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Abstract

In this chapter, we introduce a generalized contractions and prove some fixed point
theorems in generalized metric spaces by using the generalized contractions. Moreover,
we will apply the fixed point theorems to show the existence and uniqueness of solution
to the ordinary difference equation (ODE), Partial difference equation (PDEs) and frac-
tional boundary value problem.

Keywords: fixed point, contraction, generalized contraction, differential equation, partial
differential equation, fractional difference equation

1. Introduction

The study of differential equations is a wide field in pure and applied mathematics, chemistry,
physics, engineering and biological science. All of these disciplines are concerned with the
properties of differential equations of various types. Pure mathematics investigated the exis-
tence and uniqueness of solutions, but applied mathematics focuses on the rigorous justifica-
tion of the methods for approximating solutions. Differential equations play an important role
in modeling virtually every physical, technical, or biological process, from celestial motion, to
bridge design, to interactions between neurons. Differential equations such as those used to
solve real-life problems may not necessarily be directly solvable, i.e. do not have closed form
solutions. Instead, solutions can be approximated using numerical methods.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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Following the ordinary differential equations with boundary value condition

x (e 0
arm I\ gt

where y(xo) =0, y'(x1) =c1, ...,y(”_l)(xn,l) = c,—1 the positive integer n (the order of the
highest derivative). This will be discussed. Existence and uniqueness of solution for initial
value problem (IVP).

u'(t) = f (£ u(t))
u(ty) = up.
Differential equations contains derivatives with respect to two or more variables is called a

partial differential equation (PDEs). For example,

du *u du ou ou
A—+B C——+D—+E—+Fu=G
T Oxdy i oy? TR dy L

where u is dependent variable and A, B, C, D, E, F and G are function of x, y above equation is
classified according to discriminant (B2 — 4AC) as follows,

1. Elliptic equation if (B* — 4AC) < 0,
2. Hyperbolic equation if (B> — 4AC) > 0,
3. Parabolic equation if (B> — 4AC) = 0.

This will be discussed. Existence of solution for semilinear elliptic equation. Consider a func-
tion u : Q CcR" — R" that solves,

—Au=f(u) in Q

U = Uy on 00
where f : R" — R™ is a typically nonlinear function. And fractional differential equations. This
will be discussed. Fractional differential equations are of two kinds, they are Riemann-

Liouville fractional differential equations and Caputo fractional differential equations with
boundary value.

‘Diu(t) = Bu(t);t >0
M(O) =uyeX
where Dy is the Caputo fractional derivative of order a € (0,1), and t€[0, 7], for all T > 0.

The following fractional differential equation will boundary value condition.

Do, u(t) +f(t,u(t)) =0, 0<t<1, 1<a<2
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where f : [0,1] x [0,0) — [0,%) is a continuous function and Dg, is the standard Riemann-
Liouville fractional derivative.

One method for existence and uniqueness of solution of difference equation due to fixed point
theory. The primary result in fixed point theory which is known as Banach’s contraction principle
was introduced by Banach [1] in 1922.

Theorem 1.1. Let (X, d) be a complete metric spaces and T : X — X be a contraction mapping (that is,
there exists 0<a < 1) such that

d(Tx, Ty) < ad(x,y)

for all x, y € X, then T has a unique fixed point.

Since Banach contraction is a very popular and important tool for solving many kinds of
mathematics problems, many authors have improved, extended and generalized it (see in [2—4])
and references therein.

In this chapter, we discuss on the existence and uniqueness of the differential equations by
using fixed point theory to approach the solution.

2. Basic results

Throughout the rest of the chapter unless otherwise stated (X, d) stands for a complete metric
space.

2.1. Fixed point

Definition 2.1. Let X be a nonempty set and T : X — X be a mapping. A point x* € X is said to
be a fixed point of T if T(x*) = x*.

Definition 2.2. Let (X, d) be a metric space. The mapping T : X — X is said to be Lipschitzian if
there exists a constant & > 0 (called Lipschitz constant) such that

d(Tx,Ty)<ad(x,y) forall x,yeX.

A mapping T with a Lipschitz constant & < 1 is called contraction.

Definition 2.3. Let F and X be normed spaces over the field K, T : F — X an operator and c € F.
We say that T is continuous at c if for every ¢ > 0 there exists 0 > 0 such that || T(x) — T(c)|| < €
whenever ||x — ¢|| < 6 and x € F. If T is continuous at each x € F, then T is said to be continuous
onT.

Definition 2.4. Let X and Y be normed spaces. The mapping T : X — Y is said to be completely
continuous if T(C) is a compact subset of Y for every bounded subset C of X.

5
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Definition 2.5. Compact operator is a linear operator L form a Banach space X to another
Banach space Y, such that the image under L of any bounded subset of X is a relatively
compact subset (has compact closure) of Y such an operator is necessarily a bounded operator,
and so continuous.

Definition 2.6. A subset C of a normed linear space X is said to be convex subset in X if
Ax 4+ (1 — A)y e C for each x, y € C and for each scalar A € [0, 1].

Definition 2.7. v is called the a" weak derivative of u
D*u=vo
if
J uD%Pdx = (—1)'“|J vdx
Q Q

for all test function ¢ € C (Q).

Theorem 2.8. (Schauder’s Fixed Point Theorem) Let X be a Banach space, M C X be nonempty,
convex, bounded, closed and T : M C X — M be a compact operator. Then T has a fixed point.

Lemma 2.9. ref. [5] Given f € C(R) such that |[f(t)|<a = b|t|" where a > 0,b > 0 and r > 0 are
positive constants. Then the map u +— f(u) is continuous for L’ (Q) to Lg(Q) for p= max(1,r) and
maps bounded subset of L¥(Q) to bounded subset of Lg(Q).

Proof. Form to Jensen’s inequality
(a+ bl © <21ak 4 2P <1 + 1)

where C is a positive constant depending on a4, b, p and r only, since u € ¥ (Q2), we have

JQLf<u>|?dxsc<a,b,p,r>(yq i Lm) ‘w

therefore f(u) €L/ (Q). Let u, be a sequence converging to u in LP(Q). There exists a subse-
quence u,, and a function g € L (Q)) such that set, u,y, — u(x), and |u,y (x)|<g(x), almost every-
where. This is sometimes called the generalized DCT, or the partial converse of the DCT, or the
Riesz-Fisher Theorem. From the continuity of f, |f(u(x)) — f(uy)] — 0 on Q\N, and

F(u(x)) = f () <CA+ () + [f(w)]")

where C is another positive constant depending on 4,b,p and r only, the left-hand-side is
independent of n" and is in L'(Q2). We can apply the Dominated Convergence Theorem to
conclude the

J b)) = e — 0
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or in other words, ||f (u(x)) — f(uy) — 0. Since the limit does not depend on the subse-

I
quence this convergence u holds for u,. o

Corollary 2.10. ref. [5] Let 4 >0. Then the map g+ (—A + /Jld)_lg is

i.  continuous as map from L*(Q) to Hj(Q) in other words

”v”Hé(Q) <C(Q) ||g||L2(Q)'

ii. compact as map form L*(Q) to [*(Q).

Proof. The first part is due to the fact that L*(QQ) is continuously in H™'(Q). The second part
follows as (—A + uly) B [*(Q) — L*(Q) can be viewed as composition of the continuous map
(-A+ /Jld)fl : [(Q) — H)(Q) and the compact embedding Hp(Q)~L?*(Q) and as the compo-
sition of a compact linear operator a continuous linear operator is again compact.

Theorem 2.11. (Poincare) For p € [1, ), there exists a constant C = C(Q, p) such that ¥V € Wé’p(Q),‘
lullrr @) < ClIVUllr @re)- A key tool to obtain the compactness of the fixed point maps.

2.2. Fuzzy

A fuzzy set in X is a function with domain X and values in [0, 1]. If A is a fuzzy set on X and
x € X, then the functional value Ax is called the grade of membership of x in A. The a— level
set of A, denoted by A, is defined by

Ay ={x:Ax2a} if a€(0,1], A= {x:Ax>0},
where denotes by A the closure of the set A. For any A and B are subset of X we denote by

H(A, B) the Huasdorff distance.

Definition 2.12. A fuzzy set A in a metric linear space is called an approximate quantity if and
only if A, is convex and compact in X for each a € [0,1] and sup, _  Ax = 1.

Let I = [0,1] and W(X) c I* be the collection of all approximate in X. For a €[0,1], the family
W,(X) is given by {A€I* : A, is nonempty and compact}.

For a metric space (X, d) we denoted by V(X) the collection of fuzzy sets A in X for which A, is
compact and supAx = 1 for all @ € [0, 1]. Clearly, when X is a metric linear space W(X) c V(X).

Definition 2.13. Let A, Be V(X), a€|[0,1]. Then

P (AB)= inf d(x,y), Da(A,B)= H(Aq4, Ba)

XE€As, YEB,

where H is the Hausdorff distance.
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Definition 2.14. Let A, Be V(X). Then A is said to be more accurate than B (or B includes A),
denoted by A C B, if and only if Ax<Bx for each x € X.

Denote with ®, the family of nondecreasing function ¢ : [0, +e) — [0,4) such that
Y ome1 @' (t) < oo forall t > 0.

Theorem 2.15. ref. [6] Let (X, d, <) be a complete ordered metric space and T1, Ty : X — Wy (X) be
two fuzzy mapping satisfying

Da(Tlx’ sz) qu(M(x,y)) + Lmin{pa(x, Tlx)7pa(y7 sz),pa(x, TZ]/)?f?a(yv Tlx)}

for all comparable element x, y € X, where L>0 and
1
M(xvy) = max{d(x,y),pa(x, Tlx)vpa(% TZy)vi [pa(x, sz) + pq(% Tlx)] }

Also suppose that
1. ifye (T1x9), theny, xo€ X are comparable,
ii. if x,y € X are comparable, then every u € (T1x), and every v € (T,y), are comparable,

iii. if a sequence {x,} in X converges to x € X and its consecutive terms are comparable, then
x, and x are comparable for all n.

Then there exists a point x € X such that x, C T1x and x, C Tox.
Proof. See in [6].
Corollary 2.16. ref. [6] Let (X, d, <) be a complete ordered metric space and T1, T : X — W, (X) be
two fuzzy mappings satisfying
1
Do(T1x, Toy) SqmaX{d(x,y), Pa( T12), Po (v, T2y), 5 [P, (x, Tay) +p,(y, T1x)] }

for all comparable elements x, y € X. Also suppose that
i. ifye(Tix), theny, xo€ X are comparable,
ii. if x,y € X are comparable, then every u € (T1x), and every v € (T,y), are comparable,

iii. if a sequence {x, } in X converges to x € X and its consecutive terms are comparable, then
x, and x are comparable for all #.

Then there exists a point x € X such that x, C T1x and x, C Tox.

2.3. Metric-like space

Definition 2.17. [7] Let X be nonempty set and function p : X x X — R" be a function satisfy-
ing the following condition: for all x, y, z€ X,
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(p1) p(x,%) = p(x,y) = p(y,y) if and only if x =y,
(p2) p(x,%) < p(x,y),

(p5) px,x) = p(y,x),

(py) p(x,y) = p(x,2) +p(z,y) — p(z,2)

Then p is called a partial metric on X, so a pair (X, p) is said to be a partial metric space.

Definition 2.18. [8] A metric-like on nonempty set X is a function o : X x X — R*. If for all
x, Y, z € X, the following conditions hold:

(

Q

Noxy) =0=x=y
)o(x,y) =o(y,x);
)o(x,y) = o(x,z) + 0(z,y).

NG
(e8] N

Then a pair (X, 0) is called a metric-like space.

It is easy to see that a metric space is a partial metric space and each partial metric space is a
metric-like space, but the converse is not true but the converse is not true as in the following
examples:

Example 2.19. [8] Let X = {0,1} and 0 : X x X — R" be defined by

2, ifx=y=0,
a(x,y):{ /

1, otherwise.

Then (X, 0) is a metric-like space, but it is not a partial metric space, cause ¢(0,0)£c(0,1).

Lemma 2.20. ref. [9] Let (X, p) be a partial metric space. Then

i.  {x,} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric
space (X,d,),

ii. X is complete if and only if the metric space (X, d,) is complete.

Definition 2.21. [8, 10] Let (X, 0) be a metric-like space. Then:

i. A sequence {x,} in X converges to a point x € X if lim,,_...c(x,,, x) = o(x, x). The sequence
{x,} is said to be o— Cauchy if lim,, ;-0 (X, x;n) exists and is finite. The space (X, 0) is
called complete if for every c— Cauchy sequence in {x, }, there exists x € X such that

lim o(x,,x) = o(x,x) = lm o(x,,x,).

Nn—o0 n, Mm—eo

ii. A sequence {x,}in (X, 0) is said to be a 0 — 0— Cauchy sequence if limy, ;.0 (X, X, ) = 0.
The space (X, 0) is said to be 0 — 0— complete if every 0 — o0— Cauchy sequence in X
converges (in 7,) to a point x € X such that o(x,x) = 0.
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iii. A mapping T : X — X is continuous, if the following limits exist (finite) and
lim o(x,,,x) = o(Tx, x).

n—c0

Following Wardowski [11], we denote by F the family of all function, F : R* — R satisfying
the following conditions:
(F1) F is strictly increasing on R,

(F2) for every sequence {s,} in R*, we have lim s, = 0 if and only if lim F(s,) = —es,

n—oo n—oo

(F3) there exists a number k € (0, 1) such that lim s*F(s) = 0.

s—0"

Example 2.22. The following function F : R" — R belongs to F:
i. F(s) =Ins, withs >0,

ii. F(s) =Ins+s, withs > 0.

Definition 2.23. [11] Let (X,d) be a metric space. A self-mapping T on X is called an F-
contraction mapping if there exist F€ F and 1 € R" such that

Vx,yeX, [d(Tx,Ty) > 0= 1+ F(d(Tx, Ty))<F(d(x,y))]. (2.1)
Definition 2.24. [12] Let (X,0) be a metric-like space. A mapping T:X — X is called a

generalized Roger Hardy type F— contraction mapping, if there exist F€ F and 7 € R* such
that

o(Tx,Ty) > 0= 1+ F(o(Tx,Ty)) < F(ao(x,y)+ po(x,Tx)+ yo(y,Ty)

+no(x, Ty) + do(y, Tx)) 22)

forallx, ye Xand o, B, 7,1, 620 witha + 5+ +2n+26 < 1.

Theorem 2.25. ref. [12] Let (X,0) be 0 — 0— complete metric-like spaces and T : X — X be a
generalized Roger Hardy type F— contraction. Then T has a unique fixed point in X, either T or
F is continuous.

Proof. See in [12]. |

2.4. Modular metric space

Let X be a nonempty set. Throughout this paper, for a function w : (0,%) x X x X — [0, o], we
write

w/\(x’y) = w(/\v x>y)

forall A > 0and x, y € X.

Definition 2.26 [13, 14] Let X be a nonempty set. A function w : (0,00) x X x X — [0, 0] is
called a metric modular on X if satisfying, for all x, y, z € X the following conditions hold:
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i. wi(x,y)=0forall A > 0ifandonlyifx =y,
ii. wi(x,y) =wa(y,x)forall A >0,
iil.  wru(x,y) Swi(x,z) + wu(z,y) forall A, u > 0.
If instead of (i) we have only the condition (i")
w)(x,x) =0forall A >0,xeX,

then w is said to be a pseudomodular (metric) on X. A modular metric w on X is said to be
regular if the following weaker version of (i) is satisfied:
x =y if and only if w,(x,y) = 0 for some A > 0.

Note that for a metric (pseudo)modular w on a set X, and any x,y€X, the function
A wy(x,y) is nonincreasing on (0, ). Indeed, if 0 < p < A, then

w/\(xay) Sw)\—#(xax) +w£l(x7y) = a).u(xvy)-

Note that every modular metric is regular but converse may not necessarily be true.

Example 2.27. Let X = R and w is defined by w,(x,y) = if A <1, and wa(x,y) = |[x — y| if
A =1, itis easy to verify that w is regular modular metric but not modular metric.

Definition 2.28. [13, 14] Let X,, be a (pseudo)modular on X. Fix xo € X. The two sets

Xy = Xo(x0) ={x€X:wr(x,x9) — 0 as A — oo}

and

X, =X (x0) ={xeX:31 = A(x) > 0 such that w,(x,x9) < oo}

are said to be modular spaces (around x).

Throughout this section we assume that (X, w) is a modular metric space, D be a nonempty
subset of X, and G:={G,, is a directed graph with V(G,) = D and ACE(G,)}.

Definition 2.29. [15, 16] The pair (D, G,,) has Property (A) if for any sequence {x,},y in D,
with x, — x asn — o and (x,, x,411) € E(G,), then (x,,x) € E(G,,), for all n.

Definition 2.30. ref. [17] Let FeF and G, €G. A mapping T : D — D is said to be F-G,-
contraction with respect to R : D — D if

i. (Rx,Ry)€E(Gy) = (Tx,Ty) €E(G,) for all x, ye D, i.e. T preserves edges w.r.t. R,
ii.  there exists a number T > 0 such that

w1(Tx,Ty) > 0 = t©+ F(w1(Tx, Ty)) <F(wi (Rx, Ry))

for all x, y € D with (Rx, Ry) € E(G,,).

Example 2.31. ref. [17] Let F € F be arbitrary. Then every F-contractive mapping w.r.t. R is an
F-G,-contraction w.r.t. R for the graph G, given by V(G,,) = D and E(G,) = D x D.

1"
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We denote C(T, R):={x €D : Tx = Rx} the set of all coincidence points of two self-mappings T
and R, defined on D.

Theorem 2.32. ref. [17] Let (X, ) be a regular modular metric space with a graph G,. Assume
that D = V(G,,) is a nonempty w-bounded subset of X, and the pair (D, G, ) has property (A)
and also satisfy Ay-condition. Let R, T : D — D be two self mappings satisfying the following
conditions:

i.  there exists xop € D such that (Rxo, Txp) € E(G,),

ii. T is an F-G,-contraction w.r.t R,

iii. T(D)CR(D),

iv. R(D) is w complete.

Then C(R, T) # Q.

Proof. See in [17]. O

3. Fixed point approach to the solution of differential equations

Next, we will show a differential equation which solving by fixed point theorem in suitable
spaces.

3.1. Ordinary differential equation

Lemma 3.1. ref. [18] u is a solution of u/(t) = f(t, u(t)) satisfying the initial condition u(ty) = ug
if and only if u(t) = up + f;f(s, u(s))ds.

Proof. Suppose that u is a solution of u'(t) = f(t, u(t)) defined on an interval I and satisfying
u(tp) = up. We integrate both sides of the equation u'(t) = f (¢, u(t)) from ty to ¢, where t is in I

Jt u'(s)ds = Jt f(s,u(s))ds

fo fo
t

u(t) —u(ty) = J f(s,u(s))ds.

to

Since u(ty) = up, we have

t

u(t) = uo +J Fs,u(s))ds, tel. 3.1)

to

We will show that, conversely, any function which satisfies this integral equation satisfies both
the differential equation and the initial condition. Suppose that u is a function defined on an
interval I and satisfies (3.1). Setting t = o yields u(ty) = 1y, so that u satisfies the initial
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condition. Next, we note that an integral is always a continuous function, so that a solution of
(3.1) is automatically continuous. Since both u and f are continuous, it follows that the inte-
grand f (s, u(s)) is continuous. We may therefore apply the fundamental theorem of calculus to
(3.1) and conclude that u is differentiable, and that is u/(t) = f(t, u(t)). O

The contraction mapping theorem may by used to prove the existence and uniqueness of the
initial problem for ordinary differential equations. We consider a first-order of ODEs for a
function u(t) that take value in R”"

w'(t) = f(t,u(t) (3.2)
M(fo) = Up. (33)

The function f (¢, u(t)) also take value in R" and is assumed to be a continuous function of t and
a Lipschitz continuous function of u on suitable domain.

Definition 3.2. Suppose that f : [ x R" — R" where [ is on interval in R. We say that (¢, u(t)) is
a globally Lipschitz continuous function of u uniformly in t if there is a constant C > 0 such that

If (£, u) — f(£,0) | <Cllu — | (3.4)

forall x,yeR" and all t 1.

The initial value problem can be reformulated as an integral equation.

t

u(t) = up + J f(s,u(s))ds. (3.5)

fo

By the fundamental theorem of calculus, a continuous solution of (3.5) is a continuously
differentiable solution of (3.2). Eq. (3.5) may by written as fixed point equation.

u="Tu

for the map T defined by

t

Tu(t) = uo —|—J f(s,u(s))ds.

fo

Theorem 3.3. ref. [19] Suppose that f : I x R" — R" where [ is on interval in R and ¢, is a point
in the interior of I. If f(¢,u), is a continuous function of (¢, u) and a globally Lipschitz continu-
ous function of u uniformly in f on I x R", then there is a unique continuously differentiable
function u : I — R" that satisfies (3.2).

Proof. We will show that T is a contraction on the space of continuous function defined on a
time interval ¢y <t <ty + 0, for sufficiently small 0.

Suppose that u, v : [ty, tp + 6] — R" are two continuous function. Then, form (3.4), (3.5) we
estimate,

13
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|Tu — To|, = sup |Tu(t) — To(t)]
to <t<to+d
t

— sup rj £(5,u(s)) — F(s,0(5))ds|

to<t<to+o Jio

< sup | )  fls.ofs)ds

to <t<to+0 Jio

< sup C|u(s)—v(s)|Jt ds

to <t<tp+0 to

Colu — v|...

IA

If follow that if 5< 1 then T is contraction on C([ty, fo + 6]). Therefore, there is a unique solution
u: [i’o,to + 6] — R

Let f(x,y) be a continuous real-valued function on [a,b] x [c,d]. The Cauchy initial value
problem is to find a continuous differentiable function y on [a,b] satisfying the differential
equation

d
D=y yo) =, (3.6)

Consider the Banach space Cla, b] of continuous real-valued functions with supremum norm
defined by ||yl = sup{y(x)| : x €[a,b]}.

Integrating (3.6), that yield an integral equation

X

v =+ | Fievoar (37)

X0

The problem (3.6) is equivalent the problem solving the integral Eq. (3.7).
We define an integral operator T : Cla, b] — Cla, b] by

X

Ty(r) =y, + | fltut)ar

X0

Therefore, a solution of Cauchy initial value problem (3.6) corresponds with a fixed point of T.
One may easily check that if T is contraction, then the problem (3.6) has a unique solution.

Theorem 3.4. ref. [20] Let f(x, y) be a continuous function of Dom(f) = [a,b] x [c,d] such that f
is Lipschitzian with respect to y, i.e., there exists k > 0 such that

If (x,u) — f(x,v)|<klu —v| forall u,v€lc,d] and for x € [a,b].

Suppose (xo,Y,) €int(Dom(f)). Then for sufficiently small & > 0, there exists a unique solution
of the problem (3.6).

Proof. Let M = sup{|f (x,y)| : x,y € Dom(f)} and choose h > 0 such that
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C={y e Clxo — I, xo + 1] : |y(x) — yo| <Mh}.

Then C is a closed subset of the complete metric space Cl[xo — I, xo + h] and hence C is com-
plete. Note T : C — C is a contraction mapping. Indeed, for x € [xo — h,xo + h] and two contin-
uous functions y,, y, € C, we have

1Ty, — Ty,ll = |l Lfof(x’%) _f(x’l/z)dt”
< lx—x| sup  kly;(s) — y,(s)l

s € [xo—h,xo+H]

khllyy =y, I

IA

Therefore, T has a unique fixed point implying that the problem (3.6) has a unique fixed point.

3.2. Ordinary fuzzy differential equation

Now, we consider the existence of solution for the second order nonlinear boundary value
problem:

X(t) = k(t,x(1), (), t€[0,A], A>0,

X(tl) = X1, (38)
x(t) = x2, t1, b e[0, A

where k : [0, A] x W(X) x W(X) — W(X) is a continuous function. This problem is equivalent
to the integral equation

53

x(t):J G(t, 5)k(s, x(s), ¥'())ds + B(t), te[0,Al, (39)

1]

where the Green’s function G is given by

ty— t)(s — ¢
B=DE—h) 4y cocre

th — 11
G(t,s) =
w if t1<t<s<t
th — t /" JTX

and p(t) satisfies B” = 0, B(t1) = x1, B(t2) = x2. Let us recall some properties of G(t,s), precisely
we have

b 2
J G(t.s)|ds< 2= B)
h 8

and

ty _
J |G(t,s)]|ds < (tzz—h)

f1

15
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If necessary, for a more detailed explanation of the background of the problem, the reader can
refer to the reference [21, 22]. Here, we will prove our results, by establishing the existence of a
common fixed point for pair of integral operators defined as

Ti(x)(t) = Jtz G(t,s)ki(s,x(s),x'(s))ds + B(t), te€[0,A], ie{l,2} (3.10)

t

where ki, k; € C([0, A] x W(X) x W(X), W(X)), xeC' (][0, A], W(X)), and g C([0, A], W(X)).
Theorem 3.5 ref. [6] Assume that the following conditions are satisfied:
i ki kot [0,A] x W(X) x W(X) — W(X) are increasing in its second and third variables,

ii. there exists xo € C'([0, A}, W(X)) such that, for all t € [0, A], we have
0(1)% | G5k (10009, 35(5))ds + ()

where t;, £, € [0, A],

iii. there exist constants y, 6 > 0 such that, for all t € [0, A], we have

ey (¢, x(8), X'(8) — ka(t, y(8), ¥ (D) < ylx(£) — y(B)] + Ol (£) — /' (1)l

for all comparable x, y € C' ([0, A], W(X)),

iv. fory,6 > 0and t;, t, € [0, A] we have

(tr —t)° +6(t2 —t)

1,
8 2 <

v. ifx,yeC ([0, A], W(X)) are comparable, then every u € (T1x), and every v € (Tay), are compa-
rable.

Then the pair of nonlinear integral equations

x(t) = f G(t,s)ki(s,x(s),x'(s))ds + B(t) te€[0,A], ie{l,2} (3.11)

has a common solution in C' ([t1, t,], W(X)).

Proof. Consider C = C'([t, t,], W(X)) with the metric

D(x,y) = max (y|x(t) — y()] + olx'(t) — y/'(£)))-

h<t<h

The (C,D) is a complete metric space, which can also be equipped with the partial ordering
given by

x,yelC, <x(t)<y(t) forall te|0,A].
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In [23], it is proved that (C, <) satisfies the following condition:

(r) for every nondecreasing sequence {x, } in C convergent to some x € C, we have x,<x for all
neNu{0}.

Let T1, T> : C — C be two integral operators defined by (3.10); clearly, T1, T — 2 are well defined
since ki, k;, and f are continuous functions. Now, x* is a solution of (3.9) if and only if x* is a
common fixed point of T and T.

By hypothesis (a), T1, T, are increasing and, by hypothesis (b), xo<T1(xp). Consequently, in
view of condition (r), hypothesis (i)-(iii) of Corollary 2.16 hold true.

Next, for all comparable x, y € C, From hypothesis (c) we obtain successively

T2 (x)(8) = Tz(y>(f)|SJ BIG(t, s)|Iky (s, x(s), x'(s)) — ki (s, y(s), Y (5))lds

f
<D(x,y) r |G(t,s)|ds (3.12)
t

(b—t) _8t1)2 D(x,v)

<

and

!’

(Ta(2)) (0= (Tay) (015 | £IGu(t3) e (5.3(5). () = (5.316).5/(5) s

<D(x,y J t(t,s)|ds (3.13)
2—t1)

<22 D y)

From (3.12) and (3.13), we obtain easily

D(Tix, Toy) < (y (t2 —8t1)2 +06 (t2 ; tl)) D(x,y).

Consequently, in view of hypothesis (d), the contractive condition (5) is satisfied with

b—t) (-t
q:y(2 )" sl —t)

1.
8 2 <

Therefore, Corollary 2.16 applied to T; and T,, which have common fixed point x* € C, that s,
x* is a common solution of (3.9). m

3.3. Second-order differential equation

Now, we consider the boundary value problem for second order differential equation

17
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{ X'(t) = —f(t,x(t)), tel, (3.14)

x(0) =x(1) =0,
where I = [0,1] and f : I x R — R. is a continuous function.

It is known, and easy to check, that the problem (3.14) is equivalent to the integral equation

x(t) = J: G(t,s)f(s,x(s))ds, for tel, (3.15)

where G is the Green’s function define by

H1—s) if 0<t<s<l
s(1—1t) if 0<s<t<l.

G(t,s) = {

That is, if x € C*(I,R), then x is a solution of problem (3.14) iff x is a solution of the integral
Eq. (3.15).

Let X = C(I) be the space of all continuous functions defined on I. Consider the metric-like o
on X define by

o(x,y) = lIx = ylle + [l + llyll forall x,ye€X,

where |[|u||.. = max; ¢ j|u(t)| for all u € X.

Note that o is also a partial metric on X and since
dﬁ(x’y):zzg(xay) - U(X,X) - ‘7(%]/) = 2||X - y”oo

By Lemma 2.20, hence (X, 0) is complete since the metric space (X, || - ||) is complete.
Theorem 3.6. ref. [12] Suppose the following conditions:

i.  there exist continuous functions p : I — R" such that
If (s,a) — f(s,b)|<8p(s)|a — b]

forallseland a, beR;

ii. there exist continuous functions g : [ — R such that
[f (s, @)l <8q(s)lal

forallsel and aeR;
iii. max,ep(s) = @Ay < g5, whichis0<a <%

iv.  maxsejq(s) = aly < g5 whichis 0<a < 1.

Then problem (3.14) has a unique solution u € X = C(I, R).
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Proof. Define the mapping T : X — X by

1

Tx(t) = J G(t,s)f(s,x(s))ds,

0

for all x € X and t € T. Then the problem (3.14) is equivalent to finding a fixed point u of T in X.

Let x, y € X, we obtain
1

1
7)) = Ty(0] = 1| Gltsiftsx(ods - | Gle.s)(s.o)ds

0 0

< L G(t,9)|f (s, x(s)) — f(s, y(s)|ds

1
< SJ G(t,s)p(s)|x(s) — y(s)|ds

0
< 8ady|lx — yll.. [; G(t,s)ds
= aMllx —yll..

In the above equality, we used that for each t€l, we have fol G(t,s)ds =5(1—t) and so

sup, ., J G(t,s)ds = L. Therefore,

ITx — Tyl <aAillx — Yl

Moreover, we have

1

Tx(t) = |J G(t,s)f (s,x(s))ds|

0

1
<8 Jo G(t,s)q(s)|x(s)|ds

< 8ads ||x|w-

Hence,

I Tx|l. < Az |lx]l...

Similar method, we obtain

ITyll. < aAz|lyll...

Lete ™™ = Ay + 24, < 1 where 7 > 0. Form (3.16), (3.17) and (3.18), we obtain

o(Tx, Ty) = |Tx — Ty|., + |Tx|., + |Ty|.,

IN

alilx —yl. + ady|x|. + alalyl.,
(A1 4 2A2)[(a)(|Tx — Ty|.. + | Tx|. + |Ty|..)]
= (e ")ao(x,y).

IA

(3.16)

(3.17)

(3.18)

(3.19)

19



20 Differential Equations - Theory and Current Research

LetB,y,1,6 > 0where p <1,y <1 n<1 6<1 Itfollowing (3.19), we get

o(Tx, Ty) < (e ") [ao(x,y) + Bo(x, Tx) + yo(y, Ty) + no(x, Ty) + do(y, Tx)], (3.20)

where a + B + 7 + 21+ 26 < 1. Taking the function F : R" — R in (3.20), where F(t) = In (),
which is F € F, we get

T+ F(o(Tx, Ty)) SF(ao(x,y) + po(x, Tx) +yo(y, Ty) + no(x, Ty) + 60(y, Tx)).

Therefore all hypothesis of Theorem (2.25) are satisfied, and so T has a unique fixed point
u € X, that is, the problem (3.14) has a unique solution u € C*(I). m

3.4. Partial differential equation

Consider the Laplace operator is a second order differential operator in the n-dimensional
Euclidean space, defined as the divergence (V-) of the gradient (Vf). Thus if f is a twice-
differentiable real-valued function, then the Laplacian of f is defined by

Af = V*f =V - Vf (3.21)

0 9

where the latter notations derive from formally writing V = (E '3

-, %) . Equivalently, the
Laplacian of f the sum of all the unmixed

n

Af =

i=0

<%
\,.’

(3.22)

Q
o

X

As a second-order differential operator, the Laplace operator maps C* functions to C*~? func-
tions for k>2. the expression (3.21)(or equivalently(3.22)) defines an operator A : CH(R") —
C*2(R") or more generator A : c®(Q) — c*2(Q) for any open set () Consider semilinear
elliptic equation. Look for a function u : Q CcR" — R" that solves

—Au=f(u) in Q (3.23)
u=1uy on 00 (3.24)
where f : R" — R" is a typically nonlinear function. Equivalently look for a fixed point of

Tu= () ™ (F(u).

Theorem 3.7. ref. [5] Let f € C(R) and sup, _p|f(x)| = a < . then (3.23) has a weak solution
ueH)(Q),ie.

J Vu - VOdx = J f(u)Ddx, VO e Cj(Q).
Q o}
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Proof. Our strategy is to apply Schauder’s Fixed Point Theorem to the map
T:L*(Q) — L*(Q)
s (=8) " (f(u),
where T is continuous. Lemma (2.9) show that u — f(u) is continuous form L*(Q) into itself.
Corollary (2.10) shows that (—A) ™' is continuous form L2(Q) into H}(C2), which is continu-

ously embedded in L*(Q). Find a closed, non-empty bounded convex set such that T : M — M.
Given u € L*(Q), Tu satisfies

J VTu - VTudx = J f(u)TudealQlllTulle(Q) (3.25)
Q Q

Cauchy-Schwarz. T here fore, using Ponincare’s inequality

2 2 2
1Tz ) < CEOQNTul 2 ) <alQUNTul 22 gy

Thus if we set R = a|Q|C(Q) and choose M = {u : ”M”iz(Q) SR}. We have established that
T:M — M, T is compact. Using Poincare’s inequality on the right-hand-side in (3.25), we
obtain. [[VTul[% ¢, <RIV Tull2 ). Thus T(M) C {u : el sR}, and since the embedding
of H'(Q) into L?(Q) is compact, T is compact. O

3.5. A non-homogeneous linear parabolic partial differential equation

We consider the following initial value problem

{ ur(x,t) = e (x, 1) + H(x, t,u(x, t), e (x, 1)), —o0 < x < o0,0 < t<T, (3.26)

u(x,0) = p(x) 20, —o0 < X < oo,
where H is continuous and ¢ assume to be continuously differentiable such that ¢ and ¢’ are
bounded.

By a solution of the problem (3.26), we mean a function u = u(x,t) defined on R x I, where
I:=[0, T}, satisfying the following conditions:

i u,up Uy, Uy € C(R X I). {C(R x I) denote the space of all continuous real valued func-
tions},

ii. wuand u, are bounded in R x I,
i, wp(x, ) = upe(x,t) + H(x, t,u(x, t), ue(x,t)) for all (x,t) eR x I,
iv.  u(x,0) = @(x) forallxeR.

It is important to note that the differential equation problem (3.26) is equivalent to the follow-
ing integral equation problem

21
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t

ux) = | K- &g+ |

0

J k(x — & t—)H(E, T, u(é, 1), u (&, 1))dédT (3.27)
forallxeR and 0 < t<T, where

k(x,t):= \/41771156%'

The problem (3.26) admits a solution if and only if the corresponding problem (3.27) has a
solution.

Let
Q:={u(x,t);u,uy €C(R x I) and ||u|| < o},
where
lull == sup |u(x,t)|+ sup |ux(x,t)].
xER, tel xeR, tel

Obviously, the function w : Rt x Q x Q — R, given by
wrla,oy= e~ ol = 1d(w0)

is a metric modular on Q. Clearly, the set (), is a complete modular metric space independent
of generators.

Theorem 3.8. ref. [17] Consider the problem (3.26) and assume the following:

i.  forc> 0 with |s|] < cand |p| < ¢, the function F(x,t,s,p) is uniformly Holder continuous
in x and f for each compact subset of R x I,

1
ii. there exists a constant ¢y < <T + ZH*%T%> <g, where g € (0, 1) such that

1
0< 3 [H(x,t,50,p,) — H(x,t,51,p;)]

< CH[S2_51_;p2_pl}

for all (s1,p,), (s2,p,) €R x R with s1 <s, and p; <p,,
iii. H is bounded for bounded s and p.
Then the problem (3.26) admits a solution.

Proof. It is well known that u € (), is a solution (3.26) iff u € (), is a solution integral Eq. (3.27).
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Consider the graph G with V(G) =D =Q, and E(G) = {(4,v)€D x D : u(x,t)<v(x,t)
and u,(x, t) <vy(x, t) at each (x,t) €R x I}. Clearly E(G) is partial ordered and (D, E(G)) satisfy
property (A).

Also, define a mapping A : Q, — Q, by

t

(A= | k= & (e + |

0

Jw k(x — &t —1)H(E, T, u(é, 1), u (&, 7))dédT

for all (x,t) €R x I. Then, finding solution of problem (3.27) is equivalent to the ensuring the
existence of fixed point of A.

Since (u,v) € E(G), (uyx,vy) € E(G) and hence (Au, Av) € E(G), (Auy, Avy) € E(G).

Thus, from the definition of A and by (ii) we have

TIA0) (1) — ()3, )

< H; Jl k(x — &t —T)|H(E, 1,0(&,7),0:(&, 7)) — H(E, T, u(&, T), ux (&, 7)) |dEdT (3.28)
< JO J‘;W — &= T)en | 11(0(€,T) — (&) + 0u(E,7) — (€, T))I]dédf
< ey (u,0)T.
Similarly, we have
%|(Av)x(x, B) = (Au),(x, D] < cywa(u,v) J; Jio ke (2 = &, = T)ldedT (329)

IN

2 Tocywy (1, v).
Therefore, from (3.28) and (3.29) we have
w)(Au, Av) < <T + ZN’%T%> cypwa(u,v)
ie.
w)(Au, Av)<qw,(u,v), g€(0,1)
ie.
d(Au, Av)<e "d(u,v), T > 0.

Now, by passing to logarithms, we can write this as
In (d(Au, Av))<In (e "d(u,v))
T+ In (d(Au, Av)) <In (d(u,v)).
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Now, from example 2.22 (i) and taking T = A and R = Z (Identity map), we deduce that the
operator T satisfies all the hypothesis of theorem 2.32.

Therefore, as an application of theorem 2.32 we conclude the existence of u* €}, such that
u* = Au* and so u* is a solution of the problem 3.26.
3.6. Fractional differential equation

Before we will discuss the source of fractional differential equation.

Cauchy’s formula for repeated integration. Let f be a continuous function on the real line. Then the
ny, repeated integral of f based at g,

f(in) (x) = Jx JO] JUZ rn]f(an)dan...dagdazdal

aJa a a

is given by single integration

£ () = ﬁj (x — " ()t

a

A proof is given by mathematical induction. Since f is continuous, the base case follows from
the fundamental theorem of calculus.

210 = 2| A= 5w

where

Now, suppose this is true for n, and let us prove it for n + 1.

Firstly, using the Leibniz integral rule. Then applying the induction hypothesis

f(—nJrl)(x) _ J J J nf(an+1)dan...d03d02d01
* 1 i n—1
= | o] @ - o,
| 1 1 "
| & [EJ (01— 1) f(t)dt] doy

This completes the proof. In fractional calculus, this formula can be used to construct a notion
of differintegral, allowing one to differentiate or integrate a fractional number of time.



Fixed Point Theory Approach to Existence of Solutions with Differential Equations
http://dx.doi.org/10.5772/intechopen.74560

Integrating a fractional number of time with this formula is straightforward, one can use
fractional n by interpreting (n — 1)! as I'(n), that is the Riemann-Liouville integral which is
defined by

1 X
o . _ o1
&) =t Lf(t) (x =7 dt.
This also makes sense if @ = —oo, with suitable restriction on f. The fundamental relation hold

L o150 = 1)

I*(I°f) = I""Ff (x)

the latter of which is semigroup properties. These properties make possible not only the
definition of fractional differentiation by taking enough derivative of I°f. One can define
fractional-order derivative of as well by

4
] —a
dxl! IEf

d(){
pri

where [-] denote the ceilling function. One also obtains a differintegral interpolation between
differential and integration by defining

4l
T [970¢(x) ifa>0
wrin ) odx
Duf () = f(x) ifa=0
If(x) ifa <O0.

An alternative fractional derivative was introduced by Caputo in 1967, and produce a deriva-
tive that has different properties it produces zero from constant function and more importantly
the initial value terms of the Laplace Transform are expressed by means of the value of that
function and of its derivative of integer order rather than the derivative of fractional order as in
the Riemann-Liouville derivative. The Caputo fractional derivative with base point x is then

4
dxl

“Dif (x) = 1970 — f(x).

Lemma 3.9. ref. [24] Let u : [0, ] — X be continuous function such that u € C(]0, 7], X) for all
7 > 0. Then u is a global solution of

Du(t) = Bu(t); t > 0 (3.30)

u(0) = up X (3.31)

if and only if u the integral equation

25
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u(t) = up +ﬁﬂ (t — )" ' Bu(s)ds, t>0.

Proof. (=) Let T > 0. Since u is a global solution of (3.30), then u € C([0, 7], X), “D{u € C([0, 1], X)
andt

‘Diu(t) = Bu(t), te(0,1].

Thus, by applying I¢ in both sides of the equality (since ‘D%u € L' (0, 7; X)) we obtain
t

u(t) = u(0) + I;Bu(t) = up + %ac)Jo (t — )" ' Bu(s)ds, t>0.

Since T > 0 was an arbitrary choice, u satisfies the integral equation for all >0, as we wish.

(<) On the other hand, choose t > 0 (but arbitrary). By hypothesis, u e C([0,7],X), and
satisfies the integral equation,

u(t) = uo + ﬁﬁ) (t—s)* 'Bu(s)ds, te|0,1].

Observing also u(0) = up and rewriting the equality above, we obtain
u(t) = u(0) +IyBu(s), te][0,1].

Since Bu(s) € C([0, 7], X), we conclude, by ‘D{I}f(t) = f(t) of the fractional integral and deriv-
ative property that we can apply °Df in both sides of the integral equation, obtaining

‘Diu(t) = Bu(t), te]|0,1]
what lead us to verify that “Dju € C([0, 7], X). Since T > 0 was an arbitrary choice, we conclude
that the function u is a global solution of (3.30). m
Theorem 3.10. ref. [24] Let a € (0, 1), B€ L(X) and u( € X then the problem (3.30).
have a unique global solution.
Proof. Choose T > 0. then consider K, = u € C([0, 7], X); u(0) = up and operator.

T : K