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Chapter

Monte Carlo Methods for
Simulation of Optical Coherence
Tomography of Turbid Media
Ivan T. Lima Jr and Sherif S. Sherif

Abstract

We describe two importance sampling techniques for a standard Monte Carlo
(MC) method that could enable fast simulation of signals from optical coherence
tomography (OCT) imaging systems. These OCT signals are generated due to
diffusive reflections from either multilayered or arbitrary shaped, turbid media, for
example, tissue. Such signals typically consist of ballistic and quasi-ballistic
components, of scattered photons inside the medium, in addition to photons that
undergo multiple scattering. We show that MC simulation of these OCT signals
using importance sampling reduces its computation time on a serial processor by up
to three orders of magnitude compared to its corresponding standard implementa-
tion. Therefore, these importance sampling techniques enable practical simulation
of OCT B-scans of turbid media, for example, tissue, using commonly available
workstations.

Keywords: optical coherence tomography, Monte Carlo simulation,
light transport in turbid media, importance sampling

1. Introduction

Optical coherence tomography (OCT) is a non-invasive sub-surface imaging
technique that has experienced significant growth in biomedical applications [1, 2].
OCT systems could be implemented with a low-coherence light source and a
mechanical scanning sub-system (time-domain OCT). More advanced systems use
a low-coherence light source with a spectrometer or a wavelength-swept source
(frequency-domain OCT). OCT has an imaging depth that could reach up to 3 mm,
depending on the optical properties of the tissue, and it also has one to two orders of
magnitude higher resolution than ultrasound imaging. OCT could also produce
images inside the body when it is implemented using optical fiber probes. Unlike
X-ray or gamma-ray imaging, OCT is safe for biological tissues because it utilizes
non-ionizing radiation mainly in the infrared spectrum.

1.1 OCT signal simulation using a Monte Carlo method

The signal obtained by an OCT imaging system consists of ballistic and
quasi-ballistic (Class I diffuse reflectance) photons, in addition to multiply scattered
photons (Class II diffuse reflectance), that are reflected from tissue [3].
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However, multiply scattered photons do not carry practically useful information
about the imaged tissue; therefore, they result in a degradation of the OCT signal
[4]. In addition, it has been shown that Class II diffuse reflectance represents a
fundamental limit related to the imaging depth of OCT in tissue [5]. Therefore, it is
important to account for both Class I and Class II diffusive reflectance in any
practical simulation of OCT signals.

Since it is not practical to simulate light transport in turbid media, for example,
tissue, using electromagnetic waves, especially due to diffusive scattering, a Monte
Carlo (MC) method of simulating light transport in tissue has been typically used
[6–9]. However, the computational cost of this MC-based simulation of OCT sys-
tems could be very high, as the probability of detecting diffusively reflected pho-
tons from tissue is very low [4, 5].

To reduce the computational cost, thereby accelerate, this MC simulation,
importance sampling could be used to speed up simulations by orders of magnitude.
Importance sampling has been applied earlier to optical communications [10, 11],
confocal microscopy [12], atmospheric optics [13], and diffuse optical
tomography [8].

To improve the computational efficiency of the MC-based simulation of OCT
systems [6], Yao and Wang proposed the first importance sampling technique to
simulate OCT signals from a multilayered turbid medium [3]. However, their
method only enabled the simulation of OCT signals from a thin shallow layer in
tissue, as the results obtained from deeper tissue regions were underestimated. In
[14], we, the authors of this chapter, developed another more advanced importance
sampling technique by implementing multiple biased scatterings per photon packet,
and by developing a photon splitting procedure. Our advanced importance sam-
pling resulted in more accurate and computationally efficient simulations of OCT
signals due to ballistic and quasi-ballistic photons. However, it still underestimated
OCT signals due to multiply scattered photons. To enable accurate simulation of
OCT signals due to both Class I and Class II diffusive reflectances, we further
developed our importance sampling technique to accurately and efficiently simulate
diffusive reflectance due to photons that undergo multiple scattering [15]. In this
method, additional biased scatterings were randomly applied, which enabled accu-
rate simulation of both Class I and Class II diffusive reflectances, with a speed-up of
three orders of magnitude compared to the standard MC method.

Our advanced importance sampling techniques above were implemented to
simulate OCT of tissues with planar geometry [6]. To enable simulation of OCT of
arbitrarily shaped turbid media, we used the mesh-based MC method of light
transport in tissue proposed by Fang [16]. This method uses a Plücker coordinate
system to efficiently calculate intersections between paths of light propagation with
interfaces of the object regions that are modeled using tetrahedrons. We combined
this mesh-based MC method with our importance sampling techniques to simulate
OCT signals from tissue with arbitrarily shaped regions. However, since it was still
computationally costly to simulate a full OCT B-scan using this method, we also
developed a parallel implementation of this simulator that exploited the massively
parallel computing capabilities of Graphics Processing Units (GPUs) to accelerate
this simulator by two additional orders of magnitude [17, 18]. This GPU-based
implementation enabled simulation of OCT B-scans of arbitrarily shaped turbid
media in a few minutes using commonly available workstations.

In Section 2 of this chapter, we present a standard MC method for simulating
OCT signals. In Section 3, we present our first importance sampling implementation
that enables the simulation of OCT signals from higher depths inside turbid media.
In Section 4, we present our more advanced importance sampling implementation
that accurately calculates both Class I and Class II diffusive reflectances, and is three
orders of magnitude faster than the standard MC simulation.
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2. Standard MC method for simulating OCT signals

Our implementation of the MC method to simulate OCT signals is based on
Monte Carlo simulation of light transport in multilayered tissues (MCML) [6].
MCML simulates an ensemble of photon packets that are launched as a steady-state
pencil beam, normal to the top surface of the medium. Within the tissue, each such
photon packet undergoes a random walk whose step size is determined by an
exponentially distributed random variable that is parameterized by the interaction
coefficient of this tissue. This interaction coefficient is equal to the sum of the
absorption μa and the scattering μs coefficients of this tissue. The scattering events
that take place at the end of the random steps are characterized by two random
angles that determine the next direction of the photon packet. To account for the
photon packet scattering, given an anisotropy factor, g, of the tissue, MCML uses
the Henyey-Greenstein probability density function that is given by

fHG cos θSð Þð Þ ¼ 1� g2

2 1þ g2 � 2g � cos θSð Þð Þ3=2
, (1)

where θS is the angle between the propagation direction of the photon packet û
before the current scattering and û0 is the direction of the photon packet after the
current scattering. The angle between the previous propagation direction and the
new propagation direction is θS. Therefore, cos(θS) = û �û0. To ensure that the new
propagation direction is statistically correct, the provisional scattering direction û0 is
rotated around û by an angle ϕ, which is randomly selected from a uniform proba-
bility density function with a range from 0 to 2π to generate the propagation
direction û0 after the current scattering. At the end of each scattering event, the
photon packet weight W is reduced according to the step size and the local absorp-
tion coefficient μa. The weight W, which is initially set at 1, is proportional to the
number of photons in the photon packet. The photon packet is either removed with
probability 1/m or is allowed to continue propagating with probability 1�1/m and a

new weight equal to m�W once the weight reaches W th ¼ 10�4. We use the value
m = 10 in this work. This procedure, denoted Russian roulette, is an unbiased
technique to end simulation of photon packets that have a negligibly low contribu-
tion to the Monte Carlo simulation, so that a new photon packet can be initiated
and simulated.

The Class I diffuse reflectance at depth equal to z is obtained by calculating
the mean value of an indicator function I1 that represents a spatial and temporal
filter of Class I diffuse reflectance for all simulated photon packets. The
indicator function I1 of such spatial and temporal filter for the ith photon packet
is defined as

I1 z, ið Þ ¼
1, ri < dmax, θz,i < θmax, ΔSi � 2zj j< lc

0, othwerise

�

, (2)

where lc is the optical source’s coherence length; ri is the distance to the origin of the
ith reflected photon packet; dmax and θmax are the maximum photon packet collecting
diameter and angle, respectively; θz,i is the angle with the z-axis (normal to the tissue
interface); Δsi is the optical path; and z is the photon packet’s maximum depth.

At any depth, the diffuse reflectance R1 is the expected value of I1 at this depth,
and its standard deviation σR,1 could be estimated by

R1 zð Þ ¼ 1

N

X

N

i¼1

I1 z, ið ÞW ið Þ (3)
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and

σ2R,1 zð Þ ¼ 1

N N � 1ð Þ
X

N

i¼1

I1 z, ið ÞW ið Þ � R1½ �2 (4)

where N is the number of photons packets used in MC-based simulations.

3. Importance sampling for simulation of Class I OCT signal

Our first importance sampling technique to simulate OCT signals aimed at
increasing the number of photons collected at the detector. This algorithm uses the
same method described in Section 2, where we also use the same square time gating
given by [3].

Since most tissues are highly forward-scattering, their anisotropy factor is close
to 1. Therefore, there is a very small probability that a simulated photon packet at
any given depth in the tissue would undergo scattering in the backward direction
toward the OCT probe. The probability of collecting Class I photons drops rapidly
with depth in the tissue from which the photon is scattered in the backward
direction. To allow faster simulation of Class I photons, we designed an importance
sampling method that biases the direction û0 of a scattered photon toward the tip
of the light-collecting optical fiber, v̂, as the photon packet reaches the depth range
of interest. By defining the origin of a Cartesian coordinate system at the center of
the tip of the light-collecting optical fiber, the bias direction in which this fiber is
located is defined as v̂ ¼ �R= Rj j, where R ¼ xx̂þ y ŷþ zẑ is the position vector of
the scattering location in the tissue.

All photon packets propagating in a direction close to v̂ will contribute to the
simulated Class I diffuse reflectance with a higher probability. Therefore, this bias
direction is more efficient than biasing only in the backward direction, which may
not be consistent with the direction of the light-collecting optical fiber. This choice
of the bias direction is particularly effective for photon packets propagating deep in
the tissue, where such photon packets experience one or more scattering events
before they are diffusively reflected.

3.1 Scattering angle due to first event of backscattering

As the photon packet reaches the depth range targeted, the propagation
direction û0 of the scattered photon packet is biased toward the bias direction v̂, as
opposed to being most likely scattered close to the previous propagation direction û
as in the practical case with anisotropy g close to 1 and different from the bias
toward �û, the opposite of the direction of propagation, as it is done in [3]. To
randomly select the biased angle θB between the new scattering direction û0 and the
biased direction v̂, we use the same probability density function in Eq. (1). How-
ever, the bias coefficient does not have to correspond to the anisotropy factor g.
Therefore, the probability density function of the biased angle is given by

f B cos θBð Þð Þ ¼ 1� a2

2 1þ a2 � 2a � cos θBð Þð Þ3=2
, (5)

where a is a bias coefficient. After randomly sampling a biased angle θB away
from the biased direction v̂, so that cos(θB) = v̂ �û0, the provisional scattering
direction û0 is rotated around v̂ by an angle ϕ, which is randomly selected from a
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uniform probability density function with a range from 0 to 2π to generate the
propagation direction û0 after the current scattering. This procedure ensures a more
accurate model of the light scattering in tissue. The difference in the rotation by ϕ

between the model with importance sampling and the standard model is that the
rotation in the model with importance sampling is done around the biased direction
v̂, while the rotation in the standard model in is done around the direction û prior to
the current scattering. After the first biased scattering, this procedure produces the
new propagation direction û0 of the photon packet. Afterward, the scattered photon
packet is associated with a likelihood ratio as discussed in other applications of this
method [10, 11]. Using our biased angle’s probability density function, the likeli-
hood ratio of the photon packet, Eq. (5), is given by

L cos θBð Þð Þ ¼ fHG cos θSð Þð Þ
f B cos θBð Þð Þ ¼ 1� g2

1� a2
1þ a2 � 2a � cos θBð Þ
1þ g2 � 2g � cos θSð Þ

� �3=2

, (6)

where cos(θS) = û �û0 is determined, after the biased scattering, from the
randomly sampled values of θB and ϕ. The ratio of the probability of the scattering
angle appearing in the biased case with the standard case is the likelihood ratio that
is shown in Eq. (6). In addition to depending on θB, the likelihood ratio also depends
also on θS. Figure 1 shows a schematic drawing of these vectors and the angles used
in this direction biasing procedure. Note that the choice of bias distribution only
affects the speed of convergence of the simulation. Therefore, other biased proba-
bility function could also be used to randomly generate the biased scattering toward
the bias direction v̂.

3.2 Scattering angles of additional events of backscattering

As a photon packet is biased toward the apparent position of the collecting
optical fiber, at any given depth in the tissue, the photon packet becomes more
likely to be collected at the tip of the fiber. However, the photon packet could be
scattered several times after the first backscatter bias before reaching the optical
collection system. These additional scatterings, according to Eq. (1), reduce the
correlation between the biased direction and the event in which the photon packet
is collected. We overcome this reduction in correlation by continuing to bias the

Figure 1.
Schematic representation of vectors and angles used in biasing the scattering direction. Reprinted with
permission from [14] © The Optical Society of America.
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scattering direction û
0 toward the direction v̂, pointing to the apparent position of

the optical collection system, at every scattering point until the photon packet is
removed. These additional biases still use both Eqs. (7) and (8). Since the random
values drawn for the angle between the scattering direction and the biased direction
are independent of each other and are also independent of the previous scattering
events, the overall likelihood ratio of a collected photon packet results from the
multiplication of all the likelihood ratios of all the biased scattering in that particular
simulation.

Once a photon packet experiences the first biased scattering, that photon packet
is biased at all additional scattering points until it is removed from the simulation,
which can occur when the photon packet is removed by Russian roulette, as
described in Section 2, or it leaves the tissue. After simulating N launched photon
packets using importance sampling, the diffuse reflectance R1 and its standard
deviation σR,1 could be calculated with

R1 zð Þ ¼ 1

N

X

N

i¼1

I1 z, ið ÞL ið ÞW ið Þ (7)

and

σ2R,1 zð Þ ¼ 1

N N � 1ð Þ
X

N

i¼1

I1 z, ið ÞL ið ÞW ið Þ � R1½ �2: (8)

Eqs. (7) and (8) are similar to Eqs. (3) and (4), except that the indicator
function is multiplied by its corresponding likelihood ratio. Using this method, a
significantly larger number of photon packets are scattered from a specific depth
range toward the collecting optical system than the number obtained using a stan-
dard MCML implementation. At the end of this biased simulation, each photon
packet is weighted by its likelihood ratio, which adjusts the contribution of each
packet to the estimation of the Class I diffuse reflectance. The estimated diffuse
reflectance converges toward its true value faster, by several orders of magnitude,
when compared to the standard Monte Carlo method.

3.3 Importance sampling effectiveness and depth of tissue

One drawback of previously existing bias methods, for example, [3, 7, 8] is an
underestimation of the diffuse reflectance beyond the targeted depth range. The
application of the first backward bias reduces the probability that this photon
packet would propagate beyond that portion of the tissue. This would lead to a
statistical bias to this importance sampling method similar to that in the angle
biasing procedure used in [3] and the method used in [7, 8], which limits the
effectiveness of those methods to a thin target layer.

We make sure we obtain correct statistics by splitting the photon packet into
two photon packets before the first biased scattering [14]. The first of these two
photon packets is the one biased toward the collecting optical system. The second
photon packet starts propagating from the location in which the biased backscattering
occurred, where its initial direction calculated by applying the standard procedure
to the previous direction û as shown in Section 3.1. To ensure that there is no
statistical bias associated with the forward-propagating photon packet that was
split, it will be assigned a likelihood ratio L0 ið Þ, which is a complement to the
likelihood of the biased backward scattered photon packet L ið Þ such that L0 ið Þ ¼
1� L ið Þ to this second photon packet. This second photon packet, only generated if
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L ið Þ< 1, also undergoes biased backscattering in the tissue at the end of the next
step, which could result in another photon packet split, and successive additional
biased scatterings toward the tip of the collecting optical fiber until the photon
packet propagates beyond the simulation domain. In cases that we investigated, this
procedure increased the computational time of each photon packet by five times
when compared with a photon packet computed using the standard Monte Carlo
method with the same number of launched photon packets N. The increase in the
computational time of our importance sampling-based implementation, compared
to the standard method with the same number of launched photon packets, depends
on the average value of the mean free path, and on the width of the target depth
range. We note that in our importance sampling implementation, we do not count
split photon packets as additional photon packets when determining the value of N
in Eqs. (7) and (8), as the use of their corresponding likelihood ratios will generate
the correct result. As a photon packet propagates beyond the target region, the
packet will propagate using the standard scattering procedure until it is terminated.
Once this photon packet is terminated, a new photon packet will be simulated from
the OCT probe, as it is the case in the standard MCML. Even though the splitting
procedure implies that the cost of simulating a launched photon with this impor-
tance sampling method is higher than the computational cost of simulating
launched photos using the standard MCML, the computation cost of the Class I
diffuse reflectance in our Monte Carlo simulations with importance sampling
required as little as one-thousandth of the computational cost required by the
standard Monte Carlo method to achieve the same accuracy in the calculated diffuse
reflectance.

3.4 Numerical results

We validate our importance sampling technique for simulation of OCT signals
from multilayered tissue, with different refractive indices and scattering properties,
by comparing its results with those obtained by the standard Monte Carlo method.
As shown in Figure 2, light is emitted by an optical fiber probe that is reflected by
a prism.

The shown optical system has a focusing lens with a numerical aperture (NA)
that allows collecting light at an angle of up to 4° and a diameter of 0.5 mm. Similar
to the setups in [5, 10, 11], we assume a point source that emits in the vertical
direction. Air is present between the center of the probe and the first layer of tissue,
which is placed 2.12 mm from the center of the fiber. We simulate a three-layer
turbid medium with refractive-index mismatch at its interfaces. The first layer,
extending from 2.12 to 2.22 mm from the tip of the fiber, has absorption coefficient
μa = 1.5 cm�1, scattering coefficient μs = 60 cm�1, and refractive index n = 1.

Figure 2.
Schematic representation of a setup to simulate OCT signals. Reprinted with permission from [14]
© The Optical Society of America.
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The second layer, extending from 2.32 to 2.42 mm from the tip of the fiber, has the
same absorption and scattering coefficients as the first layer, but its refractive index
is n = 1.33. The third layer, extending from 2.42 to 2.62 mm from the tip of the fiber,
has the following parameters: μa = 1.5 cm�1, μs = 30 cm�1, and n = 1. After the third
layer, the medium was assumed to be air: μa = 0 cm�1, μs = 0 cm�1, and n = 1. The
anisotropy factor was assumed g = 0.9 for the three diffusive layers.

From Figure 3, we note an excellent correspondence between results obtained
with our new importance sampling method and results obtained using MCML, that
is, standard Monte Carlo simulations. However, our results were obtained in
one-thousandth of the time required by the standard method.

4. Importance sampling for simulation of Class I and Class II OCT
signals

In this section, we further improve the importance sampling technique that was
described in Section 3, so we can simulate Class II OCT signals more accurately and
more efficiently [19].

4.1 Scattering angle of first backscattering event

In the MC simulation described in Section 3, we note that the bias function in (5)
produces large values of the likelihood ratio (>>1) when photon packets are
scattered in the then unlikely forward direction. These photon packets contributed
to a slow decrease in the relative variation, which corresponds to relative error, with
the increase in the number of photon packets launched for the calculation of the
OCT signal. Referring to Figure 1, we could reduce this relative variation by choos-
ing a distribution function for the scattering angle that limits it to the backward
direction. This modified distribution is given by:

Figure 3.
Class I diffuse reflectance dependence on the distance from the center of the optical fiber for the simulation whose
schematic is shown in Figure 4. The solid black line represents the result obtained with 2 � 105 photon packets
using the importance sampling technique presented in Section 3. The green long dashed line is the result obtained
with 109 photon packets using standard MCML. The blue dots represent results obtained with 106 photon
packets using MCML. The pink short dashed lines show the confidence interval of the importance sampling
simulations with 2 � 105 photon packets that were estimated using a much larger ensemble of 64 � 105

simulations. Reprinted with permission from [14] © The Optical Society of America.
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f B cos θBð Þð Þ ¼
1� 1�a

ffiffiffiffiffiffiffiffi

a2þ1
p

� ��1 a 1� að Þ
1þ a2 � 2a cos θBð Þð Þ3=2

, cos θBð Þ∈ 0, 1½ �

0, otherwise

8

>

<

>

:

, (9)

where a is the bias coefficient that can be selected between 0 and 1. Once a
biased angle θB is randomly selected, away from the direction of the center of the
OCT probe v̂, where cos θBð Þ ¼ v̂ � û0, the provisional biased scattering direction û

0 is
rotated around v̂ by an angle ϕ randomly sampled from a uniform distribution in
the range from 0 to 2π. These parameters are defined in the same manner as those
used in the biased distribution presented in Section 3. The only difference is that the
domain of cos θBð Þ is restricted to a maximum deviation from the biased angle by
90°. This ensures that there would not be packets with very large likelihood ratio
that could reduce the efficiency of our importance sampling. The likelihood ratio of
the photon packet that uses the biased probability density function in Eq. (9) is
given by

L cos θBð Þð Þ ¼ fHG cos θSð Þð Þ
f B cos θBð Þð Þ ¼ 1� g2

2a 1� að Þ 1� 1� a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �

1þ a2 � 2a cos θBð Þ
1þ g2 � 2g cos θSð Þ

� �3=2

,

(10)

where cos θSð Þ ¼ û � û0 . We note that cos θBð Þ is obtained using the probability
density function in Eq. (9), where it is used to obtain the new propagation direction
û
0.
To sample angles according to the biased probability density function in (8), one

could use any uniform pseudo-random number generator that would be typically
available in scientific software libraries. For example, if ui is a random number
distributed uniformly between 0 and 1, a random value for cos θBð Þ that satisfies
Eq. (9) with bias coefficient a could be generated with the following conversion
formula

cos θB,i ¼
1

2a
a2 þ 1� ui

1

1� a
� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� 	2
( )

: (11)

This conversion formula was derived using probability theory [20].

4.2 Scattering angles of additional biased backscatterings

A second enhancement that could be made to the importance sampling tech-
nique, described in Section 3, is to bias the additional scatterings toward the center
of the OCT probe v̂ with probability 0 ≤ p ≤ 1. That contrasts with the technique
presented in Section 3, in which p = 1 (all the additional scatterings were biased). An
unbiased scattering is performed in case a bias scattering is not applied in a given
point where scattering takes place. The likelihood ratio associated with this scatter-
ing is calculated according to the formula

L cos θBð Þ ¼ fHG cos θBð Þ
p � fHG cos θBð Þ þ 1� pð Þ � fHG cos θSð Þ : (12)

If the biased function f B cos θBð Þð Þ is selected to sample a random value of
cos θSð Þ, which is an event with probability p, cos θSð Þ ¼ û � û0 is a function of
cos θBð Þ that is statistically sampled from the probability density function in Eq. (9).
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Otherwise, in the case of the complementary event with probability 1 � p, the
unbiased function fHG cos θSð Þð Þ is used to sample a random value of cos θSð Þ and
cos θBð Þ ¼ v̂ � û0 depends on the value of cos θSð Þ. Since the two random angles
associated to each scattering do not depend on the random angles selected in the
previous scatterings, the likelihood ratio of each collected photon packet results
from the multiplication of all the likelihood ratios of all the biased scatterings in that
simulated photon packet.

4.3 Numerical results

We validate our importance sampling technique for simulation of OCT signals
from multilayered tissue, with different refractive indices and scattering properties,
by comparing its results with those obtained by the standard Monte Carlo method.
We consider a tissue model that consists of multiple layers that could be imaged
with an OCT system, as shown schematically in Figure 4. The modeled tissue
extends from 0 to 1 mm, and consists primarily of a turbid layer with absorption
coefficient μa = 1.5 cm�1 and a scattering coefficient μs = 60 cm�1, and also contains
five thin layers with absorption coefficient μa = 3 cm�1 and a scattering coefficient
μs = 120 cm�1. These five thin layers with higher scattering coefficient are located
from 200 to 215 μm, from 365 to 395 μm, from 645 to 660 μm, from 760 to 775 μm,
and from 900 to 915 μm. We assume that this tissue has the same refractive index
n = 1 and an anisotropy factor g = 0.9. We note that our method is robust in the
presence of refractive index mismatch along layer boundaries of the tissue [19]. We
simulate an OCT system where the light is delivered/collected by the tip of an

Figure 4.
Schematic representation of a setup to simulate OCT signals similar to one in Ref. [3]. Reprinted with
permission from [15] © The Optical Society of America.

10

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology



optical fiber having a radius of 10 μm and an acceptance angle of 5°. For simplicity,
the light source is assumed to be a one-dimensional light beam propagating along
the vertical direction as in [3, 8], since the purpose of this example is to validate and
demonstrate the effectiveness of our second importance sampling technique when
it is applied to the standard MC simulation.

In Figures 5 and 6, we show results obtained with 108 Monte Carlo photon
packets with importance sampling, which has a computational cost of simulating
about 9 � 108 photon packets using standard Monte Carlo. The computational cost
of applying this importance sampling technique depends on the target depth range,
and on the average photon mean free path in the given tissue. The target depths in
the shown simulations were set from 0 to 1 mm. Therefore, every single photon
scattering that occurs in the depth range from 0 to 1 mm would be biased. We used
a bias coefficient a = 0.925, and an additional bias probability p = 0.5, to run the
Monte Carlo simulations with importance sampling. The results shown in

Figure 5.
The Class I diffusive reflectance (thick solid black curve) and the Class II reflectance (thin solid red curve), as a
function of the tissue depth using the importance sampling technique presented in Section 4 with 108 photon
packets. The pink short dashed and the blue long dashed curves are results of simulating Class I reflectance and
the Class II reflectance using standard Monte Carlo with 1011 photon packets, respectively. Reprinted with
permission from [15] © The Optical Society of America.

Figure 6.
Details of reflectance results shown in Figure 5 for depths between 640 and 680 μm. The error bars shown were
estimated by the same ensemble of simulations. Reprinted with permission from [15] © The Optical Society of
America.
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Figures 5 and 6 show that our new importance sampling technique reduces the
computational cost for obtaining the Class I diffuse reflectance by approximately
three orders of magnitude when compared to the standard Monte Carlo method.
This algorithm is optimum when the additional bias probability is equal to p = 0.5.
Since only half of the back-scatterings are biased, this choice contributes toward
enabling an optimum number of Class II photons to be collected by the tip of the
optical fiber.

We note that the results obtained with the MCML have confidence intervals that
are noticeably larger than those of the results obtained with importance sampling
shown in Figure 6, even though the standard Monte Carlo simulations have a
computational cost 113 times larger than those obtained with importance sampling.
In Figure 6, we also note that our importance sampling technique reduces the
computational cost of calculating the Class II reflectance by more than two orders of
magnitude.

In Figure 7 we show the relationship between the relative error in calculating
Class I and the Class II reflectances at two different depths: 400 and 670 μm and the
bias coefficient a for p = 0.5. The depths at 400 and 670 μm correspond to tissue
regions near the second and third regions with high local reflectance due to the
higher local scattering coefficient. The relative variation in the results is the ratio
between the square root of the variance, shown in Eq. (4), and the reflectance
in Eq. (3).

We note that Class I reflectance has a minimum relative error at 400 μm with
a = 0.925, but the minimum error at 670 μm occurs at a = 0.95 μm at 670 μm. The
deeper the tissue region, the stronger the required bias because of the increase in the
number of scatterings with the depth. However, as the bias coefficient is increased
toward 1, larger variations in the likelihood ratio lead to an increase in the relative
error. We also note that Class II reflectance has its minimum relative error at
400 μm with a = 0.91, while its minimum relative error at 670 μm increased to only
about a = 0.925 μm. The optimum amount of bias required by the Classs II diffusive
reflectance in both wavelengths is lower than the optimum bias coefficient
observed in the Class I reflectance because the number of ballistic and quasi-ballistic
photons increases with the bias, which leads to a decrease in the number of collected
photon packets that undergo multiple scatterings. Figure 7 also shows that there is a
range for the bias parameter a between 0.9 and 0.95 that enables fast calculation of

Figure 7.
The relative error in calculated reflectance using importance sampling as a function of bias coefficient a.
Reprinted with permission from [15] © The Optical Society of America.
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both Class I and Class II reflectances using our importance sampling-based imple-
mentation.

5. Conclusions

We described two importance sampling techniques for a standard Monte Carlo
(MC) method that could enable fast simulation of signals from optical coherence
tomography (OCT) imaging systems. These OCT signals are generated due to
diffusive reflections from either multilayered or arbitrarily shaped, turbid media,
for example, tissue. Such signals typically consist of ballistic and quasi-ballistic
components, of scattered photons inside the medium, in addition to photons that
undergo multiple scattering. We showed that MC simulation of these OCT signals
using our importance sampling reduced its computation time on a serial processor
by up to three orders of magnitude compared to its corresponding standard imple-
mentation. Therefore, our importance sampling techniques enable practical simu-
lation of OCT B-scans of turbid media, for example, tissue, using commonly
available workstations.
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