
Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.103, 77 (1998)]

Moving Particles Through a Finite Element Mesh

Volume 103 Number 1 January–February 1998

Adele P. Peskin and Gary R.
Hardin

National Institute of Standards and
Technology,
Boulder, CO 80303

We present a new numerical technique for
modeling the flow around multiple ob-
jects moving in a fluid. The method tracks
the dynamic interaction between each
particle and the fluid. The movements of
the fluid and the object are directly cou-
pled. A background mesh is designed to fit
the geometry of the overall domain. The
mesh is designed independently of the pres-
ence of the particles except in terms of
how fine it must be to track particles of a
given size. Each particle is represented
by a geometric figure that describes its
boundary. This figure overlies the mesh.
Nodes are added to the mesh where the
particle boundaries intersect the back-
ground mesh, increasing the number of
nodes contained in each element whose
boundary is intersected. These additional
nodes are then used to describe and track
the particle in the numerical scheme. Ap-
propriate element shape functions are de-
fined to approximate the solution on the el-
ements with extra nodes. The particles

are moved through the mesh by moving
only the overlying nodes defining the
particles. The regular finite element grid
remains unchanged. In this method, the
mesh does not distort as the particles move.
Instead, only the placement of particle-
defining nodes changes as the particles
move. Element shape functions are up-
dated as the nodes move through the ele-
ments. This method is especially suited
for models of moderate numbers of moder-
ate-size particles, where the details of
the fluid-particle coupling are important.
Both the complications of creating finite
element meshes around appreciable num-
bers of particles, and extensive remesh-
ing upon movement of the particles are
simplified in this method.

Key words: finite element; moving
boundary; packed beds; particles.

Accepted: September 24, 1997

Glossary

g gravitational acceleration
mp mass of particle
n unit normal vector
p pressure
r radius of cylinder
R radial distance from center of cylinder
T temperature
u velocity vector
ux velocity in x direction
uy velocity in y direction
U magnitude of velocity

U` constant velocity far from particle
x, y, z rectangular Cartesian coordinates
e penalty parameter
V angular velocity
m viscosity
c stream function
r density
s shear stress
= gradient operator
=? divergence operator
=2 Laplacian operator

77



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

1. Introduction

1.1 Background

Fluid-solid systems are classified based on the size
and number of particles (or other objects). Particle sizes
range from aerosols to large objects. The focus of an
analysis may be the detailed movement of a single par-
ticle, or the interaction of a large number of objects.
Different numerical techniques are appropriate for dif-
ferent classes of problems. In systems with very small
particles, such as aerosols, the number of particles is
typically very large. In these systems the effect of the
particles on the flow is often ignored. Corrections can
be made to account for the momentum transferred to the
particles, but there are too many particles to consider
the details of the coupled dynamical interaction be-
tween the fluid and the particles.

Details of the fluid-particle interactions are important
in systems such as fluidized beds, steam turbines, natu-
ral gas pipelines, and sprayers. In such systems it is
important to know how particles interact to affect their
trajectories, which is seen most clearly when particles
make contact with one another. A simulation must cou-
ple the dynamics of the fluid and the particles to achieve
an accurate solution.

One approach for such systems is to mesh the fluid
surrounding the particles, taking into account the inte-
rior boundaries created by the particles. Such meshes
are necessarily complex because of the large curvature
of the particle boundary compared with the boundaries
of the larger domain. Consequently, it is convenient to
use unstructured meshes. The ability to use unstructured
grids is a potential advantage of finite element methods
compared to finite difference techniques. When the par-
ticle or particles move, the mesh is allowed to distort to
some degree. This distortion tends to reduce the accu-
racy of the simulation. After the particle(s) travel some
distance the distortion becomes too great, and either the
entire domain or a region around each particle is
remeshed.

Tezduyar and collaborators [1–5] are developing ef-
ficient algorithms for moving the particles and updating
the mesh. They have developed what they call a De-
forming-Spatial-Domain/Space-Time procedure for
simulating moving particles in two or three dimensions.
Triangular (or tetrahedral in 3D) elements are used to
discretize the fluid phase surrounding the particles. Spe-
cial narrow elements are used near each particle to track
the boundary layer. The elements near each particle
deform as the particle moves through the mesh.
Remeshing is necessary when the elements become
overly distorted. Both remeshing and checking the
mesh for distortion can be computationally intensive
processes if they are done at each time step. Tezduyar

et al. discuss that this is particularly true for computa-
tions on parallel-architecture machines because of the
time required to apportion the meshing tasks among the
processors. Consequently, remeshing is typically per-
formed only at specified timesteps. This creates a po-
tential for increased error if too much distortion occurs
between remeshing. As a result, it appears that this
technique is most suitable for slowly deforming spatial
domains. One means they employ to limit the extent to
which remeshing is necessary is to translate the entire
mesh at the velocity of the center of mass of the set of
spheres.

Hu, Joseph, and Crochet [6] describe a method for
direct simulation of flowing ‘‘particles’’ in two dimen-
sions, using unstructured triangular finite element
meshes. At each time step they remesh, generating a
new mesh that bears no straightforward relationship to
the previous mesh. This then requires the regeneration
of element-connectivity information, which is neces-
sary for the finite element method to know how the
solution interacts between adjacent elements. This is
facilitated by a new mesh-data structure that can be
processed more efficiently to find the position of a
given node. The solution from the previous time step
must be interpolated onto the new mesh. Their method
can track computational domains that move drastically
with time. They use a stable time-integration scheme in
which ‘‘at each time step, the positions of the particles
are updated explicitly, the computational domain is
remeshed, the solution at the previous time is mapped
onto the new mesh, and finally the nonlinear Navier-
Stokes equation and the implicitly discretized Newton’s
equations for particle velocities are solved on the new
mesh iteratively’’ [6]. The difficulties they address are
remeshing at each time step, the interpolation of the
solution onto the new mesh, and finally the general
issue of solving the system in a stable and efficient
manner.

A significant issue of both of these techniques is the
establishment of robust criteria for acceptable vs unac-
ceptable distortion between remeshing. Remeshing can
be computationally intensive, particularly in three di-
mensions, and especially for parallel computations. Er-
ror is introduced every time the solution at a given time
step must be projected onto a new mesh. While ap-
proaches involving unstructured meshes with remesh-
ing have proved to work well for at least certain sets of
problems, we were motivated to seek a technique that
would avoid the computational difficulties of remesh-
ing, and interpolation of the solution onto new meshes.

Our method was motivated by that of Fogelson and
Peskin [7]. They developed a fast finite difference
method for solving Stokes’ equations in three dimen-
sions to describe the motions of elastically deformable

78



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

suspended particles (rigid particles are modeled as
slightly deformable). The domain is discretized on a
regular lattice. They represent each particle by a sepa-
rate set of points overlying the lattice. Equations of fluid
motion are applied at all points on the lattice, including
those overlain by particles. The particle nodes move at
the local fluid velocity. However, the local fluid velocity
is affected by the presence of the particle through a
force-density term that accounts for the resistance of the
particles to deformation. It affects the fluid near the
particle. The particles are modeled as regions of the
fluid with elastic cohesive forces. This allows them to
solve the entire domain as a single phase, with no fluid-
solid boundaries introduced by the particles. The result
is a very fast technique at the expense of some accuracy
about the fluid-particle interaction. In addition to the
internal elastic links, any external forces are also han-
dled in a straightforward way, including interparticle
forces. Since this is a purely Stokes model, it does not
account for the inertia of the particle or the fluid.

Unverdi and Tryggvason [8] briefly survey different
methods of modeling sharp fronts that illustrates the
breadth of different techniques that are available. In this
paper they use an approach that is somewhat similar to
that of Fogelson and Peskin. However, it tracks the inter-
face explicitly, which allows them to consider different
phases as distinct. To look at the motion of bubbles in a
fluid, they use a regular finite difference grid onto
which they overlay an unstructured grid that represents
the particle surface. The interface region between the
particle surface and the surrounding fluid is given a
thickness, on the order of the mesh spacing, to allow a
more gradual transition between the phases. This is done
to provide stability and smoothness. The main advan-
tage of this method is its ability to track multiple inter-
facial boundaries in the same region of the grid.

1.2 A New Technique

Our work follows a somewhat different approach. We
wanted to avoid the difficulty of remeshing a significant
fraction of the domain. This led us to an approach using
overlying sets of nodes to represent the particles. We
also wanted to be able to render the solution around a
particle as accurately as possible. In adapting this ap-
proach to finite elements it appeared natural to make the
extra nodes belong to the elements in which they appear.
We have developed a dynamic finite element type in
which the shape functions used on a given element are
allowed to change in time as a particle boundary moves
into and out of an element.

A background mesh is designed to fit the geometry of
the overall domain. The mesh is designed independently
of the presence of the particles except in terms of how

fine the mesh must be to track particles of a given size.
The particles are represented by circles which overlie
the mesh. Nodes are added to the mesh where the parti-
cle boundaries intersect the (background) mesh, increas-
ing the number of nodes contained in each element
whose boundary is intersected. These additional nodes
are then used to describe and track the particle in the
numerical scheme. Appropriate element shape func-
tions are defined to approximate the solution on the
elements with extra nodes. The particles are moved
through the mesh by moving only the extra, overlying
nodes defining the particles. Otherwise, the mesh re-
mains unchanged: the background mesh does not distort
as the particles move. Element shape functions are de-
pendent on the placement of the particle nodes with
respect to the element sides, and change dynamically as
the particles move through the mesh. Shape functions
are updated as the particle nodes move through the
elements. We demonstrate our technique with flow ex-
amples for which exact solutions are available.

A primary advantage of this method is that there is no
mesh distortion as particles move. This is significant
because remeshing tends to be time-consuming and er-
ror-prone. We also avoid extensive checking for whether
remeshing is necessary. The particles intersect underly-
ing elements at different locations as they move, and the
element shape functions change to account for this
movement. The only additional storage required is the
current location of the particle nodes, and their relative
position along an element side. At each time step of a
transient analysis, the translation and rotation of each
particle are found directly from the continuum equations
for the fluid, and Newton’s equations for the particles,
and the nodes that represent that particle are moved
accordingly. Specifically, intersection points where par-
ticle boundaries meet element edges, and variables de-
scribing positions along element edges are updated. The
method is easily extended to particles with irregular
shapes, and different shapes for different particles.

The various methods described above are best suited
to different classes of problems. The first approach, in
which the mesh is allowed to distort, is well suited to the
accurate solution of a small number of particles. With
larger numbers of particles there is a temptation to
remesh less often because of the expense, which com-
promises accuracy. The finite difference approach using
an overlying mesh is well suited for large numbers of
particles, especially when the details of the flow near
the particles are not as important. Our method avoids
the complications of creating finite element meshes
around appreciable numbers of particles, and the exten-
sive remeshing required to track the movement of parti-
cles is eliminated. At the same time, it incorporates the
particle boundaries directly into the mesh, allowing for

79



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

an accurate solution near the particles. This tends to
make this technique more appealing for a system with a
moderate number of particles, which cover most of the
domain.

If large areas of the domain contain no particles, then
computational resources are unnecessarily concentrated
there. Nonetheless, we believe that this technique, or an
extension of it, may also prove to be useful for systems
involving smaller numbers of particles. A possible ex-
tension is simply to add extra ‘‘rings’’ or layers of nodes
around the moving objects as needed to accurately rep-
resent the solution, so that the node density is increased
primarily only in localized regions around the particles.
This would also be very useful for modeling flows at
higher Reynolds numbers, where the local fluid-particle
interactions are more complex. Another possibility is to
refine the mesh locally around each particle in a pre-
scribed way. These well-defined ‘‘refinement zones’’
would move with the particles, but the background mesh
would remain undistorted.

2. Equations of Motion

2.1 Flow Equations

The equations describing conservation of momentum
and mass are as follows. (For definitions of the various
quantities, see the glossary.)

Momentum equation:

r0S­u
­t

+ u ? =uD = 2 =p + m=2u + rg, (1)

whereu = (ux, uy, uz).
Continuity equation:

= ? u = 0. (2)

A standard finite element methodology for incompress-
ible flow is to replace the continuity equation with a
‘‘penalty’’ constraint (as described in Hughes et al. [9]),
in order to eliminate the need to solve for the ‘‘pres-
sure’’ field directly. This is often useful, as long as the
particle boundary conditions are not direct functions of
pressure.

Penalty equation:

= ? u = 2 ep. (3)

Our code also has other capabilities, such as modeling
of heat transfer and chemical reactions, that are of inter-
est in a fluid-particle simulation. These capabilities are
easily extended to the particles and particle boundaries.
However, they are not germane to the present discussion,

so for clarity we omit them. Boundary conditions for the
particles prescribe no slip at the fluid-particle interface.

Boundary conditions:

ufluid = usolid at particle boundaries. (4)

Presently, we are considering only solid particles, but
this technique should be readily extensible to fluid drops
or bubbles, yielding a two-phase fluid-fluid system.

2.2 Equations to Represent Particle Movement

For the purposes of developing and testing this tech-
nique we are presently working only on two-dimen-
sional flow. This is a constraint of practicality for devel-
opment. It is straightforward to extend the method to
three-dimensional flows. The movement of a 2-D ‘‘par-
ticle’’ is determined by three degrees of freedom: two
translational and one rotational. All nodes defining an
individual particle are constrained to have the same
translational and rotational movement. Components for
rotation vary according to their position on the circle
representing the boundary of the particle: each has the
same speed, but a different direction of movement in a
Cartesian sense. The net velocity of each particle node
is a sum of these contributions. An additional constraint,
conservation of angular momentum, is added to the set
of global equations for each particle corresponding to
the rotational degree of freedom. Particles conserve
both linear and angular momentum.

Conservation of linear momentum:

mpg + E (n ? s )ds = mp(
­ux, uy

­t
). (5)

Conservation of angular momentum:

E (r 3 (n ? s )) = (
­w
­t

)I . (6)

To evaluate these constraints on each particle, we define
one-dimensional line elements along the particle
boundary. Each line element lies within a two-dimen-
sional four-node element of the background mesh.
Within this element is constructed a separate two-di-
mensional four-node ‘‘sub-element’’ associated with
the particular line element. This new sub-element is
handled exactly like any other four-node element, but is
formed solely for the purpose of computing normal
gradients of the velocity along the line element, for
computation of the stress boundary condition. Two of
the corner nodes of this sub-element are the end-points
of the line element, which are the intersections of the
particle boundary with the particular background ele-

80



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

ment. The other two corner nodes are the adjacent cor-
ner nodes of the background element. Thus, two of the
sides of the sub-element lie along sides of the back-
ground element, one side approximates the boundary of
the particle that overlaps the background element, and
the fourth side of the sub-element is a diagonal of the
background element. This construction is illustrated in
Fig. 1.

Fig. 1. Construction of a sub-element for the computation of a normal
to a particle.

3. Variable Finite Element Shape
Functions

As discussed above, we are currently limited to two-
dimensional simulations. We are using bilinear
(straight-sided) 4-node quadrilateral elements for the
background mesh. We superpose on this ‘‘background’’
mesh circles that represent the outlines of particles. This
is generalizable to somewhat irregular shapes. Repre-
sentation of highly contorted shapes will require further
development. We add an extra node at each intersection
of a circle with an element side. For a given 4-node
element, we consider cases where the particle intersects
the elements edges at either 2 or 4 points. It is very rare
for the particle to intersect an element at exactly 1 or 3
points, because the time dimension is finite differenced,
and consequently, discrete. Intersection at 1 or 3 points
would require the boundary of the particle to be exactly
tangent to an element side. Numerically the particles
move in small increments, so the chances of the edges
coinciding tangentially to within machine accuracy are

minute. Currently, we simply ignore such points, assum-
ing they do not coincide. As yet, we have not observed
exact coincidence to occur.

We developed shape functions for the resultant 6-node
or 8-node elements, based on the method described in
Zienkiewicz [10] for generating ‘‘serendipity’’ ele-
ments. In the finite element method, a solution to the
transport equations for a given dependent variable is
represented over an element by summing the contribu-
tion from each shape function, corresponding to each
node, over all of the nodes of the element. Lagrangian
interpolation functions are generally used as the shape
functions because they yield the convenient property
that the nodal values of the dependent variables are
available directly, without summing contributions. For
example, temperature on an element,T, would be repre-
sented by:

T = S
i

fiTi . (7)

Ti factors are coefficients (constant at a given timestep)
corresponding to the temperature at each nodei of the
element, and thefi are the nodal basis functions.

Following standard finite element methodology, each
element on the ‘‘physical’’ domain (the mathematical
representation of the physical domain), on which the
problem is posed, is mapped locally onto a regular 23 2
square element, called the ‘‘parent’’ element, centered
around the point (0,0) (see Fig. 2). This allows the use

Fig. 2. The parent element, onto which all elements in the physical
domain are mapped.

81



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

of one set of standard shape functions, which is defined
on this unchanging ‘‘parent’’. The representation of the
solution on each element is actually formulated on this
parent element. We designate a Cartesian coordinate
system on this parent element as {s, t }. Both s and t
range from2 1 to 1. In this system, the shape functions
for a bilinear 4-node element, where the nodes are num-
bered counterclockwise starting at the lower left, are
defined below.

Standard bilinear finite element shape functions for a
quadrilateral element are:

N1 =
1
4

(1 2 s)(1 2 t ), (8)

N2 =
1
4

(1 + s)(1 2 t ), (9)

N3 =
1
4

(1 + s)(1 + t ), (10)

N4 =
1
4

(1 2 s)(1 + t ), (11)

Each function has a value of 1 at the node for which it
is defined, and a value of 0 at all other node points. This
is the property that allows the solution at the nodes to be
obtained directly. When new nodes are added, care must
be taken to adjust the shape functions at all affected
nodes to account for this. Otherwise, unintended contri-
butions are erroneously added to the representation, dis-
torting the solution. Again, this is standard finite ele-
ment methodology. The novelty lies in the use of the new
elements to track the particle boundaries.

For elements that contain extra nodes, for each addi-
tional node an additional bilinear shape function is
added to the representation of the solution on that ele-
ment. The specific shape function that is added for each
extra node is based on the position of that node along the
side, and depends on which side of the element it is on.
Shape functions for the end nodes (corner nodes) of
sides containing an extra node must be modified. Addi-
tional terms are added to them to ensure that their shape
function value is zero at the new nodes as well as the
other ‘‘original’’ (here, corner) nodes in the element.
This is an important facet of the finite element approach
based on Lagrangian polynomials. The requirement is
that at each node of an element only one shape function
contributes, the one corresponding to that node, and the
value of the shape function is 1. With this formulation,
the value of a dependent variable at a node is simply the
value of the coefficient of the shape function for that
node. This avoids any need to compute an inverse map-
ping between the ‘‘parent’’ element on the locally

mapped domain and the ‘‘physical’’ element on the
unmapped domain. It also eliminates the need to sum
the polynomials representing the solution on each ele-
ment. The computation of the nodal solutions is direct
(see Zienkiewics [10].)

For the new, 6-node element, two new shape func-
tions are needed corresponding to the two new nodes.
Consider, for example, the case with a particle node
along the bottom (side 1) and another on the right side
(side 2). These new nodes are designated nodes 5 and 6,
respectively. Letp represent thesvalue of the extra node
along side 1, andq represent thet value of the extra node
along side 2. The new nodes are located at (p, 2 1) and
(1, q). The shape functions for each of the extra nodes
is piecewise continuous.

New bilinear finite element shape functions for parti-
cle nodes are:

(1 2 t )(1 + s)
2(1 +p)

for s # p

N5 =5 (12)

(1 2 t )(1 2 s)
2(1 2 p)

for s > p,

(1 + s)(1 + t )
2(1 +q)

for t # q

N6 =5 (13)

(1 + s)(1 2 t )
2(1 2 q)

for t > q.

At points 5 and 6 the values of shape functionsN1 2 N4

must equal 0. Consequently, these four shape functions
must be changed according to the location of the extra
node.

The modified bilinear finite element shape functions
for corner nodes of a particle element are:

N'1 = N1 2
1
2

N5(1 2 p), (14)

N'2 = N2 2
1
2

N5(1 + p) 2
1
2

N6(1 2 q), (15)

N'3 = N3 2
1
2

N6(1 + q), (16)

N'4 = N4 (unchanged). (17)

The entire set of six shape functions on the new
parent element is:

82



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

N1 =
1
4

(1 2 s)(1 2 t ) 2
1
2

N5(1 2 p), (18)

N2 =
1
4

(1 + s)(1 2 t ) 2
1
2

N5(1 + p) 2
1
2

N6(1 2 q),

(19)

N3 =
1
4

(1 + s)(1 + t ) 2
1
2

N6(1 + q), (20)

N4 =
1
2

(1 2 s)(1 + t ), (21)

(1 2 t )(1 + s)
2(1 +p)

for s # p

N5 =5 (22)

(1 2 t )(1 2 s)
2(1 2 p)

for s > p,

(1 + s)(1 + t )
2(1 +q)

for t # q

N6 =5 (23)

(1 + s)(1 2 t )
2(1 2 q)

for t > q.

We use a subparametric mapping from each ‘‘particle
element’’ (each element containing part of a particle) in
the physical domain to the parent element: more nodes
are used to approximate the solution on a particle ele-
ment than are used to define the mapping. This is done
to preserve a linear mapping, to avoid unnecessary dis-
tortion in moving from the physical domain to the lo-
cally mapped domain. This is sensible, since in this
technique the movement of the particles does not cause
any distortion of the elements of the background mesh.
Only the four corner nodes are necessary to define the
Jacobian of the transformation from the coordinate sys-
tem on the element in physical domain to (s, t ) coordi-
nates on the parent. The values ofp andq are updated
following each step in a transient analysis with moving
particles. There are significantly fewer steps involved in
updating the mesh than in remeshing schemes. (See, for
example, Johnson et al. [1] and Hu et al. [6] for discus-
sions of particular mesh-updating strategies.)

For cases in which an edge of a particle moves very
close to an element side, there can be two intersections
of the particle and the element along the same edge. In
that case a slightly different set of linear shape functions
is defined for that element. Suppose there is a resulting
6-node element with 2 extra nodes along side 1 whose

scoordinates have values ofp andq. Assumingp is less
than q, let p1 = (p 2 1)/2, q1 = (q + 1)/2. The corre-
sponding six shape functions are:

N1 =
1
4

(1 2 s)(1 2 t ) 2
1
2

N5(1 2 p) 2
1
2

N6(1 2 q),

(24)

N2 =
1
4

(1 + s)(1 2 t ) 2
1
2

N5(1 + p) 2
1
2

N6(1 + q),

(25)

N3 =
1
4

(1 + s)(1 + t ), (26)

N4 =
1
4

(1 2 s)(1 + t ), (27)

2
(s + 1)(t 2 1)

2(p + 1)
for s < p

2
(s 2 q)(t 2 1)

2(p 2 q)
for p < s < q

N5 =5 (28)

2
(s 2 q)(t 2 1)

4(q 2 1)
for q < s < q1

2
(1 2 s)(t 2 1)

4(q 2 1)
for q1 < s,

(s + 1)(t 2 1)
4(p + 1)

for s < p1

2
(s 2 p)(t 2 1)

4(p + 1)
for p1 < s < p

N6 =5 (29)
(s 2 p)(t 2 1)

2(p 2 q)
for p < s < q

2
(s 2 1)(t 2 1)

2(q 2 1)
for q < s.

(N5 andN6 correspond to the two extra nodes on side 1.)
We have incorporated this moving-boundary method

into our own software, which we wrote in C++ for
simulating and analyzing fluid flow with associated
heat and mass transfer. It was written with an object-
oriented design in order to facilitate adding new fea-
tures, such as new moving-boundary methods, new sets
of global equations, new boundary conditions, etc. For
additional information about our software, see Peskin
and Hardin [11].

83



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

All of the simulations presented in this paper are
two-dimensional representations of flows. We are cur-
rently working on a three-dimensional version of this
method, which is a straightforward extension of the two-
dimensional case. Eight-node brick elements are used
for the finite element mesh. A single element can be
totally enveloped in a spherical particle, or partially
enveloped. When only a portion of a brick element con-
tains part of a sphere, the sphere intersects that element
along either 3 or 4 of the brick edges in the most com-
mon cases. Analogous to the 2-D cases, there are other,
less-common possibilities that should also be accounted
for. Different sets of shape functions are defined for
elements corresponding to different types of sphere-par-
ticle overlap.

4. Test Problems

We present simulations to test this moving-boundary
technique. We first compare our numerical solutions to
exact solutions for a set of Stokes-flow problems. We
then present a solution of Navier-Stokes flow around
multiple particles in a channel.

Flow patterns around circular two-dimensional ‘‘par-
ticles’’ represent cross-sections of flows around cylin-
ders. We present solutions for Stokes flow past a station-
ary cylinder (or, from another perspective, flow around
a translating cylinder), the flow generated by a cylinder
rotating at a constant angular velocity, and flow past a
rotating cylinder (or, flow around a cylinder that is both
rotating and translating). For each of these problems we
have looked at the improvement in accuracy of the solu-
tion as the finite element mesh is refined.

4.1 Stokes Flow Past a Stationary Cylinder

An exact solution exists for Stokes flow around a
cylinder. The cylinder is surrounded by a fluid of in-
finite extent. Far upstream of the cylinder the flow ap-
proaches a constant one-dimensional velocity. The
stream function for this flow is given by [12]:

c = v0yS1 2
R2

(x2 + y2)1/2D. (30)

Velocity components follow from thex andy derivatives
of the stream function:

ux = v0S1 2
R2

(x2 + y2)1/2 +
y2R2

(x2 + y2)3/2D, (31)

uy = v0
xyR2

(x2 + y2)3/2 . (32)

We created a regular, 1250-node (503 25) finite ele-
ment mesh for this problem, and placed a particle at the
center of the mesh. The flow was set equal to a constant
value (U`) at the boundaries of the mesh. The Reynolds
number based onU` wasRe= 0.1. The resulting flow
field is shown in Fig. 3. The same application was run
with a 2450-node (703 35) mesh and a 3200-node
(80 3 40) mesh. The root-mean-square (RMS) errors in
the numerical solutions for the three meshes are, respec-
tively, 5.059 %, 4.841 %, and 3.022 %.

Separate errors were computed for each velocity
component to better gauge the accuracy of the tech-
nique: this gives information on the accuracy of the
directions as well as magnitudes of the velocity vectors.
As expected, the errors decrease as the mesh is refined.
Errors for thex-component in the three meshes were

Fig. 3. Flow over a stationary cylinder—1250-node mesh.

84



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

5.536 %, 5.127 %, and 3.070 %, and for they-compo-
nent, 2.514 %, 1.992 %, and 2.268 %. The 1250-node
mesh is shown in Fig. 4, with the particle used in this
simulation placed at the center.

To test our moving-boundary method, we ran the
same simulation in the frame of reference in which the
particle is moving at a constant linear velocity,2 U`,
and the fluid is stationary. The resulting flow is shown
in Fig. 5. This is exactly (within machine accuracy) the
solution that is obtained by taking the velocity field from
the previous simulation and subtracting the velocityU`.
In this frame of reference it is easier to visualize how the
particle moves the fluid out of its forward path, making
it circulate above and below the cylinder, pulling fluid in
toward itself at the rear.

4.2 Stokes Flow Generated by a Rotating Cylinder

To test the rotational component of our model, we
analyzed the axisymmetric flow generated by a right,

circular cylinder rotating at a constant angular velocity.
In the ideal case, the fluid velocity goes to zero asymp-
totically as the radial distance from the axis of symme-
try goes to infinity. We used the same three finite ele-
ment meshes as were used to test the model for flow
around a stationary cylinder. The exact solution to this
flow problem is given by Batchelor [13]:

U =
r 2V
R

=
r
R

, (33)

in whichR is the radius of the cylinder andr is the radial
distance from the center of the cylinder. Figure 6 shows
the resulting flow in the 503 25-node mesh. We calcu-
lated the RMS error of the numerical solution computed
on each of the three meshes. The error decreased from
0.24 % to 0.15 % from the 1250-node mesh to the 3200-
node mesh.

Fig. 4. 1250-node finite element mesh with a particle.

Fig. 5. Moving particles in an otherwise stationary fluid.

85



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

Fig. 6. Rotating cylinder in an otherwise stationary fluid.

4.3 For Comparison: Stokes Flows Computed on a
Fitted Mesh

To compare our approach to approaches relying on
remeshing, we computed solutions to both of the prob-
lems presented above on a more ‘‘traditional’’ finite
element mesh, constructed to fit the fluid domain, in-
cluding the internal boundary. This mesh is shown in
Fig. 7. It has a hole in the center of it to represent the
particle, and the nodes near the cylinder have been
moved to accommodate the hole. This mesh is similar to
the (503 25)-node regular mesh, but with 1297 nodes.
The extra nodes were added in the process of accommo-
dating the particle. The error in the calculation per-
formed with the fitted mesh was 0.68 %, which is con-
siderably greater than the 0.24 % error observed for the
(50 3 25)-node mesh using our new method. This addi-

tional error is probably due to the irregular element
shapes needed to form the hole in the mesh fitted. It is
important to note that at least some of this discrepancy
could be eliminated by optimizing the fitted mesh.
However, this brings up another important point: in or-
der to generate an accurate solution with a fitted mesh,
given the necessary distortion (compared to a regular
grid) to account for the hole, takes both effort and exper-
tise. In contrast, generating the mesh for this problem
using our technique is relatively trivial.

4.4 Stokes Flow Past a Rotating Cylinder

Figure 8 shows the flow past a rotating cylinder, the
sum of the two flow fields already discussed, computed
on the 1250-node mesh using our new technique. The

Fig. 7. Finite element mesh representing a particle by a hole.

86



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

Fig. 8. Rotating cylinder in an otherwise uniform flow field.

flow accelerates as it goes over the cylinder in the direc-
tion of the rotation. This is the same flow field that is
obtained by summing the velocity fields of the previous
applications computed on the same mesh. This is ex-
pected, since Stokes-flow solutions are linear, and con-
sequently, superimposable.

4.5 Multi-particle System

We computed a Navier-Stokes solution of flow
through a channel around a number of particles (effec-
tively cylinders, since we are working in two dimen-
sions) placed rather randomly across the channel. The
Reynolds number is about 1, based on a particle diame-
ter. This illustrates the ability to place multiple objects
in the flow. We selected this problem to allow a qualita-
tive comparison with Martys and Garboczi [14]. They

computed the flow field in two dimensions around
roughly 100 particles using a straightforward finite dif-
ference approach on a fine grid. Our solution here ap-
pears qualitatively consistent with theirs. Figure 9 shows
the flow through a channel around 8 distributed parti-
cles. The obvious result is that the dominant flow fol-
lows the path of least resistance, through the largest
channels.

Multi-particle systems do not require complicated
meshing schemes with our technique. We can straight-
forwardly model many particles without changing the
background mesh, subject to the constraint of how fine
the background mesh must be to capture the flow be-
tween the particles, and the corresponding limits of
computer memory. The particles can be located close to
one another without distorting the mesh. However, they
can approach only as close as allowed by the fineness of

Fig. 9. Multi-particle flow.

87



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

the mesh, so that sufficient nodes remain between the
particles to resolve the flow. On the coarse mesh used
here, the particles are as close as allowable to maintain
a qualitatively reasonable solution. Note that we do not
currently allow the particles to contact each other. We
have not yet accounted for particle-particle momentum
transfer. This is not a major modification, and is dis-
cussed further in the Discussion and Conclusions section.

5. Examples—Falling Cylinders

We sought experimental data with which to validate
our 2-D model. While ample literature is available on
falling spheres or other particle shapes, there appears to
be relatively little on multiple falling cylinders. We con-
ducted a series of crude experiments observing up to
three cylindrical metal rods falling through glycerin.
The rods are initially oriented horizontal. This is a stable
configuration in terms of orientation: the drag on each
cylinder is such that it discourages excursions away from
the horizontal. (To stray from the horizontal, one end
must fall faster. However, this increases the drag on that
end, providing the necessary restoring force to maintain
the cylinder in a horizontal orientation.) Multiple cylin-
ders were parallel to each other. The rods had length-to-
radius ratios of 10 to minimize end effects. We con-
ducted a few experiments with rods whose aspect ratios

were 20 and saw little or no difference compared to
cylinders with aspect ratios of 10. The viscosity of glyc-
erin is large,m = 11.4 g/(cm s) at 238C, but it behaves
as a Newtonian fluid at this temperature. The density of
glycerin at this temperature is 1.25 g/cm3. The cylinders
had diameters of 0.48 cm and lengths of about 5.5 cm.
The cylinders were cold-rolled steel, with a density of
about 7.74 g/cm3. Their settling speeds approached 16
cm/s. The resulting Reynolds number is about 10 to 20
based on the diameter of the cylinders.

5.1 One Falling Cylinder

We simulated a single particle (cylinder), initially at
rest, settling under the influence of gravity. The simula-
tion is 2-D. The boundary conditions are no-slip (zero
velocity) on the top and bottom, and zero shear on the
sides. This corresponds to a cylinder settling in a broad
tank with a lid in contact with the liquid. In the simula-
tion, the cylinder starts at a depth of about 1/3 of the
total height of the tank, and falls about 1/3 of the height.
Figure 10 shows the velocity vector-field for the flow
around a single falling cylinder at a selected time step.
The cylinder accelerates as it falls from its initial, sta-
tionary position. The acceleration decreases during the
simulation: the drag force on the cylinder increases as
its speed increases, eventually balancing the force of
gravity.

Fig. 10. One falling cylinder.

88



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

An exact solution exists to determine the settling
speed of a single cylinder falling in an incompressible
fluid [15]. The normal and tangential stresses at the
surface of the cylinder exert a drag force on the cylinder
of magnitudeD , given by the equation:

D = 2pmUC, (34)

in which C is a constant:

C =
2

ln(7.4
R )

, (35)

whereR is represented by:

R=
2rUr

m
. (36)

The settling speed calculated from the exact solution is
U = 16.85 cm/s.

The simulation was run on meshes of several different
grid spacings. The cylinder maintained a steady velocity
only during the portion of the simulation during which
it resided near the center of the mesh. Boundary effects
were seen if the cylinder was too close to the upper or
lower boundary. Our ability to simulate this situation
was limited by the size of the mesh. The obvious cure
for this problem is to translate the entire mesh at the
settling speed of the particle, as was done by Johnson
and Tezduyar [3]. On a domain with a grid spacing equal
to 0.2 cm, on which each particle covers a 33 3-ele-
ment area, the settling speed we computed was 15.9
cm/s, which is in error by 5.6 % compared to the exact
solution. On a mesh with a 0.12 cm grid-spacing, on
which each particle covers a 53 5-element area, the
settling speed was 17.0, which is in error by 0.89 %.
The method appears to converge well.

5.2 A Pair of Falling Cylinders

An interesting result occurs experimentally when a
pair of cylinders is placed several diameters apart near
the top of the glycerol and released. The two cylinders
fall at the same speed. They remain parallel and side-by-
side, but the distance between them increases as they
fall. The cylinders are observed to rotate about their
horizontal, lengthwise axes in opposing directions.
Looking at the cylinders end-on, the left one rotates
clockwise, while the right one rotates counterclockwise.
The explanation for this is as follows. The glycerol is
quite viscous, so the momentum of each cylinder dif-
fuses quickly toward the other. The two cylinders falling
side-by-side restrict the flow between them, slowing the
flow there and causing the pressure to increase between

the cylinders. This causes some of the glycerin lying in
the path between the cylinders to flow around the out-
sides of the cylinders rather than between them, speed-
ing the flow on the outsides of the cylinders. The pres-
sure on the outsides of the cylinders is reduced, a
manifestation of the Bernoulli effect. The resulting
pressure gradient forces the cylinders apart. The rotation
of the cylinders is the Magnus effect in reverse, where
the pressure gradient (or outward diversion of the flow)
causes the cylinders to counter-rotate.

A finer mesh is required to reasonably simulate a pair
of falling cylinders than is needed for the case of a single
cylinder, because of the need to track the rotation of the
particles with sufficient accuracy. Extraneous computa-
tional constraints limited the size of the mesh we were
able to use. The resolution of this problem is straightfor-
ward, but is left for future work. Nonetheless, on the
meshes that we used, the rotation we computed agrees
qualitatively with what was observed experimentally.
The cylinders fall side-by-side, moving apart and rotat-
ing in opposite directions as they descend. Figure 11
shows a snapshot of the velocity vector-field approxi-
mately midway through the simulation of two cylinders
falling. The horizontal acceleration is initially zero, and
increases slowly at first. The horizontal velocity compo-
nents in the figure are small and not easily visible. This
is another case in which it would be helpful to translate
the entire mesh at the speed of the center of mass of the
cylinders, as was done by Johnson and Tezduyar [3].

6. Discussion and Conclusions

We have created a novel technique for modeling two-
phase flow of multiple particles moving in a fluid. An
advantage of this approach is that the mesh does not
distort as a result of the movement of the particles,
obviating the need for remeshing and the associated
numerical machinery. This technique is extensible to
non-spherical particles. We have tested the technique by
applying it to several simple linear problems for which
exact solutions are known. We then illustrated the tech-
nique for cylinders falling at low Reynolds numbers.
Fluid velocities computed for locations very close to
particles converge toward the exact solutions as the
computational mesh is refined.

An issue that has not yet been dealt with is the mod-
eling of collisions between particles or with walls. For
any technique this ultimately involves a judgment as to
how close the particles may come before one considers
them to contact. Physically, when the particles get too
close, the assumptions of continuum mechanics are vio-
lated. However, long before that, it is a practical neces-
sity to limit how far the calculation proceeds, because as

89



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

Fig. 11. Two falling cylinders.

the particles are allowed to approach more closely, the
mesh must be correspondingly refined to capture the
flow between the particles. The accuracy of our tech-
nique is determined by the fineness of the background
mesh. The close approach of particles creates a chal-
lenge for remeshing schemes as well: frequent remesh-
ing may be required to avoid unacceptable distortion as
particles approach. We need to investigate the trade-off
between the cost and accuracy of simulations as the
background mesh is refined. If it turns out that too fine
a mesh is required, a possibly useful compromise might
be to use a hybrid scheme that uses a locally varying
mesh, similar to what is used in other work, with the
kind of particle definition we are using. In this way the
mesh could be locally fine where necessary, but since
our technique does not directly deform the mesh as the
particles move it would limit the need for remeshing. We
feel this technique is promising, and so have elected to
present it at this time even though our numerical formu-
lation needs to be refined to allow the finer and larger
meshes required for more complex regimes of flow.

7. References

[1] A. A. Johnson and T. E. Tezduyar, Mesh Update Strategies in
Parallel Finite Element Computations of Flow Problems with
Moving Boundaries and Interfaces, Comp. Meth. Appl. Mech.
Eng.119, 73–94 (1994).

[2] A. A. Johnson and T. E. Tezduyar, Numerical Simulation of
Fluid-Particle Interactions, Proc. of Intl. Conf. on Finite Ele-
ments in Fluids—New Trends and Applications, Venezia, 15–
21 October, 1995.

[3] A. A. Johnson and T. E. Tezduyar, Simulation of Multiple
Spheres Falling in a Liquid-Filled Tube, Comp. Meth. Appl.
Mech. Eng.134, 351 (1996).

[4] S. Mittal and T. E. Tezduyar, Parallel Finite Element Simulation
of 3D Incompressible Flows: Fluid-structure Interactions, Int. J.
Num. Meth. Fluids21, 933–953 (1995).

[5] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, A New Strategy
for Finite Element Computations Involving Moving Boundaries
and Interfaces—the DSD/ST Procedure: I. The Concept and the
Preliminary Numerical Tests, Comp. Meth. Appl. Mech. Eng.
94, 339–351 (1992).

[6] H. H. Hu, D. D. Joseph, and M. J. Crochet, Direct Simulation of
Fluid Particle Motions, Theoret. Comp. Fluid Dynam.3, 285–
306 (1992).

[7] A. L. Fogelson and C. S. Peskin, A Fast Numerical Method for
Solving the Three-Dimensional Stokes’ Equations in the Pres-
ence of Suspended Particles, J. Comp. Phys.79, 50–69 (1988).

[8] S. O. Unverdi and G. Tryggvason, A Front-Tracking Method for
Viscous, Incompressible, Multi-fluid Flows, J. Comp. Phys.
100, 25–37 (1992).

[9] T. J. R. Hughes, W. K. Liu, and A. Brooks, Review of Finite
Element Analysis of Incompressible Viscous Flows by Penalty
Function Formulation, J. Comp. Phys.30, 1–60 (1979).

[10] O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill,
London (1977).

[11] A. P. Peskin and G. R. Hardin, An Object-Oriented Approach to
General Purpose Fluid Dynamics, Comp. Chem. Eng.20, 1043–
1058 (1996).

[12] M. Van Dyke, Perturbation Methods in Fluid Mechanics, The
Parabolic Press, Stanford, California (1975).

90



Volume 103, Number 1, January–February 1998
Journal of Research of the National Institute of Standards and Technology

[13] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge
University Press, London (1967) pp. 201–205.

[14] N. Martys and E. J. Garboczi, Length Scales Relating the Fluid
Permeability and Electrical Conductivity in Random Two-di-
mensional Model Porous Media, Phys. Rev. B46, 6080–6090
(1992).

[15] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge
University Press, London (1967) pp. 244–246 (1967).

About the authors: Adele P. Peskin and Gary R.
Hardin are both chemical engineers in the Chemical
and Physical Properties Division of the NIST Chemical
Sciences and Technology Laboratory. The National In-
stitute of Standards and Technology is an agency of the
Technology Administration, U.S. Department of Com-
merce.

91


