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Abstract

A golf ball having special dimples flies better than an analogous smoothed one. A
surprise is that there is a range of Reynolds numbers for which the turbulent drag is
somewhat less than that in the laminar case. Analogies always meet together and are
accomplished themselves in the physics. We have traced an effect similar to the above
mentioned in the area of solid mechanics when the nonlinear system passes through a
sequence of bifurcations. In mechanical engineering, the role of such a system can play a
solid-state wave gyro entering the family of MEMS/NEMS. It is known that a circular
Foucault pendulum can serve as an angular sensor. Standing waves in a thin-walled
elastic axisymmetric resonator of a solid-state wave gyro, mounted on a rotating plat-
form, can also detect a rotation rate. Because there are no typical mechanical parts there,
such wave sensors have advantages for long-term space missions. However, to main-
tain the functionality and sensitivity of a wave gyro in practice, the driving of standing
waves requires a sophisticated feedback control. Nonetheless, we have demonstrated
that such a gyro can operate without any feedback at the expense of the natural non-
linearity of the resonator in a postbifurcation regime.

Keywords: wave solid-state gyro, Foucault pendulum, spring pendulum, bifurcation,
stability

1. Introduction

It is well known that the aerodynamic drag is proportional, first of all, to the kinetic energy of a

flow. Moreover, the drag depends on a lot of other almost uncontrolled factors such as the

shape, size, inclination of the object in the flow, etc. Implicitly, all these are accumulated all

together in the following formula for the hydrodynamic resistance: cdrFV2=2, where r is the

density of a fluid or gas, V is the velocity of a flow, F denotes an effective area of the object, cd
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stands for the so-called drag coefficient being a dimensionless characteristic function versus

the Reynolds number. Recall that the Reynolds number is usually defined as Vl=ν, where l is an

effective length, ν is the kinematic viscosity coefficient. The function cd is respective for all the

uncontrolled points accompanying the interaction between the body and the flow. This func-

tion can be recorded experimentally using a wind tube. Experimental results obtained are used

to evaluate the drag on other similar objects. In particular, the similarity by the Reynolds

number ensures a correct description of viscous motions. Notice that the drag coefficient is

nearly a constant in a wide range of Reynolds numbers in most practical cases. As long as the

flow velocity would increase, the Reynolds number also increases. It is well known that in a

slow flow, the viscosity can be neglected in practice. In this case, one can observe almost an

ideal flow with no boundary layer near the surface. Therefore, there is almost no resistance to

the motion in accordance with well-known d’Alembert paradox. As the velocity increases

further, the drag becomes non-zero as a result of vortex generation. Then, these vortexes

oscillate to produce the so-called Kármán vortex street, while the drag increases gradually

together with the flow speed. At even higher velocity, the boundary layer turns into a chaotic

turbulent flow. It is natural to expect that the turbulent drag would be higher than that in the

laminar flow case. Nonetheless, a surprise is that there is a range of Reynolds numbers for

which the turbulent drag is somewhat less than that in the laminar case. It is observed

experimentally that a roughened cylinder or a ball will pass the turbulent flow at a lower

Reynolds number than a smooth cylinder or a ball. At first sight, this results in a rather

paradoxical result: there is a small range of Reynolds numbers for which the drag of a

roughened body is less than the drag of a smooth body of the same size. For a good example,

we can recall a golf ball having special dimples. Indeed, the golf with those dimples flies better

than an analogous smoothed one [1].

Physical analogies meet together and are accomplished themselves in most applications. Can

we find out an effect similar to the abovementioned dimpled ball that flies better in the area of

solid mechanics? We know that the hydrodynamic drag evolves throughout the sequence of

bifurcations. But any bifurcation is inherent in nonlinear systems. Therefore, our study should

deal with nonlinear mechanical systems. In mechanical engineering, the machines, sensors,

and other useful devices are of interest. One of them is a solid-state wave gyro from the family

of microelectromechanical system/nanoelectromechanical system (MEMS/NEMS) devices. Let

us briefly touch some key points of this topic.

In the nineteenth century, people held no doubt that the Earth is turning about its axis.

However, there were no direct proofs. For this reason, Léon Foucault had managed in 1851

his famous experiment with the giant pendulum. The heart of his experiment is the inertia of

the pendulum or the resistance to change the motion. This means that the swing plane remains

to be fixed in Newton’s absolute frame of references; moreover, this evidence can be traced

with the naked eye due to the slow clockwise veering since the Earth rotates anti-clockwise.

However, Foucault’s pendulum has one essential flaw, namely the dependence on the latitude

and its giant size suppressing the energy dissipation for a while. That is why, in 1852, though

an idea, we should note, was not new, Foucault produced a compact and convenient gyro-

scopic setup based on the immobility of the axis of a rotating mass. It was a prototype of a
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conventional gyro providing needed horizons at sea and then in the air. The irony of fate,

when the twentieth century was ending, the old idea came back to use a Foucault-pendulum-

based device as a high precision gyroscope, although, in the other role of a thin axisymmetric

solid-state resonator, associated with satellite guidance systems intended for long-term mis-

sions extending up to 15 years [6].

In 1890, Bryan demonstrated that the revolving of the standing wave nodes records effectively the

rotation of the elastic resonator, as equally as a material point tends to conserve the spatial

position in Newton’s space. This evidence was not so new. Yet before Bryan’s experiments, it

was well known that the plane of transverse vibration of a straight wire will remain fixed in space

instead of turning, though the wire rotates slowly about its axis during oscillations. Bryan noticed

that when the vibrating body is such as a bell, rotation about its axis will produce an intermediate

effect: the nodal meridians revolve with angular velocity less than that of the resonator that

exhibits a new finding which yet nothing is easier than to be verified experimentally. He selected

a champagne glass, then struck it to get a pure tone andwhen the glass turns around, Bryan heard

sound beats demonstrating that the nodal meridians do not remain fixed in Newton’s absolute

space. He evaluated that the nodal angular velocity is about 3/5 of this almost hemispherical

resonator [7]. Although, only in the second half of the twentieth century, Bryan’s effect gets a wide

extent turning into a concept of a prototype of an angle sensor that possesses a lot of advantages

compared with a conventional gyro because its core is a monolith [8–10]. Moreover, if the power

of the wave gyro is lost for a short time, the resonator conserves the angular rate, so that when the

power returns, the gyro need not be reinstalled, etc., unlike, for instance, optical gyroscopes.

Let us now recall some mathematical aspects of the problem along the natural evolution of

ideas. The role of the most simple mechanical system, appearing as an abstract oscillatory gyro

in vitro, can play a circular Foucault pendulum. The corresponding mathematical model can be

given by the following two differential equations:

€x � 2Ω sinw _x þ ω2x ¼ 0;

€y þ 2Ω sinw _y þ ω2y ¼ �rΩ2 sinw cosw,
(1)

where w defines the latitude of geographical place;Ω is the Earth’s angular velocity in absolute

value; r is the Earth’s radius plus a distance from the point where the pendulum is suspended.

It is supposed that Earth rotates about the axis z. Here, x tð Þ and y tð Þ denote the pair of

projections of infinitesimal oscillations of the bob, weight mg, in the rotating Cartesian frame

of references O; x; y; zð Þ. The origin O belongs to the Earth’s center while the plane O; x; zð Þ

passes through both poles. For operating such a gyro in vita, the pendulum should be excited

to vibrate. Moreover, the amplitude of oscillations has to be maintained on some sensitive level

because of energy dissipation. The presence of damping requires permanently pumping the

energy into these oscillations by external forces for a permanent operating.

Almost a half century later, Bryan has derived his equation describing two similar vibration

forms which, traveling toward a thin rotating ring, produce phenomena of beats, and which, in

the case of high-frequency oscillations like those of sound, can detect effects of slow rotation

about the sensitivity axis:
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vt, t � vθ,θ, t, t � 4ωvθ, t þ ω2 � μ
� �

vθ,θ þ
T 2vθ,θ þ vθ,θ,θ,θð Þ

σa2

¼
β vθ,θ,θ,θ,θ,θ þ 2vθ,θ, t, t þ vθ,θð Þ

σa4
:

(2)

Here, v ¼ v θ; tð Þ and w θ; tð Þ are the tangential and radial components of displacements mea-

sured in the rotating polar frame of references; aþ w;θð Þ, at time t. The symbol ω denotes the

angular rate; a is the radius of the ring; σ is mass density; T ¼ σa2 ω2 � μ
� �

stands for an

attractive force μ, times the distance, directed toward the axis. We can consider this model of

the circular ring as a prototype of a solid-state wave gyro to trace the precession of the flexural

standing wave in vacuo, that is, in the absence of damping. However, the energy dissipation

always presents in nature. Therefore, this system requires some external feedback control to

supply the wave motion. The principal parametric resonance is a good way to excite such a

gyro by driving the axisymmetric tension T. Nonetheless, some feedback is in need since the

parametrically excited oscillations are always unstable either in the presence or in the absence

of damping [8]. To maintain the functionality as well as the sensitivity of a conventional wave

gyro in practice, the driving of standing waves requires a sophisticated feedback control to

eliminate the unstable oscillations caused by their parametric excitation. Therefore, such a kind

of wave excitation looks as not quite satisfactory from the viewpoint of actuation, driving or

stability properties. Since the linear theory is not able to achieve the desired goal, it is necessary

to look for other theoretical tools within the nonlinear wave dynamics. Our thought is to use

the exclusive property of the axisymmetric mode of the ring to control the amplitude of

flexural waves in the gyro in the presence of energy dissipation, just to use this one as a sort

of catalysator in the dynamical process. This chapter demonstrates that when both the primary

resonant pumping over the axisymmetric mode and the principal parametric resonant excita-

tion are combined, such a gyro can operate without any feedback, just at the expense of the

natural nonlinearity of the resonator in a post-bifurcation regime.

2. Spring pendulum

Before all the theoretical approaches related to a wave resonant solid-state gyro, it may be of

place to consider a most simple mechanical system which behaves analogously and contains

no excess detail, in order to explain from first principles why the nonlinearity stabilizes

unstable parametric oscillations, at the expense of resonance experienced in the mechanical

system. The best candidate seems to be a spring pendulum.

Therefore, let us consider a pendulum swinging in a plane and consisting of a bob of mass m

attached to a spring with the stiffness k and of the natural length l. Under the Earth gravity, the

equilibrium length of the pendulum becomes lþ Δ, where Δ ¼ mg=k denotes the spring elon-

gation. After introducing the time-dependent radial coordinate r tð Þ, perpendicularly to the

pivot of the spring, and the angle θ tð Þ between the spring and the vertical, the equations

governing the motion can be derived easily by using the following Lagrangian function:

L ¼ m _r2 þ lþ rð Þ2 _θ2 � _r2 þ lþ rð Þ2 _θ2
� �

=2
h i

þ kr2=2þmg lþ rð Þ1� cosθ� r½ �: (3)
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Alternatively, we may follow the Hamiltonian approach:

H ¼
p21
m

þ
p22

m lþ q1
� �2

�
1

2m

p21
m2

þ
p22

lþ q1
� �2

m2

 !

þ
kq21
2

þmg lþ q1
� �

1� cos q2
� �

� q1
� �

, (4)

and then writing the following set of Hamiltonian equations:

_q1 ¼
p1
m

; _q2 ¼
p2
m

lþ Δþ q1
� ��2

;

_p1 ¼
p22
m

lþ Δþ q1
� ��3

� kq1 þmg cos q2 � 1
� �

;

_p2 ¼ �mg lþ Δþ q1
� �

sin q2,

(5)

where q1 ¼ r, q2 ¼ θ, p1 ¼ m _r, p2 ¼ m lþ rð Þ2 _θ are the canonical coordinates. For further prep-

arations, it is convenient to pass from the physical coordinates to dimensionless variables:

t ¼ τ=Ω1; p1 ¼ lmΩ1 z3; p2 ¼ l2m Ω
2
1 þΩ

2
2

� �2
z4=Ω

3
1; q1 ¼ lz1; q2 ¼ z2, where Ω1 ¼

ffiffiffiffiffiffiffiffiffi

k=m
p

and

Ω2 ¼
ffiffiffiffiffiffiffi

g=l
p

denote the natural radial and angular frequencies of the pendulum with an

inextensible thread at small oscillations. Notice that the angular frequency would be somewhat

lower in the case of extensible thread, namely ν ¼ Ω2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω
2
1 þΩ

2
2

q

. In the new dimensionless

variables, equations of infinitesimal oscillations would read

dz1
dτ

¼ z3;
dz2
dτ

¼ z4;

dz3
dτ

¼ �z1;
dz4
dτ

¼ �ν2z2:

(6)

Let us now consider small-but-finite oscillations of the pendulum. In this case, the general

solution to the set (6) can be represented as follows:

z1 τð Þ ¼ �μA1 Tð Þ cos w1 Tð Þ þ τð Þ;

z2 τð Þ ¼ �μ A2 Tð Þ cos ντþ w2 Tð Þð Þ=ν;

z3 τð Þ ¼ μA1 Tð Þ sin w1 Tð Þ þ τð Þ;

z4 τð Þ ¼ μA2 Tð Þ sin ντþ w2 Tð Þð Þ

8

>

>

>

<

>

>

>

:

(7)

to look for solutions to Eq. (5) with unknown amplitudes Ai and phases wi slowly evolving in

the new slow time T ¼ μτ, where μ is arbitrary small-scaling parameter. The substitution from

Eq. (7) into Eq. (5), and ordering in μ, yields the following set of first-order approximation

evolution equations:

dA1

dT
¼ �

A2
2

2
sinΦ;

dA2

dT
¼

9A2A1

32
sinΦ;

dΦ

dT
¼

9A1

16
�
2A2

2

A1

� �

cosΦ,

(8)
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under the one assumption that the following integer-valued ratio between the frequencies,

manifesting the primary parametric resonance, that is, 1 : ν ¼ 1 : 2, takes place. Notice that the

set (8) contains the so-called generalized phase Φ Tð Þ ¼ w1 Tð Þ � 2w2 Tð Þ, as the unknown vari-

able. The set (8) is of Hamiltonian structure. So, the related average Hamiltonian function reads

A2
2 Tð ÞA1 Tð Þ cosΦ Tð Þ ¼ A2

2 0ð ÞA1 0ð Þ: (9)

Moreover, Eq. (8) posses one more additional integral of motion:

E ¼
9A1

2

32
þ
A2

2

2
, (10)

where E ¼ 9A2
1 0ð Þ=32þ A2

2 0ð Þ=2 is the average kinetic energy of the pendulum defined at the

initial instant of time. These two integrals, Eqs. (9) and (10), allow us to integrate the set (8)

analytically in terms of Jacobi elliptic functions [3].

Let us now refer to the damped forced motion of the pendulum. In this case, equations

governing the motion (5) can be easily modified to the following form:

_q1 ¼
p1
m

; _q2 ¼
p2
m

lþ Δþ q1
� ��2

;

_p1 ¼
p22
m

lþ Δþ q1
� ��3

� kq1 þmg cos q2 � 1
� �

� 2μδp1 � μF cos Ω1tþ ψ1

� �

;

_p2 ¼ �mg lþ Δþ q1
� �

sin q2 � 2μδp2,

(11)

where δ is the viscous drag coefficient; F is the amplitude of an external harmonic force acting

at the resonant frequency of free radial oscillations of the pendulum. We can utilize the same

anzats (7) to derive the truncated set of modulation equation for slowly varying amplitudes

and phases. Small parameter μ emphasizes that both the damping and forcing are small but

finite. After the substitution from Eq. (7) into Eq. (11), and ordering in μ, the first-order

approximation evolution equations describing the resonant excitation of the pendulum over

the radial mode can be written as

dA1

dT
¼ �A2

2 sinΦ=2þ G�ΛA1;

dA2

dT
¼

9A2A1 sinΦ

32
�ΛA2;

dΦ

dT
¼ �

A2
2

2A1
þ
9A1

16

� �

cosΦ:

(12)

These equations take in a natural manner into account the so-called triad-angle locking phe-

nomenon described in [2], when both the phase of external force and the phase of radial

oscillations have to be coupled, that is, �w1 Tð Þ þ ψ1 ¼ π=2, accordingly the phase matching

conditions. Notice that the parameter G ¼ F=6mg, entering Eq. (12), is interpreted as the

dimensionless force, while Λ ¼ δ=Ω1 stands for the dimensionless drag coefficient.

In the case of stationary motion, when the amplitudes are constants, Eq. (12) produces the

following algebraic set of equations:
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�A
2
2=2þ G�ΛA1 ¼ 0;

9A2A1

32
�ΛA2 ¼ 0; Φ Tð Þ ¼ π=2, (13)

having the following solutions:

A1 ¼
G

Λ
, A2 ¼ 0, when K ≤

32Λ2

9
; (14)

and

A1 ¼
32Λ

9
, A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18G� 64Λ2
p

=3, as K >
32Λ2

9
: (15)

These solutions, Eqs. (14) and (15), are plotted in Figure 1. As we can see, the dimensionless

parameter K plays the role of control parameter governing the bifurcation of the system. The

stationary solution (14) near the bifurcation point K ¼ 32Λ2=9 becomes unstable and gives

way to the new stationary steady state (15).

Figure 1. Bifurcation diagram—Amplitudes of radial and angular modes versus control parameter K. Solid circles refer to

stable angular oscillations, circles mark stable radial oscillations. Crosses denote unstable radial mode. Change in the

stability takes place near the bifurcation point K (parameter Λ ¼ 3=8
ffiffiffi

2
p

has been scaled arbitrary for the best view).
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To examine the stability properties without any excess mathematical preparations, let us

analyze the power of drag forces using the energy balance resulted from the set (12):

d

dT

9A2
1

16
þ A2

2

� �

¼ �Λ
9A2

1

16
þ A2

2

� �

þ
9GA1

16
: (16)

For the stationary orbits, the left-hand term of this equation is zero. Since the right-hand term,

representing changes of the average kinetic energy in time, is also zero, then the power of drag

forces should be, in turn, proportional to the kinetic energy with a negative sign. The diagram

of the average kinetic energy as the function of control parameter K is shown in Figure 2. As

we can see, the power of drag forces reduces after the bifurcation under the same external

harmonic excitation. This means stability.

Let us now refer to the original Eq. (11) to verify results yielded by the modulation theory. To

plot the numerical results, we have used the following transform: t ¼ τ

ffiffiffiffiffiffiffiffiffi

m=k
p

; p1 tð Þ ¼ lm
ffiffiffiffiffiffiffiffiffi

k=m
p

z3 τð Þ; p2 tð Þ ¼ m
ffiffiffiffiffiffiffiffiffi

k=m
p

mgþ lkð Þ2z4 τð Þ=k2; q1 tð Þ ¼ lz1 τð Þ; q2 tð Þ ¼ z2 τð Þ, from the physical

to dimensionless variables. The numerical parameters of the system are chosen by us as

Figure 2. Bifurcation diagram—Average kinetic energy versus control parameter K. Solid lines refer to stable oscillations

while dotted line marks unstable regime of oscillations. Parameter Λ is the same as in Figure 1.
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follows: F ¼ 1:0 N; β ¼ 0:01 kg=s; δ ¼ 0:01 s�1; g ¼ 9:8m=s2; k ¼ 29:40 kg=s2; l ¼ 1:0m;

m ¼ 1:0 kg.

Since we are studying a damped forced motion, the initial conditions to the governing equa-

tions rewritten in terms of either the physical or the dimensionless variables zi τð Þ cannot play

any role at large times, though we have decided to start in our calculations from the static

equilibrium point. Figure 3(a) displays the time history of the radial coordinate of the system

governed by Eq. (11), rewritten in new dimensionless variables zi τð Þ, while the evolution of the

angular oscillations is shown in Figure 3(b). Figure 4 displays a typical Lissajous curve that

appears on z1; z2ð Þ cross section of the four-dimensional phase space for the fully developed

stationary state. Figure 5 shows individual cross sections related to the radial and angular

vibrations in the developed stationary regime of oscillations. Finally, Figure 6 exhibits the

evolution of the Hamiltonian function (4) or the energy of the system (11) in comparison with

that one where the angular coordinate is fixed to zero but the force excitation remains the

same. Notice that if the angular coordinate is fixed, then the pendulum just performs linear

oscillations in the radial direction.

In new dimensionless variables zi τð Þ, the energy of the oscillating pendulum is given by the

following explicit expression:

E τð Þ ¼
1

18 z1 þ 1ð Þ2
�54 z1 þ 1ð Þ3 cos z2 þ 81z41 þ 162z31þ

81z23 þ 135
� �

z21 þ 162z23 þ 108
� �

z1 þ 81 z23 þ 256z24 þ 54

 !

: (17)

Mathematically, the above results represent direct proofs that in our case the modulation

theory has more advantages in comparison with numerical investigations. At small and even

moderate oscillations, this asymptotic approach allows us to make up a complete parametric

analysis of the system under the study. Pragmatically, stability properties demonstrated using

the above example of a spring oscillator in post-bifurcation regime can be used when design-

ing an idea of a high-precision angular sensor which can appear in the form of a circular

Foucault pendulum, in most simple case, or as a solid-state wave gyro with axisymmetric

resonator in more general case (for instance, see [4, 5] and references therein).

(a) (b)

Figure 3. The evolution of the damped forced radial coordinate of the pendulum in time τ (a) and the time history of the

resonantly excited angular coordinate of the pendulum in time τ (b).
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Gradually, one may always construct an appropriate theory by further developing the model

given by Eq. (1). Nonetheless, here we decided to invoke more general case in our consider-

ation, namely a thin-ring resonator of which is described in detail in [11].

3. Thin-ring resonator

In order to define the in-plane position in a thin-ring resonator, thickness h and radius R,

rotating with angular velocity Θ about its sensitive axis, we introduce the two frames of polar

Figure 4. The evolution of the damped forced radial coordinate of the pendulum in time τ.

(a) (b)

Figure 5. Cross sections of the phase space demonstrating individual dynamical behavior over the radial (a) and angular

coordinates (b) at the damped forced oscillations in a spring pendulum in time τ.
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coordinates in the absolute Newton’s space Rþ w;fþ v=Rð Þ and in the rotating plane

Rþ w;wþ v=Rð Þ where both have the same center as pole. Here, w and v are radial and

tangential displacements of the ring, respectively. Therefore, we shall have

f ¼ wþΘt,

if the ring rotates uniformly in time t. Also, we may suppose that the angular rate as a slowly

varying function of time. In this case, the latter expression is slightly modified by the following

integral:

f ¼ wþ

ð

t

t0

Θ τð Þdτ:

Equations of motion are derived from the theory of thin-walled shells that uses Kirchhoff-Love

hypotheses. So, the field of displacements in the ring is expressed as u sð Þ ¼ v� ζ ws � v=Rð Þ and

u ζð Þ ¼ w, where v ¼ v s; tð Þ and w ¼ w s; tð Þ are the components of displacements, rewritten as

functions of the circumferential coordinate s; ζ is the distance from the mid-line along the radius.

In the rotating frame of references, the Lagrangian density of the system reads

L ¼
rF

2
vt þΘwþ RΘð Þ2 þ wt �Θvð Þ2

h i

�
EFκ2

2R2
v2 �

1

2

ð

h=2

�h=2

Ee2ssdζ,

Figure 6. Energy of the pendulum becomes some lower in comparison with the same system with fixed angular

coordinate. Dashed line refers to a spring pendulum with constrained to zero angular coordinate.
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where E is Young’s modulus; F denotes cross-section square; r is mass density; κ characterizes

the stiffness of the rotating platform of the ring; ess ¼ vs þ w=Rþ ξ ws, s � vs=Rð Þ þ w2
s=2 is the

circumferential component of the deformation tensor. According to paradigms of the varia-

tional analysis, equations governing the motion in the ring have the following form:

L _vð Þt þ Lvsð Þs � Lv ¼ Q vð Þ �R _v ;

L _wð Þt þ Lws
ð Þs � Lws, s

� �

s, s
� Lw ¼ Q wð Þ �R _w ,

(18)

where Q vð Þ and Q wð Þ are introduced as generalized forces; the function R ¼ ηK, expressed

through the kinetic energy K, is respective for the energy dissipation model linearly scaled by

the coefficient η. For further preparations, it seems to be continent to rearrange these equations

to dimensionless notation:

€v þ 2μΩ _w þ μ _Ωwþ _Ω=e� μ2Ω
2v� Vw þ e

2Ww,w þ κ2v ¼ eμ

2
w2

w

� �

w

þQv;

€w � 2μΩ _v � μ _Ωv� μ2Ω
2w� μΩ2=eþ V þ e

2Ww,w,w

¼ eμ Vww

� �

w
þ
w2

w

2

" #

þ e
2μ2

2
w3

w

� �

w

þQw,

(19)

where e ¼ h=
ffiffiffiffiffi

12
p

R≪ 1 is the relative thickness of the ring; small parameter μ ¼ a=R≪ 1 is

intended for making up further procedures of the perturbation analysis; the functions

V ¼ vw þ w and W ¼ ww � v are written for brevity. The transform to these dimensionless

variables reads: v τ;wð Þ ! v s; tð Þ=μa; w τ;wð Þ ! w s; tð Þ=μa; w ¼ s=R; τ ¼ tc=R; Ω τð Þ ¼ Θ tð ÞR=
μc. Here, c ¼

ffiffiffiffiffiffiffiffi

E=r
p

denotes the wave propagation velocity; a ¼ h=
ffiffiffiffiffi

12
p

.

Finally, we should provide the set (19) by the periodicity conditions

v w; τð Þ ¼ v wþ 2π; τð Þ; w w; τð Þ ¼ w wþ 2π; τð Þ: (20)

3.1. Dispersion relation

For studying the wave propagation in the rotating frame of references, it is convenient to

define linear modes of oscillations in the ring on the fixed platform. If the rotation is absent,

then the normal modes of vibrations represent standing waves being a superposition of two

waves traveling toward identical wave numbers, frequencies as well as amplitudes. First of all,

we should understand how the spectrum of these oscillatory modes would change in the

uniformly rotating ring. Are there the standing modes taking place? And if these cannot be

detected, then, what thing should we invoke instead into our study? We know that the

precession of waves appears as a reaction on the rotation. Therefore, there will be expected

some asymmetry in the polarization vectors of traveling waves. One more finding is we know

that the precession rate of waves has to be proportional to the difference between the frequen-

cies in the wave pair as if those compose a standing wave in the ring being at rest. Let the

angular rate in the ring be constant and then the wave precession should appear as some sort

of kinematic reactions on the rotation of the ring platform. But if the platform rotates with

acceleration, then we can expect a kind of some dynamical response that may appear as
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essentially differ from kinematic one. Fortunately, experiments with revolving axisymmetric

bodies tell us that the expression for the uniformly rotating ring, which will be done subse-

quently, is equally valid in both cases of the uniformly rotating ring and in the motion with

arbitrary, but moderate, angular acceleration [8].

In the case of uniform rotating, a simple solution of the linearized set (19) is given by

v τ;wð Þ ¼ �
μΩ

2

e μ2Ω
2 � 1

� �þ B exp i nwþ ωτð Þ; w τ;wð Þ ¼ A exp i nwþ ωτð Þ,

Here, we can trace the appearance of the constant extension in radial direction caused by the

centrifuge force. Notice that the amplitudes, A and B, entering therein, are linearly interrelated,

that is, B ¼ pA, through the interrelation coefficients, p, defined for both the high- and low-

frequency sets of normal modes:

pk,n ¼ �
i 2μΩωk,n þ n 1þ e

2n2
� �� �

n2 1þ e
2ð Þ þ κ2 � ω2

k,n þ μ2Ω
2

� � : (21)

The high- and low-frequency branches are indexed by k ¼ 1 and k ¼ 2, correspondingly. Recall

from the linear algebra that these coefficients should satisfy the orthogonality condition, that

is, p1,np2,n ¼ �1, for arbitrary wave number n, excluding the one case of linearly decoupled

oscillations, taking place at n ¼ 0, that is, at axisymmetric radial oscillations. The natural

frequencies of waves, ωk,n, are defined by the dispersion relation

n2 1þ e
2

� �

þ κ2 � ω2 þ μ2
Ω

2
� �� �

1þ e
2n4 � ω2 þ μ2

Ω
2

� �� �

� 2μΩω� n 1þ e
2n2

� �� �2
¼ 0:

(22)

Let the angular velocity be zero and then the dispersion relation turns into the simple algebraic

equation

�n6e2 � e
2 �ω2 � 2þ κ2
� �

n4 þ ω2 � 1
� �

e
2 þ ω2

� �

n2 � ω4 þ 1þ κ2
� �

ω2 � κ2 ¼ 0, (23)

Two identical ones of all the four roots of Eq. (23) are shown in Figure 7. The low-frequency

branch refers in general to the bending modes while the high-frequency ones reply mainly to

the circumferential modes of extension.

In the case of a small angular rate, that is, Ω≪ωk,n, the roots of the dispersion relation (22) are

approximately represented as follows:

ωk,n Ωð Þ ≈ωk,n 0ð Þ þ
2μΩn 1þ e

2n2
� �

1þ e
2n4 þ 1þ e

2ð Þn2 þ κ2 � 2 ωk,n 0ð Þð Þ2
: (24)

It may not, perhaps, be out of place to note that these roots possess by asymmetry because of the

angular rate. Nonetheless, each frequency, ωk,n, can be decomposed on the antisymmetric term

as well as on the symmetric part. The antisymmetric term is respective for the wave precession

caused by the ring rotation while the symmetric one describes a small inessential correction.
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4. Nonlinear resonant coupling between the axisymmetric radial

oscillation and two similar bending wave forms being in phase

This section invokes briefly some general points from the common theory of waves, including

understanding phenomena of resonance experienced in nonlinear mechanical systems and

some mathematical preparations which are necessary to investigate the given problem from

the viewpoint of the perturbation analysis, using methods of slowly varying amplitudes and

phases. Then, we generalize the problem by considering the case of damped forced oscillations

in a thin circular ring. This generalization of the problem leads to a thought on how to excite

stable wave precession regimes which need no feedback to repair unwanted motions in the

solid-state wave gyro.

4.1. Triple-mode resonant coupling between waves in the ring

Truncated equations or evolution equations describing the modulation phenomena of ampli-

tudes and phases can be directly obtained using the following anzats [12–15]:

v τ;wð Þ ¼
X3

k¼1

pkAk Tð Þexp ifk; w τ;wð Þ ¼
X3

k¼1

Ak Tð Þexp ifk, (25)

which represent an approximated solution to Eq. (19). Here, Ak Tð Þ (k ¼ 1::3) are the slowly

varying complex wave amplitudes, evolving at slow time T ¼ μτ; f1 ¼ nwþ ω1τ, f2 ¼

�nwþ ω1τ, f3 ¼ ω3τ are the fast rotating phases; ∗ð Þ denote the complex conjugation. Notice

that the amplitude and phase number three refer to the axisymmetric radial oscillation of the ring.

Figure 7. The high- and low-frequency dispersion branches for waves on the fixed platform (e ¼ 0:01, κ ¼ 0:45, Ω ¼ 0).
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We assume that the angular rate and acceleration of the ring are small enough, that is,

Θ τð Þ � μ and dΘ=dτ � μ2. Also, we should suppose that spectral parameters of waves in the

solution (25) are matched by the following phase synchronicity conditions:

ω3 ¼ ω1 þ ω2 þ μΔω, (26)

where Δω denotes a small discrepancy between the phases of the high-frequency axisymmetric

radial oscillation and two low-frequency quasi-harmonic waves with amplitudes, numbers one

and two. Certainly, all the frequencies ω1, ω2, ω3 and the wave numbers �n should satisfy the

dispersion relation (23). In the theory of nonlinear waves, such a trio is used to name a resonant

triplet while the synchronicity (26) is associated with the so-called phase-matching conditions.

One more convenient way of obtaining the evolution equation is walking down along the

Hamiltonian formalism. Let us consider the average Lagrangian of the system

Lh i ¼
1

2π

� �3 ð2π

0

ð2π

0

ð2π

0

Ldf1

� �

df2

� �

df3, (27)

in order than to expand this one in a formal series in small parameter μ as follows:

Lh i ¼ L0 þ μL1 þ μ
2
L2 þ…,

Here, zero-order approximation term, that is, L0 ¼ 0, would coincide exactly with the disper-

sion relation, accordingly to findings of Whitham [16]. The second term L1, entering this

expansion, describes effects arising in the first-order nonlinear approximation analysis which

we need to study here. Then, the nontrivial average Hamiltonian of the system would read

H ¼
X

3

k¼1

Ak,T
∂L1

∂Ak,T
þ Ak,T

∂L1

∂Ak,T

 !

� L1,

In this case of resonant coupling between the axisymmetric radial oscillation and two low-

frequency bending waves, being in phase (26), this average Hamiltonian is rearranged in more

pragmatic form

H ¼ 2iΩ
X

2

j¼1

ωj pj � pj

� �

Aj

	

	

	

	

2
þ en2 A1A2A3exp iΔωTð Þ þ A1A2A3exp �iΔωTð Þ


 �

: (28)

Recall that the bending wave frequency ω ¼ ω1 ¼ ω2 should be close to the frequency ω3=2

that denotes the frequency of the axisymmetric radial oscillation, that is, ω3 ¼ 1. Note that the

case under consideration is associated with the principal parametric resonance. His Hamiltonian

produces a set of following evolution equations:

dA1

dT
¼

2Ω p1 � p1
� �

1þ p2
A1 �

ien2

ω 1þ p2ð Þ
A2A3e

iΔωT

dA2

dT
¼

2Ω p2 � p2
� �

1þ p2
A1 �

ie n2

ω 1þ p2ð Þ
A1A3e

iΔωT ;

dA3

dT
¼ �ie n2A1A2e

�iΔωT ,

(29)
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where pk ¼ �1ð Þkin 1þ e
2n2

� �

= 1þ e
2

� �

n2 � ω2
� �

are the wave polarization coefficients which

satisfy the equality p ¼ p1
	

	

	

	 ¼ p2
	

	

	

	, due to the symmetry of the problem.

Now, we use the following transform of variables:

A1 ¼ a1exp
2 p1 � p1
� �

1þ p2

ð

T

0

Ω ςð Þdς

0

@

1

A;

A2 ¼ a2exp
2 p2 � p2
� �

1þ p2

ð

T

0

Ω ςð Þdς

0

@

1

A;

A3 ¼ a3,

(30)

that allows us to rewrite the set (29) by getting rid of Coriolis terms:

da1
dT

¼ �
ien2

ω 1þ p2ð Þ
a2a3e

iΔωT ;

da2
dT

¼ �
ien2

ω 1þ p2ð Þ
a1a3e

iΔωT ;

da3
dT

¼ �ien2a1a2e
�iΔωT ,

(31)

Eq. (32) have now obtained a standard form similar to Euler’s kinematic equations describing

rotation of a rigid body with a fixed point. This set can be integrated exactly in terms of the

Jacobi elliptic functions [17]. Also, here is a place to note that in the theory of nonlinear waves

similar equations describe break-up instability phenomena when the high-frequency mode

becomes unstable triad with respect to small low-frequency perturbations [12].

4.2. Resonant excitation of the gyro

Let us invite in our consideration the generalized forces describing the damping and forcing of

the ring resonator over the axisymmetric form of oscillation. By substituting the terms

Qv ¼ �2μη _v; and Qw ¼ �2μ η _w �Q cosϖ τð Þ into Eq. (19), we can obtain, after the exchange

of variables (30), the following set of evolution equations:

da1
dT

¼ �ηa1 �
ien2

ω 1þ p2ð Þ
a2a3e

iΔωT ;

da2
dT

¼ �ηa2 �
ien2

ω 1þ p2ð Þ
a1a3e

iΔωT ;

da3
dT

¼ �ηa3 þ iQeiδT=2� ien2a1a2e
�iΔωT ,

(32)

that can be rewritten, after one more exchange of variables; aj Tð Þ ¼ bj Tð Þeiwj Tð Þ, in terms of real-

valued amplitudes and phases:
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db1
dT

¼ �ηb1 þ
en2b2b3 sinψ

ω 1þ p2ð Þ ;

db2
dT

¼ �ηb2 þ
en2b1b3 sinψ

ω 1þ p2ð Þ ;

db3
dT

¼ �ηb3 � en2 b1b2 sinψþQ sin δT � w3ð Þ=2;

dψ

dT
¼ �Δωþ�2n2e b21 ω 1þ p2

� �

b22 � b23
� �

� b22b
2
3

� �

cosψþ ωb1b2Q cos δT � w3ð Þ 1þ p2
� �

2ω 1þ p2ð Þb1b2b3
;

dw3

dT
¼ �en2b1b2 cosψ=b3 þQ cos δT � w3ð Þ=2b3,

(33)

where ψ Tð Þ ¼ w3 Tð Þ � w2 Tð Þ � w1 Tð Þ þ ΔωT. These equations are convenient in the study of

stationary damped forced motions performed in the system (32). There are two subsets of such

motions; the first can be written as

b1 ¼ b2 ¼ 0; b3 ¼
K 1þ p2
� �

ηω

en2
, (34)

while the second would be

b1 ¼ b2 ¼
ffiffiffi

2
p

ηω
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
p ffiffiffiffiffiffiffiffiffiffiffiffi

K � 1
p

en2
; b3 ¼

ηω 1þ p2
� �

en2
: (35)

Here, we have introduced a new notation: K ¼ Qn2e= 4 1þ p2
� �

η2ω2
� �

for the characteristic

number by analogy with Reynolds numbers in the hydrodynamics [18, 19].

Now, we may return to our preliminary study over the spring pendulum to be acquainted in

similarities and analogies. Indeed, the first stationary solution (34) appears as stable only

within the range 0 ≤K ≤K∗. Here, K∗ ¼ 1 denotes the critical value of the control parameter

governing the bifurcations. This stationary solution coincides exactly with the solution if

neglecting all the nonlinear terms in the system (19). Although near the point K∗ this stationary

solution loses its stability to give its place for the new stationary state (35). The new stationary

state would be stable at K > 1. It is not now surprising that as if the bifurcation parameter K

grows even further, then the energy would be pumped only into the low-frequency bending

modes while the amplitude of the high-frequency axisymmetric radial mode remains to be

fixed, that is, b3 ¼ ηω 1þ p2
� �

= en2
� �

. Probably, this mechanism represents an effective way in

the problem of installation of the solid-state wave gyro.

When returning to the old notation, the solution of our problem can be expressed as it follows:

v τ;wð Þ ¼ �4pb1 cos ψ τð Þ � nwð Þ cos ωþ μ
δþ Δω

2

� �� �

τþO μ2τ
� �

;

w τ;wð Þ ¼ �4b1 sin ψ τð Þ � nwð Þ cos ωþ μ
δþ Δω

2

� �� �

τ� 2b3 sin ϖτð Þ þO μ2τ
� �

,

(36)
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where

ψ τð Þ ¼
4p

1þ p2

ðτ
0

Ω ςð Þdς

is the precession rate. Typical patterns of the wave precession are shown in Figure 8.

5. Conclusion

Léon Foucault has made a sensation with his famous giant pendulum experiment in the

Panthéon in Paris in 1851. That time, people could perceive the inertia of the pendulum with

his naked eye to have the first direct proof that the Earth is turning anti-clockwise. Moreover,

this experiment has demonstrated that a pendulum could be used as a vibratory gyro. How-

ever, a flaw of the Foucault pendulum is the dependence on the latitude. A device was needed

that was unaffected by the latitude. In 1852, Foucault proposed an angular sensor based on the

immobility of the axis of a rotating mass. Unlike the pendulum, this sensor could detect a fixed

direction in Newton’s absolute space. Recall that a torque directing the axis of rotation of the

rotor of the gyro is known as the precession. For the precision, however, this gyro required an

exquisite construction, since the gyro’s rotor should be balanced as well as possible.

Figure 8. The wave precession. Modal number n ¼ 7. Solid lines refer to flexural mode, while the dashes to the circum-

ferential one (η ¼ 0:1,μ ¼ e ≈ 0:01, κ ¼ 0:45,Ω ¼ 0:085, Q = 0.1). The dotted radius indicates the rotation angle Ωτ. The

stiffness of the gyro platform κ is tuned to the seventh bending modes.
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In 1890, Bryan investigated the nature of the beats which may be heard when a vibrating

cylinder or other axisymmetric thin-walled shell of revolution has been involved in a rotatory

motion about its axis [7]. Perhaps, this study had been inspired as a reply to A. E. H. Love,

famous for his work on the mathematical theory of elasticity. In the paper [20], Love supposed

that unless a body was revolving with the angular velocity comparable with the frequencies of

the vibrations, the latter would not be almost affected. The only important effect of rotation

would be an extension because of the centrifugal force. Bryan has corrected that in the axisym-

metric shells at high-frequency vibrations phenomena of beats may be observed, which

appears as the most noticeable effects of the rotation. It is probable that Bryan had no idea

how to utilize his finding. Though those times people were in controversy on how far theory of

thin-walled shells elaborated by Lord Rayleigh is capable of practice, is this perhaps just a sort

of one more abstract theory? Lo and behold, initially conceived in 1890 through the observa-

tion of beats from a ringing wine glass, the concept was lost until uncovered in 1965. Due to

technologies of the second half of the twentieth century, perhaps in times of Vietnam War, this

physical effect has inspired a concept of a solid-state wave gyro [6]. Because there are no

typical mechanical parts, these wave sensors have a lot of advantages for long-term space

missions. However, to maintain the functionality as well as the sensitivity of a conventional

wave gyro in practice, the driving of standing waves requires somewhat sophisticated feed-

back control. This chapter demonstrates that when both the primary resonant pumping over

the axisymmetric mode of oscillations and advantages of the principal parametric resonance

are combined, such a gyro can operate without any feedback at the expense of the natural

nonlinearity of the resonator in a post-bifurcation regime.
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