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Introductory Chapter:
Redox - An Overview
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1. Redox

The term “redox” is the combination of two different terms that describe two
totally different chemical processes, i.e., “reduction” and “oxidation.” The abbrevi-
ation “red” has been taken to distinguish reduction from oxidation that is “ox.” The
reduction is a process wherein any chemical entity gets reduced. It is different from
oxidation, which is opposite of the reduction because the chemical entities are
oxidized. These two processes or reactions which simultaneously take place in a
system are abbreviated as “redox.”

1.1 General introduction

Oxidation-reduction was primarily used to describe the reaction(s) of combina-
tion and/or removal of oxygen with or from chemical substances, respectively.
Simultaneously, the removal and/or the addition of hydrogen were also used to
differentiate among oxidation and reduction, respectively. The definitions were
extended to a broader level, and the changes in the oxidation number or oxidation
state of elements were considered to define oxidation and reduction. The increase in
the oxidation number leads to oxidation and its alternative process yields reduction.
This vast definition encompasses the recent and exact interpretation of “redox”
reactions that is acceptance and donation of the electron(s) between the reacting
entities. Consequently, the redox phenomenon indicates a simple reaction, forma-
tion of carbon dioxide as a consequence of the oxidation of carbon and/or formation
of methane by the reduction of carbon, for example, and the complex reaction
consisting of a number of electron transfer reactions during the oxidation of sugar
in the human body to produce energy.

The redox reaction(s) involves an oxidant or oxidizing agent and a reductant or
reducing agent. The oxidant takes the electron(s) and oxidizes the reductant. The
reductant, however, donates the electron(s) and reduces the oxidant.

Redox reactions are the key to make many desired chemical changes and/or
processes reality to get maximum benefit out of it. A simple overview to surface the
vital need of these reactions revolves around combustion, metabolic reactions,
extraction of metals from their ores, manufacture of countless chemicals, and reac-
tions occurring in our natural environment. For example, a cell either battery and/
or biological cell involves redox processes [1-3]. Research that involves the biolog-
ical systems interprets that the electronic and the structural environment of the
substance(s) are the key factors that control chemical transformations such as
electron transfer mechanisms in DNA molecules, which may appear through the
exposure of cells to radiations that may have the power of ionization to cause
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biologically deleterious effects such as inactivation, transformation, and mutagene-
sis [4-6]. The water molecules are ionized by some specific radiations and form
radicals in the vicinity of DNA that contribute to the significant damage in DNA
and chemical modifications to DNA, consequently. Of these radicals, the hydroxyl
radical is thought to be the most damaging and produces the consequences for DNA
strand breakage by the redox dependence of the rate of interaction of hydroxyl
radical adducts of DNA nucleobases with oxidants [7].

Redox reactions mainly follow second-order kinetics with a series of intermediate
reactions in a range of mechanisms such as entity transfer mechanisms that involve
electron, atom, or group transfer and ligand addition, substitution, or dissociation.

Redox phenomenon in terms of electron transfer (ET) reactions and their
mechanisms is catered for the interest of readers of this book. Essentials of only the
electron transfer reactions of coordination or transition metal complexes and
advanced oxidation processes for water treatment are being focused in a brief and
narrative way.

1.2 Redox reactions of transition metal complexes

An enormous number of studies unfolded the characteristics and effect of the
structural geometries on the kinetics and mechanisms of the redox reactions of
various transition metal complexes [8-25]. The literature review helped to summa-
rize that the redox reactions of the transition metal complexes undergo two types of
mechanisms. These types are classified as the outer-sphere and inner-sphere mecha-
nisms, which lead the electron transfer processes of the transition metal complexes.

1.3 Schematic representation of the mechanistic pathways

The fundamental distinction between the two mechanistic routes of electron
transfer is the simplicity of the outer-sphere mechanism over the inner-sphere
mechanism. The outer-sphere redox reactions are simple in nature and undergo
electron transfer in a very simple way. The outer-sphere mechanism is further
classified into the self-exchange and cross-exchange reactions. This classification is
based upon the oxidation state of coordination compounds. In the self-exchange
reactions, the same coordination compounds with different oxidation states reduce
and oxidize each other. However, in the cross-exchange reactions, different coordi-
nation compounds with either of the same and/or different oxidation states or
numbers reduce and oxidize each other in the vicinity. However, in the inner-
sphere mechanism of electron transfer, the substitution of ligand or atom prior to
electron transfer plays a key role. The difference between the two mechanisms is
represented in Figure 1 [13].

One cannot easily propose the operated mechanism of electron transfer under
specific cases beside the simple and apparent difference between the two reaction
pathways. There are two reasons for this. It may usually be possible to suppose
without any doubt that the inner-sphere mechanism is operating the electron
transfer process in favorable cases, but in many reactions where the reactants or the
products and/or both of them are substitution labile, the mechanism through the
inner-sphere process becomes suspected. In such reactions, the exact nature of the
real reacting entities that are taking part in the reactions and the products which
form initially becomes impossible to recognize without proper experimental and
technical treatments. The other reason for ambiguity in recognizing the reliable
electron transfer mechanism appears when the nature of the outer-sphere mecha-
nism is considered, which does not need any re-arrangement of the structure of the
reacting entities rather it only needs the transfer of an electron between the oxidizing
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Figure 1.
Schematic representation of the vedox mechanism. (a) The inner-sphere mechanism. (b) The outer-sphere
mechanism.

and the reducing agents. To suggest or propose an outer-sphere mechanism one
needs credible evidence with proof of unavailability of the alternative inner-sphere
mechanistic pathway. Consequently, there are a large number of reactions that are
clearly defined to be operated through inner-sphere mechanism. However, many
reactions follow outer-sphere mechanism and an uncomfortably big number of
reactions operates by inner-/outer-sphere mechanism i.e., in between [26].

1.4 Experimental approach: kinetics and mechanisms of some selected
transition metal complexes of Fe(II) and Fe(III)

The redox reactions of a few selected coordination compounds of the transition
metal, iron, in its two oxidation states, i.e., +2 and +3, are briefly discussed. The
mixed ligand complexes such as dicyanobis(phenanthroline)iron(III) and
dicyanobis(bipyridine)iron(III) oxidize hexacyanoferrate(II), acetylferrocene, and
1-ferrocenylethanol by outer-sphere mechanism [8-11, 13] in the aqueous-organic
media. The effect of optimized parameters on the kinetics of the redox reactions
helped to propose the operated mechanism and rate laws (Figures 2-5) [8, 10].
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Kinetics of the redox reaction between Fe(III) and Fe(Il) complexes. The abbrevmtzons, &K,,/AF/FEt/HCF,
correspond to the multiplication product of the molar absorptivity of [Fe" (phen),(CN).] and observed
gero-order rate constant/acetylferrocene/1-ferrocenylethanol/hexacyanoferrate(II).
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Figure 3.

Kinetics of the redox reaction between Fe(III) and Fe(Il) complexes. The abbreviations; k' ../ AF/FEt/HCF,
correspond to the observed pseudo-first-order vate constant/acetylferrocene/1-ferrocenylethanol/

hexacyanoferrate ().

An outer-sphere electron transfer mechanism was proposed for each reaction
because the oxidants and reductants are substitution inert and outer-sphere

reactants.

Meanwhile, the oxidation of tris(bipyridine)iron(II) by ceric and bromate ions
in aqueous-acidic media was reported to follow an outer-sphere mechanism with
a second-order rate law (Figures 6 and 7) [12, 14]. The iron complexes of the
chelating agents such as 1,10-phenanthroline and 2,2'-bipyridine and the ligand
such as cyanide ion are either good outer-sphere oxidants and/or reductants and
show high stability towards ligand substitution [27, 28].

Protein as a nutrient is an important structure and is critical to aerobic life
because of its control of oxygen reduction reactions. This management is crucial
either to avoid or to minimize the production of destructive products such as
hydroxyl radicals, peroxide, and superoxide as a result of the destructive reduction
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Proposed rate laws: reduction of [ Fe'l( ‘phen),(CN),]* by acetylferrocene, 1-ferrocenylethanol, and
hexacyanoferrate(II) [8].
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Proposed rate law: oxidation of[FeH(CN)g]“* by [Fem(phen/bpy)2(C‘N)z]+ [10].
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Proposed rate law: oxidation of [Fe" (bpy) ,]** by ceric sulfate in the aqueous-acidic media [13-14].
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Figure 7.
Proposed rate law: oxidation of [Fe (2,2’ -bipy) ;]** by bromate ion in the aqueous-acidic media [12].

and/or to optimize the utilization of oxygen in an effective way to transport and
storage. Hemeproteins are those structures which maintain and control these oxy-
gen reduction reactions. Such management and control of protein was surfaced by
studying the mechanism of the redox reaction of aquopentacyanoferrate(II)
([Fe"(CN)sH,0]%>") with coordinated dioxygen of human oxyhemoglobins (HbO,)
[29]. This reaction yielded hydrogen peroxide (H,0,) and aquomethemoglobin
(metHbeH,0) and the oxidation product of aquopentacyanoferrate(II), i.e.,
[Fe''(CN)sH,0]?". The reaction was found to undergo overall second-order
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kinetics with a first order in each oxidant (HbO,) and reductant ([Fe" (CN)sH,0]%"),
respectively. The results declared that the structures of the reactants such as protein
and external donor control the kinetics of the electron transfer with an inner-sphere
mechanism that involves direct electron transfer from the aquopentacyanoferrate(II)
to bound dioxygen that yields peroxide, subsequently. Another study surfaced the
effect of binding sites and protonation on the kinetics of the electron transfer reaction
(s) of blue copper proteins [30]. The oxidants with different binding sites such as
[COHI(4,7—DPSphen)3]3_, [Fe™(CN)¢]? ™, and [Com(phen)3]3+ were used to oxidize
parsley plastocyanin. In each reaction, regardless of the binding sites, and prior to
electron transfer, a strong association between protein and complex occurs. The
variation in the binding sites varied the reduction potential and affected the rate of
electron transfer, consequently. The reductant (plastocyanin) is a copper protein that
consisted of type 1 copper, which is involved in electron transport from photosystem
IT to photosystem I at the surface of the thylakoid membrane. A single copper here
utilizes oxidation states I and II. The structure of poplar plastocyanin PCu" contains
Cu(II) coordinated with two histidines, one cysteine, and one methionine in a
distorted tetrahedral arrangement.

It has always been of interest to probe the details of the transfer of electron(s)
and proton(s) because of successfully unveiling strategies of energy conversion in
both of the fields, biology and chemistry. The energies as well as mechanism are
strongly influenced by the coupling of electron and proton transfer. This defines the
need to build up multiple redox equivalents to carry out those reactions that involve
multielectrons. This also explains those mechanistic pathways through which elec-
tron and proton transfer occur simultaneously to avoid intermediates of high energy
[31]. The theoretical background of the proton-coupled electron transfer reactions
in solutions and proteins and electrochemistry was reviewed and discussed [32].
The theoretical treatment was based on the calculations of multistate continuum
theory wherein the solvent provides dielectric continuum, the solute is treated as a
multistate valence bond model, and quantum mechanical approach is used for
transferred proton or hydrogen nucleus. The rate expression of electronically
nonadiabatic electron transfer and proton-coupled electron transfer depends upon
the reorganization energies of solute (inner-sphere) and solvent (outer-sphere) and
also upon electronic coupling. For proton-coupled electron transfer, this is the
average of the proton vibrational wave functions of the reactants and the products.
The compensation of the smaller outer-sphere solvent reorganization energy for
proton-coupled electron transfer by the larger energy needed to coupling for elec-
tron transfer appears with a similar rate for both electron transfer and proton-
coupled electron transfer in calculations. A comparative theoretical study
supported the reviewed outcomes through the proton-coupled electron transfer,
single proton transfer, and single electron transfer reactions in iron bi-imidazoline
complexes [33].

1.5 Advanced oxidation processes for water treatment

The oxidation of organic compounds by a number of oxidants either of inorganic
nature or organic nature has been of interest. These redox reactions are usually
catalyzed by transition metals. The kinetics of the oxidation of pyridinecar-
baldehyde isonicotinoyl hydrazone to isonicotinoyl picolinoyl hydrazine was stud-
ied, and the mechanism was proposed in the view of results obtained in aqueous
solution [34]. The reaction was catalyzed by iron(III). Advanced oxidation pro-
cesses (AOPs) are used to remove pollutants/contaminants such as organic and
inorganic compounds from water and wastewater by oxidation of these unwanted
compounds. The process involves a number of chemical reactions consisting of
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oxidants such as ozone (O3), hydrogen peroxide (H,0,), and UV light with the
addition of catalysts that may lead to yield hydroxyl radical ("OH) which degrades
such pollutants, dyes and organic compounds, for example [35-40].

2. Conclusion

This concise review of the redox reactions and their applications surfaced the
crucial role of redox processes. The importance of redox processes is undoubtedly
tremendous. The applications encompass energy production, technological devel-
opment to treat and maintain water resources, and advances in materials chemistry.
These advances may lead the life to its standard in an economic and cost-effective
way. Redox reactions are also an important facet of biological and biochemical
world to carry out life and its routine practices. For example photosynthesis, respi-
ration and digestion are among the common ones. Precisely, we can sum up with
one sentence that “redox” is basically the key to sustaining life on this planet.
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