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Abstract

In shared-memory bus-based multiprocessors, the number of processors is often limited
by the (shared) bus; when the utilization of the bus approaches 100%, processors spend an
increasing amount of time waiting to get access to the bus (and shared memory) and this
degrades their performance. The limitations imposed by the bus depend upon many
parameters, and different parameters affect the performance in different ways. This chap-
ter uses timed Petri nets to model shared-memory bus-based multiprocessors at the
instruction execution level and shows how the performance of processors and the system
are affected by different modeling parameters. Discrete-event simulation of the developed
net models is used to get performance results.

Keywords: shared-memory multiprocessors, bus-based multiprocessors, timed Petri nets,
performance analysis, discrete-event simulation

1. Introduction

Due to continuous progress in manufacturing technologies, the performance of microproces-

sors has been steadily improving over several decades, doubling every 18 months (the so-

called Moore’s law [1]). The capacity of memory chips has also been doubling every 18 months,

but the performance has been improving less than 10% per year [2]. The performance gap [3]

between the processor and its memory have been doubling approximately every 6 years, and

an increasing part of the processor’s time is being spent on waiting for the completion of

memory operations. Although multilevel cache memories are used to reduce the average

latencies of memory accesses, matching the performances of the processor and the memory is

an increasingly difficult task. In effect, it is often the case that more than 50% of processor
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cycles are spent waiting for the completion of memory accesses [4]. A model of a pipelined

processor at the instruction execution level is used in this chapter to study the mismatch of

processor and memory performances.

This model of a processor is then used for performance analysis of shared-memory bus-based

multiprocessors. The main objective of this analysis is to study the degradation of the pro-

cessor’s performance when the utilization of the (shared) bus approaches 100%. This perfor-

mance degradation limits the number of processors in bus-based systems.

Modeling and analysis of shared-memory bus-based systems requires a flexible formalism that

can easily handle concurrent activities as well as synchronization of different events and

processes that occur in such systems. Petri nets [5, 6] are such formal models.

As formal models, Petri nets are bipartite directed graphs in which the two types of vertices

represent, in a very general sense, conditions and events. An event can occur only when all

conditions associated with it (represented by arcs directed to the event) are satisfied. An

occurrence of an event usually satisfies some other conditions, indicated by arcs directed from

the event. Hence, an occurrence of one event causes some other event (or events) to occur, and

so on.

In order to study the performance aspects of systems modeled by Petri nets, the durations of

modeled activities must also be taken into account. This can be done in different ways,

resulting in different types of temporal nets [7]. In timed Petri nets [8], occurrence times are

associated with events, and the events occur in real time (as opposed to instantaneous occur-

rences in other models). For timed nets with constant or exponentially distributed occurrence

times, the state graph of a net is a Markov chain (or an embedded Markov chain). If the state

space of a timed net is finite and reasonably small, the stationary probabilities of states can be

determined by standard methods [9]. Then these stationary probabilities are used for the

derivation of many performance characteristics of the model [10]. In other cases, discrete event

simulation [11] is used to find the performance characteristics of a timed net.

In this chapter, timed Petri nets are used to model shared-memory bus-based multiprocessor

systems. Section 2 recalls basic concepts of Petri nets and timed Petri nets. Section 3 discusses a

model of a pipelined processor and its performance as a function of modeling parameters.

Shared-memory bus-based systems are described and analyzed in Section 4. Section 5 concludes

the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens that can move within a (static)

graph-like structure of the net. More formally, a marked place/transition Petri netM is defined

as a pairM ¼ N ;m0ð Þ, where the structure N is a bipartite directed graph, N ¼ P;T;Að Þ, with

two types of vertices, a set of places P and a set of transitions T, and a set of directed arcs A

connecting places with transitions and transitions with places, A ⊆ P�T ∪ T�P. The initial
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marking function m0 assigns nonnegative numbers of tokens to places of the net,

m0 : P ! 0; 1;…f g. Marked nets can be equivalently defined as M ¼ P;T;A;m0ð Þ.

A place is shared if it is connected to more than one transition. A shared place p is free-choice if

the sets of places connected by directed arcs to all transitions sharing p are identical. A shared

place p is (dynamically) conflict-free if for each marking reachable from the initial marking, at

most one transition sharing p is enabled. If a shared place p is not free-choice and not conflict-

free, the transitions sharing p are conflicting.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences

are real-time events, i.e., tokens are removed from input places at the beginning of the occur-

rence period and are deposited to the output places at the end of this period. All occurrences of

enabled transitions are initiated in the same instants of time in which the transitions become

enabled (although some enabled transitions may not initiate their occurrences). If, during the

occurrence period of a transition, the transition becomes enabled again, a new, independent

occurrence can be initiated, which will overlap with the other occurrence(s). There is no limit

on the number of simultaneous occurrences of the same transition (sometimes this is called

infinite occurrence semantics). Similarly, if a transition is enabled “several times” (i.e., it

remains enabled after initiating an occurrence), it may start several independent occurrences

in the same time instant.

More formally, a timed Petri net is a triple, T ¼ M; c; fð Þ, where M is a marked net, c is a

choice function which assigns probabilities to transitions in free-choice classes, or relative

frequencies of occurrences to conflicting transitions, c ! 0; 1½ �, and f is a timing function,

which assigns an (average) occurrence time to each transition of the net, f : T ! R
þ, where

R
þ is the set of nonnegative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by

some probability distribution function). In the first case, the corresponding timed nets are

referred to as D-timed nets [12]; in the second, for the (negative) exponential distribution of

occurrence times, the nets are called M-timed nets (Markovian nets) [13]. In both cases, the

concepts of state and state transitions have been formally defined and used in the derivation of

different performance characteristics of the model. In simulation applications, other distribu-

tions can also be used, for example, the uniform distribution (U-timed nets) is sometimes a

convenient option. In timed Petri nets, different distributions can be associated with different

transitions in the same model providing flexibility that is used in simulation examples that

follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that

the occurrences are instantaneous; all such transitions are called immediate (while the others

are called timed). Since immediate transitions have no tangible effects on the (timed) behavior

of the model, it is convenient to “split” the set of transitions into two parts, the set of immedi-

ate and the set of timed transitions, and to first perform all occurrences of the (enabled)

immediate transitions, and then (still in the same time instant), when no more immediate

transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be

noted that such a convention effectively introduces the priority of immediate transitions over
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the timed ones, so the conflicts of immediate and timed transitions are not allowed in timed

nets. Detailed characterization of the behavior of timed nets with immediate and timed transi-

tions is given in [8].

3. Pipelined processors

A timed Petri net model of a pipelined processor [14] at the level of instruction execution is

shown in Figure 1 (as usual, timed transitions are represented by solid bars, and immediate

transitions by thin bars). It is assumed that the first level cache does not delay the processor,

while cache misses (at the first level cache) introduce a delay of tc processor cycles. For

simplicity, only two levels of cache memory are represented in the model; it appears that such

a simplification does not affect the results in a significant way [15].

Place Pnxt is marked when the processor is ready to execute the next instruction. Pnxt is a free-

choice place with three possible outcomes that model issuing an instruction without any

further delay (Ts0 with the choice probability ps0), a single-cycle pipeline stall (modeled by

Td1 with the choice probability ps1 associated with Ts1), and a two-cycle pipeline stall

(modeled by Td2 and then Td1 with the choice probability ps2 assigned to Ts2). Other pipeline

stalls could be represented in a similar way, if needed.

Marked place Cont indicates that an instruction is ready to be issued to the execution pipeline.

It is assumed that once the instruction enters the pipeline, it will progress through all the stages

and, eventually, leave the pipeline. Since the details of pipeline implementation are not impor-

tant for performance analysis of the processor, they are not represented here. Only the first

stage of the execution pipeline is shown as timed transition Trun.

Done is another free-choice place which determines if the executing instruction results in a

cache miss or not. Transition Tnxt occurs (with the corresponding probability) if cache miss

does not occur and the processor can continue fetching and issuing instructions. Cache miss is

represented by Tsel. The choice probability associated with Tsel determines the instruction

Figure 1. Instruction-level Petri net model of a pipelined processor.
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runlength, nℓ, i.e., the average number of instructions between two consecutive cache misses; if

this choice probability is equal to 0.1, the runlength is equal to 10; if it is equal to 0.2, the

runlength is 5; and so on.

Psel is another free-choice place; it models the hits and misses of the second-level cache. The

probability associated with transition Tloc represents the hit ratio of the second-level cache (the

occurrence time of Tloc is the average access time to the second-level cache, tc) while the miss

ratio is associated with transition Tmem which represents accesses to the main memory (with

the occurrence time tm).

Typical values of modeling parameters used in this chapter are shown in Table 1.

All temporal data in Table 1 (i.e., cache and memory access times) are in processor cycles.

Processor utilization as a function of h1, the hit rate of the first-level cache, is shown in Figure 2

for two values of the second-level cache access time, tc ¼ 5, and tc ¼ 10. It should not be

Symbol Parameter Value

h1 First-level cache hit rate 0.9

h2 Second-level cache hit rate 0.8

tp First-level cache access time 1

tc Second-level cache access time 5

tm Main memory access time 25

ps1 Prob. of one-cycle pipeline stall 0.1

ps2 Prob. of two-cycle pipeline stall 0.05

Table 1. Modeling parameters and their typical values.

Figure 2. Processor utilization as a function of first-level cache hit rate for h2 ¼ 0:8, ps ¼ 0:2.
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surprising that processor utilization is quite sensitive to the values of h1, but is much less

sensitive to the values of tc.

Processor utilization as a function of h2, the hit rate of the second-level cache, is shown in

Figure 3 for two values of the main memory access time, tm ¼ 25 and tm ¼ 50. Processor

utilization is rather insensitive to values of h2, and does not change much with tm.

Processor utilization as a function of the probability of pipeline stalls ps ¼ ps1 þ 2ps2 is shown

in Figure 4 for three combinations of values of tc and tm.

Again, processor utilization is rather insensitive to the probability of pipeline stalls as well as

the values of tc and tm.

Figure 3. Processor utilization as a function of second-level cache hit rate for h1 ¼ 0:9, ps ¼ 0:2.

Figure 4. Processor utilization as a function of probability of pipeline stalls for h1 ¼ 0:9, h2 ¼ 0:8.
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For pipelined processors shown in Figure 1, processor utilization can be estimated using the

following formula:

up ¼
1

1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ
: (1)

For the values of modeling parameters shown in Table 1, processor utilization is:

up ¼
1

1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ
≈ 0:45: (2)

The estimated values agree quite well with the values shown in Figures 2–4.

4. Shared-memory bus–based systems

An outline of a shared-memory bus-based multiprocessor is shown in Figure 5. The system is

composed of n identical processors, which access the shared memory using a system bus. To

reduce the average access time to the shared memory, the processors use (multilevel) cache

memories. It is assumed that memory consistency is provided by a cache coherence mecha-

nism [16], which usually increases the miss ratio of accessing caches (and is otherwise not

represented in the model).

A timed Petri net model of a shared-memory bus-based multiprocessor is shown in Figure 6. It

contains models of n processors (only two are shown in Figure 6), which are copies of the

model shown in Figure 1 except for the main memory (transition Tmem) which becomes

shared memory in Figure 6. The remaining part of Figure 6 is modeling the bus that coordi-

nates accesses of processors to the shared memory.

Figure 5. A shared-memory bus-based multiprocessor.
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When a processor i, i ¼ 1,…, n, requests an access to shared memory, place Pri becomes

marked. If the bus is available (i.e., if place Bus is marked), the occurrence of transition Tai

indicates that processor i begins its access to shared memory. Transitions Ta1, ..., Tan consti-

tute a conflict class with a fair resolution of conflicts (i.e., all conflicting processors have the

same probability of being selected for accessing memory). In real systems, accessing the shared

bus is often based on priorities assigned to processors; such priorities could easily be

represented using inhibitor arcs in Petri nets.

Place Pmem collects memory access requests from all processors (occurrences of transitions

Tai). The end of memory access (i.e., the end of the occurrence of Tmem) is indicated by an

occurrence of transition Tei of the processor which initiated memory access. The occurrence of

Tei also returns a token to Bus, allowing another access to shared memory to be executed.

Figure 7 shows the utilization of processors and the bus as functions of the number of pro-

cessors in a shared-memory system for the values of modeling parameters shown in Table 1.

Figure 6. A timed Petri net model of bus-based shared-memory multiprocessor.
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In Figure 7, the bus utilization approaches 100% for about five processors. Moreover, the

degradation of processors’ performance due to increasing waiting times for accessing the bus

(and shared memory) is well illustrated in Figure 7.

The average waiting time (in processor cycles) of accessing shared memory (i.e., the times from

requesting memory access in place Pri to granting this access by an occurrence of Tai) is shown

in Figure 8 as a function of the number of processors in the system.

Figure 8 shows that the waiting times increase almost linearly with the number of processors

when this number is greater than 5, i.e., when the bus (and shared memory) is utilized in

almost 100%.

Figure 7. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.

Figure 8. The average waiting time for accessing shared memory as a function of the number of processors for h1 ¼ 0:9,

h2 ¼ 0:8, ps ¼ 0:2.
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If the value of the second-level cache hit rate, h2, increases (and the other parameters do not

change), the number of accesses to main memory is reduced, so that the performances of

processors and the whole system improve. Figure 9 shows the utilization of processors and

the bus as functions of the number of processors in the system for h2 ¼ 0:9. It also shows that

the reduced (in comparison with Figure 7) utilization of the bus allows the increase of the

number of processors without significant degradation of their performance.

By a similar argument, reduced hit rate at the first-level cache, h1, increases the number of

accesses to the second-level cache as well as to the main memory, and this results in reduced

performance of the system. Figure 10 shows the utilization of processors and the bus as

functions of the number of processors in the system for h1 ¼ 0:8. It provides a good illustration

of the degradation of performance when compared with Figure 7.

Figure 9. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:9, ps ¼ 0:2.

Figure 10. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:8, h2 ¼ 0:8, ps ¼ 0:2.
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The number of processors for which the bus is used to almost 100% can be estimated by the

following formula:

np ¼
1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ

1� h1ð Þ∗ 1� h2ð Þ∗tm
: (3)

For the case shown in Figure 7, this number is:

1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ

0:1∗0:2∗25
¼

1:2þ 1:0

0:5
¼ 4:4: (4)

For the case shown in Figure 9, this value is 8.2.

There are several ways in which the number of processors can be increased in bus-based

systems without sacrificing the processors’ performance. The simplest approach is to introduce

the second bus which allows two concurrent accesses to shared memory, provided the mem-

ory is dual port (it allows two concurrent accesses). Figure 11 outlines a dual bus shared-

memory system.

Petri net model of a dual bus system is the same as in Figure 6; the only difference is the initial

marking of place Bus, which now requires two tokens to represent two concurrent accesses to

shared memory. It should be observed observed that, for a small number of processors, the

utilization of each bus in Figure 12 is one half of that in Figure 7, and also the number of

processors that can be used in such a dual bus system without degradation of their perfor-

mance is twice as large as in a single bus system (Figure 7).

The results shown in Figure 12 are very similar to those shown in Figure 9. The second bus in a

shared-memory system allows to perform two concurrent accesses to the shared memory.

From a single processor’s performance point of view, this effect is similar to reducing two

Figure 11. A dual bus shared-memory multiprocessor.
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times the number of accesses to the shared memory, and this is the effect of reducing two times

the miss rate for the second-level cache (which is shown in Figure 9).

If dual port memory cannot be used, the shared memory can be split into several independent

modules which can be accessed concurrently by the processors provided that the bus is also

split into sections associated with each module, with processors accessing all such sections, as

shown in Figure 13 for four independent memory modules. The main difference between a

multibus system (Figure 11) and a system with split bus is in accessing the shared memory; in

a multiple bus system, the whole shared memory is accessed by each bus, while in a split bus

system (Figure 13), each section of the bus accesses only one memory module. In the system

Figure 12. Processor and bus utilization as functions of the number of processors—dual bus system with h1 ¼ 0:9,

h2 ¼ 0:8, ps ¼ 0:2.

Figure 13. A shared-memory multiprocessor with multiple memory modules.
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shown in Figure 13, up to four (the number of memory modules) memory accesses can be

performed concurrently, but if two (or more) processors request access to the same memory

module, the requests are served one after another.

Petri net model of a system outlined in Figure 13 is shown in Figure 14 where only two

processors and two memory modules are detailed.

In Figure 14, there is a free-choice place Pri for each processor i, i ¼ 1,…, n. This free-choice

place selects the requested memory module by transitions Tij, j ¼ 1,…, 4, and forwards the

memory access request to the selected memory module (place Pij). If the selected module is

available, i.e., if place Busj is marked, the access to shared memory is initiated by the occur-

rence of Taij. When this memory access is completed, the occurrence of Teij releases the

memory modules (by returning a token to Busj) and resumes instruction execution in the

processor that requested the memory access.

If memory module is not available when it is requested, the memory access is delayed (in Pij)

until the requested module becomes available.

It is possible that more than one processor becomes waiting for the same memory module. The

selection of the processor which will get access first is random with the same probability

assigned to all waiting processors. In real systems, there is usually some priority scheme that

determines the order in which the waiting processors access the bus. Such a priority scheme

could easily be modeled if it is needed (for example, for studying the starvation effect which

can be created when the system is overloaded).

In Figure 14, the selection of memory modules is random, with the same probabilities for all

modules. If this policy is not realistic, a different memory accessing policy can be implemented,

Figure 15. Processor and bus utilization as functions of the number of processors—system with four memory modules

and h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.
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for example, the probabilities of accessing consecutive memory modules by each processor

could be used to model sequential processing of large arrays, and so on.

Figure 15 shows the utilization of processors and busses as functions of the number of pro-

cessors in a system outlined in Figure 13.

In Figure 15, even for 20 processors, the average utilization of the bus is close to 80%, so the

system can accommodate more processors.

5. Concluding remarks

The chapter uses timed Petri nets to model shared-memory bus-based architectures at the level of

instruction execution to study the effects of modeling parameters on the performance of the

system. Themodels are rather simple with straightforward representation of modeling parameters.

Performance results presented in this chapter have been obtained by the simulation of devel-

oped Petri net models. However, the model shown in Figure 7 has only 10 states, so its

analytical solution (for different values of modeling parameters) can be easily obtained and

compared with simulation results to verify their accuracy. Table 2 shows such a comparison of

processor utilization for several combinations of parameters h1 and h2. In all cases, the

simulation-based results are very close to the analytical ones.

The models of multiprocessor systems are usually composed of many copies of the same

submodel of a processor and possibly other elements of the system. Colored Petri nets [17]

can significantly simplify such models by eliminating copies of similar subsystems. Analysis of

colored Petri nets is, however, much more complex than that of ordinary Petri nets.

Finally, it should be noted that the performance of real-life multiprocessor systems very rarely

can be described by a set of parameters that remain stable for any significant period of time.

The basic parameters like the hit rates depend upon the executed programs as well as their

data, and can change very quickly in a significant way. Consequently, the characteristics

presented in this chapter can only be used as some insight into the complex behavior of

multiprocessor systems.

h1 h2 Simulated results Analytical results

0.8 0.8 0.3341 0.3333

0.8 0.9 0.3846 0.3846

0.9 0.8 0.4763 0.4762

0.9 0.9 0.5255 0.5263

Table 2. A comparison of simulation and analytical results.
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