). For species richness, the data support this

conclusion up to a standardized 62.9% fraction of each virome (Fig. 4B). Beyond that, the

data do not provide sufficient information for comparison. This is because the asymptotic

species richness estimator is only a lower bound (as opposed to point estimates for the

other two asymptotic diversities).

For the asymptotic analysis, we plot the empirical and estimated asymptotic diversity

profiles along with 95% confidence intervals in Fig. 5 when q is between 0 and 3.
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(The empirical and estimated asymptotes of diversities for the special cases of q = 0, 1 and

2 are shown in Table 2, and the asymptotic diversity estimates are also shown next to an

arrow at the right-hand end of each rarefaction/extrapolation plot in Fig. 5). The

empirical diversities (Table 2 and Fig. 5) imply that the two viromes have limited

difference in each of the three measures. In contrast, the plots in Fig. 5 reveal that for the

asymptotic Shannon diversity, the swine feces virome is substantially more diverse than

the reclaimed water virome. A similar conclusion is also valid for the Simpson diversity,

confirming our earlier statement in the preceding paragraph.

Table 2 and Fig. 5 show that the adjusted Chao1 estimator in Eq. (6a) gives an estimate

of 10,261 taxa for swine feces and 7,134 taxa for reclaimed water virome. Each is five times

that obtained from CatchAll (Allen et al., 2013). Since the Chao1 estimate represents only

minimum richness, it cannot be used to rank the taxa richness of the two entire viromes.

Nevertheless, taxa richness can be compared through the coverage-based non-asymptotic

approach, as discussed earlier; see Discussion. By contrast, for diversity of order q � 1, we

can compare not only the estimated diversities for standardized sample size/completeness

but also the estimated asymptotic diversities across communities. In Supplemental

Table S1, we also give all the estimated asymptotes of diversities for other data sets

provided in Allen et al. (2013).

Figure 3 The sample completeness curve based on the adjusted data. Plots of sample coverage for

rarefied samples (solid line) and extrapolated samples (dashed line) as a function of the sample size

based on the sample frequency counts of contig spectra from seven swine fecal viromes and the sample

from four reclaimed fresh water viromes (Allen et al., 2013). Data are given in Table 1. The original

singleton count is replaced by the estimated count given in Table 1. The adjusted samples are denoted by

solid dots. The 95% confidence intervals (shaded areas) were obtained by a bootstrap method based on

200 replications. Each of the two curves was extrapolated up to 10,000, approximately double the

adjusted size of the swine feces sample. The numbers are the sample coverage estimates for the adjusted

sample and for the sample of size 10,000.
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Figure 4 Non-asymptotic analysis: the rarefaction and extrapolation sampling curves based on the

adjusted data. Comparison of sample-size-based (A, C, E) and sample-coverage-based (B, D, F) rarefac-

tion and extrapolation for species richness (A, B), Shannon diversity (C, D) and Simpson diversity (E, F)

based on the sample frequency counts of contig spectra from seven swine fecal viromes and the sample

from four reclaimed fresh water viromes (Allen et al., 2013). Data are given in Table 1. The original sin-

gleton count is replaced by the estimated count given in Table 1. The adjusted samples are denoted by solid

dots. Rarefied segments are denoted by solid curves and extrapolated segments are denoted by broken

curves. Extrapolation is extended up to a maximum size of 10,000. Sample-coverage-based extrapolation is

extended to the coverage value of the corresponding maximum sample size (i.e., 62.9% for swine feces

viromes and 74.7% for reclaimed water viromes; see Fig. 3). The 95% confidence intervals (shaded areas)

are obtained by a bootstrap method based on 200 replications. The estimated asymptotic diversity for each

curve is shown next to the arrow at the right-hand end of each curve.
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CONCLUSION AND DISCUSSION
Whenever the singletons are uncertain or in doubt in sequencing data, it is worth applying

our proposed estimator to estimate the singleton count; see Eq. (5). The discrepancy

between our estimated singleton count and the observed count can be used to infer

whether sequencing errors were present in data processing. Using the estimated number of

singleton count and the original non-singleton frequency counts, we can quantify and

compare microbial diversity for data sets with different sequencing error rates through

non-asymptotic analysis (based on the plots of the sample-size- and coverage-based

rarefaction and extrapolation sampling curves) and asymptotic analysis (based on the

plot of a continuous asymptotic diversity profile estimator). Illustrative plots for

sequencing data from viral metagenomes are shown in Fig. 4 (the non-asymptotic

analysis) and Fig. 5 (the asymptotic analysis). Although we have focused on microbial

data with spurious singleton counts, both our asymptotic and non-asymptotic

approaches are also recommended for analyzing data with reliable singleton counts.

In highly diverse microbial communities, unless strong assumptions or parametric

models are made, sampling data often do not provide sufficient information to accurately

infer the number of undetected taxa in the sample. Thus, it is statistically infeasible to

Figure 5 Asymptotic analysis: the asymptotic diversity profile as a function of order q based on the

adjusted data. The empirical (dashed lines) and estimated (solid lines) diversity profiles for q between

0 and 3 based on the sample frequency counts of contig spectra from seven swine fecal viromes and the

sample from four reclaimed fresh water viromes (Allen et al., 2013). Data are given in Table 1. The

original singleton count is replaced by the estimated count given in Table 1. The plots for the swine feces

sample are in black; the plots for the reclaimed water sample are in red. The 95% confidence intervals

(shaded areas) are obtained by a bootstrap method based on 200 replications. The numbers (black for

swine feces sample, and red for reclaimed water sample) show the empirical and estimated diversities for

q = 0, 1 and 2.

Chiu and Chao (2016), PeerJ, DOI 10.7717/peerj.1634 19/25

http://dx.doi.org/10.7717/peerj.1634
https://peerj.com/


provide reliable estimates of taxa richness for the entire community. Our estimated species

richness (q = 0 measure in our asymptotic analysis) theoretically is a lower bound. This

implies that fair comparison of asymptotic species richness among multiple communities

is not statistically feasible. In this case, fair comparison of taxa richness across multiple

assemblages can be made by standardizing sample completeness (i.e., comparing taxa

richness for a standardized fraction of population) based on coverage-based rarefaction

and extrapolation sampling curves, as illustrated in the real data analysis. By contrast,

when the diversity order q is away from 0 (say, q � 1), rare species have less impact on

these diversities, and we generally can infer these diversities up to asymptotes and

compare them across communities; see our illustrative example for interpretations. We

recommend the use of an estimated diversity profile such as Fig. 5 for asymptotic analysis.

If only one or two measures are desired in the inferences of highly diverse microbial

diversity, then a perspective from Shannon diversity and Simpson diversity, instead of taxa

richness, is more promising and more practical because we can accurately estimate

Shannon and Simpson diversity not only for standardized samples but also their

asymptotes. Besides, as shown in our simulation results (Figure S1 in Supplemental

Text S2), the taxa richness estimator is seriously inflated or affected by spurious singleton

counts, whereas the effect on Shannon diversity and Simpson diversity is less serious.

Our proposed estimator of singleton count is in terms of f2, f3 and f4, provided these

counts are reliable. A slight generalization of our method can be applied to estimate any

frequency count. For example, supposing that singletons and doubletons are both

uncertain, we can similarly derive an estimator of doubleton count based on f3, f4 and f5

following exactly the same approach proposed in this paper. Subsequently, Eq. (5) then

gives an estimate of singleton count based on the estimated doubleton count, f3 and f4.

Consequently, our proposed non-asymptotic and asymptotic analyses can be similarly

applied to data with the first two frequency counts being replaced by the estimated values.

However, the sampling variance of the estimated diversity would be unavoidably

increased.

In our approach, the original singleton count is discarded and replaced by our

estimated count. In 16S rRNA sequencing or metagenomic sequencing, it is often

standard practice to compare sequencing reads against a reference database, such as

Greengenes, e.g., see Turnbaugh et al. (2009) or the software MOTHUR (Schloss et al.,

2009). The Greengenes alignment tool helps adjust the original singleton count and

alleviate the problem of sequencing error. Also, when there are multiple samples,

singletons in a given sample have different probabilities of being spurious depending on

their total number of reads across samples. Because many local singletons are not global

singletons, the cross-sample information may also help adjust the original singleton

count. Further investigation examining how to extend our framework to incorporate

related covariates (such as cross-sample and database information) is merited.

Finally, we briefly discuss the phylogenetic diversity (PD) because of its broad interest

and applications (Martin, 2002; Lozupone & Knight, 2005) in microbial studies. In this

paper, all taxa are treated as if they were equally distinct and thus differences among

sequences are not considered. Faith’s (1992) PD is the most widely used PD metric to take
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into account phylogenetic differences among taxa. Faith’s (1992) PD is defined as the total

sum of branch lengths of a phylogenetic tree connecting all focal species. Based on

sampling data, Chao et al. (2015) recently proposed a non-parametric estimator of the

true PD (PD of the entire community, i.e., the observed PD in the sample plus the

undetected PD). In the presence of sequencing errors, the inflated singleton count will

also affect the estimation of the true PD. Since error-induced singletons will mostly likely

fall in a closely related taxon, the effect may not be as pronounced as that in species

richness estimation. More investigation is needed to tackle sequencing error and to adjust

the Chao et al. (2015) PD estimator. Since Faith’s (1992) PD does not incorporate taxa

abundances, Chao, Chiu & Jost (2010) developed a class of abundance-sensitive PD

measures which generalize Faith’s (1992) PD to incorporate taxa abundances, and also

extend Hill numbers to take into account phylogenetic relationships among taxa. How to

extend the proposed analyses presented in this paper (the asymptotic and non-asymptotic

analyses) to the class of abundance-sensitive PD is a worthwhile topic of future research.
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