超イオン導電体 Cu₈GeS₆ および Ag₇TaS₆ の低温相の構造と イオン伝導パス:六次元解析法による多重双晶の解析

物質・材料研究機構物質研究所小野田みつ子

Mitsuko ONODA: Low-Temperature Forms of Superionic Conductors, Cu_8GeS_6 and Ag_7TaS_6 , and Ion Conduction Path: Analysis of Multiple Twins Through Six-Dimensional Twin Analysis Technique

The structures of the orthorhombic room-temperature phase of Cu_8GeS_6 (phase II) and the monoclinic low-temperature phase of Ag_7TaS_6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu_8GeS_6 II) and 24-fold twinned (Ag_7TaS_6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu_8GeS_6 II, or among 12 major and 12 minor twin domains of Ag_7TaS_6 II, the argyrodite-type frameworks, GeS_6 or TaS_6 , can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group $F\overline{4}3m$. On cooling, each domain transforms into 6 domains of orthorhombic Cu_8GeS_6 II or 12 domains of monoclinic Ag_7TaS_6 II. Superposed projections along 6 directions of the structure of Cu_8GeS_6 II and along 12 directions of the structure of Ag_7TaS_6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu_8GeS_6 I and Ag_7TaS_6 I.

1. はじめに

アージャイロダイト型化合物のことを筆者が知ったの は筆者の属していた研究グループで見出された新規化合 物 Ag7TaS6の同定を行ったときであった.^{1),2)} Ag7TaS6のX 線回折パターンを解析した結果,すでにいくつかの化合物 の知られているアージャイロダイト族3)-5)の一員として $F\overline{4}3m, a = 10.5$ Å, Z = 4 で記述できることがわかった. Ta と4SがTaS4四面体を作りほかのSはTaと結合しないが TaS4に属するSとともに正規または歪んだ四面体を作り それらの四面体が面共有で繋がって空間を埋め尽くして 構造枠組みを作っている. AggGeS6をはじめとするアー ジャイロダイト族化合物のほとんどが室温では斜方晶系 となり歪んだS四面体または面共有の三角面内のいずれ かの位置にAg またはCuが存在するのに対し、Ag7TaS6で は室温 (I相) で高対称の回折を示し、 散漫散乱と解釈で きる粉末回折パターンのバックグラウンドの盛り上がり が見られることから Agイオンは副格子融解の状態にあ り面共有のS四面体からなる枠組みの中を流れていると 考えられた.^{1).6)} 実際に室温で logσ (Ω⁻¹ cm⁻¹) = -1.82 程 度の高いイオン伝導度が測定された. 粉末試料で低温X 線回折実験が行われ約280 K以下(II相)と約170 K以下 (III相)の2つの低温相の存在が見出された.6)-8)結晶も得 られ II 相の領域である 223 K での測定により擬立方晶 (a = 10.5 Å) の2ドメイン双晶と思われる回折データが 得られたがII 相の粉末回折パターンの解析から単斜晶系 の多重双晶であると考えられた.

同じグループでCu-Ge-S系新物質合成の副産物として アージャイロダイト型Cu₈GeS₆の単結晶が得られプリセ ッション写真は三方晶系の対称を示しているように見え た. 菱面体晶系の2ドメインの双晶と思われたが,粉末回 折パターンの解析からCu₈GeS₆の室温相は斜方晶である と報告されていること^{9,10)}とワイセンベルグ写真でいく つかの回折斑点にわずかの分裂が見られることから結晶 試料は斜方晶系の多重双晶であると考えられた.¹¹⁾

まず Cu₈GeS₆室温相と Ag₇TaS₆低温相(II相)の対称性 を考察し単結晶測定データを用いて構造精密化を行った. 次に解析された構造の多重双晶のドメイン方位に対応す る6方向または12方向への投影を重ね合わせた結果をア ージャイロダイト型超イオン導電体の相転移と関連付け て考察した.

2. Cu₈GeS₆室温相の構造精密化-12重双晶の解析

Cu₈GeS₆結晶のX線回折データ¹¹は四軸回折計 (MoK α) で六方晶系の格子定数 $a_h = b_h = 13.986$, $c_h = 17.058$ Åを基に収集された. I > 2 σ (I)の反射のうち1556 個は反射条件 $-h_h + k_h + l_h = 3n$ を満たし残る248 個は $-(-h_h + k_h) + l_h = 3n$ を満たすことから菱面体晶系の双晶 (回折の

日本結晶学会誌 第48巻 第2号 (2006)

一部のみが重なる双晶)のように見えた. $a_{\rm h} = b_{\rm h} \sim \sqrt{2} \times$ 9.9, $c_{\rm h} \sim \sqrt{3} \times 9.9$ Å であることから測定に用いられた格 子は実は*a*~9.9 Å, α~90°の擬立方格子であると考え られたので観測データの指数変換を行った. 1556 個の大 体積グループは結晶軸の関係 $a_h = b - c, b_h = c - a, c_h =$ a+b+cにより変換され擬立方のa.b.cを基にhklで指数 がついた. 248 個の小体積グループは $a_h = c' - b', b_h = a' - b'$ **c**', **c**_h = **a**' + **b**' + **c**'により変換され異なる方位の擬立方 a',b',c'を基に h'k'l'で指数付けできた. a,b,c と a',b',c'の関係は 本誌前出記事13の図5の場合と同じになり[111]を共有 して180°回転している. 粉末X線回折パターンの解析よ り明らかになった構造モデルは座標X,Y,Zを用いPmn2; A = 7.045, B = 6.966, C = 9.870 Å; Z = 2 で記述され た. 擬立方格子での結晶学データと格子定数に変換する際 に原点を(1/8, 1/8, 0)に置き直して x = (X + Y)/2 - 1/8, y = (Y - X)/2 - 1/8, z = Z を用いると (0,0,0 ; 1/2,1/2,0) +x,y,z; y,x,z; -x,1/2 - y,1/2 + z; 1/2 - y, -x,1/2 + z; a = b = c = 9.90 Å, $\alpha = \beta = \gamma = 90^{\circ}$, Z = 4 k k k k l \sim

 図1 Cu₈GeS₆結晶の双晶ドメインの大体積グループ 1~6と小体積グループ7~12. (The major twin domains 1-6 and the minor twin domains 7-12 of a crystal of Cu₈GeS₆.) 体積の少ない7~12番の各 ドメインは1~6番の各ドメインと擬立方格子の [111] 上に置いた2 回軸で関係付けられる.

の擬立方格子について図1の前半に示した6重の双晶(回 折の重なる双晶)の可能性がある.小体積グループの格子 については図1の後半に示した6重双晶を考える.

両グループの反射全部を使って解析するため先に紹介 した六次元構造解析法を用いる.^{12),13)} すべての反射を*q* = *ha** + *kb** + *lc** + *h'a*'* + *k'b'** + *l'c'** で表すと大グループ と小グループの指数は*hkl000*および000*h'k'l*になる.六 次元表示の対称操作は*hkl000*に対しては三次元対称操作 (回転行列 **R**と並進ベクトル**v**)を

$$\mathbf{g} = \begin{bmatrix} \begin{pmatrix} \mathbf{R} & 0 \\ 0 & \mathbf{R} \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}$$

の形で六次元化して用い,一方000*hkT*に対する操作は行 列**T** = (0 0 0 1 0 0 | 0 0 0 0 1 0 | 0 0 0 0 0 1 | 1 0 0 0 0 0 | 0 1 0 0 0 0 | 0 0 1 0 0 0) を**g**の回転部分に掛け て得られる操作が用いられる.図1のドメイン2からド メイン6までの双晶の寄与は回転行列**R**に双晶操作 y.z.x, z.x.y, x,-y,-z, -y,-z,x, - z.x,-yを掛けて得られる 操作を用いて計算され,両グループの反射全体に対しては **表1**に挙げた双晶操作と対称操作が使われる.

プログラム FMLSM を用いて構造精密化を行った.¹⁴⁾構造モデルを図2に、原子パラメータほかを表2に示す. I > $2\sigma(I) \circ 0$ 1804 反射を全部用いて非対称単位に 11 個 (Ge, Cu1, Cu2, Cu3, Cu4, Cu5, S1, S2, S3, S4, S5) の独立な原子を置き 25 個の位置パラメータと 52 個の異方性温度因子のほかに 12 個の尺度因子を用いて $R_F = 8.7 \%$, w $R_F = 9.0 \%$ であった. [F] に基づいた精密化の場

表1 Cu₈GeS₆の逆格子ベクトルの関係, 対称操作と双晶 操作. (Relations among reciprocal bases, symmetryand twin-operations for monoclinic Cu₈GeS₆.)

M*	$a'^* = -a$	*/3+2 b */3	+2c*/3,	$b'^* = 2a^*$	/3- b */3	+2c*/3,	
	c'*=2a*/3+2b*/3-c*/3						
対称操作	1. x,	у,	Z,	u,	ν,	w	
	2. у,	х,	z.	v,	u,	w	
	3. $-x$, 1/2 – y,	1/2 + z,	— u,	$1/2 - v_{,}$	1/2 + w	
	4. 1/2-	y, -x,	1/2 + z,	$1/2 - v_{,}$	— u.	1/2 + w	
	5. 1/2+	x, $1/2 + y$,	Z,	1/2+u,	1/2 + v,	w	
	6. 1/2+	y, $1/2 + x$,	Z,	$1/2 + v_{\star}$	1/2 + u,	w	
	7. 1/2-	х, — у,	1/2 + z,	1/2-u,	— v,	1/2 + w	
	8y	1/2 - x,	1/2 + z,	— v,	1/2 – u,	1/2 + w	
ドメインI	対称操作	E 1-8					
ドメイン2	(双晶操	作 y, z. x. v.	$\mathbf{w}, \mathbf{u}) \times ($	対称操作	± 1-8)		
ドメイン3	(双晶操作 z, x, y, w, u, v)×(対称操作 1-8)						
ドメイン4	(双晶操	作 x, -y, -	-z, u, —v	$(-\mathbf{w}) \times$	(対称操(乍 1-8)	
ドメイン5	(双晶操作 -y, -z, x, -v, -w, u)×(対称操作 1-8)						
ドメイン6	(双晶操作 -z, x, -y, -w, u, -v)×(対称操作 1-8)						
ドメイン7	(双晶操	作 u, v, w, x	$(\mathbf{y}, \mathbf{z}) \times ($	対称操作	1-8)		
ドメイン8	(双晶操	作 v, w, u, y	$(z, x) \times ($	対称操作	: 1-8)		
ドメイン9	(双晶操	作 w. u, v, z	$(\mathbf{x}, \mathbf{y}) \times ($	対称操作	€ 1-8)		
ドメイン10	(双晶操	作 u, -v, -	-w, x, -y	$(z - z) \times (z - z)$	対称操作	乍 1-8)	
ドメインロ	(双晶操	ľ∉ −v, −w	y, u, −y, -	$-z, x) \times$	対称操作	乍 1-8)	
ドメイン12	(双晶操	作-w, u, -	-v, -z, x	$(x, -y) \times$	(対称操(乍1-8)	

- 図2 (a) Cu₈GeS₆室温相の擬立方格子を基にした結晶構造モデル, (b) その [-1 -1 -1] に沿っての投影 (0.7 < x + y + z < 1.03), (c) a/2 + c/2 だけシフトした構造の投影 (0.7 < x + y + z < 1.03). (a) Structure model of Cu₈GeS₆-II, (b) bounded projection of the model along pseudo-cubic [-1 -1 -1] and (c) bounded projection of the model parallel-shifted by a/2 + c/2, (0.7 < x + y + z < 1.03). 小さな黒円, 小さな灰色円, 大きな白抜き 円は Cu, Ge, S を表す.
- 表2 Cu₈GeS₆の原子パラメータとドメイン体積(括弧内は標準偏差).(Atomic and domain parameters of Cu₈GeS₆ with e. s. d. in parentheses.)

$a=b=c=9.90$ Å, $\alpha=\beta=\gamma=90^{\circ}$, Z=4の格子に基づく原子パラメータ 等価位置の座標:x,y,z; y,x,z; -x,1/2-y,1/2+z; 1/2-y,-x,1/2+z; 1/2+x,1/2+y,z; 1/2+y,1/2+x,z; 1/2-x,-y,1/2+z; -y,1/2-x,1/2+z						
Atom	x	У	Z		Ueq	
Gel	-0.0004(2)	-0.0004	0.5		0.009(1)	
Cul	0.2427(4)	0.0317(3)	0.2493	3 (9)	0.025(1)	
Cu2	0.5283(5)	0.3293(4)	0.8439(9)		0.029(1)	
Cu3	0.5485(7)	0.3482(5)	0.1421(10)		0.049(2)	
Cu4	0.1755(5)	0.1755	0.0101(13)		0.033(2)	
Cu5	0.2396(5)	0.2396	0.4685	5(10)	0.024(2)	
S1	0.3741(6)	0.1324(6)	0.8792(11)		0.011(2)	
S2	-0.1251(7)	-0.1251	0.6368	3(13)	0.010(2)	
S 3	0.1238(7)	0.1238	0.6331	(13)	0.009(2)	
S4 0.2625(6)		0.2625	0.2441(17)		0.018(3)	
S 5	0.0107(5)	0.0107	-0.0073(15)		0.011(2)	
ドメイ	ン 尺度因子	体積比	ドメイン	尺度因子	体積比	
1	10.09(8)	1000	7	2.32(9)	60(5)	
2	7.14(7)	500(14)	8	1.72(10)	30(3)	
3	6.76(7)	450(14)	9	1.72(10)	30(3)	
4	4.18(9)	170(8)	10	0.98(15)	47(5)	
5	4.15(9)	170(8)	11	1.49(12)	20(3)	
6	4.55(9)	200(9)	12	1.71(11)	30(3)	

合は尺度因子の二乗がドメインの体積に比例する.見積 もられた12ドメインの体積比を表2の最下行に示した.

3. Ag₇TaS₆低温相 (II 相)の構造精密化-24重双 晶の解析

Ag₇TaS₆結晶のX線回折データの収集は223 Kで四軸 回折計 (MoK α)により六方晶系の格子定数 $a_h = b_h =$ 14.85 = $\sqrt{2} \times 10.50$, $c_h = 18.19 = \sqrt{3} \times 10.50$ Åを基に行わ れた. 擬立方格子の [111]を共有した双晶に見えるデータ であったのでCu₈GeS₆の場合と同じ手順で指数を変換し, I > 2 σ (I)のhkl000で指数がつく913反射と000h'k'Tで指 数がつく317反射について解析を行った. 粉末X線回折 データの解析より求められた構造モデルは*Pn*; A = 7.45, B = 7.40, C = 10.54 Å; $\beta = 90.07^\circ$, Z = 2 で記述され る^{7),8)} がこれを擬立方格子での結晶学データに変換するの に原点を (3/8, -1/8, 0) に置き直すと $\mathbf{x} = (\mathbf{X} + \mathbf{Y})/2 - 3/8$, $\mathbf{y} = (\mathbf{Y} - \mathbf{X})/2 + 1/8$, $\mathbf{z} = \mathbf{Z}$ より (0,0,0; 1/2,1/2,0) + $\mathbf{x},\mathbf{y},\mathbf{z}$; $1/2 - \mathbf{y}, - \mathbf{x}, 1/2 + \mathbf{z}$; a = b = c = 10.5, $\alpha = \beta = \gamma = 90^\circ$, Z = 4 になる. *a,b,c* に基づく格子については図3 のドメイン1から12までの12重の双晶(回折の重なる双 晶)を考えることになる. *a',b',c*'に基づいては*a,b,c* に基づ く12のドメインを[111]の周りに180°回転した12重の 双晶を考え、全体では24重の双晶を仮定して六次元双晶 解析が行われた.¹⁵⁾ *hkl*000と000*h'k'l*の1230反射の全部

日本結晶学会誌 第48巻 第2号 (2006)

 図3 Ag₇TaS₆(II相)結晶の双晶ドメインの大体積グル ープ1~12.(Twelve major domains of Ag₇TaS₆-II.) 各ドメインと擬立方格子の[111]上に置いた2回 軸で関係付けられる12個のドメインが小体積グル ープのドメインであり合計24個のドメインからX 線回折データが得られた.

表3 Ag₇TaS₆(II相)の原子パラメータとドメイン体積 (括弧内は標準偏差). (Atomic and domain parameters of Ag₇TaS₆ II with e. s. d. in parentheses.)

<i>a</i> = <i>b</i> = <i>c</i> =10.50 Å, α=β=γ=90°, Z=4の格子に基づく原子パラ メータ 等価位置の座標:x,y,z; 1/2-y,-x,1/2+z; 1/2+x,1/2+y,z; -y,1/2-x,1/2+z						
原子	x	у	:	z	В	
Та	0.0008(5)	0.0008	0.5		0.87(9)	
Agl	0.287(2)	0.499(3)	0.007(3)		3.3(3)	
Ag2	0.521(3)	0.317(3)	0.80	7(3)	3.9(4)	
Ag3	0.949(3)	0.148(3)	0.83	1(3)	4.0(5)	
Ag4	0.758(4)	0.472(3)	0.72	7(4)	6.4(7)	
Ag5	0.462(4)	0.398(4)	0.19	6(4)	6.9(8)	
Ag6	0.872(3)	0.298(4)	0.547(4)		6.3(7)	
Ag7	0.211(2)	0.243(2)	0.463(3)		2.2(3)	
S1	0.379(6)	0.121(6)	0.872(8)		1.0(4)	
S2	0.141 (5)	0.353(5)	0.403(6)		1.0	
S 3	-0.132(6)	-0.111(6)	0.626(5)		1.0	
S4	0.128(6)	0.124(6)	0.643(6)		1.0	
S5	0.273(7)	0.257(4)	0.237(7)		1.0	
S 6	0.010(5)	-0.030(4)	0.000(8)		1.0	
ドメイ	ン 尺度因子	体積比	ドメイン	尺度因子	体積比	
1	21(3)	26(4)	13	8(5)	4(1)	
2	34(2)	69 (7)	14	31(2)	57(5)	
3	23(3)	31(5)	15	17(3)	17(3)	
4	41(1)	100	16	28(2)	47(5)	
5	29(2)	50(5)	17	10(4)	6(1)	
6	40(1)	95(5)	18	5(4)	1.5(0.3)	
7	21(3)	26(4)	19	17(3)	17(3)	
8	32(2)	61 (6)	20	21(2)	26(3)	
9	29(2)	50(5)	21	15(3)	13(2)	
10	34(2)	69 (7)	22	17(2)	17(2)	
11	18(3)	19(3)	23	14(3)	12(2)	
12	30(2)	54(5)	24	17(3)	17(3)	

図4 (a) $Ag_7TaS_6(II \text{ } h)$ の擬立方格子を基にした結晶構造モデル, (b) その [-1 1 1] に沿っての投影 (0.09 < x - y - z < 0.43), (c) a/2 + c/2 だけシフトした構造の投影 (0.09 < x - y - z < 0.43). (a) Structure model of Ag_7TaS_6 -II, (b) bounded projection of the model along pseudo-cubic [-1 1 1] and (c) bounded projection of the model parallel-shifted by a/2 + c/2, (0.09 < x - y - z < 0.43). 小さな黒円, 小さな灰色円, 大きな白抜き円は Ag, Ta, S を表す.

日本結晶学会誌 第48卷 第2号 (2006)

を用い40個の位置パラメータと9個の等方性温度因子の ほかに24個の尺度因子をパラメータとした. 収束は $R_F = 12.4$ %, w $R_F = 13.8$ %であまりよくないが, Agの温度因 子がほかの原子の温度因子より大きいなど妥当なパラメ ータが求められた. 構造モデルを図4に, 原子パラメータ とドメインの体積比を**表3**に示す.

Cu₈GeS₆ (室温相)の構造の6方向への投影の重 ね合わせ

図 2b は Cu₈GeS₆ (室温相)の構造の擬立方格子の [−1 −1 −1]に沿っての範囲を限っての投影であり, 図 2c

図5 Cu₈GeS₆室温相の構造とa/2 + c/2だけシフトした 構造の擬立方格子 (a = 9.9 Å)の[-1 1 0](左) と[-1 -1 -1](右)に沿っての投影(図1の双 晶ドメイン1~6に対応する6方位の重ね合わせ). (Superposed projections of the model of Cu₈GeS₆-II and that parallel-shifted by a/2 + c/2 along [-1 1 0](left) and [-1 -1 -1](right) on the bases of pseudo cubic cell (a = 9.9 Å).)投影の範 囲は(a) 0.0 < x + y + z < 1.1, (b) 0.7 < x + y + z < 1.03, (c) - (d) 0.7 < x + y + z < 0.94, (e) - (f) 0.94 < x + y + z < 1.03. 投影の範囲はスライス厚 みを意味し(b)(d)(f) は平面図でありその厚みは 正面図(a)(c)(e)にそれぞれ表される.(b)に示し た範囲のうち(c)(d)はGeを中心にした部分の図 であり(e)(f)はGeから遠い部分の図である.

144

はa/2 + c/2だけ平行移動した構造モデルの同じ範囲の投影である. 両図はともに同じ構造から得られて重ね合わせることのできる GeS₆枠組み構造を含んでいる. まず両モデルの [-110]に沿って(左)と[-1-1-1]に沿って(右)の投影を重ねて描く(図5). 投影範囲は(a) 0.0 < x + y + z < 1.1, (b) 0.7 < x + y + z < 1.03, (c)-(d) 0.7 < x + y + z < 0.94, (e)-(f) 0.94 < x + y + z < 1.03 である. 次にx,y,z からy,z,x, z,x,y, x, - y, - z, - y, - z,x, - z,x, - y に変換した5方向について(a)-(f) と等価な方向と範囲について投影を図5の各図に重ね合わせた.

図6 Ag₇TaS₆(II 相)の構造とa/2 + c/2だけシフトした 構造の擬立方格子 (a = 10.5 Å)の[-1 1 0](左) と[-1 -1 -1](右)に沿っての投影(図1の双 晶ドメイン1~6に対応する6方位の重ね合わせ). (Superposed projections of the model of Ag₇TaS₆-II and that parallel-shifted by a/2 + c/2 along [-1 1 0] (left) and [-1 -1 -1] (right) on the bases of pseudo cubic cell (a = 10.5 Å).) 投影の範囲は (a) 0.0 < x + y + z < 1.1, (b) 0.7 < x + y + z < 1.03, (c)-(d) 0.7 < x + y + z < 0.94, (e)-(f) 0.94 < x + y + z < 1.03. (b) (d) (f) は平面図でありその厚みは正面図 (a) (c) (e) にそれぞれ表される. (b) に示した範囲の うち (c) (d) はTaを中心にした部分の図であり (e) (f) はTaから遠い部分の図である.

日本結晶学会誌 第48巻 第2号 (2006)

5. Ag₇TaS₆(II相)の構造の12方向への投影の重 ね合わせ

図4bと図4cはAg₇TaS₆(II相)の構造とa/2 + c/2だけ 平行移動した構造モデルの同じ範囲を限っての投影であ る. Cu₈GeS₆(室温相)の場合とまったく同様にAg₇TaS₆(II 相)の構造とa/2 + c/2だけ平行移動したモデルを重ねて [-110]に沿って(左)と[-1-1-1]に沿って(右) 投影し(図6a~f),続いてx,y,zからy,z,x, z,x,y, x, - y, - z, - y, - z,x, - z,x, - y, - x, y, - z, - x, - z, - x,y, - x, - y,z, - x, z, - x, - yに変換した11方向につ いてもa~fと等価な方向と範囲について投影を重ね合わ せて図6が得られた.

6. アージャイロダイト型化合物の相転移とイオン 伝導パス

Cu₈GeS₆ は約 330 K で相転移をする.³⁾⁻⁵⁾ 高温相(I相) は空間群 $F\overline{4}3m$ の立方晶の構造をとり、 Ag_7TaS_6 室温相と 同じくS の四面体が面共有で繋がる枠組み中をCu イオン が流れると推定される.室温相(II相)ではCu イオンは図 2a に示したように一部はアージャイロダイト型GeS₆枠 組みの歪んだS-S 四面体の中に、残りは2つの歪んだ四面 体が共有するS-S 三角面の中にある.Cu イオンはCu-Cu < 2.9 Å で結ぶとCu-Cu の網目を作っているように見 える (図 2b).

高温相の単ドメインの中ではアージャイロダイト型枠 組み構造は一続きとみなせるが室温に冷えるとき枠組み 構造はほとんど変化することなくCuイオンが停止して GeS₆枠組みを共有する6ドメインの斜方晶系の双晶に変 化したと考えられる.6ドメインはx.y.z; y.z.x; z.x.y; x,-y,-z, -y,-z,x, -z.x,-yの双晶操作に対応し,そ れぞれの間ではアージャイロダイト型のGeS₆枠組みは基 本的に重ね合わすことができCu-Cu網目の向きだけが異 なる.図5は室温相構造モデルを(a+c)/2だけシフトし たモデルも重ねて6ドメインに相当する6方位への投影 を重ねて示したものである.室温でCuイオンが止まった 位置の重ね合わせが示されている.各Cuイオン位置はGe から遠い位置に集まり互いにつながっていて超イオン伝 導相中でのCuイオン伝導経路を近似的に示しているよう に見える.

 Ag_7TaS_6 の場合は室温で超イオン伝導体であり面共有 のS四面体からなる枠組みの中をAgイオンが流れてい る. 223 Kの低温では室温相の単ドメインが冷えてAgイ オンが停止する際アージャイロダイト型枠組みを共有す る12ドメインの単斜晶系の多重双晶に変化したと考えら れた. Ag_7TaS_6 の擬立方 (a = 10.5 Å)で表した低温相構 造を (a + c)/2だけシフトしたモデルも重ねて x.y.z; y.z.x; z.x.y; x.-y,-z; -y,-z.x; -z.x.-y; 日本結晶学会誌 第48巻 第2号 (2006) -x,y,-z;y,-z,-x;-z,-x,y;-x,-y,z;-y,z,-x; z,-x,-yの双晶操作に相当する12方位の重ね合わせの 投影が図6に示されている。単斜晶系のゆがみを反映して 複雑であるが室温でのイオン伝導経路を近似的に示す図 が得られたとみなすことはできる。室温の超イオン伝導体 相ではAgイオンの三次元網目配列が歪みながらTaS₆枠 組み構造の中をドリフトして伝導に寄与しているかもし れない。冷却時に12種の方位をとる単斜晶系の集合体に 変化したのであろう。

7. 空間群の関係とドメイン数

Cu₈GeS₆室温相の構造の擬立方格子を基にした等価位 置の座標は2節に述べたように(0,0,0; 1/2,1/2,0) + x,y,z; y,x,z; -x,1/2 - y,1/2 + z; 1/2 - y, -x,1/2 + zで表され高温相の空間群 F43mの等価位置座標の中に含 まれていて室温相の空間群が F43mのサブグループにな っている. F43mの回転部分を含む対称操作24個のうち Cu₈GeS₆室温相を記述するのに使われる操作の回転部分 x,y,z; y,x,z; -x, -y,z; -y, -x, zの寄与を除くと体対 角線周りの3回軸y,z,xとa軸の周りの2回軸x, -y, -zを 生成要素とする6個が残りこれらは図1のドメイン1~6 の双晶操作と一致している.

 Ag_7TaS_6 低温相 (II 相)の構造の場合も擬立方格子を基 にすると等価位置は (0,0,0; 1/2,1/2,0) + x,y,z; 1/2 - y, - x,1/2 + z となり同様に室温相の空間群 F43mのサブグ ループで表現されている. F43mの対称操作 24 個のうち Ag_7TaS_6 (II 相)を記述するのに使われる操作の回転部分 x,y,z; - y, - x,zの寄与を除くと3回軸と4回回反軸の寄 与が残りこれらの掛け合わせによる12 個の操作は図3の ドメイン1 ~ 12 の双晶の生成を意味している.

X線回折データ収集に用いられた Cu₈GeS₆および Ag₇TaS₆の結晶は空間群 $F\overline{4}3m$ で記述できる I 相の状態で は回折の一部のみが重なる 2 ドメインの双晶であり 2 ド メインの体積比は Cu₈GeS₆ではおよそ 11 : 1, Ag₇TaS₆ ではおよそ 3 : 1 である. $F\overline{4}3m$ の単ドメインが II 相では 6 重または 12 重の双晶に変化するため結晶全体では 12 重 または 24 重の双晶となり六次元双晶解析法によって解析 された.

8. おわりに

前の記事⁽³⁾ で紹介したように高次元表示を扱うソフト において整合相についてはフーリエ和の計算の際に原子 像1周期の中の分点についての求和が用いられ重なる回 折の合計が自動的に得られることを利用している. 今回紹 介したような複雑な場合にも三次元への投影で同一の反 射となる高次元指数のいずれを与えても同一の構造因子 計算値を得るための対策がFMLSMの場合には1998年改 訂のバージョン 3.20 でとられている. 関心をおもちの方 は筆者(小野田)に連絡をいただきたい.

謝辞

本研究は(旧) 無機材質研究所第2研究グループの「複 合銀硫化物の研究」,「銅族カルコゲナイドの研究」の一部 であり,和田弘昭氏,陳 学安氏をはじめとする同グルー プのメンバーの協力によるものである.また,プログラム の提供とアドバイスを加藤克夫氏にいただいている.こ こに記して感謝の意を表します.

文 献

- 1) H. Wada and M. Onoda: J. Less-Common Metals 175, 209 (1991).
- 2) H. Wada: J. Alloys Compounds 178, 315 (1992).
- W. F. Kuhs, R. Nische and K. Scheunemann: *Mat. Res. Bull.* 14, 241 (1979).
- 4) M. Khanafer, O. Gorochov and J. Rivet: Mat. Res. Bull. 9, 1543 (1974).
- 5) N. Wang and W. Viane: *Neues Jahrb. Mineral. Monatsh.* 10, 442 (1974).
- M. Onoda, H. Wada, K. Yukino and M. Ishii: *Solid State Ionics* 79, 75 (1995).
- 7) M. Onoda, H. Wada and M. Ishii: Solid State Ionics 86-88, 217 (1996).

- M. Onoda, H. Wada, P. Pattison, A. Yamamoto, M. Ishii and G. Chapuis: *Mol. Cryst. Liq. Cryst.* 341, 879 (2000).
- 9) Goetz (1988). Inst. f. Krist. Der Aachen, JCPDS Grant-in Aid Report ; JCPDS 39-1202, 40-1190.
- 10) M. Ishii, M. Onoda and K. Shibata: Solid State Ionics 121, 11 (1999).
- M. Onoda, X. -a. Chen, K. Kato, A. Sato and H. Wada: Acta Cryst. B55, 721 (1999); *ibid* B55, 1109 (1999).
- 12) K. Kato: Z. Krist. 212, 423 (1997).
- 13) 小野田みつ子: 日本結晶学会誌 48, 42 (2006).
- 14) K. Kato: FMLSM, Version 3.20. (元) 無機材質研究所 (1998).
- M. Onoda, H. Wada, A. Sato and M. Ishii: J. Alloys Compounds 383, 113 (2004).

プロフィール

小野田みつ子 Mitsuko ONODA 物質・材料研究機構 物質研究所 先端結晶解析グ ループ 非常勤 National Institute for Materials Science

〒 305-0044 茨城県つくば市並木 1-1

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

最終学歴:東京大学大学院工学研究科工業化学専

門課程修了

専門分野:固体化学

現在の研究テーマ:積層不整,非整合構造の解析