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Note on the Stern-Brocot sequence, some
relatives, and their generating power series

par Peter BUNDSCHUH et Keijo VÄÄNÄNEN

Résumé. Trois variantes de la suite de Stern-Brocot sont liées
à la célèbre suite de Thue-Morse. Dans la présente note, les fonc-
tions génératrices de ces quatre suites sont considérées. Tandis
que l’une d’entre elles est connue comme étant rationnelle, l’in-
dépendance algébrique sur C(z) des trois autres est démontrée
ici. Puis, ce théorème est généralisé de sorte que les fonctions
Φ(z),Φ(−z),Ψ(z),Ψ(z2) sont aussi considérées, où Φ et Ψ in-
diquent les fonctions génératrices des suites de Rudin-Shapiro et
de Baum-Sweet, respectivement. Quelques applications arithmé-
tiques sont également données.

Abstract. Three variations on the Stern-Brocot sequence are
related to the celebrated Thue-Morse sequence. In the present
note, the generating power series of these four sequences are con-
sidered. Whereas one of these was known to define a rational func-
tion, the other three are proved here to be algebraically indepen-
dent over C(z). Then this statement is fairly generalized by includ-
ing the functions Φ(z),Φ(−z),Ψ(z),Ψ(z2), where Φ and Ψ denote
the generating power series of the Rudin-Shapiro and Baum-Sweet
sequence, respectively. Moreover, some arithmetical applications
are given.

1. Introduction and first results

In their Remark 1.3, Allouche and Mendès France [1] defined a map C
associating with two sequences a = (an)n≥0 and b = (bn)n≥0 the sequence

C(a,b) :=

 ∑
0≤2ν≤n

(
n− ν
ν

)
2
aνbn−ν


n≥0

.

Here, for integers u, v with v ≥ 0, the symbol
(u
v

)
2 equals to 0 or 1 depending

on whether the corresponding binomial coefficient
(u
v

)
is even or odd. In

particular, C(1,1) is the Stern-Brocot sequence (1 the obvious constant
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sequence), which is identical with the sequence (an+1)n≥0 considered in [2,
(1)]. The authors of [1] recalled that the ±1 Thue-Morse sequence t =
(tn)n≥0 is given by t0 = 1 and, for all n ≥ 0, by t2n = tn and t2n+1 = −tn.
Then they introduced the sequences α = (αn)n≥0, β = (βn)n≥0, γ = (γn)n≥0
by

α := C(t,1), β := C(1, t), γ := C(t, t)

to which σ := C(1,1) is added, σ for Stern, and noted that these four
sequences satisfy the recurrences

σ0 = 1, σ1 = 1, σ2n = σn + σn−1, σ2n+1 = σn for any n ≥ 1,
α0 = 1, α1 = 1, α2n = αn − αn−1, α2n+1 = αn for any n ≥ 1,
β0 = 1, β1 = −1, β2n = βn − βn−1, β2n+1 = −βn for any n ≥ 1,
γ0 = 1, γ1 = −1, γ2n = γn + γn−1, γ2n+1 = −γn for any n ≥ 1.

Let τ be any of these sequences σ, α, β, γ and write τ = (τn)n≥0 with
τ0 = 1. Then one concludes inductively τ2m−1 = τm1 for any m = 0, 1, . . .
and, moreover, |τn| ≤ n for n = 1, 2, . . . Thus, the generating power series

Γτ (z) :=
∞∑
n=0

τnz
n ∈ Z[[z]]

of τ has convergence radius 1. In this situation, a classical result of Carl-
son [5] says that Γτ either represents a rational function or cannot be ana-
lytically continued beyond the unit circle.

At the beginning of Section 2, for each of the functions Γτ , τ ∈{σ, α, β, γ},
a functional equation of so-called Mahler-type

(1.1) Γτ (z) = pτ (z)Γτ (z2)

will be specified with a polynomial pτ (z) of degree 2 satisfying pτ (0) = 1
and the other coefficients being 1 or −1. Although these equations look
rather similar, the analytic behaviour of the four functions is quite different.
While Γγ(z) turns out to be rational, the other three are hypertranscen-
dental, hence transcendental over C(z) and therefore, by Carlson’s above-
mentioned theorem, have the unit circle as natural boundary. Remember
here that an analytic function is called hypertranscendental if it satisfies
no algebraic differential equation, that is, no finite collection of derivatives
of the function is algebraically dependent over C(z). By the way, the hy-
pertranscendence of Γσ was proved in [2, Theorem 1]. In the case of Γα,
the hypertranscendence is shown in the proof of [3, Corollary 3], and the
case of Γβ is similar. All these results are consequences of the general hy-
pertranscendence criterion for infinite products F (z) =

∏∞
j=0 P (z2j ) with

a polynomial P (z), see [3, Theorem 1], namely Γτ (0) = 1 and iteration
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of (1.1) immediately leads to the product representation

(1.2) Γτ (z) =
∞∏
j=0

pτ (z2j )

of Γτ (z) valid in D := {z ∈ C : |z| < 1}. Note also that in [4] we proved the
algebraic independence of Γσ(z) and its twist.

The sole transcendence over C(z) of each of the functions Γσ,Γα,Γβ will
now be generalized in a different direction. Namely, our first main result
reads as follows.

Theorem 1.1. The functions Γσ(z),Γα(z),Γβ(z) are algebraically inde-
pendent over C(z).

Using [7, Corollary 2] or [8, Theorem 4.2.1] we deduce from Theorem 1.1
the following arithmetical consequence.

Corollary 1.2. If ξ is an algebraic number with 0 < |ξ| < 1 such that every
ξ2j (j = 0, 1, . . . ) is different from ±(1−

√
5)/2, then Γσ(ξ),Γα(ξ),Γβ(ξ) are

algebraically independent over Q.

Note that here the exceptional conditions on ξ are necessary. Namely,
if ξ2j equals to (1 −

√
5)/2 or to (

√
5 − 1)/2 for some j ≥ 0, then the

product representation (1.2) of Γα or Γβ implies Γα(ξ) = 0 or Γβ(ξ) = 0,
respectively.

The question of what happens in the direction of Corollary 1.2 for tran-
scendental ξ can be answered as follows using [11, Théorème 4].

Corollary 1.3. For transcendental ξ ∈ D, one has the estimate

trdegQQ(ξ,Γσ(ξ),Γα(ξ),Γβ(ξ)) ≥ 3

and this is best possible.

2. Proof of Theorem 1.1

To begin with, we use the recurrences for τ ∈ {σ, α, β, γ} as given above
to easily demonstrate the functional equation (1.1) for Γτ with

pσ(z) = 1 + z + z2 ,(2.1)
pα(z) = 1 + z − z2 ,(2.2)
pβ(z) = 1− z − z2 (= pα(−z)) ,(2.3)
pγ(z) = 1− z + z2 (= pσ(−z)) .(2.4)

Note that the first case, Γσ(z) = (1 + z+ z2)Γσ(z2), was explicitly checked
in [2, (7)].
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To realize the rationality of Γγ(z), we simply note pγ(z)pσ(z) = pσ(z2)
and pσ(z) 6= 0 in D, by (2.1) and (2.4). Using (1.2) with τ = γ we obtain

Γγ(z) = 1
pσ(z) = 1− z

1− z3 = (1− z)
∑
m≥0

z3m,

and this even shows that γn equals 1,−1, 0 if n ≡ 0, 1, 2 (mod 3), respec-
tively.

The main tool in our proof of Theorem 1.1 is the subsequent criterion of
Kubota [6, Proposition 3] (see also [8, Theorem 3.5]) to be quoted here in
a very particular version, which suffices for our purposes.

Lemma 2.1. Let d ≥ 2 be an integer. Suppose that the series f1, . . . , fk ∈
C[[z]] \ {0} converge on D and satisfy the functional equations

fi(zd) = bi(z)fi(z) (i = 1, . . . , k)
with all bi ∈ C(z) \ {0} fulfilling the condition that, for no (n1, . . . , nk) ∈
Zk \ {0}, the functional equation

r(zd) = r(z)
k∏
i=1

bi(z)ni

has a solution r ∈ C(z)\{0}. Then the functions f1, . . . , fk are algebraically
independent over C(z).

We apply Lemma 2.1 with d = 2, k = 3 and Γσ,Γα,Γβ for the f1, f2, f3.
According to their functional equations (1.1) with pτ (z) as given by (2.1)–
(2.3), we have b1(z) = 1/pσ(z), b2(z) = 1/pα(z), b3(z) = 1/pβ(z) and we
must show, for any (nσ, nα, nβ) ∈ Z3 \ {0}, that the equation

(2.5) r(z) = r(z2)pσ(z)nσpα(z)nαpβ(z)nβ

has no non-trivial rational solution r.
To consider first the case nσ 6= 0, nα = nβ = 0, we iterate (2.5) j times

and obtain

r(z) = r(z2j )

j−1∏
i=0

pσ(z2i)

nσ .
Letting j → ∞ and noting r(0) 6= 0,∞, this formula leads to r(z) =
r(0)Γσ(z)nσ , by (2.5) with τ = σ, a contradiction. Namely, for rational
r(z), the function Γσ(z) would be algebraic.

To consider the second case (nα, nβ) 6= (0, 0) of (2.5), we apply Lemma 2.2
below with d = 2 and

R(z) := pσ(z)nσpα(z)nαpβ(z)nβ(2.6)

=
(

(ζ−z)
(1
ζ
−z
))nσ (

(G−z)
( 1
G

+z

))nα (
(G+z)

( 1
G
−z
))nβ
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being the factor appearing in the right-hand side of (2.5). Here ζ := e2πi/3

and G := (1 +
√

5)/2 denotes the golden ratio. Clearly, we may choose
Ω = G,ω = −1/G if nα 6= 0, or Ω = −G,ω = 1/G if nα = 0 but nβ 6= 0. To
examine the last hypothesis of Lemma 2.2, let j ≥ 1. All solutions of z2j =
±1/G (or of z2j = ±G) satisfy |z| = G−1/2j (or |z| = G1/2j ), and no such z
can be a zero or pole of R(z2j−1) . . . R(z). Namely otherwise, according to
the right-hand side of (2.6), zeros or poles of R(z2k) at z inside or outside
of D satisfy z2k = ±1/G (or z2k = ±G) with some k ∈ {0, . . . , j− 1} which
is impossible. �

Lemma 2.2. Let d ≥ 2 be an integer. Let R ∈ C(z) have zeros or poles
in 0 < |z| < 1 or in 1 < |z| < +∞, where ω and Ω are zeros or poles of
minimal and of maximal absolute value, respectively. Assume that, for each
integer j ≥ 1, not all solutions of zdj = ω (or of zdj = Ω) are zeros or poles
of the product R(zdj−1) . . . R(z). Then the functional equation

(2.7) r(z) = r(zd)R(z)

has no rational solution r 6= 0.

Proof. Note first that 0 < |ω| < 1 or |Ω| > 1 holds by hypothesis. Then
suppose, on the contrary, that (2.7) has a rational solution r(z) 6= 0. Clearly,
this r(z) has no zero or pole in |z| < |ω| (or in |z| > |Ω|). Since |ωd| < |ω|
(or |Ωd| > |Ω|) we know that ωd (or Ωd) is not a zero or pole of r(z), whence
ω (or Ω) is a zero or pole of r(z), by (2.7) and the hypothesis on R.

On iterating (2.7) we conclude that r satisfies

r(z) = r(zdj )R(zdj−1) . . . R(z)

for any j = 1, 2, . . . . For any such j, we consider all dj solutions of zdj =
ω (or of zdj = Ω), among which at least one is not a zero or pole of
R(zdj−1) . . . R(z). Thus, on every circle |z| = |ω|1/dj (or |z| = |Ω|1/dj ), we
have a zero or a pole of r contradicting the rationality of r. �

3. Interactions of the Γτ ’s with other generating power series

Beside the Γτ ’s studied before, we recall two more integer sequences and
their generating power series. First, let ϕ = (ϕn)n≥0 denote the Rudin-
Shapiro sequence, which can be recursively defined by ϕ0 = 1, and ϕ2n =
ϕn, ϕ2n+1 = (−1)nϕn for any n ≥ 0. Its generating power series

Φ(z) :=
∞∑
n=0

ϕnz
n
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satisfies a system of two functional equations of Mahler-type, in matrix
notation written as

(3.1)
(

Φ(z)
Φ(−z)

)
=
(

1 z
1 −z

)(
Φ(z2)

Φ(−z2)

)
(see [7]). Secondly, let ψ = (ψn)n≥0 denote the Baum-Sweet sequence, which
is given by ψ0 = 1, ψn = 1 if the binary representation of n ≥ 1 contains
no block of consecutive 0’s of odd length, and ψn = 0 otherwise. The
corresponding generating power series

Ψ(z) :=
∞∑
n=0

ψnz
n

fulfills a system of functional equations similar to (3.1) (see [7]), namely

(3.2)
(

Ψ(z)
Ψ(z2)

)
=
(
z 1
1 0

)(
Ψ(z2)
Ψ(z4)

)
.

K. Nishioka [7] (see also [8, pp. 158–160]) proved that both pairs {Φ(z),
Φ(−z)} and {Ψ(z),Ψ(z2)} consist of functions which are algebraically in-
dependent over C(z). Using this and one of her results cited before our
Corollary 1.2, she obtained also the algebraic independence over Q of the
numbers Φ(ξ),Φ(−ξ) (and of Ψ(ξ),Ψ(ξ2)) for any non-zero algebraic ξ ∈ D.

In a recent paper, K. Nishioka and S. Nishioka [9] proved much stronger
results on Φ and Ψ. Namely, they obtained the algebraic independence of
all four functions Φ(z),Φ(−z),Ψ(z),Ψ(z2) not only over C(z) but over any
difference field extension of valuation ring type over C(z) under the trans-
formation z 7→ z2 (compare [9, Theorem 9]). This notion, too combersome
to be fully quoted here, has been introduced by S. Nishioka in his deep
work [10, Definition 1] on solvability of certain classes of difference equa-
tions. His Theorem 2 and Proposition 5 are the key tools of the proofs
in [9].

The Nishiokas’ just-quoted algebraic independence result implies the fol-
lowing, where we restrict ourselves to homogeneous systems of functional
equations.

Lemma 3.1. The four functions Φ(z),Φ(−z),Ψ(z),Ψ(z2) and power series
f1(z), . . . , fk(z) ∈ C[[z]] satisfying a system

(3.3) >(f1(z), . . . , fk(z)) = A(z) · >(f1(z2), . . . , fk(z2))

of functional equations with triangular A ∈ GLk(C(z)), > denoting matrix
transposition, are algebraically independent over C(z) if this already applies
to f1(z), . . . , fk(z).

Using this with k = 3, A(z) = diag(pσ(z), pα(z), pβ(z)), f1 = Γσ, f2 =
Γα, f3 = Γβ, (see (2.1)–(2.3)), Theorem 1.1 leads us to the following.
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Theorem 3.2. The seven functions Φ(z),Φ(−z),Ψ(z),Ψ(z2),Γσ(z),Γα(z),
Γβ(z) are algebraically independent over C(z). In addition, if ξ ∈ D is a
non-zero algebraic number such that every ξ2j (j = 0, 1, . . . ) is different
from ±(1 −

√
5)/2, then Φ(ξ),Φ(−ξ), Ψ(ξ),Ψ(ξ2),Γσ(ξ),Γα(ξ),Γβ(ξ) are

algebraically independent over Q.

Note that the arithmetical part of this assertion is again an application
of Nishioka’s algebraic independence criterion cited before Corollary 1.2.

The hypertranscendence of the Γτ ’s for τ ∈ {σ, α, β} we mentioned earlier
can also be combined with Lemma 3.1 to get the following consequence.

Theorem 3.3. For fixed τ ∈ {σ, α, β}, the functions Φ(z), Φ(−z), Ψ(z),
Ψ(z2), Γτ (z), Γ′τ (z),Γ′′τ (z), . . . are algebraically independent over C(z).
Moreover, if ξ ∈ D is a non-zero algebraic number, then the values Φ(ξ),
Φ(−ξ), Ψ(ξ), Ψ(ξ2), Γτ (ξ),Γ′τ (ξ), . . . are algebraically independent over Q
under the additional proviso that all ξ2j (j = 0, 1, . . . ) are different from
(1−

√
5)/2 in case τ = α, and from (

√
5− 1)/2 in case τ = β.

Sketch of proof. We apply Lemma 3.1 with f1(z) = Γτ (z), . . . , fk(z) =
Γ(k−1)
τ (z) for arbitrary but fixed integer k ≥ 1. By taking ith derivatives

(i = 0, . . . , k− 1) of the functional equation (1.1) with corresponding (2.1),
(2.2), or (2.3), we obtain the validity of (3.3) with lower triangular matrix
A(z) having (2z)ipτ (z), i = 0, . . . , k − 1, on its main diagonal. �

References
[1] J.-P. Allouche & M. Mendès France, “Lacunary formal power series and the Stern-

Brocot sequence”, Acta Arith. 159 (2013), no. 1, p. 47-61.
[2] P. Bundschuh, “Transcendence and algebraic independence of series related to Stern’s se-

quence”, Int. J. Number Theory 8 (2012), no. 2, p. 361-376.
[3] ———, “Algebraic independence of infinite products and their derivatives”, in Number

theory and related fields, Springer Proceedings in Mathematics & Statistics, vol. 43, Springer,
2013, p. 143-156.

[4] P. Bundschuh & K. Väänänen, “Algebraic independence of the generating functions of
Stern’s sequence and of its twist”, J. Théor. Nombres Bordx. 25 (2013), no. 1, p. 43-57.

[5] F. D. Carlson, “Über Potenzreihen mit ganzzahligen Koeffizienten”, Math. Z. 9 (1921),
p. 1-13.

[6] K. K. Kubota, “On the algebraic independence of holomorphic solutions of certain func-
tional equations and their values”, Math. Ann. 227 (1977), p. 9-50.

[7] K. Nishioka, “New approach in Mahler’s method”, J. Reine Angew. Math. 407 (1990),
p. 202-219.

[8] ———, Mahler Functions and Transcendence, Lecture Notes in Mathematics, vol. 1631,
Springer, 1996, viii+185 pages.

[9] K. Nishioka & S. Nishioka, “Algebraic theory of difference equations and Mahler func-
tions”, Aequationes Math. 84 (2012), no. 3, p. 245-259.

[10] S. Nishioka, “Solvability of difference Riccati equations by elementary operations”, J. Math.
Sci., Tokyo 17 (2010), no. 2, p. 159-178.

[11] P. Philippon, “Indépendance algébrique et K-fonctions”, J. Reine Angew. Math. 497
(1998), p. 1-15.



202 Peter Bundschuh, Keijo Väänänen

Peter Bundschuh
Mathematisches Institut
Universität zu Köln
Weyertal 86–90
50931 Köln, Germany
E-mail: pb@math.uni-koeln.de

Keijo Väänänen
Department of Mathematical Sciences
University of Oulu
P. O. Box 3000
90014 Oulu, Finland
E-mail: keijo.vaananen@oulu.fi

mailto:pb@math.uni-koeln.de
mailto:keijo.vaananen@oulu.fi

	1. Introduction and first results
	2. Proof of Theorem 1.1
	3. Interactions of the Gamma tau's with other generating power series
	References

