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Abstract (deutsch)
In der vorliegenden Arbeit wird das inverse Regressions Model Y = Hf(X) + ε für

verschiedene Klassen nicht linearer Hammerstein Integral Operatoren H betrachtet.
Wir diskutieren insbesondere das Problem der Identifizierbarkeit in Abhängikeit des
Integralkernes. Vorgestellt werden Schätzer für parametrische Funktionen f mit Un-
stetigkeiten verschiedener Ordnung, wie beispielsweise stückweise Polynome mit Knicken
oder Sprüngen, bzw. Splines mit freien Knoten. Konvergenzraten und asymptotische
Normalität der Schätzer werden entwickelt und an einem Datenbeispiel aus der Rheologie
illustriert. Eine Erweiterung des Models auf Funktionen f aus Approximationsräumen
von parametrischen stückweise stetigen Funktionen wird diskutiert.

Abstract (english)
We consider the inverse regression model Y = Hf(X) + ε for several classes of non-

linear Hammerstein integral operators H . In particular identifiability depending on the
integral kernel is discussed. We introduce estimators for parametric functions f with
discontinuities of certain order including piecewise polynomials with kinks or jumps or
free-knot splines respectively. We derive rates of convergence and asymptotic normality
of these estimators and a data example from rheology illustrates the results. An ex-
tension of the model for functions f from approximation spaces of parametric piecewise
continuous functions is presented.
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Chapter 1

Introduction

Let X = (x1, ..., xn) be a (possibly random) vector of n ∈ N design points in an interval
(a, b), for a, b ∈ R. We consider the inverse regression model

yi = Hf0(xi) + εi for i = 1, ..., n, (1.1)

where ε = (ε1, ..., εn) denotes the independent identical distributed observation error,
which is assumed to be independent of X with mean zero. Further, H denotes a Ham-
merstein integral operator H : L2([a, b]) −→ L2([a, b]), defined by

f(·) 7−→ Hf(·) :=

∫ b

a

ϕ(·, y)L(f(y), y)dy. (1.2)

Note, that H is in general nonlinear and can be written as a composition H = Φ ◦ L of
a linear integral operator Φ : L2([a, b]) −→ L2([a, b]) and a possibly nonlinear so called,
Niemitzky operator L : L2([a, b]) −→ L2([a, b]), defined by

f(·) 7−→ Φf(·) :=

∫ b

a

ϕ(·, y)f(y)dy, (1.3)

and
f(·) 7−→ Lf(·) := L(f(·), ·), (1.4)

respectively. We are concerned with reconstructing the unknown function f0 from the
observations (X, Y ) = ((x1, y1), ..., (xn, yn)) given by the model in (1.1).

Example. In order to emphasize the relevance of the model in (1.1), we introduce an
example from rheology. Here, one is interested in the relaxation behavior of polymers
after expansion. This behavior is described by the relaxation time spectrum, which is
known to be a piecewise linear and continuous function on [a, b] ∈ R+ \ {0}, with two
change points, where the slopes of the linear pieces may change. More details about
the physical background can be found in [47]. The relaxing process cannot be observed
directly, but indirectly as an image under an integral operator H as in (1.2), where Φ
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Figure 1.1: The logarithm of design points plotted against the logarithm of the noisy
observations.

is as in (1.3), with kernel ϕ(x, y) =
x2y2

1 + x2y2
and L as in (1.4), with Lf(y) = y−1ecf(y)

(with constant c 6= 0). Additionally the data are assumed to be disturbed by some noise,
as for instance measuring inaccuracy (see Figure 1).

The aim is now to reconstruct the piecewise linear function describing the relaxation
time spectrum from this observation (red line in Figure 1.2). Thus, we want to estimate
the change points and slopes of this function. This will be done by choosing these
parameters such that the image of the corresponding function under the operator H
in (1.2) minimizes the sum of the squared distance from the data, that is we use a
parametric least squares estimator. As it will follow from the general results in this thesis,
this estimator converges with rate n−1/2 to the true kink function. Furthermore, we will
show that the corresponding estimator for the parameter vector, consisting of slopes
and kink locations, is asymptotically distributed according to a multivariate normal
distribution. This distribution will be used to calculate (1−α)-confidence bands for the
estimated function, i.e. an area around the estimator, which contains the true function
with probability 1 − α (e.g. the green area in Figure 1.2).

Inverse problems. Motivated by this example, we intend to come up with a general
regularization theory for reconstructing piecewise continuous functions from perturbed
images of integral operators of type (1.2). These operators are well known to generate
ill-posed problems. For the concept of well - and ill-posedness being a basic task in this
thesis, we want to give a short introduction, based on the formulation of Kress in [35,
Def. 15.1]. According to this definition, an equation

Aϕ = f,

with an operator A : U → V from a subset U of a normed space X into a subset
V of a normed space Y , is called well-posed if A is bijective and the inverse operator

10
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Figure 1.2: 0.98-confidence bands for the estimated relaxation time spectrum

A−1 : V → U is continuous. Otherwise, the equation is called ill-posed.
This definition, dating back to the concept of Hadamard (see [29]), covers three types

of ill-posedness: nonexistence of a solution (A is not surjective), nonuniqueness (A is
not injective) and instability (the solution ϕ does not depend continuously on the image
f). Among these three types, instability is the most delicate to deal with. In this case,
small errors in the data may cause arbitrary large errors in the solution and therefore
for instance, make computed solutions, based on direct inversion, useless.

However, in general the three types of ill-posedness are not independent. For example
stability follows from existence and uniqueness, that is bijectivity of the operator, if A
is continuous and U is compact. Furthermore, this example reveals that well-posedness
is a property of the operator A together with the solution space X and the data space
Y , including their norms.

General problem. As mentioned above, Hammerstein integral operators can generate
ill-posed problems. To be more precise, we have to deal with two inverse problems, i.e.
the linear one, given by the integral operator in (1.3) and the nonlinear one given by
the Niemitzky operator in (1.4). This offers the opportunity to handle these problems
separately. To this aim we consider the reduced linear inverse regression model

yi = (Φf0)(xi) + εi for i = 1, ..., n, (1.5)

where X and ε are as in (1.1) and f0 = Lf̃0. We assume that the operator L satisfies
appropriate conditions, which allow the reconstruction of a function f̃0 from the image
Lf̃0. In other words, in this thesis we will concentrate on the linear inverse problem,
that is the reconstruction of f0 from (1.5), which due to its ill-posedness requires ap-
propriate regularization. Starting with a simple least squares estimator, we will present
three different regularization strategies, depending on the a priori knowledge on the true
function f0:

We begin with the case, where f0(y) = f(y, θ0) is piecewise continuous, with known
number of change points, determined by the parameter vector θ0 ∈ Θ, with compact

11



1 Introduction

Θ ∈ Rd for some d ∈ N. This class covers the polymer example above as a special case.
Here the regularization consists in the restriction on the parameter set to be compact.
Subsequently, we consider the case, where the number of change points is finite but
unknown, where we regularize the least squares estimator by penalizing the number of
change points. Finally, we extend this function class to so called approximation spaces,
which are characterized by a common upper bound for the speed of approximation by
piecewise continuous functions, where in addition to the number of change points, we
penalize the L2-norm of the estimated function.

Injectivity. As already mentioned above, injectivity of the operator Φ conditions well-
posedness of the corresponding inverse problem and is a key ingredient in the consistency
proofs in this thesis. We consider two basic classes of operators in (1.3), namely operators
with product kernels ϕ(x, y) = φ(xy) and operators with convolution kernels ϕ(x, y) =
φ(x− y). In both cases we give conditions, which assure injectivity of the corresponding
integral operator.

The requirement on a product kernel is based on a general form of the Müntz Theorem
(cf. [7]), which extends the original statement about denseness of monomials in the
space of continuous functions to L2-spaces. Moreover, we present two injectivity result
for operators with convolution kernel in terms of the kernels Fourier transform. In this
context, we additionally introduce an injectivity condition for general symmetric and
positive definite kernels (not restricted to any of the above classes), which is based on
the theory of native Hilbert spaces. We remark, however, that the asymptotic results of
this paper are not restricted to this selection. They are valid for every injective integral
operator as in (1.3) with piecewise continuous kernel and Lipschitz continuous image
Φf ∈ L2([a, b]).

However, in some applications (as e.g. image inpainting), there often occur integral
operators, which are not injective. In such cases, one may use minimum norm solutions,
for example, to obtain practicable estimators. This concept will not be treated in this
thesis. For more details we refer e.g. to [49].

Known number of change points. For the case, when f0 is a parametric piecewise
continuous function f0(y) = f(y, θ0) with known number of change points, under certain
assumptions on error and design, we show an n−1/4-convergence rate of the least squares
estimator f̂n(y) = f(y, θ̂n). Furthermore, we obtain n−1/2-rates for the convergence of
the estimated parameter θ̂n to the true parameter θ0 and show that it is asymptotically
distributed according to a multivariate normal distribution.

The exact specification of the considered class of functions is crucial: it turns out
that it suffices to assume existence and uniform L2-boundedness of the first derivative of
θ 7→ f(y, θ) in the parameter vector θ ∈ Θ for almost every y. This condition allows for a
general estimate of the entropy of the class of parametric piecewise continuous functions,
which is an important ingredient in the proof of consistency. This property also implies
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continuous differentiability of the mapping θ 7→ Φf(y, θ), which in turn paves the way
to the second order expansion of the expectation of the score function, required for the
proof of asymptotic normality.

The applied techniques furthermore cover the case where we consider subclasses of this
parametric functions, that allow for dependencies among the parameter components of θ.
Such dependencies occur, for example, if f0 is additionally known to be continuous, that
is f0 has a known number of kinks (as in the introductory example from polymer physics).
We show, that the continuity assumption on f0 improves the convergence rate of the least
squares estimate f(y, θ̂n), where the improvement depends on the smoothness of the
pieces between the kinks. (Here, “pieces” means the restricted function f(y, θ) |y∈[τ1,τ2)

for some interval [τ1, τ2) ⊂ [a, b] between two change points τ1 and τ2.) For example, a
restriction to kink functions with Lipschitz continuous pieces yield convergence rates of
n−1/2.

For functions with known number of change point, we investigate the asymptotic dis-
tribution of the estimated parameter θ̂n for calculation of a confidence ellipsoid, which
in turn generates confidence bands for f(y, θ̂n) (c.f. the introductory example). Because
we have to deal with many parameter components, this leads to the non trivial task
of constructing simultaneous confidence bands. Remarkably, it turns out, that an ap-
proximative method, based on the studentized maximum modulus statistic, proves to be
the best way to determine confidence bands for functions with abrupt changes as jumps
or kinks. Here, “best” means not only with respect to the computational effort, but
also concerning the width of the resulting bands: the exact confidence ellipsoid for the
parameter estimate would lead to more expanded confidence bands in comparison with
the bands corresponding to the actually more conservative set, based on the studentized
maximum modulus statistic.

Unknown number of change points. When the number of change points of the
objective function in (1.5) is not known, we employ penalized least squares for estima-
tion. Here we use the number of jumps as penalty term, which yields a minimization
functional, known as Potts functional. We show that under the additional assumption of
subgaussian tails of the error distribution, the number of change points can be asymptot-
ically estimated correctly with probability one. Thus, this case asymptotically coincides
with the case of known number of change points.

Approximation spaces. Finally, we disscuss the extension of the considered function
set to approximation spaces Aα of piecewise continuous functions. These spaces are
defined by their approximation properties, that is all functions of an approximation space
have common upper bounds (depending on an index α) for the error of approximation
by the respective function set. A known example are Besov spaces, which are generated
by approximation by trigonometric polynomials (cf. [18, Thm. 9.2, Chap. 7, §9]). In
general, characterization of approximation spaces of a given function set is quite involved
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1 Introduction

and will not be discussed in this work. We refer to the book of deVore and Lorentz [18]
instead, which gives a detailed discussion of this problem.

If the function f0 in (1.5), is contained in such an approximation space, we will employ
a least squares estimator, which is penalized by the number of change points and the
L2-norm. The minimization is carried out over the set of piecewise continuous functions
with finite but arbitrary number of change points. We will show that this estimator is
consistent and under certain source conditions converges up to a rate arbitrarily close to
n−1/4, provided f0 can be approximated fast enough. We note, that by the assumption,
that f0 is contained in an approximation space, we leave the domain of parametric
problems. This does not only imply more advanced penalization strategies and worse
convergence rates.

A further consequence is that now the degree of ill-posedness of the operator has a
sustainable impact on the convergence results. This is expressed in the fact that we
need f0 to satisfy certain source conditions, depending on the smoothing properties of
the operator. That means, the higher the degree of ill-posedness, the more rigorous is
the smoothness assumption on f0. If we do not impose smoothness assumptions the
penalized least squares estimator would still converge, but possibly with arbitrary slow
rate (cf. [21, Prop. 3.11]). This is a general difference to the parametric case, where the
convergence rates do not depend on the spectral properties of the operator.

Related work. Next we want to compare our results to existing literature. The
Hammerstein equation of second kind appeared in the earlier 30s (cf. [30]) as a general
model for study of semi-linear boundary-value problems. The kernel ϕ(x, y) typically
arises as the Green’s function of a differential operator. Generally, if the kernel is positive,
then methods of positive operators are applicable to study solutions of Hammerstein
equations see, e.g. [2] or [23] and for application of further methods [3] and [50].

There exists a vast literature concerning estimation of change points in direct as
well as inverse problems. The discussion of the inverse setting started with Neumann
[40], who considered the case, where the function of interest is bounded, has one jump
and is Lipschitz continuous elswhere. He estimated the jump location at a rate of
min(n−1/(2β+1), n−1/(β+3/2)), where β > 0 depends on the decreasing speed of the Fourier
transform of the noise density in his observation model. In connection with two phase
regression, Hinkley [32] obtained a n−1/2 rate for an inverse regression model with con-
volution kernel ϕ(x, y) = 1[0,∞)(x − y). Similar results were obtained by Feder [24] for
more general regression models. Most recently we published an analysis of the regression
model in (1.5) in [9], where the kernel ϕ is a Lipschitz continuous convolution kernel and
the objective functions are step function. The results in this thesis, cover this setting as
a special case.

A generalization to piecewise smooth non parametric functions, has been developed
by Goldenshluger et al. in [27], where the rates of convergence depend on the Fourier
transform of the error density as in the model of Neumann [40], we mentioned above.

14



Jump penalized least squares, as we used them for estimation in the case of unknown
number of change points, were introduced by Potts [44] for a binary spin system to
more than two states. Further, Boysen et al. in [10] aim for approximating a regression
function by piecewise constant functions. In contrast to the present model in (1.5), they
consider the direct case, i.e. the case H = id, where their framework covers the case,
when the true function f0 is contained in an approximation space, too. Under different
error assumptions, they obtain similar rates of convergence, with a slightly less rigorous
regularization.

Outline. We start with an introduction of the used notation and assumptions in Chap-
ter 2. In particular we give a rigorous definition of piecewise continuous functions used
throughout this thesis. In Chapter 3, we give a detailed classification of integral opera-
tors Φ and especially disscuss the question of injectivity. In Chapter 4 we will introduce
the least squares estimator and its asymptotic behavior, in the case, where the func-
tion of interest is piecewise continuous with known number of jumps. Subsequently,
in Chapter 5 we discuss the application of this results in general and for the special
example of rheology, mentioned above. In Chapter 6 we consider the case, where the
number of jumps is not known and study the asymptotic behavior of the jump-penalized
least squares estimator. The case, when the true function is contained in an approxi-
mation space of piecewise continuous functions is discussed in Chapter 7. Finally, we
collect some technical tools and important results concerning native Hilbert spaces and
empirical processes in the Appendix.
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Chapter 2

Definitions and assumptions

In this Chapter we are going to fix the notation used throughout this thesis and introduce
basic definitions and assumptions. In particular we will establish the class of parametric
piecewise continuous functions.

2.1 Model and notations

Norms and measures Throughout this work we assume that a, b ∈ R, a < b and
r, k ∈ N \ {0}. Moreover, for functions g, f : [a, b] → R, we denote by ‖f‖L2([a,b]) the
L2-norm and by 〈f, g〉L2([a,b]) the corresponding inner product. The essential supremum
is denoted by ‖f‖∞ and additionally we define the empirical norm and the empirical
inner product by

‖f‖2
n =

1

n

n∑

i=1

f(xi)
2 and 〈f, g〉n =

1

n

n∑

i=1

f(xi)g(xi),

where x1, ..., xn are given design points. Accordingly, we define the empirical measure as
Pn := n−1

∑n
i=1 δxi

. For a vector Y = (y1, ..., yn), with a slight abuse of notation, we use
the expression ‖Y ‖n, which means ‖∑n

i=1 yi1xi
‖n. The same holds, if a vector of length

n occurs in the empirical inner product.
For vectors θ, θ1, θ2 ∈ Rd, we use the Euclidean norm |θ|2 and the maximum norm

|θ|∞ and by (θ1, θ2) ⊂ Rd we denote the segment between θ1 and θ2, that is (θ1, θ2) :=
{θ ∈ Rd | θ = θ1 + t(θ2 − θ1), for t ∈ (0, 1)}.

For a measure P we denote the expectation of a measurable function f by

Ef = EPf :=

∫
fdP.

Convergence in probability and in distribution For d ∈ N, a sequence of random
vectors Xn ∈ Rd, some constant c ∈ Rd and a random vector X ∈ Rd, we write

Xn
P−→ c and Xn

P−→ X,

17



2 Definitions and assumptions

if Xn converges in probability to c and X, respectively. Furthermore, convergence in
distribution is denoted by

Xn
D−→ X;

if X has a distribution with standard code, such as N(0, 1), then also by Xn
D−→ N(0, 1).

We say that Xn is bounded in probability, denoted as Xn =: OP (1), if for all ε > 0,
there exists some M > 0 such that

lim sup
n→∞

P (|Xn| > M) < ε.

Moreover, we introduce abbreviations for terms, that are bounded in probability or
converge in probability to zero. For a given sequence of random variables Rn we agree
upon

Xn = op(Rn) means: there exists Yn such that Xn = YnRn and Yn
P−→ 0;

Xn = Op(Rn) means: there exists Yn such that Xn = YnRn and Yn = OP (1).

This means, that the sequence Xn converges in probability to zero or is bounded in
probability at the “rate” Rn, respectively. For deterministic sequences Xn and Rn, the
stochastic O-symbols reduce to the usual o and O from calculus. Note, that for a random
variable an there may occur the notation an ≤ Op(1) (or an ≤ op(1)). This precisely
means, that there exists a random variable Xn = OP (1) (or Xn = oP (1)), such that
an ≤ Xn, which in turn implies an = OP (1) (or an = oP (1)) only if an ≥ 0 for all n ∈ N.

Some rules of calculus for this symbols are summarized in Section 8.1 in the Appendix.

Assumptions The following assumptions fix up the conditions of the model in (1.5)
with respect to the error ε and the design X.

Assumption A. (Assumptions on the error) Throughout this thesis we assume, that

A1: the vector ε = (ε1, ..., εn) consists of independent identically distributed random
variables with mean zero for every n and E(ε2

1) = σ2 <∞.

In some situations the error is additionally assumed to satisfy the following sub-
gaussian condition.

A2: ε satisfies A1 and there exists some α > 0 such that E(eε2
1/α) <∞.

Assumption B. (Assumptions on the design) The design points x1, ..., xn are indepen-
dent of the error terms ε1, ..., εn. Moreover there exists a function s : [a, b] → [su, sl]

with 0 < su < sl <∞ and
∫ b

a
s(x)dx = 1 such that

i

n
=

∫ x(i)

a

s(x)dx+ δi

with νn := maxi=1,...,n |δi| = op(1). Here x(i) denotes the i-th order statistic of x1, ..., xn.

Assumption B covers random designs as well as fixed designs. If the design points
x1, ..., xn are nonrandom, the op(1) term above is to be understood as o(1).

18



2.2 Piecewise continuous functions

2.2 Piecewise continuous functions

In this section, we introduce the definition of the main object of this thesis, i.e. para-
metric piecewise continuous functions. To this end, we begin with the definition of
parametric functions, which afterwards serve as support-functions for the continuous
pieces of the piecewise continuous functions.

Definition 2.2.1. Assume that Ψ ⊂ Rr is compact, with Ψ◦ = Ψ and choose M > 0
such that |ϑ|∞ ≤M for all ϑ ∈ Ψ. Let

f : [a, b] × Ψ −→ R

(y, ϑ) 7−→ f(y, ϑ)

be a function satisfying the following conditions:

i) y 7→ f(y, ϑ) is continuous for all ϑ ∈ Ψ,

ii) ϑ 7→ f(·, ϑ)|[ρ1,ρ2] is injective for all a ≤ ρ1 < ρ2 ≤ b and the partial derivatives
∂

∂ϑj
f(y, ϑ) exist for 1 ≤ j ≤ r and all y ∈ [a, b] and they are continuous in y ∈ [a, b]

as well as in ϑ ∈ Ψ, and

iii) there exists a function g ∈ L2([a, b]), such that for j = 1, ..., r

∣∣∣∣
∂

∂ϑj
f(y, ϑ)

∣∣∣∣ ≤ g(y),

for almost every y ∈ [a, b].

Then, F := {f(·, ϑ) | ϑ ∈ Ψ} is called a family of continuous parametric functions

with parameter domain Ψ.

For example we consider the family of constant functions

FT := {x 7→ f(x, ϑ) = ϑ | ϑ ∈ Ψ ⊂ R, |ϑ| ≤ M}, (2.1)

or the family of linear functions

FL := {x 7→ f(x, ϑ) = ϑ1 + ϑ2x | ϑ ∈ Ψ ⊂ R2, |ϑ|∞ ≤M}. (2.2)

In the following we could also assume that F is the union of a finite number of
families satisfying the conditions of Definition 2.2.1, where the parameter sets Ψ may be
different (especially they may have different dimensions r). However, in order to keep
things simple, we restrict Definition 2.2.1 to one family of parametric functions, only.

Given a family F , we now define parametric piecewise continuous functions.
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2 Definitions and assumptions

Definition 2.2.2. Assume that F is a family of continuous parametric functions, as
defined in Definition 2.2.1, with parameter domain Ψ. A function f ∈ L2([a, b]) is
called a parametric piecewise continuous function (pc-function) with k change
points, if there exists a partition a = τ0 < τ1 < ... < τk+1 = b and parameter vectors
ϑ1, .., ϑk+1 ∈ Ψ, such that

f(·, ϑ1, τ1, ..., ϑ
k, τk, ϑ

k+1) =
k+1∑

j=1

f(·, ϑj)1[τi−1,τi),

where f ∈ F . The collection of all parametric piecewise continuous functions with k
change points generated by F is denoted by Fk[a, b] (or shortly by Fk).

In general we write
θ := (ϑ1, τ1, .., ϑ

k, τk, ϑ
k+1)

and note that θ lies in the compact parameter set

Θ = (Ψ × [a, b])k × Ψ ⊂ Rd,

with d = (k + 1)r + k. Thus

Fk = {f(·, θ) | θ ∈ Θ},

where f(·, θ) :=
∑k+1

i=1 f(·, ϑi)1[τi−1,τi), with f ∈ F .
Accordingly we define

F∞[a, b] =
∞⋃

k=1

Fk[a, b].

Thus the families FT as in (2.1) and FL as in (2.2) generate the set of step functions

Tk :=

{
f(·, θ) =

k+1∑

i=1

f(·, ϑi)1[τi−1,τi)

∣∣∣ f ∈ FT

}
, (2.3)

and the set of piecewise linear functions

Lk :=

{
f(·, θ) =

k+1∑

i=1

f(·, ϑi)1[τi−1,τi)

∣∣∣ f ∈ FL

}
. (2.4)

We call the set J (f) := {τi | i ∈ {1, ..., k} such that ϑi 6= ϑi+1} change points of
the function f ∈ Fk and denote its cardinality by ♯J (f). Hence, pc-functions are
continuous on the intervals [τl−1, τl), l = 1, .., k+1 with continuous continuations on the
closed intervals [τl−1, τl]. We denote the left-side limit in a change point τl by

f(τ−l ) = lim
xրτl

f(x).
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2.2 Piecewise continuous functions

Moreover, we call a change point jump, if f(τ−i , θ) 6= f(τi, θ), and kink, if f(τ−i , θ) =
f(τi, θ) and say kink function (or jump function), if f has kinks (or jumps) in all change
points.

Note, that for a function f ∈ Fk with less than k change points there possibly are
more than one parameter vectors generating the same function. That means, for a
certain function f(·, θ0) ∈ Fk the implication f(·, θ) = f(·, θ0) ⇒ θ = θ0 is true, if
and only if ♯J (f) = k (cf. Definition 2.2.1, ii). If uniqueness of the parameter vector
is required, this implies, that we have to confine ourselves to functions from Fk with
precisely k change points. For example, consider the subset T̃k ⊂ Tk (cf. (2.3)) of
piecewise constant functions, with precisely k jumps, i.e.

T̃k := {f ∈ Tk | |f(τ−i , θ) − f(τi, θ)| > 0} (2.5)

and the subset L̃k ⊂ Lk (cf. (2.4)) of piecewise linear functions with precisely k kinks,
i.e.

L̃k := {f ∈ Lk | ϑi
1 = ϑi−1

1 − (ϑi−1
2 − ϑi

2)τi−1, and ϑi−1
2 6= ϑi

2, i = 2, ..., k + 1}. (2.6)

As in the case of kinks there may occur dependencies among the parameter components,
such that actually the number of parameters, which determine f(y, θ) is smaller than
the dimension of θ. Therefore we define a so called reduced parameter vector.

Definition 2.2.3. Let F be a family of continuous parametric functions as in Definition
2.2.1 and let Θ ⊂ Rd denote the parameter domain of the set Fk of pc-functions generated
by F (cf. Definition 2.2.2). For a subset F̃k ⊂ Fk a parameter set Θ̃ ⊂ Rd̃, with
d̃ < d, is called a reduced parameter domain of F̃k, if there exists an injective and
continuously differentiable function h : Θ̃ → Θ, such that

F̃k = {f(·, h(θ̃)) ∈ Fk | θ̃ ∈ Θ̃}.

For a function f(·, θ0) ∈ F̃k with f(·, θ0) = f(·, h(θ̃0)) for some θ̃0 ∈ Θ̃ we call θ̃0 the
reduced parameter vector of θ0.

Note that, if we consider a class of pc-functions Fk as in Definition 2.2.2, which
is generated by a parametric class F as in Definition 2.2.1, such that for all f ∈ F it
additionally holds, that (y, ϑ) 7→ f(y, ϑ) is continuously differentiable, then the condition
f(τ−i , θ) = f(τi, θ) often implies local existence of a function h as in Definition 2.2.3 by
the implicit function theorem. More precisely, if f(y, θ0) is a kink function in such a
space, the function

F : Θ −→ Rk

θ 7−→ F (θ) :=
(
f(τ1, ϑ

1) − f(τ1, ϑ
2), ..., f(τk, ϑ

k) − f(τk, ϑ
k+1)

)t
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2 Definitions and assumptions

vanishes in θ0. Due to the differentiability of the map θ 7→ F (θ), the implicit function
theorem implies, that there exists a function h and a reduced parameter domain Θ̃ as
in Definition 2.2.3, with Θ̃ ⊂ (Θl)l∈I ⊂ Rd−k, where I ⊂ {1, ..., d}, if the Jacobian
∂/(∂θl)l /∈IF (θ0) is invertible.

This, for example holds for the set L̃1 (cf. (2.6) and Example 2.2). There we have
ϑ2

1 = ϑ1
1 +(ϑ1

2 −ϑ2
2)τ1 and choosing the reduced parameter vector θ̃ = (ϑ1

1, ϑ
1
2, τ1, ϑ

2
2) and

the function h(θ̃) = (ϑ1
1, ϑ

1
2, τ1, ϑ

1
1 + (ϑ1

2 − ϑ2
2)τ1, ϑ

2
2) satisfies the conditions of Definition

2.2.3.

2.3 Integral operator

Now we want to introduce some further notation and specifications concerning the inte-
gral operator Φ in (1.3).

If Φ acts on the set Fk ⊂ L2([a, b]), it can be considered as a map acting on the
parameter space Θ, by

θ 7−→ Φf(·, θ) :=

∫ b

a

ϕ(·, y)f(y, θ)dy. (2.7)

The special classes of integral operators Φ in (1.3), which we are going to discuss in
this thesis, have to satisfy the following Assumptions.

Assumption C. (Assumptions on the integral operator) The integral operator Φ in
(1.3) satisfies the following conditions.

i) the operator Φ : L2([a, b]) −→ L2([a, b]) is injective,

ii) the kernel ϕ : [a, b]2 −→ R is piecewise continuous with finite number of jumps
and

iii) the function Φf(·) : [a, b] −→ R is Lipschitz continuous with uniform Lipschitz
constant c‖f‖∞, such that the constant c only depends on the kernel ϕ.

Conditions i) and ii) are essential for the consistency proof for the estimator of f0 in
the following chapters. Condition iii) especially will be needed to estimate the L2-norm
of Φf by means of the empirical norm. In Chapter 3 we introduce some special classes
of operators satisfying Assumption C.

Moreover, we want to mention, that the results of this paper can also be formulated
for an operator Φ : L2([a, b]) → L2(I), with I ⊂ R which does not need to coincides with
the interval [a, b], but for ease of notation we only discuss the case, where I = [a, b].
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Chapter 3

The integral operator

This chapter is concerned with the specification of the considered operator classes. We
will introduce assumptions on the Niemitzky operator (1.4), which allow to transfer the
results for the linear regression model in (1.5) to the nonlinear model in (1.1). Moreover,
we will discuss conditions for injectivity of the linear operator in (1.3). Subsequently we
will introduce special conditions, which assure that Assumption C is satisfied, for two
classes of kernels, namely product and convolution kernels.

3.1 Hammerstein integral equations

As mentioned in the introduction, our aim is to estimate f0 from observations Y as in
(1.1). We approach this by solving the linear inverse problem in (1.5), which results in
an estimator for Lf0 (here L denotes the Niemitzky operator in (1.4)). This estimator
is then used to reconstruct f0. The main concern of the upcoming chapters is the linear
model in (1.5). Therefore, we shall now consider suitable conditions on L, such that a
stable reconstruction of f0 from an estimator for Lf0 is possible.

Assumption D. For L as in (1.4) it holds, that

1.) the operator

L : L2([a, b]) −→ L2([a, b])

f 7−→ Lf(y) := L(f(y), y).

is injective,

2.) for every x ∈ [−R,R], with a constant R ≥ supf∈Fk
‖f‖∞ (given by Lemma 8.2.4),

the mapping

L(x, ·) : [a, b] −→ R

y 7−→ L(x, y)

is continuous and
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3 The integral operator

3.) for every y ∈ [a, b], the mapping

L(·, y) : [−R,R] −→ R

x 7−→ L(x, y)

is continuously differentiable, with derivative Lx(x, y) = ∂
∂x
L(x, y), that is con-

tinuous in y ∈ [a, b]. Furthermore, there exists a constant l, such that for all
x ∈ [−R,R] and almost every y ∈ [a, b]

|Lx(x, y)| ≤ l.

The introductory example from rheology (cf. Chapter 5) constitutes a special example,
where the operator L satisfies Assumption D. In general any composition Lf(y) =
g1(y)g2(f(y)) of functions g1 ∈ C([a, b]) and g2 ∈ C1([−R,R]), such that |g1(y)| > 0 for
all y ∈ [a, b] and g2 is injective, meets these conditions, too.

For an operator satisfying Assumption D we obtain the following

Lemma 3.1.1. Let L be an operator satisfying Assumption D and let Fk be a set of pc-
functions as in Definition 2.2.2. Then, the image set F̃k := L(Fk) satisfies the conditions
of Definition 2.2.2.

Proof. It is straightforward to verify that for a function set F as in Definition 2.2.1 the
set L(F) again satisfies i) and ii) in Definition 2.2.1, whenever L satisfies Assumption
D. In order to show, that also iii) holds, we apply the chain rule, and obtain for all
f ∈ F and j = 1, ..., r, y ∈ [a, b], that

∣∣∣∣
∂

∂ϑj

L(f(y, ϑ), y)

∣∣∣∣ =
∣∣∣∣Lx(f(y, ϑ), y)

∂

∂ϑj

f(y, ϑ))

∣∣∣∣ ≤ lg(y),

which proves the claim. This means, that for a set Fk satisfying the conditions of Defi-
nition 2.2.2, the corresponding image set L(Fk) =: F̃k is a set of pc-functions satisfying
the conditions of Definition 2.2.2 as well, with g(y) replaced by lg(y).

Consequently, we can transfer the results for the model in (1.5) in Chapter 4, to obtain
an estimator f̃(y, θ̂n) of a function f̃0(y) = f̃(y, θ0) = L(f(y, θ0), y), with f0 = f(·, θ0) ∈
Fk. Since furthermore, f(y, θ0) and f̃(y, θ0) are generated by the same parameter θ0,
this yields an estimator f(y, θ̂n) for f(y, θ0) simultaneously. So, considered as parametric
problem there is no difference between both observation models. Or more precisely, the
classes Fk in Definition 2.2.2 are chosen, such that the model in (1.1) can be formulated
in term of the model in (1.5).

We want to emphasize, that it is a necessary condition for a consistent parameter
estimate, that the parameter θ0 is unique (cf. Lemma 4.2.8), that is, for all θ ∈ Θ,
f(y, θ) = f(y, θ0) implies θ = θ0. Due to condition 1.) in Assumption D, this is equivalent
to f̃(y, θ0) = f̃(y, θ) implies θ0 = θ.
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3.1 Hammerstein integral equations

However, if this “injectivity” condition does not hold, which happens if f ∈ Fk has less
than k change points, we may obtain a consistent estimator of f̃(y, θ0), whose parameter
vector does not converge. So, intending to estimate f0, a “parametric” argumentation
as above fails. In this case, we can apply the following result.

Lemma 3.1.2. Suppose that L is an operator satisfying Assumption D. Then, the map

L|Fk
: Fk −→ F̃k

f 7−→ Lf,
is continuously invertible.

Proof. By condition 1.) the map L|Fk
is injective. In order to show its continuity,

consider a sequence of functions {fn}n∈N ⊂ Fk, with ‖fn − f0‖L2([a,b]) → 0, for n → ∞.
By condition 3.) in Assumption D and the mean value theorem, it holds that

|L(fn(y), y)− L(f0(y), y)| ≤ |(fn(y) − f0(y))| l
for any y ∈ [a, b], with l as in condition 3.). Hence, we have

‖Lfn −Lf0‖L2([a,b]) ≤ l‖fn − f0‖L2([a,b]) −→ 0, for n→ ∞,

which means, L|Fk
: (Fk, ‖ · ‖L2([a,b])) −→ (L(Fk), ‖ · ‖L2([a,b])) is continuous. We will

see in Subsection 4.2.1, Lemma 4.2.2, that the set Fk is totally bounded. Since it also
contains functions with less than k jumps, it is additionally closed and hence compact.
Altogether, this proves that L|Fk

: Fk → F̃k is a homeomorphism, i.e. it is continuously
invertible (see [33, Thm. 3.3, Chapter 16]).

Hence reconstruction of f0 from Lf0 under this conditions constitutes a well-posed
problem, which finally allows for estimation of f0 from (1.1) by solving (1.5) and subse-
quently inverting L.

In Chapter 6, we also consider the case where the number of change points is not
known, intending to estimate this number correctly. Then we have to consider the set
F̃∞ = L(F∞). This set, in general, is not compact and thus, we cannot argue as above,
that L : F∞ → F̃∞ is well-posed. But since we are only interested in estimating the
number of change points, which is invariant under transformation by L, i.e. f0 ∈ F∞
and Lf̃0 ∈ F̃∞ always have the same number of change points, considering the model in
(1.5) or the model in (1.1) makes again no difference.

Finally, we note, that in general we can not transfer the results for the model in (1.5)
to the model in (1.1), if f0 is a function in an approximation space Aα, as in Chapter 7.
The reason is again that compactness of the domain of L, in this case Aα, is violated. So
the theory in Chapter 7 would yield an estimator for Lf0, but the reconstruction of f0

itself in turn, leads to a possibly ill-posed problem. So the results of Chapter 7 cannot be
transfered to Hammerstein integral equations, unless the operator L satisfies additional
assumptions. For example, we could use the following modification of condition 3.) in
Assumption D.
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3 The integral operator

3*.) For every y ∈ [a, b], the mapping

L(·, y) : R −→ R

x 7−→ L(x, y)

is continuously differentiable, with derivative Lx(x, y) = ∂
∂x
L(x, y), that is contin-

uous in y ∈ [a, b]. Furthermore, there exist constants lu, ll > 0, such that for all
x ∈ [−R,R] and almost every y ∈ [a, b], it holds that

ll ≤ |Lx(x, y)| ≤ lu.

If this condition is satisfied, the inverse function theorem implies, that there exists a
continuously differentiable inverse L−1(·, y), of the map x 7→ L(x, y), which is defined
on the image of L(·, y) : [−R,R] 7→ R pointwise for all y ∈ [a, b]. The derivative of L−1

can be calculated as

∂
∂z
L−1(z, y) = L−1

z (z, y) = (Lx(L
−1(z, y), y))−1 ≤ l−1

l .

Now, in order to show continuity of the inverse operator L−1, we again consider a
converging sequence fn ∈ L2([a, b]) with ‖fn−f0‖L2([a,b]) → 0 for n→ ∞ with ‖fn‖∞ ≤ R
for all n ∈ N. Then it holds by the mean value theorem, that

‖L−1fn − L−1f0‖L2([a,b]) = ‖L−1(fn(y), y)− L−1(f0(y), y)‖L2([a,b]) ≤ l−1
l ‖fn − f0‖L2([a,b]).

Hence condition 3∗.) in addition to Assumption D, yields well posedness of the inverse
problem generated by the Niemitzky operator L also in the case, where f0 is contained
in an approximation space Aα.

3.2 Injectivity results for integral operators

Reconstruction of the true function f0 from the observation model in (1.5) requires
injectivity of the integral operator Φ (cf. (1.3)) as claimed in Assumption C. Since by
Lemma 8.2.1, pc-functions are L2-identifiable, we just need to claim injectivity of the
operator in L2. The following theorems give some conditions on the kernel ϕ, that assure
L2 injectivity of the corresponding linear integral operator Φ.

Product kernels We start with the discussion of integral operators with product
kernels ϕ(x, y) = φ(xy) with expansion φ(xy) =

∑∞
i=1 αi(xy)

i. The next theorem es-
tablishes a connection between injectivity of an integral operator and the expansion of
its kernel. The main argument in the proof is given by the Full Müntz Theorem for
L2-spaces, proven by Borwein et al. in [7]:
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3.2 Injectivity results for integral operators

Lemma 3.2.1. (Full Müntz-Theorem) Suppose that I ⊂ N and that 0 < a < b. Then,
span({yi}I), is dense in L2([a, b]) if and only if

∑

i∈I

i−1 = ∞.

Proof. This follows directly from [7, Thm. 4.2.6].

Theorem 3.2.2. Assume that 0 < a < b and that ϕ(x, y) = φ(xy) is a product kernel
defined on [a, b]2. Assume further, that there exists an interval [ρ1, ρ2] ⊂ [a2, b2], with
ρ1

a
< ρ2

b
, such that φ has an absolutely converging expansion φ(z) =

∑∞
j=1 αjz

j for all
z ∈ [ρ1, ρ2]. If J := {j ∈ N : αj 6= 0}, then, the operator in (1.3) is injective if

∑

j∈J

j−1 = ∞. (3.1)

If a2 = ρ1 and b2 = ρ2, then the converse is true, i.e. (3.1) is a necessary condition.

Proof. By assumption, the expansion of φ converges absolutely on the compact interval
[ρ1, ρ2]. Hence it converges uniformly, and integration and summation can be inter-
changed, which leads to

Φf(x) =

∫ b

a

ϕ(x, y)f(y)dy =

∞∑

j=1

xj

∫ b

a

αjy
jf(y)dy

︸ ︷︷ ︸
=:cj

,

for all x ∈ [ρ1

a
, ρ2

b
]. In order to see that the right hand side of this equation converges

absolutely and uniformly, note that

∞∑

j=1

∣∣∣∣xj

∫ b

a

αjy
jf(y)dy

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

f(y)dy

∣∣∣∣
∞∑

j=1

|αj|max(|a|j, |b|j)|x|j.

The integral
∣∣∣
∫ b

a
f(y)dy

∣∣∣ is finite, because f is an L2-function (cf. (1.3)). Furthermore, for

x ∈ [ρ1

a
, ρ2

b
], bx as well as ax are contained in [ρ1, ρ2]. This implies absolute convergence

of the sequence
∑∞

j=1 |αj|max(|a|j, |b|j)|x|j by assumption and we can apply Lemma
8.2.7 and obtain

Φf(x) = 0 for all x ∈
[

ρ1

a
, ρ2

b

]
⇔

∞∑

j

xjcj = 0 for all x ∈
[

ρ1

a
, ρ2

b

]

⇔ cj = 0 for all j (Lemma 8.2.7)

⇔
∫ b

a

αjy
jf(y)dy = 0 for all j ∈ J. (3.2)
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3 The integral operator

Now we can apply the Full Müntz-Theorem [7] (see Lemma 3.2.1), which states that the
set {yj}J is dense in L2([a, b]) if and only if

∑
j∈J j

−1 = ∞. With help of Gram-Schmidt-
orthonormalisation we obtain an orthonormal system of polynomials pj of degree j, such
that we obtain from (3.2) and Lemma 3.2.1

1. Φf(x) ≡ 0 ⇔
∫ b

a
pj(y)f(y)dy = 0 ∀ j ∈ J and

2. span({pj}j∈J) is dense in L2([a, b]) ⇔
∑

j∈J j
−1 = ∞.

Finally, it follows from [35, Thm. 1.28] that
∫ b

a
pjf(y)dy = 0 for all j ∈ J implies f ≡ 0

if and only if {pj}J is dense in L2([a, b]). Together with 1. and 2., this proves the first
claim. In order to prove the second claim, observe that ρ1 = a2 and ρ2 = b2 implies that
(3.2) is valid for all x ∈ [a, b] and thus the claim follows from the argumentation above,
since all implications hold in both directions.

Positive definite symmetric kernels The next theorem is formulated within the
framework of native Hilbert spaces Nϕ, associated with a kernel ϕ. A short summary
on native Hilbert spaces can be found in Section 8.3. For more detailed information we
refer to [54].

Theorem 3.2.3. The integral operator Φ as defined in (1.3), with continuous positive
definite symmetric kernel ϕ (cf. Definition 8.3.3), is injective on a subset F ⊂ L2([a, b])
if and only if Nϕ([a, b]) is dense in F

Proof. Assume that Φυ ≡ 0 for υ ∈ F . Using Theorem 8.3.4, this is equivalent to

0 = (f,Φυ)Nϕ([a,b]) = (f, υ)L2([a,b]) for all f ∈ Nϕ([a, b]).

This in turn is equivalent to υ ≡ 0 if and only if υ ∈ Nϕ([a, b]).

Note, that the kernel in Theorem 3.2.3 is not restricted to specific classes as for
instance product or convolution kernels. In this sense, the range of possible applications
of Theorem 3.2.3 covers arbitrary operators with “general” kernels as defined in (1.3).

From a practical point of view, this general approach is only applicable, if the corre-
sponding native space is explicitly known. More precisely, we have to know the L2-closure
of the respective native space. This means, it suffices to show that it contains a set of
functions, which is dense in L2([a, b]) (with respect to the L2-norm) as for example the
set of step functions or polynomials or functions from C∞([a, b]) with compact support.

There is a great amount of kernels with known native Hilbert spaces, given by the
reproducing kernels of known Hilbert spaces. This is a consequence of [54, Thm 11.11],
which states, that any Hilbert space with reproducing kernel coincides with the native
space of this kernel. Thus, any integral operator with kernel ϕ(x, y) = ϕ̃(x, y)g(y), is
injective, if g ∈ L2([a, b]) with g(y) > 0 for all y ∈ [a, b] and ϕ̃(x, y) is the reproducing
kernel of a Hilbert space, which is dense in F or even in L2, with respect to the L2-norm.
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3.2 Injectivity results for integral operators

For example, we consider a class of integral kernels

ϕ(x, y) =





cosh(x− a) cosh(b− y)

sinh(b− a)
g(y) a ≤ x ≤ y ≤ b

cosh(y − a) cosh(b− x)

sinh(b− a)
g(y) a ≤ y ≤ x ≤ b

with g as above. The kernel ϕ(x, y)g−1(y) is the reproducing kernel of the Sobolev space
H1([a, b]) defined as in (3.5) (see [5, Ex. 13]), which in turn, by [54, Thm 10.11] is the
native space of this kernel. Since H1([a, b]) is dense in L2([a, b]) it follows from Theorem
3.2.3, that the integral operator with kernel ϕ(x, y)g−1 is injective on g(y)F . Thus, since
g is a known positive function, the integral operator with kernel ϕ(x, y) is injective on
F .

Finally, Lemma 8.3.5 gives an example, how the native Hilbert space of a positive
definite and symmetric convolution kernel can be characterized by means of the Fourier
transform of the kernel, which will be applied in Lemma 3.3.2) to deduce injectivity of
special integral operators in the following section.

Convolution kernels For integral operators with convolution kernel ϕ(x, y), such that
there exists an analytic function φ ∈ L2(R) with ϕ(x, y) = φ(x − y) for (x, y) ∈ [a, b]2,
as for instance the Gaussian kernel φ(z) = (2πσ2)−1/2e−(z/σ)2/2 for some σ > 0, we have
the following injectivity result.

Theorem 3.2.4. Let Φ be an integral operator as in (1.3), with convolution kernel
ϕ(x, y) = φ(x − y). Assume further, that φ is analytic on R and denote its Fourier
transform by φ̂. Then, the operator Φ : L2([a, b]) → L2([a, b]) is injective, if φ̂ vanishes
at most on a set with Lebesgue measure zero.

Proof. For the operator

ΦR : L2(R) −→ L2(R)

f 7−→
∫ ∞

−∞
φ(· − y)f(y)dy

it holds that ΦRf ≡ 0 if and only if Φ̂Rf ≡ 0. Application of [20, Thm. 3.9, Chap. V,

§3] yields Φ̂Rf = φ̂f̂ . For f 6≡ 0, it holds that φ̂f̂ 6≡ 0 if φ̂ vanishes at most on a set with
Lebesgue measure zero.

Now consider a function f ∈ L2(R) with supp(f) ⊂ [a, b]. Then ΦRf is an an-
alytic function by Lemma 8.2.8, since φ is analytic and [a, b] is compact. Hence,
Φf = ΦRf |[a,b]≡ 0 implies that ΦRf = 0 on R by the identity theorem. Thus, the
claim follows from the first part.
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3 The integral operator

3.3 Integral operators satisfying Assumption C

In this section we introduce two special classes of kernels, which will be shown to sat-
isfy Assumption C. Therefore we introduce the set of functions of bounded Variation
BV ([a, b]), i.e.

BV ([a, b]) :=

{
f : [a, b] → R | sup

P∈P

nP−1∑

i=1

|f(xi+1) − f(xi)| <∞
}
,

where P = {P = {x1, ..., xnP
} | P is a partition of [a, b]} is the set of all finite partitions

of [a, b].
Again we consider product and convolution kernels.

Assumption C1: (Product kernels)

i) It holds that 0 < a < b and there exists a piecewise continuous bounded function
φ ∈ BV ([a2, b2]) with finite number of jumps, such that ϕ(x, y) = φ(xy).

ii) Furthermore, there exists an interval [ρ1, ρ2] ⊂ [a2, b2], with ρ1

a
< ρ2

b
, such that φ

has an absolutely converging expansion

φ(z) =

∞∑

j=0

αjz
j with αj ∈ R for all j ∈ N, z ∈ [ρ1, ρ2]. (3.3)

The set J := {j ∈ N : αj 6= 0} satisfies the Müntz -condition

∑

j∈J

j−1 = ∞.

One example of such a kernel occurs in the example from rheology, given in the in-
troduction, which will be discussed in detail in Section 5.2. The Gaussian kernel
φ(x) = (2πσ2)−1/2e−(x/σ)2/2, mentioned above, is another well known example for a
kernel satisfying C1.

Assumption C2: (Convolution kernels)

i) ϕ ∈ L2(R
2) ∩C(R2) is symmetric and positive definite and there exists a function

φ ∈ L2(R), such that ϕ(x, y) = φ(x− y) and φ |[a−b,b−a]∈ BV ([a− b, b− a]).

ii) There exist constants 0 < c1 ≤ c2 and s > 1/2, such that the Fourier transform
φ̂(x) decays algebraically, i.e.

c1(1 + |x|2)−s ≤ |φ̂(x)| ≤ c2(1 + |x|2)−s, x ∈ R.
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3.3 Integral operators satisfying Assumption C

Note that in Assumption C2, condition ii) implies i), if s ≥ 1. This is due to the fact,
that a kernel φ satisfying ii) is contained in the Sobolev space

Hs(R) :=

{
u ∈ L2(R)

∣∣∣∣∣

∫
(1 + |x|2)s|û(x)|2dx <∞

}
(3.4)

by Lemma 8.3.5 and thus φ |[a−b,b−a] is contained in

Hs([a− b, b− a]) := {u ∈ L2([a, b])| ∃ ū ∈ Hs(R) with u = ū |[a−b,b−a]}. (3.5)

For s ≥ 1, it holds that Hs([a − b, b − a]) ⊂ BV ([a − b, b − a]) (see e.g [22, Chap. 5.1,
Ex. 1]) and hence φ ∈ BV ([a− b, b− a]).

In [9] you can find some examples of kernels, which satisfy Assumption C2, as e.g.
the Laplace kernel φ(x) = 1

2
e−|x| or kernels of the type φ(x) = (1−|x|)p

+ for p = 2, 3, . . .,
where x+ denotes the positive part of x.

In order to show, that integral operators of type C1 or C2 satisfy Assumption C we
need the following Lemma.

Lemma 3.3.1. Let f ∈ L∞([a, b]) and Φ be an integral operator with kernel ϕ ∈
L∞([a, b]2), that satisfies one of the following conditions:

i) ϕ(x, y) = φ(xy) is a product kernel with 0 < a < b and φ ∈ BV ([a2, b2]), or

ii) ϕ(x, y) = φ(x− y) is a convolution kernel, with φ ∈ BV ([a− b, b− a]).

Then, the map x 7−→ Φf(x) is Lipschitz continuous on [a, b] with uniform Lipschitz
constant c‖f‖∞, such that c only depends on the kernel ϕ.

Proof. In the following let x + δ ∈ [a, b]. Under condition i) and ii) the function φ is
of bounded variation on [a2, b2] and [a − b, b − a] respectively. That means, there exist
monotonically increasing and bounded functions φ1, φ2, such that φ = φ1 − φ2 (cf. [31,
Thm. 91.7]) and ϕ = ϕ1 − ϕ2 respectively. So in both cases we obtain

|Φf(x) − Φf(x+ δ)| =

∣∣∣∣
∫ b

a

(ϕ1(x, y) − ϕ1(x+ δ, y) − ϕ2(x, y) + ϕ2(x+ δ, y))f(y)dy

∣∣∣∣

≤ ‖f‖∞
∫ b

a

|ϕ1(x, y) − ϕ1(x+ δ, y) − ϕ2(x, y) + ϕ2(x+ δ, y)| dy

≤ ‖f‖∞
[∫ b

a

|ϕ1(x, y) − ϕ1(x+ δ, y)| dy

+

∫ b

a

|ϕ2(x, y) − ϕ2(x+ δ, y)| dy
]
.
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3 The integral operator

Since φ1 and φ1 are monotonically increasing functions, we can interchange integration
and norm, which, for i = 1, 2 and ϕ satisfying ii), gives

∫ b

a

|φi(x− y) − φi(x+ δ − y)|dy =

∣∣∣∣
∫ x−a

x−b

φi(u)du−
∫ x+δ−a

x+δ−b

φi(u)du

∣∣∣∣
≤ 2|δ|‖φi‖∞.

So we have
|Φf(x) − Φf(x+ δ)| ≤ 2‖f‖∞|δ|(‖φ1‖∞ + ‖φ2‖∞).

If ϕ is as in i) we have 0 < a < b and obtain

∣∣∣∣
∫ b

a

φi(xy) − φi((x+ δ)y)dy

∣∣∣∣ =

∣∣∣∣∣

∫ bx

ax

1

x
φi(u)du−

∫ b(x+δ)

a(x+δ)

1

x+ δ
φi(u)du

∣∣∣∣∣

≤
∣∣∣∣
∫ bx

ax

φi(u)

(
1

x
− 1

x+ δ

)
du

∣∣∣∣

+
1

|a|

(∣∣∣∣∣

∫ a(x+δ)

ax

φi(u)du

∣∣∣∣∣+
∣∣∣∣
∫ bx

b(x+δ)

φi(u)du

∣∣∣∣

)

≤ ‖φi‖∞
(b− a)

|x+ δ| |δ| + 2
b

a
‖φi‖∞|δ|

≤
(

(b− a)

a
+ 2

b

a

)
‖φi‖∞|δ|

≤ 3
b

a
‖φi‖∞|δ|.

Using monotony of φ1 and φ2, again we can interchange norm and integral to get

∣∣∣∣
∫ b

a

(φi(xy) − φi((x+ δ)y)) f(y)dy

∣∣∣∣ ≤ ‖f‖∞
∫ b

a

|φi(xy) − φi((x+ δ)y)|dy

≤ ‖f‖∞
∣∣∣∣
∫ b

a

φi(xy) − φi((x+ δ)y)dy

∣∣∣∣
≤ 3 b

a
‖φi‖∞‖f‖∞|δ|

for i = 1, 2. This finally yields

|Φf(x) − Φf(x+ δ)| ≤ 3 b
a
‖f‖∞|δ|(‖φ1‖∞ + ‖φ2‖∞)

Now we are ready to prove the following
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3.3 Integral operators satisfying Assumption C

Corollary 3.3.2. Assume that the integral operator Φ in (1.3)

a) satisfies Assumption C1 or

b) satisfies Assumption C2 or

c) has an analytic convolution kernel as in Theorem 3.2.4,

then Φ satisfies Assumption C.

Proof. From Theorem 3.2.2 and 3.2.4 we directly obtain injectivity for conditions a)
and c). Lemma 8.3.5 together with Remark 8.3.1 claims, that for a kernel fulfilling
Assumption C2 the corresponding native space Nϕ([a, b]) coincides with the Sobolev
space Hs([a, b]) (cf. (3.5)). For this class of kernels Theorem 3.2.3 immediately yields
injectivity for condition b). So Assumption, i) is satisfied in all three cases.

Condition ii) of Assumption C follows directly from Assumption C1 and C2 and
under condition c), it follows from the fact that the kernel is analytic.

Finally, application of Lemma 3.3.1 yields uniform Lipschitz continuity, i.e. claim iii)
of Assumption C, for all three cases as well, where we took into account, that analytic
functions are contained in BV ([a− b, b− a]).
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Chapter 4

Known number of change points

In this chapter we consider the case, where the true function f0 in (1.5) is a parametric
piecewise continuous function as in Definition 2.2.2 with known number of change points,
i.e. f0 ∈ Fk, with k ∈ N known.

4.1 Estimate and asymptotic results

In order to reconstruct f0 from (1.5), we use a least squares estimator, i.e. a function
in Fk, whose image under Φ minimizes the empirical distance to the observations. This
estimator will be defined in the following Subsection 4.1.1. Subsequently in Subsection
4.1.2 we present some results concerning the asymptotic behavior of this estimator,
namely consistency, rates of convergence and asymptotic distribution of the estimated
parameters. The proofs of these results are added in Section 4.2.

4.1.1 Estimate

We begin with the definition of the least squares estimator f̂n, such that Φf̂n minimizes
the empirical distance to the observations Y in (1.5) with respect to the space Fk. That
is, f̂n ∈ Fk and

‖Φf̂n − Y ‖2
n ≤ min

f∈Fk

‖Φf − Y ‖2
n + o(n−1). (4.1)

From Definition 2.2.2, it follows, that there exists a parameter vector θ̂n ∈ Θ, such that

f̂n(y) = f(y, θ̂n) =

k+1∑

i=1

f(y, ϑ̂i)1(τ̂i−1,τ̂i).

Note, that the parameters ϑ̂i and τ̂i also depend on the index n.
The minimum on the right hand side in (4.1) always exists (see Corollary 4.2.4), but it

does not need to be unique. Note, that we do not assume, that the minimum is attained,
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4 Known number of change points

but only that the functional above can be minimized up to a term of order o(n−1). This
allows for numerical approximation of the minimizer and gives an intuition of the needed
precision for the asymptotic results to be valid. Furthermore it assures existence of a
minimum, even if we minimize over the non-compact set F∞, as needed in the case of
unknown number of change points in Chapter 6 or for estimation of a function from an
approximation space in Chapter 7.

In contrast to these methods, however, compactness of Fk implies that we do not
need any further regularization to stabilize the inverse problem. To be more precise, the
restriction of possible estimators to a compact set, actually is the regularization, as on
a compact set the operator Φ is continuously invertible (see Lemma 4.2.7). This also
explains, why the expansion to F∞ in Chapter 6 and 7 requires additional penalizing
(cf. (6.1) and (7.4)).

4.1.2 Consistency and asymptotic results

Now we investigate the asymptotic behavior of the least squares estimator in (4.1) under
the assumption, that the true function f0 ∈ Fk has precisely k change points, that is
♯J (f0) = k. Theorem 4.1.1 presents the main asymptotic results, which will be extended
in Corollary 4.1.2, for the case where f0 is known to depend on a reduced parameter as
in Definition 2.2.3. Subsequently, in Corollary 4.1.4, we show, that improved results can
be obtained, if f0 is a kink function.

Before approaching the main results we require some more notation. Due to Lemma
8.2.4, iii) the function θ 7→ Φf(x, θ) as defined in (2.7), is differentiable for almost every
x ∈ [a, b] with gradient

Df(x, θ) :=
∂

∂θ
Φf(x, θ). (4.2)

With this, we define the d× d matrix Vfθ
by

(Vfθ
)i,j =

∫ b

a

(Df (x, θ))i(Df(x, θ))js(x)dx, 1 ≤ i, j ≤ d, (4.3)

where s is as in Assumption B.

Theorem 4.1.1. Suppose that Assumptions A1 and B are satisfied and that the integral
operator Φ fulfilles Assumption C. Let f̂n(y) = f(y, θ̂n) be the least squares estimator of
the true function f0 = f(·, θ0) ∈ Fk as in (4.1), with ♯J (f0) = k. If the matrix Vfθ0

is
nonsingular, then

(i)
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1
fθ0

),

(ii) |θ0 − θ̂n|2 = OP (n− 1
2 ),

(iii) ‖Φf0 − Φf̂n‖L2([a,b]) = OP (n− 1
2 ) and,
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4.1 Estimate and asymptotic results

(iv) ‖f0 − f̂n‖L2([a,b]) = OP (n− 1
4 ).

If f0 depends on a reduced parameter vector θ̃0 as in Definition 2.2.3, the gradient
Df (x, θ̃0) = ∂

∂θ̃
Φf(x, h(θ̃0)) as in (4.2) can be calculated by the chain rule, due to the

differentiability of the function h (cf. Definition 2.2.3) and we have the following corol-
lary.

Corollary 4.1.2. Suppose that the assumptions of Theorem 4.1.1 are satisfied and that
the true function f0(y) = f(y, h(θ̃0)) is known to depend on a reduced parameter vector
θ̃0 as in Definition 2.2.3. Then the results of Theorem 4.1.1 are valid with θ0 and θ̂n

substituted by the reduced parameter vectors θ̃0 and θ̃n.

Nonsingularity of the covariance matrix Vfθ0
is essential for Theorem 4.1.1, to hold.

The next lemma gives a characterization of this property in terms of the partial deriva-
tives ∂

∂ϑi f(y, ϑ
i
0), i = 1, ..., k + 1, for the case, where f(·, θ0) has precisely k jumps and

Φ satisfies one of the Assumptions C1 and C2. Moreover, it states that Vfθ0
is always

singular, if f(y, θ0) has a kink in some change point.

Proposition 4.1.3. Suppose that Assumption C1 or C2 is satisfied and f(·, θ0) ∈ Fk,
with f(·, θ0) =

∑k+1
i=1 f(·, ϑi

0)1[τ0,i−1,τ0,i) (cf. Definition 2.2.2), has k change points. Then,
the matrix Vfθ0

as defined in (4.3) is nonsingular, if and only if f(·, θ0) has jumps in all
change points and for every a ∈ Rr and i = 1, ..., k + 1,

at ∂

∂ϑ
f(·, ϑi

0)1[τ0,i−1,τ0,i) ≡ 0 implies a = 0. (4.4)

Hence, if the true function f0 is known to be a kink function, it follows from Proposition
4.1.3, that Theorem 4.1.1 cannot be applied, since the condition of nonsingularity of
Vfθ0

is violated. So this case requires restriction to a reduced parameter domain Θ̃ as
in Definition 2.2.3. Then, we obtain the following improved asymptotic results, which
depend on the modulus of continuity of the considered function class F (cf. Definition
2.2.1) defined as

ν(F , δ) := sup
f∈F

sup
|y1−y2|≤δ

|f(y1) − f(y2)|. (4.5)

Corollary 4.1.4. Assume that the conditions of Corollary 4.1.2 are satisfied, but the
true function f0(y) = f(y, θ(θ̃0)) is a kink function and let ν be defined as in (4.5). Then
the results of Corollary 4.1.2 are valid, with the improved rate

‖f0 − f̂n‖L2([a,b]) = OP (n− 1
2 + n− 1

4ν(F , n− 1
2 )). (4.6)

In the discussion of the introductory example from rheology in Subsection 5.2, for
instance, we obtain rates of order n−1/2 in the case, where f0 ∈ L̃2 (cf. (2.6)) is a
piecewise linear function with two kinks, i.e. the case, where F = FL is the set of linear
functions with bounded slopes as in (2.2). More general, we obtain rates of n−(1+α)/4 if
F is a set of Hölder continuous functions with exponent 0 < α ≤ 1.
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4 Known number of change points

Remark 4.1.1. (Application to the observation model in (1.1))
As discussed in Section 3.1, Theorem 4.1.1 as well as Corollaries 4.1.2 and 4.1.4 also

hold for the model in (1.1), if L in (1.4) satisfies Assumption D. This is formulated in
the next

Corollary 4.1.5. Under the conditions of Theorem 4.1.1, let L be as in (1.4) satisfy
Assumption D and Lf̂n = Lf(y, θ̂n) be the least squares estimator of the function Lf0 =
Lf(y, θ0) as in (4.1), with f0 ∈ Fk and ♯J (f0) = k. Furthermore let H = Φ ◦ L and
define DLf(x, θ0) and VLfθ0

as in (4.2) and (4.3). If VLfθ0
is nonsingular, then

(i)
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1
Lfθ0

),

(ii) |θ0 − θ̂n|2 = OP (n− 1
2 ),

(iii) ‖Hf0 −Hf̂n‖L2([a,b]) = OP (n− 1
2 ) and,

(iv) ‖f0 − f̂n‖L2([a,b]) = OP (n− 1
4 ).

Moreover, if f0 depends on a reduced parameter θ̃0 as in Definition 2.2.3, the same holds
with θ0 and θ̂n substituted by the reduced parameter vectors θ̃0 and θ̃n. In particular, if
f0 is a kink function depending on a reduced parameter θ̃0, we obtain

(iv)* ‖f0 − f̂n‖L2([a,b]) = OP (n− 1
2 + n− 1

4 ν(F , n− 1
2 )),

with ν as in (4.5), if VLf
θ̃0

is nonsingular.

Remark 4.1.2. (Misspecification of the model and spline-regularization)
We will briefly discuss what happens, if the true function f0 is not, as assumed an

element of Fk. In general, under the additional assumption of equidistant design in
Assumption B, it follows from Lemma 8.2.9, that the minimizer of (4.1) converges to a
pc-function t ∈ Fk s.t.

‖Φf0 − Φt‖L2([a,b]) ≤ min
g∈Fk

‖Φf0 − Φg‖L2([a,b]). (4.7)

By Corollary 4.2.4, the minimum at the right hand side always exists. Lemma 8.2.9
furthermore requires, that it is unique. To check condition (4.7), leads to well known
problems of nonlinear approximation theory (e.g. see [11]). Note that, due to injectivity
of the operator Φ, the assumption of uniqueness of the minimizer t is equivalent to
the assumption of uniqueness Φt ∈ Φ(Fk), which minimizes the L2-distance from Φf0.
It would be of great interest, to relax the assumption of equidistant design as well as
improving the asymptotic law (8.5) for f̂n in Lemma 8.2.9. However, this is beyond the
scope of this thesis and not treated here.

If Fk is the set of piecewise polynomial functions, this offers an interesting connection
to distributional asymptotics for splines. Since by the Curry and Schoenberg Theorem
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(cf. [15, Chap. VIII, (44)]), for fixed change points, we have that the set of piecewise
polynomials of degree p is equal to the B-spline space of order pwith knots in {τ0, ..., τk+1}
with multiplicity p, in the case of jumps and p − 1 in the case of kinks. Thus, in this
case, misspecification of the model, could be considered as spline approximation of f0

and thus leads to the well known “spline-regularization”. Although, here we actually
have to deal with free-knot splines, i.e. the knots are free parameters and not known in
advance, which causes a serious difference to B-splines, starting with the fact that those
spaces are not longer linear. It has long been known, that approximation of a function
by splines improves dramatically if the knots are free ([46], [16],[12]). However, free knot
spline approximation has not been as popular as might be expected by these results.
This is due to the so called lethargy property (see e.g. [34]) of free not splines, which
affects the stable and effective computation of optimal knots. Especially it means, that
intending to optimize the locations of free knots, one is usually faced with local optima
located on multiple or coalescent knots which correspond to a degenerate case.

Nevertheless, for example Jupp in [34] describes a computational strategy for the
minimization problem for approximation with free knot splines. In [1], one can find
results about the asymptotic behavior of integrated mean square error (IMSE), by using
least squares and BIAS minimizing splines. In this context they determine an optimal
density for the knot distribution for a fixed knot number, which minimizes the IMSE.
Results similar to the asymptotic law as in Theorem 4.1.1 for the respective estimators do
not exist. However, free-knot spline approximation is closely connected to approximation
spaces, which will be discussed in Chapter 7. For a general discussion on free knot spline
spaces as well as some remarks on their approximation spaces, we refer to [15, Chap.
XII, §4].

Concerning spline-regularization with fixed knots, in contrast, one can find some in-
teresting results on inverse problems which treat integral equations as in (1.5) as e.g. in
[14], [41], [28] or [25]. For detailed informations about splines in general we again refer
to de Boor [15].

4.2 Proofs

The proof of Theorem 4.1.1 and the corresponding Corollaries 4.1.2, 4.1.4 and 4.1.5 is
separated in three parts. We start by estimating the entropy number of the considered
function spaces in Subsection 4.2.1, which yields the basic arguments for the consistency
proof of the estimator in (4.1) (Subsection 4.2.2). In Subsection 4.2.3 we give the proof
of the asymptotic results in Theorem 4.1.1 and Corollaries 4.1.2, 4.1.4 and 4.1.5. Finally
we add the proof of Proposition 4.1.3 separately in Subsection 4.2.4.

The proof of Corollary 4.1.2, under dependency assumptions of the components of
θ (cf. Definition 2.2.3), will be given as a draft only. This is due to the fact, that it
proceeds analogously with the required derivatives obtained by application of the chain
rule. Thus an exact formulation would be more confusing than explicatory. However,
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4 Known number of change points

some details may be clarified by the discussion of the application of Corollary 4.1.2 and
4.1.4 to a special example in Section 5.2, where we provide an explicit calculation of the
respective derivatives and the resulting covariance matrix Vf

θ̃
.

4.2.1 Entropy results

In order to show consistency of the least squares estimator f̂n in Equation (4.1), we
apply uniform deviation inequalities from empirical process theory. To this end, it is
necessary to calculate the entropy of the space of interest.

Definition 4.2.1. Given a measure P , a set of P -measurable functions G and a real
number δ > 0, the δ-covering number N(δ,G, P ) is defined as the smallest value of
N such that there are functions g1, ..., gN with

min
1≤j≤N

(∫
(g − gj)

2dP

)1
2

≤ δ, for all g ∈ G.

Moreover, the δ-entropy H and the entropy integral J of G are defined as

H(δ,G, P ) = logN(δ,G, P ) and

J(δ,G, P ) := max

(
δ,

∫ δ

0

H1/2(u,G, P )du

)
,

respectively.

If P is the Lebesgue measure we will write H(δ,G) and N(δ,G) instead of H(δ,G, P )
and N(δ,G, P ).

The entropy will be of specific use, with respect to two aspects.
First, in terms of empirical process theory, the fact, that the considered function class

has finite entropy, as we will show, means that this class is Donsker, which loosely
speaking names classes of functions for which uniform central limit theorems can be
obtained (for details see e.g. [53, Chap. 19]). In this framework, calling Fk Donsker
names the basic property of this class, which finally yields consistency and asymptotic
normality of the estimator in (4.1) (see Theorem 4.1.1). In [53] it has already been
shown, that parametric classes as F in Definition 2.2.2 are Donsker, if the respective
parameter set is of finite dimension and bounded. But the entropy number calculated
there, is not as exact, as it is needed later on in the situation, where we do not know
the number of change points (cf. Chapter 6). Therefore, although at this point only
finiteness of the entropy is required, we will calculate shaper bounds, in order to resume
it afterwards in Chapter 6.

Second, from an inverse problem point of view, the knowledge of the entropy of Fk

will help to show its compactness, which in turn is needed to prove continuity of the
inverse of the operator (1.3) as well as (1.4). Thus, the entropy number also is a usefull
tool to deduce stability of an inverse problem.

Now we start with the estimation of the entropy of the set Fk.
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Lemma 4.2.2. Let Fk and d = (k+1)r+k be as in Definition 2.2.2. Than there exists
a constant TF > 0 depending only on the considered function class F in Definition 2.2.1,
such that

H (δ,Fk) ≤ d log

(√
dTF + δ

δ

)
.

Proof. For θ1, θ2 ∈ Θ, with ∆ = θ1 − θ2 we can use the differentiability stated by
Definition 2.2.1, to obtain the first order expansion

f(x, ϑi
1) − f(x, ϑi

2) = (ϑi
1 − ϑi

2)
t ∂f

∂ϑi
(x, ϑ̃i)

for ϑ̃i ∈ (ϑi
1, ϑ

i
2). This yields

‖f(·, θ1) − f(·, θ2)‖2
L2([a,b]) ≤

k+1∑

i=1

‖f(·, ϑi
1) − f(·, ϑi

2)‖2
L2([a,b])

≤ sup
i=1,...,k+1
j=1,...,r

∥∥∥∥
∂

∂ϑi
j

f(·, ϑ̃i)

∥∥∥∥
2

L2([a,b])

k+1∑

i=1

|ϑi
1 − ϑi

2|22

≤ |∆|22R2

≤ d|∆|2∞R2,

with R as in Lemma 8.2.4. Assuming w.l.o.g., that M in Definition 2.2.2 satisfies 2M ≥
b− a, it follows that

sup
θ1,θ2∈Θ

|θ1 − θ2|∞ ≤ 2M,

for all θ ∈ Θ, independent of the number of change points. Together with the preceding
equation, this implies that the the δ-covering number of Fk depends only on the number
of balls with radius δ(R

√
d)−1 which are needed to cover a subset of Rd, with diameter

bounded by 2M , which can be estimated by (4MR
√
d+ δ)d/δd (cf. [17, Lem. 2.5]). So

finally we get

H (δ,Fk) ≤ d log

(
4MR

√
d+ δ

δ

)
,

and the claim follows with TF = 4MR.

The function class Fk generates the set

Gk := {Φf | θ ∈ Θ and f ∈ Fk[a, b]}, (4.8)

where Φ is a known integral operator with kernel ϕ as defined in (1.3). So, we will use
the entropy of Fk to estimate the entropy of Gk in the following Lemma.
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4 Known number of change points

Lemma 4.2.3. Let Gk be defined as in (4.8). Then there exists a constant T > 0
independent of k such that T ≥ ‖g‖L2([a,b]) for all g ∈ Gk and for all δ > 0

H (δ,Gk, Pn) ≤ d log

(√
dT + δ

δ

)
, (4.9)

with d = r(k + 1) + k.

Proof. For all ∆ = θ1 − θ2 with θ1, θ2 ∈ Θ we obtain by Hölder’s inequality, that

‖Φf(·, θ1) − Φf(·, θ2)‖2
n =

1

n

n∑

i=1

(∫ b

a

ϕ(xi, y)(f(y, θ1) − f(y, θ2))dy

)2

≤ 1

n

n∑

i=1

‖ϕ(xi, ·)‖2
L2([a,b])‖f(·, θ1) − f(·, θ2)‖2

L2([a,b])

≤ (b− a)‖ϕ‖2
∞‖f(·, θ1) − f(·, θ2)‖2

L2([a,b]).

Using Lemma 4.2.2, consequently implies

H (δ,Gk, Pn) ≤ H

(
δ√

b− a‖ϕ‖∞
,Fk

)

≤ d log

(√
d(b− a)TF‖ϕ‖∞ + δ

δ

)
.

Remembering that by definition TF ≥ (b−a)R ≥ (b−a) supf∈Fk
‖f‖∞ (cf. Lemma 8.2.4,

i)), choosing T = ‖ϕ‖∞ max(
√
b− a, b−a)TF ≥ (b−a)‖ϕ‖∞ supf∈Fk

‖f‖∞ ≥ ‖g‖L2([a,b])

for all g ∈ Gk completes the proof.

Further, we find that by Lemma 4.2.3, the set (Gk, ‖·‖n) is totally bounded. Since Gk

also contains functions Φf with f ∈ Fk, such that ♯J (f) < k, it is additionally closed
and hence compact, which directly yields

Corollary 4.2.4. Let Y be as in (1.5) and Gk as in (4.8). Then, the functional

‖ · ‖2
n : Gk −→ R+

Φf 7−→ ‖Φf − Y ‖2
n

has at least one minimizer in Gk.

4.2.2 Consistency

As claimed above, the entropy results of Subsection 4.2.1 can be used now to show
consistency of the least squares estimator in (4.1). First, we show consistency of the
image Φf̂n.
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Theorem 4.2.5. Let Φ be an operator satisfying Assumption C and f0 = f(·, θ0) ∈ Fk.
Furthermore, assume that Assumption A1 and B are met. Then, for f̂n = f(·, θ̂n), the
least squares estimator in (4.1), it holds that

‖Φf̂n − Φf0‖n = oP (1).

Proof. Due to Inequality (4.1) we have

‖Φf̂n − Y ‖2
n ≤ ‖Φf0 − Y ‖2

n + o(n−1).

Inserting Y = Φf0 + ε leads to

‖Φf̂n − Φf0‖2
n − 2〈Φf̂n − Φf0, ε〉n + ‖ε‖2

n ≤ ‖ε‖2
n + o(n−1)

which is equivalent to

‖Φf̂n − Φf0‖2
n ≤ 2〈Φf̂n − Φf0, ε〉n + o(n−1)

= 2(〈Φf̂n, ε〉n − 〈Φf0, ε〉n) + o(n−1)

≤ 4 sup
g∈Gk

|〈g, ε〉n| + o(n−1).

Lemma 4.2.3 gives boundedness of the entropy H (δ,Gk, Pn) uniformly in n, for all δ > 0
and so n−1H (δ,Gk, Pn) → 0 as n → ∞. With this result it follows from Lemma 8.4.2,
that supg∈Gk

|〈g, ε〉n| = oP (1).

As stated by Assumption C iii) the functions Φf are uniform Lipschitz continuous
for all f ∈ Fk. This directly implies convergence in L2-norm:

Corollary 4.2.6. Under the assumptions of Theorem 4.2.5 one has

‖Φf̂n − Φf0‖L2([a,b]) = oP (1).

Proof. Since the design in Definition (1.5) is assumed to satisfy Assumption B the claim
follows directly from Theorem 4.2.5 and Corollary 8.2.6.

The next lemma states stability of the inverse problem of reconstructing f0 from Φf0,
i.e. if Φf̂n is close to Φf0, than f̂n is close to f0, too.

Lemma 4.2.7. Under the assumptions of Theorem 4.2.5 it holds that

‖Φf̂n − Φf0‖L2([a,b]) = o(1) implies ‖f(·, θ0) − f(·, θ̂n)‖L2([a,b]) = o(1).

Proof. The operator Φ : (Fk, ‖·‖L2([a,b])) −→ (L2([a, b]), ‖·‖L2([a,b])) is linear and bounded
and hence continuous. According to Assumption C, i) it is injective and it follows from
Lemma 4.2.2, that the set (Fk, ‖ · ‖L2([a,b])) is totally bounded. Since it also contains
functions with less than k change points, it is additionally closed and therefore compact.
Hence Φ : Fk −→ {Φf ∈ L2([a, b]) : f ∈ Fk} is a bijective continuous mapping from
a compact set to a Hausdorff space, that means it is a homeomorphism (see [33, Thm.
3.3, Chapter 16]).
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4 Known number of change points

The next lemma states, that convergence of a sequence of functions fn = f(·, θn) ∈ Fk

to a function f0 = f(·, θ0) ∈ Fk implies convergence of its parameter vector θn to θ0,
if f0 has precisely k change points. This is a necessary condition, since otherwise there
may by more than one parameter vectors, which generate the same limit function.

Lemma 4.2.8. Assume that f0 = f(·, θ0) ∈ Fk with ♯J (f0) = k and let {f(·, θn)}n∈N be
a sequence in Fk. Then

‖f(·, θ0) − f(·, θn)‖L2([a,b]) = o(1) implies |θ0 − θn|∞ = o(1).

Proof. Due to the definition of J (·) in Subsection 2.2, the assumption ♯J (f0) = k
implies that f(·, θ0) has precisely k change points. That means, f(·, θ0) ≡ f(·, θ) implies
θ = θ0, i.e. for all θ0 6= θ ∈ Θ we have ‖f(·, θ0) − f(·, θ)‖L2([a,b]) > 0. Now assume
that ‖f(·, θ0) − f(·, θn)‖L2([a,b]) = o(1) but that there exist a subsequence {θkn}n∈N and
a constant c1 > 0, such that |θ0 − θkn |∞ > c1 for all n ∈ N. Since Θ is compact, we
can choose a further subsequence of this subsequence, which converges to some θ̂ ∈
Θ. W.l.o.g we assume limn→∞ |θ̂ − θkn |∞ = 0. By construction |θ0 − θ̂|∞ > c1 and
so uniqueness of θ0 implies ‖f(·, θ0) − f(·, θ̂)‖L2([a,b]) > c2 > 0 for some constant c2.
Continuity of the map θ 7→ ‖f(·, θ) − f(·, θ0)‖L2([a,b]), stated by Lemma 8.2.4, implies
existence of some n0 ∈ N, such that for all n ≥ n0 we have

‖f(·, θ0) − f(·, θkn)‖L2([a,b]) >
1

2
c2 > 0.

This is a contradiction to ‖f(·, θ0) − f(·, θn)‖L2([a,b]) = o(1) and the claim follows.

Corollary 4.2.9. Under the assumptions of Theorem 4.2.5 it holds, that

‖f(·, θ0) − f(·, θ̂n)‖L2([a,b]) = oP (1).

Moreover, if the true function f0 has exactly k change points it also holds, that

|θ0 − θ̂n|∞ = oP (1).

Proof. This follows from Theorem 4.2.5 by application of Lemma 4.2.7 and 4.2.8 together
with Lemma 8.1.1.

4.2.3 Asymptotic normality

In this subsection we investigate the rates of convergence of the least squares estimator
f̂n(y) = f(y, θ̂n) in (4.1) and especially show asymptotic normality of the corresponding
parameter estimate θ̂n, which finally leads to the proof Theorem 4.1.1. To this end, we
focus on the stochastic process ‖Y − Φf̂n‖2

n = n−1
∑n

i=1(yi − Φf̂n(xi))
2 for the random

observations (Y,X) as in (1.5), which henceforth we write as the empirical expectation

Enm(·, ·, θ) := n−1
n∑

i=1

m(xi, yi, θ),
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(cf. Chapter 2), with m defined as

m(x, y, θ) := (y − Φf(x, θ))2. (4.10)

By definition of the least squares estimator, we have, that θ̂n is the minimizer of the
map

θ 7−→ Enm(·, ·, θ),
if y is a random variable satisfying y = Φf0(x) + ε1 as in Model (1.5), with Eε1 = 0 and
Eε2

1 = σ2 and the expectation of m(·, ·, θ) can be calculated as

Em(·, ·, θ) = E(Φf(·, θ0) − Φf(·, θ̂n))2 + σ2

= E(Φf(·, θ0) − Φf(·, θ̂n))2 + Em(·, ·, θ0). (4.11)

By Lemma 8.2.4, the function θ 7→ m(x, y, θ) is almost everywhere differentiable with
derivative ∂/∂θ m(x, y, θ) =: ṁ(x, y, θ) = 2(Φf(x, θ) − y)Df(x, θ), with Df(x, θ) as in
(4.2), such that

Eṁ(·, ·, θ0)ṁ(·, ·, θ0)t = 4σ2EDf (·, θ0)Df(·, θ0)t = σ24Vfθ0
. (4.12)

In general, for proving asymptotic normality of the parameter estimator, empirical pro-
cess theory requires, that the function θ 7→ m(x, y, θ) is twice differentiable, in order
to obtain a second order expansion of this function. But according to [53, Thm. 5.23],
rather a second order expansion of the expectation Em(·, ·, θ), instead of the function m
itself, is needed. In the case at hand, the function m in (4.10) is just once differentiable
(a.e.) by Lemma 8.2.4. So we have to use another way to obtain a second order expan-
sion as needed in [53], than by using the second derivative. This will be the main topic
of this subsection, which aims at the application of a modified version of the mentioned
result in [53]. The only difference between this modified version, i.e. Theorem 4.2.10
and [53, Thm. 5.23] is, that the assumption of twice differentiability of θ 7→ Em(·, ·, θ)
is weakened here, following an explanatory note from the author in connection with this
theorem. The conditions of Theorem 4.2.10 meet all requirements of the proof, given
there, i.e. it follows by the proof of [53, Thm. 5.23] without any change.

Theorem 4.2.10. For each θ in an open subset of Euclidean space let (x, y) 7→ m(x, y, θ)
be a measurable function such that θ 7→ m(x, y, θ) is differentable at θ0 for P-almost
every (x, y) and such that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable
function ṁ with Eṁ2 <∞

|m(x, y, θ1) −m(x, y, θ2)| ≤ ṁ(x, y)|θ1 − θ2|∞. (4.13)

Furthermore, assume that the map θ 7→ Em(·, ·, θ) admits an expansion

Em(·, ·, θ) = Em(·, ·, θ0) +
1

2
(θ − θ0)

tV (θ − θ0) + r(|θ0 − θ|∞).
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4 Known number of change points

at a point of minimum θ0 with nonsingular symmetric matrix V and remainder term r,
such that

lim
|θ0−θ|∞→0

r(|θ0 − θ|)∞
|θ0 − θ|2∞

= 0.

If Enm(·, ·, θ̂n) ≤ infθ Enm(·, ·, θ) + oP (n−1) and θ̂n
P→ θ0, then

√
n(θ̂n − θ0) = −V −1 1√

n

n∑

1=1

ṁ(xi, yi, θ0) + oP (1).

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix V −1Eṁ(·, ·, θ0)ṁ(·, ·, θ0)tV −1.

Proof. Along the lines of the proof of [53, Thm. 2.23].

Now, first we want to show the Lipschitz property (4.13) of θ 7→ m(x, y, θ) for m
defined as in (4.10).

Lemma 4.2.11. Let Assumption A1 and B be satisfied and Φ be an integral opera-
tor with piecewise continuous kernel operating on the set Fk. Then, for the function
m(x, y, θ) in (4.10) and for every θ1 and θ2 in Θ one has

|m(x, y, θ1) −m(x, y, θ2)| ≤ ṁ(y, x)|θ1 − θ2|∞, (4.14)

with a measurable function ṁ with Eṁ2 <∞.

Proof. By Lemma 8.2.4 the function θ 7→ Φf(x, θ) is differentiable for almost every
x ∈ [a, b], with derivative Df (x, θ) as in (8.3). From the mean value theorem it follows
for some θ̃ ∈ (θ1, θ2), that

|m(x, y, θ1) −m(x, y, θ2)| ≤ |2(y − Φf(x, θ̃))Df(x, θ̃)(θ1 − θ2)|
≤ |2(y + C))|Cd|θ1 − θ2|∞,

where we took into account, that for the constants C and R in Lemma 8.2.4, vi) and i)
together with (8.3), it holds that

C ≥ (b− a)‖ϕ‖∞R ≥ ‖Φf‖∞
for all f ∈ Fk.

Defining ṁ(x, y) = ∞ if x lies in the null set, where Φf(x, θ) is not differentiable and
ṁ(x, y) = dC2|y + C| else, implies the Lipschitz condition (4.14). Remembering that
y = Φf(x, θ0) + ε1 ≤ C + |ε1|, we obtain

ṁ(x, y) ≤ 2d(|ε1| + 2C)C,

almost everywhere. Since Eε2
1 < ∞, and hence E|ε1| < ∞, this finally yields Eṁ2 ≤

∞.
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In the proof of the next lemma, we derive a second order expansion by using differen-
tiability of θ 7→ Em(·, ·, θ).

Lemma 4.2.12. Assume that the conditions of Lemma 4.2.11 are satisfied. For the
least squares estimator θ̂n in (4.1) of the true parameter θ0, define

∆n := (θ̂n − θ0)

and the d×d matrix Vfθ
= EDf (·, θ)Df(·, θ)t (cf. (4.2) and (4.3)), for any θ ∈ Θ. Then

Em(·, ·, θ̂n) = Em(·, ·, θ0) + ∆t
nVfθ0

∆n + h(|∆n|∞),

with remainder term h, such that

lim
|∆n|∞→0

h(|∆n|∞)

|∆n|2∞
= 0.

Proof. As in (4.11), we have

Em(·, ·, θ̂n) = σ2 + E(Φf(·, θ0) − Φf(·, θ̂n))2 = Em(·, ·, θ0) + E(Φf(·, θ0) − Φf(·, θ̂n))2.

By Lemma 8.2.4, the map θ 7→ Φf(x, θ) is almost everywhere differentiable with deriva-
tive Df(x, θ). Thus, it follows from the mean value theorem, that for some θ̃n ∈ (θ0, θ̂n)

E(Φf(·, θ0) − Φf(·, θ̂n))2 = E(∆t
nDf (·, θ̃n))

2

= E(∆t
nDf (·, θ0))2 + |∆n|2∞O(|E(Df(·, θ0) −Df (·, θ̃n))|2)

+|∆n|2∞O(|E(Df(·, θ0) −Df (·, θ̃n))|22).

Continuity of θ 7→ |E(Df (·, θ))|2 stated by Lemma 8.2.4, v), together with [53, Lem.
2.12] yields lim|∆n|∞→0 |E(Df(·, θ0) −Df(·, θ̃n))|2 = 0 and the claim follows.

The preceding lemmata show that the conditions of Theorem 4.2.10 are satisfied.
Hence we are ready to proof the asymptotic results presented in Theorem 4.1.1 and
Corollaries 4.1.2, 4.1.4 and 4.1.5 in Section 4.1.2.

Theorem 4.1.1

Proof. It follows from definition of θ̂n in (4.1) as well as from Lemma 4.2.9, 4.2.11 and
4.2.12, that the conditions of Theorem 4.2.10 are fulfilled. According to this theorem,
together with (4.12), the sequence

√
n(θ̂n −θ0) is asymptotically normal with mean zero

and covariance matrix

(2Vfθ0
)−1E[ṁ(·, ·, θ0)ṁ(·, ·, θ0)t](2Vfθ0

)−1 = σ2V −1
fθ0
,

which proves (i).
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By [53, Cor. 5.53], the Lipschitz condition from Lemma 4.2.11 and the expansion in
Lemma 4.2.12 yield (ii).

Again using the gradient Df(x, θ) in (4.2) (cf. 8.2.4), for almost every x ∈ [a, b], we
get a first order expansion

Φf(x, θ0 + ∆n) = Φf(x, θ0) + ∆t
nDf(x, θ̃), (4.15)

with θ̃ ∈ (θ0, θ̂n). Using this expansion and taking into account, that |∆n|∞ ≤ |∆n|2, we
get

‖Φf(x, θ0 + ∆n) − Φf(x, θ0)‖L2([a,b]) ≤ |∆n|∞ sup
θ∈Θ

‖Df(·, θ)‖∞(b− a)

≤ (b− a)COP (n− 1
2 ) = OP (n− 1

2 )

where C ≥ supθ∈Θ, i=1,...d ‖(Df(·, θ))i‖∞ as in Lemma 8.2.4. Now (iii) follows from (ii).

For the proof of (iv) recall that the maps ϑi 7→ f(x, ϑi), i = 1, ..., k+1 are continuously
differentiable (cf. Definition 2.2.1). This, together with Lemma 8.2.4 and skipping the
indices 0 and n for the parameter components ϑi and τi, the mean value theorem yields

‖f0 − f̂n‖2
L2([a,b]) =

k+1∑

i=1

∫ max(τi,τ̂i)

min(τi−1,τ̂i−1)

[
(ϑi − ϑ̂i)t ∂

∂ϑi
f(y, ϑ̃i)

]2

dy

+

k∑

i=1

[∫ τ̂i

τi

(f(y, ϑi+1) − f(y, ϑ̂i))21τi>τ̂idy

−
∫ τ̂i

τi

(f(y, ϑi) − f(y, ϑ̂i+1))21τi<τ̂i
dy

]

≤ |∆|2∞(k + 1)rR2 +

k∑

i=1

4R2|τi − τ̂i|

= O(|∆n|∞) = OP (n− 1
2 ). (4.16)

Where R is defined as in Lemma 8.2.4 and ϑ̃i ∈ (ϑi, ϑ̂i) for i = 1, ..., k + 1.

Corollary 4.1.2

Proof. Due to the differentiability of h in Definition 2.2.3 the needed derivatives in
the proof of Theorem 4.1.1 can be calculated by application of the chain rule. Hence
Corollary 4.1.2 follows analogously to the proofs in Subsections 4.2.1, 4.2.2 and 4.2.3
by substituting the required derivatives respectively. Note that for the same reason the
technical results in the Appendix as in particular Lemma 8.2.4 also apply to f(y, h(θ̃)).
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Corollary 4.1.4

Proof. Statements (i) - (iv) from Theorem 4.1.1 are valid for the reduced parameter
vectors θ̃0 and θ̃n by Corollary 4.1.2. In order to show (4.6), we skip the dependencies
of the parameter components, for the sake of simplicity and consider the pieces f(y, ϑi)
instead of f(y, ϑi(θ̃)) for all i = 1, ..., k + 1, keeping in mind, that for all occurring
derivatives we actually need to apply the chain rule.

Now f has a kink in τi for all i = 1, ..., k. W.l.o.g. we assume, that τi > τ̂i, then we
have

∫ τ̂i

τi

(
f(y, ϑi+1) − f(y, ϑ̂i)

)2

dy ≤
∫ τ̂i

τi

(
|f(y, ϑi+1) − f(τi, ϑ

i+1)|

+ |f(τi, ϑi+1) − f(τi, ϑ
i)| + |f(τi, ϑi) − f(τi, ϑ̂

i)| + |f(τi, ϑ̂i) − f(y, ϑ̂i)|
)2

dy.

Again using the differentiability of the map ϑi 7→ f(y, ϑi) as in the proof of Theorem
4.1.1 (iv), we obtain |f(τi, ϑi) − f(τi, ϑ̂

i)| = O(|ϑi − ϑ̂i|). The term |f(τi, ϑi+1) − f(τi, ϑ
i)|

vanishes because there is a kink in τi. Finally, remembering the definition of the modulus
of continuity ν in (4.5), we get

sup
y∈[τi,τ̂i]

(|f(y, ϑi+1) − f(τi, ϑ
i+1)|, |f(τi, ϑ̂i) − f(y, ϑ̂i)|) = ν(F , |τi − τ̂i|)

and thus, it follows from (ii), that

∫ τ̂i

τi

(
f(y, ϑi+1) − f(y, ϑ̂i)

)2

dy = O(|τi − τ̂i|)(ν(F , |τi − τ̂i|) + |ϑi − ϑ̂i|)2

= OP (n− 1
2 (ν(F , n− 1

2 )2 + n−1)).

Since this holds for all i = 1, ..., k, together with (4.16), this proves (4.6).

Corollary 4.1.5

Proof. (of Corollary 4.1.5) As described in Section 3.1, the function Lf0 is contained
in a pc-function set F̃k as in Definition 2.2.2 with ♯J (Lf0) = k, because L satisfies
Assumption D. Hence application of Theorem 4.1.1 implies (i), (ii) and (iii). Then (iv)
follows from (ii) analogously to the proof of (iv) in Theorem 4.1.1. The second part of
the Corollary follows for the same reasons from Corollaries 4.1.2 and 4.1.4, where (iv)∗

again follows from (ii) as in the proof of (4.6) in Corollary 4.1.4.

4.2.4 Nonsingularity of Vθ

In order to prove Proposition 4.1.3 we need the following

49



4 Known number of change points

Lemma 4.2.13. Suppose that 0 6≡ g ∈ L2([a, b]) and a = y0 < y1 < ... < yn <
yn+1 = b. Let further ϕ(x, y) be an integral kernel fulfilling Assumption C1 or C2. For
α, β1, .., βn ∈ R it holds

α

∫ b

a

ϕ(·, y)g(y)dy+

n∑

i=1

βiϕ(·, yi) ≡ 0

if and only if α = 0 = βi, for all i = 1, ..., n.

Proof. We are going to discuss the two kinds of kernels separately.
Assumption C2: Define the set of real Schwartz functions as

S(R) := {f ∈ C∞(R) : lim
|x|→∞

|xnf (m)(x)| = 0 ∀n,m = 0, 1, 2, ...}.

By [9, Lem. 5.1], the native space of a kernel satisfying C2, contains the subset of all
functions from S(R) with support in [a, b],

{f ∈ S(R) : supp(f) ⊂ [a, b]} ⊂ Nϕ([a, b]).

In particular, this implies, that for any interval [c, d] ⊂ [a, b] there exists some test
function ψ ∈ Nϕ([a, b]) satisfying supp(ψ) = [c, d]. Thus, taking into account that
‖g‖L2([a,b]) 6= 0, we can choose ρ, δi ∈ S(R) such that

ρ satisfies :





∫ b

a

ρ(y)g(y)dy 6= 0 and

ρ(y) = 0 if y ∈ {y1, ..., yn} ∪ R\[a, b]

and δi satisfies :




δi(yi) 6= 0 and

δi(y) = 0 if y ∈ R\(yi−1, yi+1),

for all i = 1, ..., n. As elements of the native space, ρ and all δi for i = 1, ..., k, can be
interpreted as function by

ρ(y) = 〈ρ, ϕ(·, y)〉Nϕ([a,b]),

and
δi(y) = 〈δi, ϕ(·, y)〉Nϕ([a,b]),

as shown in Lemma 8.3.2. Applying the inner product of the native space 〈ρ, ·〉Nϕ([a,b])

to both sides of the equation

α

∫ b

a

ϕ(·, y)g(y)dy+

n∑

i=1

βiϕ(·, yi) ≡ 0
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yields

α

∫ b

a

〈ρ, ϕ(·, y)〉Nϕ([a,b])g(y)dy +

n∑

i=1

βi〈ρ, ϕ(·, yi)〉Nϕ([a,b]) = 0.

Hence

α

∫ b

a

ρ(y)g(y)dy = 0

and therefore α = 0, since
∫ b

a
ρ(y)g(y)dy 6= 0 by definition. This implies

n∑

i=1

βiϕ(·, yi) ≡ 0

applying the inner product 〈δi, ·〉Nϕ([a,b]), we obtain

βiδi(yi) = 0 ⇒ βi = 0 ∀ i = 1, ..., n.

Assumption C1: Using the expansion in Assumption C1 gives

0 = α

∫ b

a

ϕ(x, y)g(y)dy +
n∑

i=1

βiϕ(x, yi) =
∑

j∈J

αjx
j

[
α

∫ b

a

yjg(y)dy +
n∑

i=1

βiy
j
i

]
,

for all x ∈ [ρ1

a
, ρ2

b
]. By Lemma 8.2.7 this is equivalent to

α

∫ b

a

yjg(y)dy +
n∑

i=1

βiy
j
i = 0 ∀ j ∈ J. (4.17)

By the Müntz Theorem for C([a, b])-functions in [8, Thm. 6.2], the condition
∑

j∈J j
−1 =

∞ implies, that the set of monomials {yj}j∈J is dense in C([a, b]), with respect to the
supremums norm. Since S(R) ⊂ C([a, b]), the functions ρ and δi from the first part of the
proof, can also be interpreted as uniform limit of linear combinations ρ(y) =

∑
j∈J µjy

j

and δi =
∑

j∈J ν
i
jy

j, for i = 1, ..., n, with appropriate coefficients µj and νi
j . Hence,

together with equation (4.17), we obtain

0 =
∑

j∈J

µjα

∫ b

a

yjg(y)dy +
∑

j∈J

µj

n∑

i=1

βiy
j
i

. = α

∫ b

a

ρ(y)g(y)dy +

n∑

i=1

βiρ(yi)

= α

∫ b

a

ρ(y)g(y)dy
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and thus α = 0. Consequently, (4.17) yields

n∑

i=1

βiy
j
i = 0 ∀ j ∈ J (4.18)

and hence
∑

j∈J

νl
j

n∑

i=1

βiy
j
i =

n∑

i=1

βiδl(yi) = 0 ∀ l = 1, ..., n,

which again implies βi = 0 for all i = 1, ..., 0.

Proposition 4.1.3

Proof. Assume that h ∈ Rd. The matrix Vfθ0
in (4.3) is nonsingular, if

htVfθ0
h =

∫ b

a

(htDf(x, θ0))
2s(x)dx = 0 ⇔ h = 0.

So assume that htVfθ0
h = 0. This implies ‖htDf(x, θ0)‖L2([a,b]) = 0, because s ≥ sl > 0,

by Assumption B. It follows from (8.3) together with the assumptions on the kernel
ϕ and Lemma 3.3.1, that the components x 7→ (Df (x, θ0))i are at least left- or right-
continuous for all x ∈ [a, b]. Thus htDf(·, θ0) ≡ 0 and equivalently

∫ b

a

ϕ(·, y)
∑

i6=0 mod (r+1)

hi
∂

∂θi
f(y, θ0)dy

+
∑

i=0 mod (r+1)

hiϕ(·, τi)(f(τ−i , θ0) − f(τi, θ0)) ≡ 0. (4.19)

If f(·, θ0) has a kink in τi for some i = 0 mod (r + 1), it holds that f(τ−i , θ0) −
f(τi, θ0) = 0 and the second term in (4.19) vanishes for all h ∈ Rd, with hj = 0 for all
j 6= i and hi arbitrary. Thus the matrix Vfθ0

is singular if f(·, θ0) has a kink in some
change point, which shows the first part of Proposition 4.1.3.

If in contrast, f(·, θ0) has exactly k jumps, it holds that f(τ−i , θ0)−f(τi, θ0) 6= 0 for all
i = 0 mod (r + 1) and Lemma 4.2.13 yields hi = 0 for all i = 0 mod r + 1 and moreover

∫ b

a

ϕ(·, y)
∑

i6=0 mod (r+1)

hi
∂

∂θi

f(y, θ0)dy ≡ 0.

By Corollary 3.3.2, the integral operator associated with the kernel ϕ is injective and
thus the preceding equation yields

∑

i6=0 mod (r+1)

hi
∂

∂θi
f(·, θ0) ≡ 0 a.e.
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and thus,
r∑

j=1

h(i−1)(r+1)+j
∂

∂ϑi
j

f(·, ϑi
0)1[τ0,i−1,τ0,i) ≡ 0, (4.20)

for i = 1, ..., k+1, where we took into account, that every function f ∈ F (cf. Definition
2.2.1) is continuous. That means h(i−1)(r+1)+j = 0, for i = 1, ..., k + 1, j = 1, ..., r,
if the partial derivatives ∂

∂ϑi
j

f(·, ϑi
0)1[τ0,i−1,τ0,i), j = 1, ..., r are linear independent for all

i = 1, ..., k + 1, as (4.4) claims. So we have h = 0 and thus nonsingularity of Vfθ0
, if

(4.4) is satisfied. If conversely (4.4) is not satisfied, there exists h 6= 0 such that (4.20)
holds, which implies that Vfθ0

is singular. Altogether, this finally proves the claim.
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Chapter 5

Application

5.1 Confidence bands

Statement (i) in Theorem 4.1.1 implies that the quadratic form

nσ−2(θ̂n − θ0)Vfθ0
(θ̂n − θ0)

t

is asymptotically distributed according to a χ2-distribution with d degrees of freedom.
This is still true if σ and Vfθ0

are replaced by consistent estimators σ̂n and Vf
θ̂n

, respec-

tively. Hence we are now able to determine a (1 − α)-confidence ellipsoid for θ̂n in Rd

by
n

σ̂2
n

(θ̂n − θ)(Vf
θ̂n

)(θ̂n − θ)t ≤ χ2
d(1 − α). (5.1)

Here χ2
d(1 − α) denotes the (1 − α)-quantile of the χ2-distribution with d degrees of

freedom. By maximizing and minimizing f(y, θ) over θ inside this confidence ellipsoid, we
obtain simultaneous confidence bands for f̂n. As far as the calculation of this confidence
bands is concerned, we have to account for the fact that (depending on d) a possibly
great amount of parameters has to be dealt with. This complicates the calculation
of confidence bands for f̂n. So we choose one of the common methods for approximate
confidence sets, such as Bonferroni, Scheffée or studentized maximum modulus statistics.
For computation of these statistics and corresponding confidence sets, we refer to the
book of Miller [39]. As our simulations show (cf. Figure 5.1), the studentized statistic
proves to be the most advantageous in the case of discontinuities. To make this obvious,
we calculated confidence bands for the most simple example, namely for the estimator
of a step function with one jump, using the approximative statistics just mentioned and
the exact χ2 statistic in comparison. Therefore we generated n = 100 noisy observations
of the image Φh, of the step function

h(y) = 41y<0.2 + 1y≥0.2
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Figure 5.1: Left: confidence bands for the estimator ĥn (red) of the true step function
h (black) using Scheffée (pink), Bonferroni (green), studentized maximum
modulus (yellow) and Chi-squared (blue) statistics. Right: respective confi-
dence bands for the estimation of the operator image.

with integral operator Φ as in Definition 1.3, with a = 0, b = 1 and Laplace kernel
ϕ(x, y) = 0.5e−|x−y|, that is

Φh(x) =

∫ 1

0

0.5e−|x−y|41y<0.2 + 1y≥0.2dy + ε.

with normal distributed error ε, with variance σ2 = 0.05 and mean zero. We calculated
the least squares estimator ĥn defined by (4.1) and, using the covariance matrix Vfθ

in
(4.3), obtained 0.95-confidence bands for h and Φh.

Figure 5.1 shows, that the studentized statistic (yellow) leads to less conservative
confidence sets for the parameter estimate, than Bonferroni (green) and Scheffée (pink).
This is due to the fact, that in all three cases, the confidence sets are cuboids, which side
lengths depend on the quantiles of the distribution of the used statistic. This so called
critical value, is allways lowest for the studentized statistic, as long as the number of
parameters is lower than the number of observations (cf. [39]). So the confidence cuboids
for θ̂n are nested, with the cuboid of the studentized maximum modulus statistic as the
least conservative of them.

The comparison of the studentized statistic and the exact Chi-squared statistic does
not lead to similar obvious results. The reason is that the boundaries of the respective
confidence sets for θ̂n, namely cuboid and ellipsoid respectively, intersect. Hence for
further comparison, we consider the surface area of the corresponding bands, generated
by the exact and the approximative method, as a further criterion. Remarkably it is
the approximate and not the exact method, which yields the narrower bands. Figure
5.1 shows, that the bands from the studentized statistic predominates even the exact
bands obtained from the elliptic confidence set. Since furthermore the confidence sets
based on the studentized maximum modulus statistic are the most straightforward to
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calculate, it seems to be altogether the best choice for computation of confidence bands
of pc-functions.

5.2 Example

In this subsection we are going to discuss an application of Corollary 4.1.4 to a prob-
lem from rheology. The aim here is the determination of the so called relaxation time
spectrum (see [47]). The relaxation time spectrum is a characteristic quantity used in
rheology which describes the viscoelastic properties of polymer solutions and polymer
melts. Given this spectrum, it is very easy to convert one material function into another
one. Additionally, many theories are based on the spectrum or provide predictions about
its character (see for example [26]). Unfortunately, the relaxation time spectrum is not
directly accessible by experiment. It is only possible to infer the spectrum from noisy
observations of their image under a nonlinear integral operator defined as follows (see
[47]).

Definition 5.2.1. Let 0 < a < 1 < b <∞ and c 6= 0.

H : L2([a, b]) −→ L2([a, b])

f 7−→ Hf(x) :=

∫ b

a

x2y

1 + x2y2
ecf(y)dy.

So, we have to deal with a Hammerstein integral H = Φ ◦ L, with

Φf(y) =

∫ b

a

x2y2

1 + x2y2
f(y)dy

and

Lf(y) := y−1ecf(y).

Note, that the exponential operator L and the linear operator Φ obviously satisfy
Assumption D in Section 3.1 and Assumption C1, respectively.

The function f describing the relaxation time spectrum, is known to have the inter-
pretation f(·, θ) = f̃(log(·), θ), such that f̃(·, θ) is continuous and piecewise linear with
two kinks (see [45]). This means that f̃ is an element of L̃2 as defined in (2.6) with
reduced parameter vector θ̃ = (ϑ1

1, ϑ
1
2, τ1, ϑ

2
2, τ2, ϑ

3
2) (cf. Definition 2.2.3). For simplicity

we rename θ̃ as θ = (b0, b1, τ1, b2, τ2, b3). Then we have

L̃2 = {f̃ ∈ L2([log(a), log(b)]) | f̃(y, θ) = b0 + b1y + b2(y − τ1)+ + b3(y − τ2)+, θ ∈ Θ},

where Θ is assumed to be compact. Then, the true function f0(y) = f(y, θ0), we intend
to estimate, is an element of the set

Llog := {f(y, θ) = f̃(log(y), θ) | f̃ ∈ L̃2},
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Figure 5.2: 0.95- and 0.80-confidence bands for the estimated function f̂n plotted against
log(y)

which obviously satisfies the conditions of Definition 2.2.2.
In [47] it is assumed, that the observation model coincides with (1.1), where Assump-

tions A1 and B on error and design are fulfilled. In the considered case this is equivalent
to the model in (1.5) with f0 substituted by Lf0, namely

yi = Hf(xi, θ0) + ε = ΦLf(xi, θ0) + εi for i =, ..., n.

Figure 1 shows n = 98 noisy observations from the operator in Definition 5.2.1 acting
on the unknown function f0 ∈ Llog. Hence, as described in Section 3.1 and Corollary
4.1.5 in Remark 4.1.1, the results for (1.5) from Chapter 4, can be applied to gain an
estimator for θ0 and therewith for f(y, θ0). More precisely, for the least squares estimator
Lf(y, θ̂n) = Lf̃(log(y), θ̂n) of the function Lf(y, θ0) = Lf̃(log(y), θ0) as defined in (4.1),
application of Corollary 4.1.5 yields

√
n(θ̂n − θ0)

D−→ N(0, σ2V −1
Lfθ0

), (5.2)

where σ2 = E(ε2) and VLfθ0
∈ R6×6 as in (4.3) is taking the form

(VLfθ0
)ij =

∫ b

a

(DLf)i(x, θ0)(DLf)j(x, θ0)dx, (5.3)

for i, j = 1, ..., 6, with gradient DLf as defined in (4.2). Applying the chain rule, we have

(DLf(x, θ0))i =
∂

∂θi

ΦLf(y, θ0)(x) =
∂

∂θi

Hf(y, θ0)(x)

= c

∫ b

a

x2y

1 + x2y2
ecf(y,θ0)(df(y, θ0))idy, (5.4)

for i = 1, ..., 6, where

df(y, θ) =




1
log(y)

−b21[eτ1 ,b]

(log(y) − τ1)1[eτ1 ,b]

−b31[eτ2 ,b]

(log(y) − τ2)1[eτ2 ,b]



.
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Figure 5.3: Empirical coverage probability of confidence bands for the estimated kink
function for observations with σ2 = 0.01, different sample sizes n = 100,
n = 1000 and n = 5000, each with 104 simulations (red lines). The x-axis
shows the nominal and the y-axis the empirical coverage probability.

First of all, we have to check, that the matrix VLfθ0
in (5.3) is non singular. To this end,

analogously to the proof of Proposition 4.1.3, we have to show, that the components of
DLf(x, θ0) in (5.4) are linearly independent. Because of the injectivity of the operator
Φ (see Corollary 3.3.2) this follows, if the components of df are linear independent, i.e.
if for θ0 = (b00, b

0
1, τ

0
1 , b

0
2, τ

0
2 , b

0
3),

α1 − α2 log(y) + [α3(log(y) − τ 0
1 ) − α4b

0
2]1[eτ0

1 ,b]

+ [α5(log(y) − τ 0
2 ) − α6b

0
3]1[eτ0

2 ,b]
≡ 0 ∀ y ∈ [a, b]

implies αi = 0 for i = 1, ..., 6. Remembering that b02 6= 0 6= b03 and τ 0
1 < τ 0

2 , since
otherwise f0 has less than two kinks, this is obviously the case.

Moreover, since f0 is a kink function, Corollary 4.1.5, (iv)∗ yields the improved rate

‖f0 − f̂n‖L2([a,b]) = OP (n− 1
2 ). (5.5)

Note that the above rate in (5.5) follows from the fact, that the logarithm (on the com-
pact interval [a, b] ∈ R+) as well as functions in FL (cf. (2.4)) are Lipschitz continuous
and hence the modulus of continuity ν(FL, n

−1/2) (cf. (4.5)) is of order O(n1/2).
Figure 5.2 shows the estimated kink function with 95%- and 80%- confidence bands,

calculated by using a studentized maximum modulus statistic as discussed in Subsection
5.1. (For details see [39, p.70ff]), from the associated data of relaxation time spectrum
(see [47]).

We evaluated the speed of convergence, i.e. quality of the approximation by the
asymptotic law from Theorem 5.2 in this special example, by performing a simulation
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study (see Figure 5.3). Here we used the Operator from Definition 5.2.1 operating on the
space of kink functions with one kink. For n = 100 the confidence bands are very anti-
conservative. For increasing n the empirical coverage approaches the nominal coverage.
From n = 5000 the procedure begins to give reasonably useful results.
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Chapter 6

Unknown number of change points

In this chapter we consider the case, where the true function f0 in (1.5) has a finite but
unknown number of change points, i.e. the case, where f0 ∈ F∞. In this case it obviously
does not suffice to apply a least squares estimator as in (4.1), since then the number of
change points is likely to diverge. To avoid this, we additionally penalize the number of
change points. The resulting minimization functional is called Potts functional. For an
application of this functional in a direct problem, i.e. when Φ = id in (1.3), where the
estimated functions are step functions, we refer to [10].

6.1 Estimation and asymptotic results

We consider the minimizer f̂λn of the Potts functional :

‖Φf̂λn − Y ‖2
n + λn♯J (f̂λn) ≤ min

f∈F∞

‖Φf − Y ‖2
n + λn♯J (f) + o(n−1) (6.1)

where λn is a sequence of positive parameters converging to zero and for the true function
f0, the number of change points ♯J (f0) is assumed to be nonzero (otherwise take ♯J (f)+
1 in (6.1) instead for technical reasons).

The next Theorem states, that for a large range of regularization parameters (λn)n∈N

(see 6.1), the correct number of change points is estimated with probability tending to
one. That means, for large enough n, the estimators f̂n in (4.1) and f̂λn in (6.1) coincide.

Theorem 6.1.1. Suppose that Assumptions A2, B and C are satisfied. Let f0 ∈ F∞
and choose {λn}n∈N such that

λn −→ 0 and λnn
1

1+ǫ −→ ∞,

for some ǫ > 0. Then, the minimizer f̂λn of (6.1) satisfies

P
(
♯J (f̂λn) = ♯J (f0)

)
−→ 1.
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6.2 Proof

From (6.1) we obtain the basic inequality

‖Φf̂λn − Φf0‖2
n ≤ 2〈Φf0 − Φf̂λn , ε〉n + λn(♯J (f0) − ♯J (f̂λn)) + o(n−1). (6.2)

Hence, as in Chapter 4, we have to consider the behavior of the empirical process 〈Φf0−
Φf̂λn , ε〉n. Again, we gain a bound for this process, by calculating the entropy of the
respective function space. This will be done in Subsection 6.2.1. Subsequently, in
Subsection 6.2.2 we introduce the proof of Theorem 6.1.1.

6.2.1 Entropy results

We aim to calculate the entropy number of the function class

G∞ := {Φf ∈ L2([a, b]) | f ∈ F∞}.

To this end we use a result from empirical process theory in [51], which is added in the
Appendix in Section 8.4, Lemma 8.4.1.

Lemma 6.2.1. Suppose that Assumptions A and A1 are satisfied. Then, for all Φf ∈
G∞ = {Φf ∈ L2([a, b]) | f ∈ F∞}, there exists a constant T1, independent of ♯J (f),
such that

|〈Φf, ε〉n| = OP (n− 1
2 )
√
♯J (f)‖Φf‖n

(
1 + log

(
T1

√
♯J (f) + ‖Φf‖n

‖Φf‖n

))
. (6.3)

Proof. For a fixed number of change points k, we find from Lemma 4.2.3 for Gk as in
(4.8), that

H(δ,Gk, Pn) ≤ d log

(
T
√
d+ δ

δ

)
,

with d = (k + 1)r+ k and a constant T , independent of k, that satisfies T ≥ ‖g‖L2([a,b]),

for all g ∈ Gk. Taking into account, that e(u−1
√
dT + 1) > e and hence log((T

√
d +

u)u−1)
1
2 < log(e(T

√
d+ u)u−1)

1
2 < log(e(T

√
d+ u)u−1), we obtain
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J (δ,Gk, Pn) :=

∫ δ

0

H1/2(u,Gk, Pn)du

≤
√
d

∫ δ

0

1 + log

(
T
√
d+ u

u

)
du

=
√
d
[
u+ (T

√
d+ u) log(T

√
d+ u) − u log(u)

]δ
0

=
√
d
(
(T

√
d(log(T

√
d+ δ) − log(T

√
d))

+ δ(1 + log(T
√
d+ δ) − log(δ))

)

≤ 2c1
√
kδ(1 + log(Tc1

√
k+δ

δ
)),

where c1 =
√

2r + 1 is independent of k. Here we used the mean value theorem to obtain
log(T

√
d+ δ)− log(T

√
d) = δ(T

√
d+ δ̃)−1 ≤ δ/(T

√
d) for some δ̃ ∈ (0, δ). By Theorem

8.4.1, there exists a constant c2 only depending on the constant α in the sub-gaussian
error condition A1, such that

√
nρ ≥ c2

(∫ δ

0

H1/2(u,Gk, Pn)du ∨ δ
)

implies

P
(

sup
f∈Gk,‖f‖n≤δ

∣∣∣ 1
n

n∑

i=1

εif(xi)
∣∣∣ ≥ ρ

)
≤ c2 exp

(
− nρ2

c22δ
2

)
.

Consequently for all t ≥ 2c1c2n
− 1

2 , with T1 = Tc1 it holds

P

(
sup

f∈Gk , ‖f‖n≤δ

|〈f, ε〉n| ≥ t
√
kδ

(
1 + log

(
T1

√
k + δ

δ

)))

≤ c2 exp

(
−nt

2k(1 + log(T1

√
k+δ
δ

))2

c22

)
≤ c2 exp

(
−nt

2

c22

)
,

where the right hand side is independent of k. Thus

sup
f∈Gk, ‖f‖n≤δ

|〈f, ε〉n|√
kδ
(
1 + log

(
T1

√
k+δ
δ

)) = OP (n− 1
2 ),
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holds uniformly for all k. For all g ∈ G∞, this implies

|〈g, ε〉n|
√
♯J(g)‖g‖n

(
1 + log

(
T1

√
♯J(g)+‖g‖n

‖g‖n

))

≤ sup
f∈G♯J(g)

‖f‖n≤‖g‖n

|〈f, ε〉n|
√
♯J(g)‖g‖n

(
1 + log

(
T1

√
♯J(g)+‖g‖n

‖g‖n

)) = OP (n− 1
2 ),

and the claim follows.

Lemma 6.2.2. Suppose that the Assumptions of Lemma 6.2.1 are satisfied. Then

|〈Φf, ε〉n| = OP (n− 1
2 )‖Φf‖1−ǫ

n (♯J (f))
1
2
(1+2ǫ),

for any ǫ > 0.

Proof. By construction of T1 in the proof of Lemma 6.2.1 it holds T1 ≥ ‖Φf‖n for all
f ∈ F∞. Since furthermore ♯J (f) ≥ 1, we have

1+ log

(
T1

√
♯J (f) + ‖Φf‖n

‖Φf‖n

)
≤ 1+ log

(
2T1

√
♯J (f)

‖Φf‖n

)
≤ c

(
1 + . log

(√
♯J (f)

‖Φf‖n

))
,

with c = log(2T1) ≥ 1. Together with Theorem 6.2.1 this implies

|〈Φf, ε〉n| = OP (n− 1
2 )
√
♯J (f)‖Φf‖n

(
1 + log

(√
♯J (f)

‖Φf‖n

))
. (6.4)

Now observe, that
√
x(1 + log(x)) ≤ cx1/2+ǫ for x ≥ 1, ǫ ≥ 0 and c ≥ max(ǫ−1, 1).

Moreover, if c is large enough and x > 0, then x(1 + log(x−1) ≤ cx1−ǫ. Combining these
results, remembering, that ♯J (f) ≥ 1 and ‖Φf‖n ≤ T1, it follows, that

♯J (f)
1
2‖Φf‖n

(
1 + log(♯J (f)

1
2‖Φf‖−1

n )
)

≤ ♯J (f)
1
2‖Φf‖n

(
1 + log(♯J (f)

1
2 )
)

+ ♯J (f)
1
2‖Φf‖n

(
1 + log(‖Φf‖−1

n )
)

and thus

♯J (f)
1
2‖Φf‖n

(
1 + log(♯J (f)

1
2‖Φf‖−1

n )
)

≤ ‖Φf‖n♯J (f)
1
2
+ǫ + ♯J (f)

1
2‖Φf‖1−ǫ

n

≤ (‖Φf‖ǫ
n + 1)♯J (f)

1
2
+ǫ‖Φf‖1−ǫ

n

≤ (T ǫ
1 + 1)♯J (f)

1
2
+ǫ‖Φf‖1−ǫ

n .

This, together with (6.4), proves the claim.

64
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6.2.2 Consistency

Before we start to proof Theorem 6.1.1 the following statement is needed.

Lemma 6.2.3. Let f0 ∈ F∞ and {fn}n∈N be a sequence in F♯J (f0), with

‖f0 − fn‖L2([a,b]) = oP (1),

then
lim

n→∞
P (♯J (f0) = ♯J (fn)) = 1.

Proof. From the assumption ‖f0 − fn‖L2([a,b]) = oP (1) it follows that

lim
n→∞

P (‖f0 − fn‖L2([a,b]) ≤ ρ) = 1 for all ρ > 0

and the claim follows by application of Lemma 8.1.1, i), if additionally there exists some
ρ̄ > 0 such that limn→∞ P (♯J (f0) = ♯J (fn) | ‖f0 − fn‖L2([a,b]) ≤ ρ̄) = 1. Thus, we have
to show, that there exist some ρ̄ > 0, such that

♯J (f0) = ♯J (f) for all f ∈ F♯J (f0) with ‖f0 − f‖L2([a,b]) ≤ ρ̄. (6.5)

To this end, w.l.o.g. let ♯J (f0) = 1. Now we assume, that the contrary of (6.5) holds,
that is for all ρ > 0 there exists fρ ∈ F♯J (f0), such that

‖f0 − fρ‖L2([a,b]) ≤ ρ and ♯J (fρ) = 0 < ♯J (f0).

This means that fρ ∈ F0 for all ρ > 0. Since ρ is arbitrary we have limρ→0 ‖f0 −
fρ‖L2([a,b]) = 0, which implies that fρ ∈ F0 converges to f0, if ρ converges to zero.
As shown in the proof of Lemma 4.2.7, the set F0 is compact with respect to the L2-
norm and thus the limit function of fρ has to be contained in F0, which leads to the
contradiction

f0 ∈ F0.

Now we are prepared for the proof of

Theorem 6.1.1

Proof. Throughout the proof w.l.o.g we assume, that ǫ ≤ 1. From Lemma 6.2.2 and
(6.2), it follows that

‖Φf̂λn − Φf0‖2
n ≤ OP (n− 1

2 )‖Φf̂λn − Φf0‖1− 1
2
ǫ

n (♯J (f̂λn − f0))
1
2
(1+ǫ)

+λn(♯J (f0) − ♯J (f̂λn)) + o(n−1)

≤ OP (n− 1
2 )‖Φf̂λn − Φf0‖1− 1

2
ǫ

n ♯J (f̂λn)
1
2
(1+ǫ)

−λn♯J (f̂λn) + λn♯J (f0), (6.6)
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6 Unknown number of change points

where we took into account, that λn is assumed to converge slower than n−1 and that
we have ♯J (f0) <∞, which implies, that ♯J (f̂λn − f0) = OP (♯J (f̂λn)).

Choosing f ≡ 0 on the right hand side of Equation (6.1) implies λn♯J (f̂λn) ≤ ‖Y ‖2
n =

OP (1) and hence, we have
♯J (f̂λn) = OP (λ−1

n ). (6.7)

We assumed that λ−1
n n−1/(1+ǫ) → 0, for n→ ∞, which gives

n−1 = o(λ1+ǫ
n ). (6.8)

By Lemma 8.2.4 we have that supf∈F∞
‖f‖∞ ≤ R and thus

sup
f∈F∞

‖Φf‖n ≤ ‖ϕ‖∞R ≤ ∞ (6.9)

Inserting (6.9), (6.7) and (6.8) into (6.6), we obtain

‖Φf̂λn − Φf0‖2
n ≤ oP (λ

1+ǫ
2

n )OP (λ
1−ǫ
2

n )‖Φf̂λn − Φf0‖1− 1
2
ǫ

n ♯J (f̂n)

−λn♯J (f̂λn) + λn♯J (f0)

= (op(λn) − λn)♯J (f̂λn) + λn♯J (f0). (6.10)

Since ♯J (f0) is bounded and by Lemma 8.1.1, ii) we have (oP (1)− 1)♯J (f̂n) ≤ OP (λn).
This implies

‖Φf̂λn − Φf0‖2
n = OP (λn)

and with Corollary 8.2.6,

‖Φf̂λn − Φf‖2
L2([a,b]) = OP (λn) + oP (1) = oP (1). (6.11)

Again considering (6.10) we find, that

0 ≤ (op(λn) − λn)♯J (f̂λn) + λn♯J (f0),

which means
(1 + oP (1))♯J (f̂λn) ≤ ♯J (f0).

Because ♯J (f) and ♯J (f̂λn) are integers, this implies P (♯J (f̂λn) ≤ ♯J (f0)) → 1 by
application of Lemma 8.1.1, iii). From Lemma 4.2.7 together with (6.11), we obtain
‖f0 − f̂λn‖L2([a,b]) = oP (1), if ♯J (f̂λn) ≤ ♯J (f0), i.e. f0, f̂λn ∈ F♯J (f0). That means, for
all ρ > 0 it holds, that

lim
n→∞

P
(
‖f0 − f̂λn‖L2([a,b]) ≤ ρ | ♯J (f̂λn) ≤ ♯J (f0)

)
= 1

and Lemma 8.1.1, i) yields

‖f0 − f̂λn‖L2([a,b]) = oP (1).

Finally using Lemma 6.2.3 this implies limn→∞ P
(
♯J (f0) = ♯J (f̂λn)

)
= 1, which is the

claim.

66



Chapter 7

Approximation spaces

In this chapter, we will discuss what happens if the true function f0 in (1.5) is not a
pc-function but can be approximated by those sufficiently well. To be more precise, f0

is assumed to be contained in an approximation space Aα(F∞). Such a space is a subset
of the closure of F∞, whose elements can be approximated by pc-functions at a certain
rate, indicated by α. They have been studied in various contexts, as by Besov [6], who
studied approximation spaces of trigonometric functions (cf. [18, Thm. 9.1, Chap. 7,
§9]), by Butzer and Scherer [13] and Peetre and Spaar [42], who pointed out relations
to the interpolation of operators, or by Lorenz [37], who considered the computation
of metric entropy of sets of functions. More details about approximation spaces can be
found in [18].

For estimation we will use a least squares minimizer, which is additionally penalized
by the number of jumps and the L2-norm of the objective function. We will show,
that in our observation model (1.5), this minimization yields a sequence of pc-functions,
which converges to the true function f0 contained in an approximation space Aα. That
means, it is possible to solve the ill-posed problem of reconstructing f0 ∈ Aα from the
observation model in (1.5), by approximation with functions from F∞.

Under appropriate source conditions we furthermore determine how fast this sequence
converges. The direct problem, i.e. Φ = id in (1.5), has been studied by Boysen, Kempe
et al. in [10], where they considered the approximation space of step functions. They
showed, that in the direct case, penalizing the number of jumps suffices to obtain a
converging sequence of step functions. Moreover they obtain convergence rates of order
OP (γ

α/(2α+1)
n ), where the regularization parameter γn is chosen such that, γn → 0 for

n→ ∞ and γnn log(n)−1 → ∞.

Considering the inverse problem in (1.5), we obtain (under a source condition) rates of

order OP (λ
α/2(2α+1)
n ) for the indirect problem and OP (λ

α/(2α+1)
n ) for the direct problem,

where the regularization parameter λn satisfies λn → 0 for n→ ∞ and λnn
1/(1+ǫ) → ∞.
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7 Approximation spaces

7.1 Definition

In order to define the approximation space with respect to a given set of pc-functions
we have to introduce some more assumptions on the function sets Fk and F∞.

Assumption E. For all k ∈ N, the set F̃k (with the corresponding parameter set
Θ ⊂ R(k+1)r+k) fulfills the conditions of Definition 2.2.2, where additionally it holds,
that

• Ψ = Rr (cf. Definition 2.2.1),

• 0 ∈ F̃k, F̃0 := {0},
• aF̃k = F̃k for each a 6= 0,

• F̃k + F̃k = F̃2k.

We define F̃∞ =
⋃∞

k=0 F̃k respectively.

Note that under these conditions F̃∞ becomes a linear space. They are satisfied for
example if the function class F , which generates F̃∞ (cf. Definition 2.2.1), consists of
polynomials of arbitrary but fix degree, such as step functions or linear functions, and
the respective pc-function spaces Fk are free knot splines (cf. Remark 4.1.2).

Definition 7.1.1. Let F̃k be a set of pc-functions, which satisfies Assumption E. Then,
we define the approximation error Λk(f), by

Λk(f) := inf{‖g − f‖L2([a,b]) : g ∈ F̃k[a, b]}.
Further, for α > 0 the approximation space Aα = Aα(F̃∞), is defined as

Aα := {f ∈ L2([a, b]) : sup
k≥1

kαΛk(f) <∞}. (7.1)

In the following section, we will consider the bounded subset F̃∞,C ⊂ F̃∞, defined as
F̃∞,C :=

⋃∞
k=1 F̃k,C, with

F̃k,C := {f(·, θ) ∈ F̃k[a, b] | |θ|∞ < C},
where the constant C <∞ has to be chosen such that the true function f0 is contained

in the closure F̃∞,C . Note, that by this restriction, F̃k,C again satisfy the conditions of
Definition 2.2.2, such that we are in a similar situation as in the first part of the thesis.
Especially it follows from Lemma 8.2.4, that here we also have a uniform bound

sup
f∈F̃∞,C

‖f‖∞ <∞ (7.2)

and thus, there exists a constant K > 0, such that

sup
f∈F̃∞,C

‖Φf‖∞ ≤ (b− a)‖ϕ‖∞ sup
f∈F̃∞,C

‖f‖∞ := K <∞. (7.3)
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7.2 Estimate and asymptotic results

7.2 Estimate and asymptotic results

We now aim for estimating a function f0 ∈ Aα from noisy observations given by the
model in (1.5). To this end, we again employ the penalized least squares estimator in
(6.1), that is, we intend to approximate f0 by functions from F∞. The penalization of
the number of change points however, is not enough to ensure continuity of the resulting
regularization operator. But as we will show, we obtain a consistent estimator f̂n ∈ F̃∞,C ,
as minimizer of the following extension of the Potts functional.

‖Φf̂n − Y ‖2
n + λn♯J (f̂n) + µn‖f̂n‖2

L2([a,b])

≤ min
g∈F̃∞,C

‖Φg − Y ‖2
n + λn♯J (g) + µn‖g‖2

L2([a,b]) + o(n−1). (7.4)

We use f̂n as abbreviation for f̂λn,µn , so we have to keep in mind that the minimizer
depends on the two regularization parameters λn and µn.

For the estimator f̂n we obtain the following asymptotic results.

Theorem 7.2.1. Let f0 ∈ Aα, f̂n be as in (7.4), λn such that λn → 0 and λnn
1/(1+ǫ) →

∞ for some ǫ > 0, and µn, such that µn → 0 and µ−1
n λ

2α/(2α+1)
n → 0 for n → ∞.

The operator Φ defined in (1.3) satisfies Assumption C and the observation model (1.5)
satisfies Assumption A, A1 and B, with νn = OP (µn). Then

‖Φf0 − Φf̂n‖L2([a,b]) = OP (µ
1
2
n),

and
‖f̂n − f0‖L2([a,b]) = op(1).

Proof. Since f0 ∈ Aα and since the constant C is chosen, such that f0 ∈ F̃∞,C , we can

find a sequence of functions fkn ∈ F̃kn,C, with kn := ⌊λ−1/(2α+1)
n ⌋, such that

‖fkn − f0‖2
L2([a,b]) ≤ O

(
k−2α

n

)
. (7.5)

We use this rate to find an upper bound for the rate of convergence of Φf̂n and f̂n. To
this end, we first set g = fkn in (7.4) and find

‖Φf̂n − Φf0 − ε‖2
n + λn♯J (f̂n) + µn‖f̂n‖2

L2([a,b])

≤ ‖Φfkn − Φf0 − ε‖2
n + λnkn + µn‖fkn‖2

L2([a,b]) + o(n−1),

and therefore

‖Φf̂n − Φf0‖2
n ≤ ‖Φfkn − Φf0‖2

n + 2|〈Φf̂n − Φfkn , ε〉n|
+ λn(kn − ♯J (f̂n)) + µn(‖fkn‖2

L2([a,b]) − ‖f̂n‖2
L2([a,b])) + o(n−1). (7.6)
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By Hölder’s inequality and keeping in mind that the kernel ϕ of the operator Φ is
bounded, the first term of the right hand side can be estimated by

‖Φfkn − Φf0‖2
n ≤ (b− a)‖ϕ‖2

∞‖fkn − f0‖2
L2([a,b]) = O(k−2α

n ). (7.7)

Moreover, setting g ≡ 0 in (7.4), we obtain

λn♯J (f̂n) ≤ ‖Φf0‖2
n + ‖ε‖2

n ≤ OP (1).

Hence we have ♯J (f̂n) = OP (λ−1
n ). Remembering that by definition ♯J (fkn) ≤ kn =

⌊λ−1/(2α+1)
n ⌋ = O(λ−1

n ), this means

♯J (f̂n − fkn) ≤ ♯J (f̂n) + kn = OP (λ−1
n ). (7.8)

By assumption, it holds that n−1/(1+ǫ)λ−1
n → 0 for n→ ∞. This yields the estimate

n−1 = o(λ1+ǫ
n ). (7.9)

Since θ̂n and θkn are bounded by C, we can apply Corollary 6.2.2 with ǫ substituted by
ǫ/2, which yields

2|〈Φf̂n − Φfkn , ε〉n| ≤ (♯J (f̂n) + kn))
1+ǫ
2 OP (n− 1

2 )‖Φf̂n − Φfkn‖
2−ǫ
2

n .

With ‖Φf̂n − Φfkn‖n ≤ 2 supf∈F̃∞,C
‖Φf‖∞ ≤ 2K from (7.3) and inserting (7.8) and

(7.9), this implies

2|〈Φf̂n − Φfkn , ε〉n| ≤ (♯J (f̂n) + kn))(2K)
2−ǫ
2 oP (λ

1+ǫ
2

n )O(λ
1−ǫ
2

n )

= oP (λn)♯J (f̂n) + oP (knλn). (7.10)

Applying (7.7) and (7.10) to (7.6) now we obtain

‖Φf̂n − Φf0‖2
n ≤ oP (λn)♯J (f̂n) − λn♯J (f̂n)

+µn(‖fkn‖2
L2([a,b]) − ‖f̂n‖2

L2([a,b])) +OP (k−2α
n + knλn + n−1)

= ♯J (f̂n)(oP (λn) − λn) + µn(‖fkn‖2
L2([a,b]) − ‖f̂n‖2

L2([a,b])) +OP (λ
2α

2α+1
n ),

where we took into account, that kn = O(λ
−1/(2α+1)
n ) and n−1 = O(λn).

From Lemma 8.1.1, ii) we obtain ♯J (f̂n)(oP (λn) − λn) ≤ OP (λ
2α/(2α+1)
n ). Hence we

can skip that term in the above equation and obtain

‖Φf̂n − Φf0‖2
n ≤ OP (λ

2α
2α+1
n ) + µn(‖fkn‖2

L2([a,b]) − ‖f̂n‖2
L2([a,b])) = OP (µn) , (7.11)

since ‖fkn‖2
L2([a,b]) and ‖f̂n‖2

L2([a,b]) are bounded by (7.2) and µn dominates λ
2α

2α+2
n . With

Corollary 8.2.6 and taking into account, that by assumption of the theorem νn = OP (µn),
for ν as in Assumption B, this results in

‖Φf̂n − Φf0‖2
L2([a,b]) = OP (µn),
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and proves the first claim. This can now be used to show the second one, since for all
g ∈ L2([a, b]) the first claim implies

|〈Φf̂n − Φf0, g〉L2([a,b])| = |〈f̂n − f0,Φ
∗g〉L2([a,b])| = oP (1). (7.12)

The operator Φ : L2([a, b]) → L2([a, b]) is injective by Assumption C, i). Thus, the
range of its adjoint operator Φ∗(L2([a, b])) is dense in L2([a, b]) (see e.g. [35, Thm.
15.8]). Therefore (7.12) yields |〈f̂n − f0, ḡ〉L2([a,b])| = oP (1) for all ḡ ∈ L2([a, b]), which
we call weak convergence in probability, denoted as

f̂n
P
⇀ f0.

From (7.11), we get

0 ≤ OP (λ
2α

2α+1
n ) + µn(‖fkn‖2

L2([a,b]) − ‖f̂n‖2
L2([a,b]))

and taking into account, that µ−1
n λ

2α/(2α+1)
n = o(1) by assumption of the theorem, this

gives

‖f̂n‖2
L2([a,b]) − ‖fkn‖2

L2([a,b]) = OP (µ−1
n λ

2α
2α+1
n ) = oP (1). (7.13)

Finally (7.5) and (7.13), together with the weak convergence of f̂n yield

‖f̂n − f0‖2
L2([a,b]) = ‖f̂n‖2

L2([a,b]) − 2〈f̂n, f0〉L2([a,b]) + ‖f0‖2
L2([a,b])

≤ 2〈f0 − f̂n, f0〉L2([a,b]) + ‖f̂n‖2
L2([a,b]) − ‖f0‖2

L2([a,b])

≤ 2〈f0 − f̂n, f0〉L2([a,b]) + ‖f̂n‖2
L2([a,b]) − ‖fkn‖2

L2([a,b])

+O(‖f0 − fkn‖L2([a,b]))

= oP (1). (7.14)

The next theorem shows, that the result of Theorem 7.2.1 can be improved, if we have
some a prioriinformation on the smoothing properties of the operator Φ, more precisely,
if we know, that f0 ∈ Φ∗(L2([a, b])).

Theorem 7.2.2. Assume that the conditions of Theorem 7.2.1 are satisfied, but now

we have that νn = OP (µ2
n) and µn = O(λ

α
2α+1
n ). If additionally f0 = Φ∗g0 for some

g0 ∈ L2([a, b]), one has

‖Φf̂n − Φf0‖L2([a,b]) = OP (λ
α

2α+1
n )

and

‖f̂n − f0‖L2([a,b]) = OP (λ
α

2(2α+1)
n ).
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Proof. If f0 = Φ∗g0 for some g0 ∈ L2([a, b]) this yields

0 ≤ ‖f̂n − f0‖2
L2([a,b])

≤ 2〈Φf0 − Φf̂n, g0〉L2([a,b]) + ‖f̂n‖2
L2([a,b]) − ‖fkn‖2

L2([a,b])

+O(‖f0 − fkn‖L2([a,b])). (7.15)

Inserting (7.5) with kn = ⌊λ−1/(2α+1)
n ⌋, together with Hölder’s inequality, this gives

‖fkn‖2
L2([a,b]) − ‖f̂n‖2

L2([a,b]) ≤ c‖Φf0 − Φf̂n‖L2([a,b]) +O(‖f0 − fkn‖L2([a,b]))

= c‖Φf0 − Φf̂n‖L2([a,b]) +OP (λ
α

2α+1
n ), (7.16)

where c ≥ 2‖g0‖L2([a,b]). From Lemma 8.2.6 it follows, that

‖Φf̂n − Φf0‖2
L2([a,b]) ≤ su‖Φf̂n − Φf0‖2

n +OP (νn + n−1)

= su‖Φf̂n − Φf0‖2
n +OP (λ

2α
2α+1
n ), (7.17)

with su and νn as in Lemma 8.2.6, taking into account that νn = OP (µ2
n) = OP (λ

2α
2α+1
n )

by assumption of the theorem.
Recalling (7.11) from the proof of Theorem 7.2.1 and applying (7.16) and (7.17), we

have

‖Φf̂n − Φf0‖2
L2([a,b]) ≤ OP (λ

2α
2α+1
n ) + µnsu(‖fkn‖2

L2([a,b]) + ‖f̂n‖2
L2([a,b]))

≤ OP (λ
2α

2α+1
n ) + µncsu‖Φf0 − Φf̂n‖L2([a,b]) +OP (µnλ

α
2α+1
n )

= OP (λ
2α

2α+1
n ) + µncsu‖Φf0 − Φf̂n‖L2([a,b]),

using µn = O(λ
α

2α+1
n ). This in turn implies

(
‖Φf̂n − Φf0‖L2([a,b]) − 1

2
csuµn

)2

≤ OP (λ
2α

2α+1
n ) + 1

4
(sucµn)2 = OP (λ

2α
2α+1
n )

and finally the first claim

‖Φf̂n − Φf0‖L2([a,b]) ≤ OP (λ
α

2α+1
n ) +O(µn) = OP (λ

α
2α+1
n ).

To prove the second claim, recall (7.13)

‖f̂n‖2
L2([a,b]) − ‖fkn‖2

L2([a,b]) ≤ Op(µ
−1
n λ

2α
2α+1
n ) = OP (λ

α
2α+1
n ).

Combining this result, with the first claim, (7.5) with kn = O(λ
−1/(2α+1)
n ) and (7.15),

yields

‖f̂n − f0‖2
L2([a,b]) ≤ c‖Φf0 − Φf̂n‖L2([a,b]) + ‖f̂n‖2

L2([a,b]) − ‖fkn‖2
L2([a,b])

+O(‖f0 − fkn‖L2([a,b]))

= OP (λ
α

2α+1
n ),

which finishes the proof.
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Example 7.2.3. (Approximation spaces of step functions) We consider the particular
instance of approximation spaces of step functions. As it was shown in [10, Ex. 2],
the class of Hölder continuous functions with exponent α (0 ≤ α ≤ 1), is contained in
Aα(T̃∞), where T̃∞ is generated by the sets of step functions Tk from (2.3) by means of
Assumption E. Thus, under the conditions of Theorem 7.2.2 for the estimator f̂n ∈ T∞
in (7.4), we have

‖f0 − f̂n‖L2([a,b]) = OP (λ
α

2(2α+1)
n ).

Choosing α sufficiently large and λn close to n−1, then yields convergence rates, arbitrary
close to OP (n−1/4), which is the rate in the case where f0 ∈ Tk for some finite k ∈ N

(see Theorem 4.1.1).

Example 7.2.4. (Spline approximation) We consider the set P̃q,k of piecewise polyno-
mials of degree q with k kinks, which satisfy Assumption E and the corresponding set
P̃q,∞ =

⋃∞
k=1 P̃q,k. We know from [15, Thm. XII. (34)], that any function f ∈ Cp[0, 1],

0 < p < q can be approximated by piecewise polynomials of order q with k kinks, with
fixed kink locations (i.e. B-splines as described in Example 4.1.2), at a rate of O(k−p).
Approximation with piecewise polynomials with free kink locations has to be at least as
fast as this rate. Thus Cp[0, 1] is contained in the corresponding approximation space
Ap = Ap(P̃q,∞) of piecewise polynomials and Theorem 7.2.2 leads to

‖Φf0 − Φf̂n‖L2([a,b]) = OP (λ
p

2p+1
n )

and

‖f0 − f̂n‖L2([a,b]) = OP (λ
p

2(2p+1)
n ),

for the penalized least squares estimator f̂n ∈ P̃q,∞ from (7.4).
Note, that these rates cannot be assumed to be the best possible, since approximation

by piecewise polynomials with fixed kink locations cannot be expected to yield the best
upper bound for the convergence rates for approximation by piecewise polynomials with
free kink locations.

Indeed, there can be found better results. For comparison we want to mention the
paper of Cardot [14], who considered the same model as in (1.5) with f0 ∈ Cp[0, 1] with
similar assumptions on error and design. The spline fitting of f0 is realized by minimizing
least squares with local roughness penalties and rates of order n−p/(2p+1) are obtained
for the direct problem (with respect to the empirical norm), which is the limit of the
rates above for ǫ→ 0 in Theorem 7.2.1. Convergence rates for the indirect problem are
not discussed in [14].
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Chapter 8

Appendix

8.1 The symbols OP and oP

There are many rules of calculus for the oP and OP symbols, which are applied without
comment (for details we refer to [53]). Here we mention some basic examples:

oP (1) + oP (1) = oP (1)

oP (1) +OP (1) = OP (1)

oP (1)OP (1) = oP (1)

(1 − oP (1))−1 = OP (1)

oP (Rn) = RnoP (1)

OP (Rn) = RnOP (1)

oP (OP (1)) = oP (1).

Furthermore, we often use the fact that

Xn = OP (1) implies Xp
n = OP (1) for p > 0.

This is a straightforward consequence of the definition of boundedness in probability,
using that f(x) = xp is monotone for p > 0. The same holds for oP instead of OP .

Finally, there are some more rules, which are more complex, given in the following

Lemma 8.1.1. Suppose that (Ω,Σ, P ) is a probability space and that n ∈ N.

i) If An, Bn ⊂ Σ are sequences of events, then

lim
n→∞

P (An) = 1 ∧ lim
n→∞

P (Bn|An) = 1 implies lim
n→∞

P (Bn) = 1.

ii) For an arbitrary sequence λn ∈ R \ {0}, it holds that

oP (1) − 1 ≤ OP (λn).
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iii) If an : Ω → N is a sequence of random variables and b ∈ N, then

an(1 + oP (1)) ≤ b for all n ∈ N implies lim
n→∞

P (an ≤ b) = 1.

Proof. It follows from the conditions in i), that limn→∞ P (Bn|An)P (An) = 1 as well as
limn→∞ P (Ac

n) = 0. Hence we obtain the total probability

lim
n→∞

P (Bn) = lim
n→∞

P (Bn|An)P (An) + lim
n→∞

P (Bn|Ac
n)P (Ac

n) = 1.

In order to show ii), consider a random variable Xn = oP (1). If there is a subsequence
kn ∈ N with Xkn − 1 ≥ 0 it holds, that

P (|(Xkn − 1)λ−1
kn
| ≥ 1) = P ((Xkn − 1)|λ−1

kn
| ≥ 1)

= P (Xkn ≥ |λkn| + 1) ≤ P (Xkn ≥ 1) −→ 0,

as n→ ∞, since Xn = oP (1). So Xkn − 1 = OP (λkn). If Xn − 1 < 0 = OP (λn), then ii)
also follows.

Finally we want to prove iii). From the assumption an(1 + oP (1)) ≤ b, we obtain

an(1 +Xn) ≤ b, (8.1)

with some random variable Xn = oP (1). Furthermore, the definition of oP (1) yields

lim
n→∞

P (|Xn| ≤ (2b+ 1)−1) = 1. (8.2)

Applying |Xn| ≤ (2b+ 1)−1 to (8.1) gives

an ≤ (1 +Xn)−1b ≤ |1 − |Xn||−1 b ≤ (2b+ 1)(2b)−1b = b+ 1
2
,

which means, that an ≤ b, since an and b are integers. Thus, we have

P (an ≤ b | |Xn| ≤ (2b+ 1)−1) = 1

and together with (8.2), the claim follows from i).

8.2 Technical tools

The following lemmata are essential for the proofs in this thesis. They are added sepa-
rately because of their technical character. They mainly collect some properties of the
functions f ∈ F∞ as in Definition 2.2.2 and Φf ∈ L2([a, b]) with Φ satisfies Assumption
C.

Lemma 8.2.1. Let f, g ∈ F∞(a, b). If ‖f − g‖L2([a,b]) = 0, then f and g are pointwise
identical pc-functions.
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Proof. By Definition 2.2.2 the functions g, f ∈ F∞ have finite number of changepoints
and they are right-continuous with existing left-sided limits in any y ∈ [a, b]. Thus the
same holds for the square of the difference (f − g)2, which means that ‖f − g‖L2([a,b])

implies (f(y)− g(y))2 ≡ 0 for all y ∈ [a, b].

Lemma 8.2.2. Assume that g(·, θ) ∈ L2([a, b]) and that θ 7→ g(y, θ) is continuous in θ0
for almost every y ∈ [a, b]. Let Φ be an integral operator as defined in (1.3), with kernel
ϕ ∈ L∞([a, b]2). Assume further that there exists a function ḡ ∈ L2[a, b] and an open
neighbourhood U(θ0), such that for all y ∈ [a, b]

|g(y, θ)| ≤ ḡ(y) ∀ θ ∈ U(θ0).

Then, the map θ 7→ Φg(x, θ) is continuous in θ0 for all x ∈ [a, b].

Proof. Let {θn}n∈N be a sequence in Θ converging to θ0, and {g(y, θn)}n∈N the sequence
of corresponding functions. Since θn converges to θ0, w.l.o.g. we assume that θn ∈ U(θ0).
This means that for all x ∈ [a, b] and almost every y ∈ [a, b] one has

lim
n→∞

ϕ(x, y)g(y, θn) = ϕ(x, y)g(y, θ0).

Furthermore, by assumption supθn∈U(θ0) |g(y, θn)| < ḡ(y), with ḡ ∈ L2([a, b]) and by
dominated convergence (e.g. [4, Thm. 15.1 and 15.6]) we find

lim
θn→θ0

(Φg(x, θn) − Φg(x, θ0)) = lim
θn→θ0

∫ b

a

ϕ(x, y)(g(y, θn) − g(y, θ0))dy

=

∫ b

a

lim
θn→θ0

ϕ(x, y)(g(y, θn) − g(y, θ0))dy

= 0,

for all x ∈ [a, b].

Lemma 8.2.3. Let ϑ ∈ Rr and g(y, ϑ) be a function, which is continuous in every y ∈
[a, b] ⊂ R and additionally continuous in ϑ0 for all y ∈ [a, b]. Then, for a ≤ τ1 < τ2 ≤ b
the map

θ = (τ1, ϑ1, ..., ϑr, τ2) 7−→ g̃(y, θ) := g(y, ϑ)1[τ1,τ2)(y)

is continuous in θ0 = (τ1, ϑ
0, τ2), for all y ∈ [a, b] \ {τ1, τ2}.

If furthermore there exists a neighborhood B(ϑ0) ⊂ Θ, independent of y ∈ [a, b] such
that ϑ 7→ g(y, ϑ) is continuously differentiable for all ϑ ∈ B(ϑ0) for all y ∈ [a, b], the
map

(y, ϑ) 7−→ g(y, ϑ)

is continuous in [a, b] × B(ϑ0).
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Proof. Since ϑ 7→ g(y, ϑ) is continuous in ϑ0, we can find for every ε > 0 a neighborhood
Bε(ϑ0) ⊂ Rr, such that for all ∆ϑ, with ϑ0 + ∆ϑ ∈ Bε(ϑ

0)

|g(y, ϑ0 + ∆ϑ) − g(y, ϑ0)| < ε.

If y /∈ {τ1, τ2} there exist open neighborhoods U(τ1) and U(τ2) in [a, b], that do not
contain y. Then for all ∆ = (δ1,∆ϑ, δ2) ∈ Rr+2, such that θ0 + ∆ ∈ B1 := U(τ1) ×
Bε(ϑ0) × U(τ2) we have

|g̃(y, θ0 + ∆) − g̃(y, θ0)| = |g(y, ϑ0 + ∆ϑ)1[τ1+δ1,τ2+δ2)(y) − g(y, ϑ0)1[τ1,τ2)(y)|
= |g(y, ϑ0 + ∆)1[τ1,τ2)(y) − g(y, ϑ0)1[τ1,τ2)(y)| < ε,

which proves the first claim.
If additionally ϑ 7→ g(y, ϑ) is differentiable in ϑ ∈ B(ϑ0) for every y ∈ [a, b], we have

for all ϑ0 + ∆ ∈ B(ϑ0), that

g(y, ϑ0 + ∆) − g(y, ϑ0) =
r∑

i=1

∆t
i

∂

∂ϑi

g(y, ϑ0) + r(∆),

with

lim
∆→0

r(∆)

|∆|r
= 0.

Furthermore y 7→ g(y, ϑ) is continuous on [a, b] and thus for all ε > 0 we can find a
neighborhood U 1

3
ε(y), such that for all y + δ ∈ U 1

3
ε(y) it holds

|g(y, ϑ0) − g(y + δ, ϑ0)| < 1

3
ε.

If supi=1,...,r

∣∣∣ ∂
∂ϑi
g(y, θ0)

∣∣∣ = c > 0 define

B 1
3
ε(ϑ

0) = {ϑ0 + ∆ ∈ B(ϑ0) | |∆|∞ ≤ ε
3rc

and |r(∆)| < 1
3
ε}

and finally B2 := U 1
3
ε(y) × B 1

3
ε(ϑ

0). Then, it holds for all (y + δ, ϑ0 + ∆) ∈ B2

|g(y + δ, ϑ0 + ∆) − g(y, ϑ0)| ≤ |g(y + δ, ϑ0) − g(y, ϑ0)| + |∆|∞c+ |r(∆)|
≤ 1

3
ε+

1

3
ε+

1

3
ε.

If supi=1,...,r

∣∣∣ ∂
∂ϑi
g(y, ϑ0)

∣∣∣ = 0, a slight change of the neighborhood of ϑ0, i.e. taking

B 1
3
ε(ϑ

0) = {ϑ0 + ∆ ∈ B(ϑ0) | |r(∆)| < 1
3
ε} instead, will do it.

The next Lemma presents a collection of properties of Φf(x, θ) implied by the As-
sumption on the objective function f ∈ Fk in Definition 2.2.2.
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Lemma 8.2.4. Let Φ be defined as in (1.3) and satisfy Assumption C. Moreover assume,
that s is a density fulfilling Assumption B and that f ∈ Fk (cf. Definition 2.2.2). Then,

i) there is a constant R > 0, independent of k, such that

sup
i=1,...,k+1,

j=1,...r, θ∈Θ

(
‖f(·, θ)‖∞, ‖

∂

∂ϑi
j

f(·, θ)‖L2([a,b])

)
≤ R,

ii) the map θ 7→ Φf(x, θ) is continuous for all x ∈ [a, b],

iii) the map θ 7→ Φf(x, θ) is differentiable for almost every x ∈ [a, b] with gradient
Df (x, θ) = ∂

∂θ
Φf(x, θ) as in (4.2),

iv) the map x 7→ Φf(x, θ) is Lipschitz continuous for all θ ∈ Θ, with uniform Lipschitz
constant c1R, with constant c1 depending only on the kernel ϕ,

v) the map

|EDf(x, ·)|2 : Θ −→ R

θ 7−→
∣∣∣∣
∫ b

a

Df(x, θ)s(x)dx

∣∣∣∣
2

is continuous,

vi) there is a constant C > 0, such that

sup
θ∈Θ, i=1,...d

‖(Df(·, θ))i‖∞ ≤ C.

Proof. Due to Definition 2.2.1 ii) and the second claim of Lemma 8.2.3, for every f ∈ F ,
the mapping (y, ϑ) 7→ f(y, ϑ) is continuous on the compact set [a, b] × Ψ and therefore
we have a uniform bound for all f ∈ F . Since f ∈ Fk is generated by functions in F this
implies that there exists a constant c1 ≥ 0, such that

sup
f∈Fk

‖f‖∞ = sup
f∈F

‖f‖∞ ≤ c1.

Similar, with g ∈ L2([a, b]) as in Definitions 2.2.1, iii), we have

sup
f∈Fk

sup
i=1,...,k+1,

j=1,...,r

∥∥∥∥
∂

∂ϑi
j

f(·, θ)
∥∥∥∥

L2([a,b])

= sup
f∈Fj=1,...,r

∥∥∥∥
∂

∂ϑj
f(·, ϑ)

∥∥∥∥
L2([a,b])

≤ ‖g‖L2([a,b]) ≤ c2.

Choosing R = max(c1, c2) proves the first claim.

79



8 Appendix

To show the second claim, remember that θ 7→ f(y, θ) is continuous in θ for every
y ∈ [a, b] \ {τ0, ..., τk+1} by Lemma 8.2.3 and is uniformly bounded by R (cf. i)). Hence
ii) follows from Lemma 8.2.2.

The bound R from i) for f ∈ Fk[a, b] together with Assumption C proves iv).
Using the bound from i) for the partial derivatives in addition with Definitions 2.2.1

and 2.2.2, yields the conditions for application of [20, Thm 5.7, Chap. IV], which claims
existence of the partial derivatives

∂

∂ϑi
j

Φf(x, θ) =

∫ τi

τi−1

ϕ(x, y)
∂

∂ϑi
j

f(y, θ)dy =

(
Φ

∂

∂ϑi
j

f(y, ϑi)1[τi−1,τi)

)
(x).

Furthermore, Φf(x, θ) is differentiable in τi for i = 1, . . . , k by the fundamental theorem
of calculus, with

∂

∂τi
Φf(x, θ) = ϕ(x, τi)(f(τ−i , θ) − f(τi, θ))

and we obtain the gradient D = ∂
∂θ

Φf(x, θ), calculated as

Di = (Df(x, θ))i =





∫ b

a

ϕ(x, y) ∂
∂θi
f(y, θ)dy i 6= 0 mod (r + 1) ,

ϕ(x, τ i
r+1

)(f(τ−i
r+1

, θ) − f(τ i
r+1
, θ)) i = 0 mod (r + 1) .

(8.3)

In order to prove iii), we have to show, that the components of Df(x, θ) are continuous
in θ. Lemma 8.2.3 implies continuity of θ 7→ ∂

∂ϑi
j

f(y, θ) for all i = 1, ..., k+ 1, j = 1, ..., r

and y ∈ [a, b]\{τ0, ...τk+1}. Thus, the integral
∫ τi

τi−1
ϕ(x, y) ∂

∂ϑi
j

f(y, θ)dy is also continuous

in θ by Lemma 8.2.2. The map

θ 7→ ϕ(x, τi)(f(τ−i , θ) − f(τi, θ)) = ϕ(x, τi)(f(τi, ϑ
i−1) − f(τi, ϑ

i))

is continuous for almost every x ∈ [a, b], since as argued above, the pieces f(y, ϑi) are
continuous in (y, ϑi) ∈ [a, b] × Ψ. Additionally it was claimed, that the kernel ϕ(x, y) is
discontinuous only in a null set. This in turn means that Φf(x, θ) is continuously partial
differentiable in θi, i = 1, . . . , d for almost every x ∈ [a, b] and hence differentiable in θ
for almost every x ∈ [a, b], which proves iii).

Statement vi) follows from (8.3) together with the bound in i), by

sup
θ∈Θ, i=1,...d

‖(Df(x, θ))i‖∞ ≤ ‖ϕ‖∞Rmax(2, (b− a)) =: C.

Finally, we again use (8.3) to show v). As already shown, the components (Df(x, θ))i

for i = 1, . . . , k, are continuous in θ, for almost every x ∈ [a, b]. So, by dominated
convergence in the same way as in the proof of Lemma 8.2.2 we obtain continuity of
the map θ 7→ E(Df(·, θ))i =

∫ b

a
(Df (x, θ))is(x)dx for any i = 1, ..., d. That means, the

Euclidean norm |EDf (·, θ)|2 is a sum of continuous functions and hence continuous in
θ, as v) claims.
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We often need to compare empirical norm and L2-norm of some function. The follow-
ing result proves to be useful for that purpose.

Lemma 8.2.5. Suppose that s, νn and δi, for i = 1, ..., n satisfy Assumption B and F ⊂
L2([a, b]) is a class of Lipschitz continuous functions, with uniform Lipschitz constant
κ. Then it holds uniformly for all f ∈ F , that

∫ b

a

f(x)s(x)dx =
1

n

n∑

i=1

f(xi) +OP (νn + n−1).

Proof. W.l.o.g we assume that a = 0 and b = 1. Let S(x) =
∫ x

0
s(y)dy, where s is as in

Assumption B. Note that S is strictly monotone and the inverse S−1 is well defined on
[0, 1]. For 0 ≤ c ≤ d ≤ 1 we have that

d− c = S(S−1(d)) − S(S−1(c)) =

∫ S−1(d)

S−1(c)

s(y)dy ≥ sl(S
−1(d) − S−1(c)) .

Hence S−1 is Lipschitz continuous and so is f◦ S−1 for any f ∈ F (with constant κ/sl).
By Assumption B we have S−1(i/n − δi) = x(i) with νn = maxi=1,...,n |δi|, i = 1, ..., n.
Consequently,

n

∫ i/n

(i−1)/n

f(S−1(y))dy = f(x(i)) + n

∫ i/n

(i−1)/n

f(S−1(y)) − f(S−1(i/n))dy

+n

∫ i/n

(i−1)/n

f(S−1(i/n)) − f(S−1(i/n− δi))dy

and by Lipschitz continuity of f ◦ S−1 we obtain
∣∣∣∣∣

∫ i/n

(i−1)/n

f(S−1(y))dy − n−1f(x(i))

∣∣∣∣∣ ≤ κ/sl(n
−1 + νn).

Since sl, κ <∞, substituting y = S−1(u), this implies
∣∣∣∣∣
1

n

n∑

i=1

f(xi) −
∫ 1

0

f(y)s(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
1

n

n∑

i=1

f(xi) −
∫ 1

0

f(S−1(u))du

∣∣∣∣∣
≤ κ/sl(n

−1 + νn),

which proves the claim, since κ and sl do not depend on f ∈ F .

Corollary 8.2.6. Suppose that Assumption C and Assumption B are met. Let F ⊂
L∞([a, b]) be a class of functions, such that there exists a constant cF ≥ ‖f‖∞ for all
f ∈ F. Then,

OP (νn + n−1) + sl‖Φf‖2
n ≤ ‖Φf‖2

L2([a,b)] ≤ su‖Φf‖2
n +OP (νn + n−1),

81



8 Appendix

with constants sl, su depending only on the design density (cf. Assumption B) (i.e. this
holds uniformly for all f ∈ F). Especially this implies, that uniformly for all f ∈ F∞,
with F∞ as in Definition 2.2.2, we have

oP (1) + sl‖Φf‖2
n ≤ ‖Φf‖2

L2([a,b)] ≤ su‖Φf‖2
n + oP (1).

Proof. By Assumption C, the functions Φf(x) are Lipschitz continuous for all f ∈ F,
with uniform Lipschitz constant cΦ‖f‖∞ = cΦcF , with constant cΦ only depending on
the operator Φ. Hence the functions (Φf)2, f ∈ F are also Lipschitz continuous with
uniform Lipschitz constant and application of Lemma 8.2.5 yields

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

(Φf(xi))
2 −

∫ b

a

(Φf(y))2s(y)dy

∣∣∣∣∣ = O(n−1 + νn).

Finally, recalling sl ≤ s(x) ≤ su for all y ∈ [a, b] (Assumption B), this yields the first
claim. The second claim follows from the assumption νn = oP (1), together with Lemma
8.2.4, which yields a uniform bound for all f ∈ F∞.

Lemma 8.2.7. Assume that ρ1 < x < ρ2 and let {cn}n∈N be a sequence of real numbers,
such that the series

∑∞
n=0 cnx

n converges absolutely on the interval [ρ1, ρ2]. Then,

∞∑

n=0

cnx
n = 0 ⇔ cn = 0 ∀n.

Proof. Due to the absolute convergence, we obtain by differentiation

∞∑

n=0

cnx
n = 0 ⇒

∞∑

n=1

ncnx
n−1 = 0

⇔
∞∑

n=0

(n+ 1)cn+1x
n = 0.

Comparing the coefficients yields (n+ 1)cn+1 = cn for all n ∈ N. If 0 ∈ [ρ1, ρ2] applying
x = 0 yields c0 = 0 and by induction the assertion. If 0 /∈ [ρ1, ρ2], multiplying the
second equation above with x and subsequently comparing the coefficients again, gives
ncn = cn. That means cn = 0 for all n ≥ 1 and therefore c0 = 0.

Lemma 8.2.8. Suppose that φ ∈ L2(R) is an analytic function and f ∈ L2(R) has
compact support suppf = [a, b] ⊂ R. Then the convolution

x 7−→
∫ ∞

−∞
φ(x− y)f(y)dy

is analytic.
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Proof. The aim is to show that for all x0 ∈ R there exists an open neighborhood U(x0)
and a sequence (an)n∈N in R such that

∫ ∞

−∞
φ(x− y)f(y)dy =

∞∑

n=0

an(x− x0)
n

for all x ∈ U(x0).

Therefore, w.l.o.g we assume x0 = 0. Since φ is analytic and [a, b] compact, there
exists a finite number of open neighborhoods U(x1), ..., U(xl), with x1, ..., xl ∈ (−b,−a),
such that for all i = 1, ..., l, it holds that

[−b,−a] (

l⋃

i=1

U(xi) and φ(z) =

∞∑

n=0

ai
n(z − xi)

n for all z ∈ U(xi).

So we can choose a partition a = τ0 < τ1 < ... < τl = b such that xi ∈ [−τi,−τi−1] and
[−τi,−τi−1] ( U(xi) for all i = 1, ..., l.. Hence, there exists a neigborhood U(0), such
that for all x ∈ U(0)

x− y ∈ U(xi) for all y ∈ [τi−1, τi],

for i = 1, ..., l. For any x ∈ U(0) and all i = 1, ..., l this means that

φ(x− xi − y) =
∞∑

n=1

ai
n(x− xi − y)n

=

∞∑

n=1

ai
n

n∑

k=0

(
n

k

)
xk(−1)n−k(y + xi)

n−k

=

∞∑

k=0

xk

∞∑

n=k

ai
n

(
n

k

)
(−1)n−k(y + xi)

n−k (8.4)

converges absolutely and uniformly for all y in the compact interval [τi−1, τi]. For the
last equation we took into account that

∞∑

n=1

n∑

k=0

∣∣∣∣ai
n

(
n

k

)
xk(−1)n−k(y + xi)

n−k

∣∣∣∣ ≤
∞∑

n=1

|ai
n|(|x| + |y + xi|)n

=
∞∑

n=1

|ai
n|
∣∣|x| + |y + xi| + xi − xi

∣∣n,

which converges, since by construction, it holds that |y + xi| + xi ∈ [−τi−1,−τi] for all
y ∈ [τi, τi−1] and hence |x|+ |y+ xi|+ xi ∈ U(xi). So we can interchange summations in
the (8.4).
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Finally, using that the convergence in (8.4) is uniformly in y ∈ [τi−1, τi] we can inter-
change summation and integration and get

∫ b

a

φ(x− y)f(y)dy =

l∑

i=1

∫ τi

τi−1

∞∑

k=0

xk

∞∑

n=k

ai
n

(
n

k

)
(−1)n−k(y + xi)

n−kf(y)dy

=
l∑

i=1

∞∑

k=0

xk
∞∑

n=k

ai
n

(
n

k

)
(−1)n−k

∫ τi

τi−1

(y + xi)
n−kf(y)dy

︸ ︷︷ ︸
=:bi

k

,

for all x ∈ U(0), which proves the claim with ak =
∑l

i=1 b
i
k.

Lemma 8.2.9. Assume that f ∈ L2([a, b]) with ‖f‖∞ ≤ R (R as in Lemma 8.2.4),
and that there exists a unique t ∈ Fk, such that (4.7) in Remark 4.1.2 is satisfied.
Furthermore, Assumption B holds with s ≡ 1, i.e. x(i) = i/n + δi. For f̂n, the least
squares estimator from (4.1), it holds that

‖Φt− Φf̂n‖L2([a,b]) = oP (1)

and
‖t− f̂n‖L2([a,b]) = oP (1). (8.5)

Proof. By definition of f̂n we obtain

‖Φf + ε− Φf̂n‖2
n ≤ ‖Φf + ε− Φt‖2

n + oP (n−1)

which yields

‖Φf − Φf̂n‖2
n ≤ ‖Φf − Φt‖2

n + 2〈Φf̂n − Φt, ε〉n + oP (n−1).

Since f̂n − t ∈ Fk, application of Lemma 6.2.2 gives an upper bound for the empirical
process , i.e. |〈Φf̂n − Φt, ε〉n| = oP (1). So we have

‖Φf − Φf̂n‖2
n ≤ ‖Φf − Φt‖2

n + op(1). (8.6)

Due to Corollary 8.2.6, remembering that su = 1 = sl, in this case, we obtain from (8.6),
together with the minimization property of t (4.7), that

‖Φf − Φt‖2
L2([a,b]) ≤ ‖Φf − Φf̂n‖2

L2([a,b]) ≤ ‖Φf − Φt‖2
L2([a,b]) + oP (1).

Consequently we find
∣∣∣‖Φf − Φt‖2

L2([a,b]) − ‖Φf − Φf̂n‖2
L2([a,b])

∣∣∣ = oP (1). (8.7)
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Now assume that Φf̂n does not converge to Φt in probability. Then, we can choose a
subsequence (Φf̂kn)n∈N and c, δ1 > 0, such that P (‖Φt−Φf̂kn‖2 ≥ δ1) > c for all n ∈ N.
Since ‖Φf −Φt‖2 is the unique minimum, that means P (‖Φf −Φf̂kn‖2 −‖Φf −Φt‖2 >
δ2) > c for some δ2 > 0. This, however, is a contradiction to (8.7), which proves the first
claim, that is

‖Φt− Φf̂n‖L2([a,b]) = ‖Φ(t− f̂n)‖L2([a,b]) = oP (1).

According to the proof of Lemma 4.2.7, Φ : F2k −→ Φ(F2k) is a homeomorphism.
Therefore it has a continuous inverse, which yields convergence of f̂n to t in probability
and hence the second claim.

8.3 Native Hilbert spaces

In order to prove injectivity of the operator Φ in (1.3) under the conditions of Theorem
3.2.3 as well as for operators satisfying Assumption C2 we use results from the theory of
native Hilbert spaces. We will present the main definitions and some statements needed
in the proofs of these results. To find an overview on native spaces we suggest e.g. the
book of Wendland (2005) [54, Chap. 10]. A classical reference concerning reproducing
kernel Hilbert spaces is furthermore Meschkowski (1962) [38] and the very detailed book
of Berlinet/Thomas-Agnan (2004) [5].

Definition 8.3.1. Let H be a real Hilbert space of functions f : Ω → R. A function
ϕ : Ω × Ω → R is called a reproducing kernel for H if

ϕ(y, ·) ∈ H for all y ∈ Ω

and
f(y) = 〈f, ϕ(y, ·)〉H for all f ∈ H and y ∈ Ω.

If in turn a symmetric positive definite function ϕ : Ω×Ω → R is the reproducing kernel
of a real Hilbert space H of real valued functions in Ω, then H is called the native space

of ϕ.

Lemma 8.3.2. Every positive definite function ϕ on a domain Ω has a unique native
space Nϕ(Ω). It is the closure of the space

Fϕ(Ω) :=

{
M∑

i=1

αiϕ(·, xi) | αi ∈ R, xi ∈ Ω,M ∈ N

}
,

equipped with the inner product
〈

N∑

j=1

αjϕ(·, xj),
M∑

k=1

βjϕ(·, yk)

〉

Nϕ

:=
N∑

j=1

M∑

k=1

ϕ(xj , yk).
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The elements of Nϕ(Ω) can be interpreted as functions by

f(x) = 〈f, ϕ(·, x)〉Nϕ

Proof. [48, Thm. 8].

The next Lemma draws a connection between the native space of a kernel ϕ and the
image of the corresponding integral operator Φ : L2(Ω) → L2(Ω), with compact Ω ⊂ Rd,
defined by

Φυ(x) :=

∫

Ω

ϕ(x, y)υ(y)dy, υ ∈ L2(Ω), x ∈ Ω.

Therefore, we use the following definition.

Definition 8.3.3. A continuous kernel ϕ : Ω × Ω → C is called positive definite on
Ω ⊆ Rd if for all N ∈ N, all pairwise distinct X = {x1, ..., xN} ⊆ Ω, and all α ∈ C \ {0}
we have

N∑

j=1

N∑

k=1

αjᾱkϕ(xj , xk) > 0.

Lemma 8.3.4. Suppose that ϕ is a continuous, symmetric and positive definite kernel
defined on a compact set Ω ⊂ Rd. Then the integral operator Φ maps L2(Ω) continuously
into the native space Nϕ(Ω). It is the adjoint of the embedding operator of the native
space Nϕ(Ω) into L2(Ω), i.e. it satisfies

(f, υ)L2(Ω) = (f,Φυ)Nϕ(Ω), f ∈ Nϕ(Ω), υ ∈ L2(Ω).

The range of Φ is dense in Nϕ(Ω).

Proof. [54, Prop. 10.28].

Lemma 8.3.5. Suppose that φ ∈ L1(R
d) ∩ C(Rd) satisfies

c1(1 + |x|22)−s ≤ |φ̂(x)| ≤ c2(1 + |x|22)−s, x ∈ Rd

with s > d/2 and two positive constants c1 ≤ c2. Then the native space Nϕ(Rd) corre-
sponding to ϕ(x, y) = φ(x− y) coincides with the Sobolev space Hs(Rd), and the native
space norm and the Sobolev norm are equivalent.

Proof. [54, Cor. 10.13].

Remark 8.3.1. For d = 1, Lemma 8.3.5 together with [36, Thm. 9.1] implies, that
under the same decaying assumptions on the Fourier transform as in Lemma 8.3.5, it
follows that Nϕ([a, b]) = Hs([a, b]) with equivalent norms.
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8.4 Empirical Process Theory

8.4 Empirical Process Theory

In this section we introduce the main results from empirical process theory as used in
the proofs of Lemma 6.2.2 and 4.2.5. There is a large amount of literature on this theory
especially on inequalities of the type of 8.4.1. Some references are Pollard [43], van der
Vaart and Wellner [52], van der Vaart [53], van de Geer [51], [17], and Devroye and
Lugosi [19] to mention a few.

The cited results are taken from van de Geer [51]. Note that the error condition
used in that book is weaker than Assumption A and A1, since it claims existence of
0 < C0, σ0 <∞ such that

lim
n→∞

max
i=1...n

C2
0E(eε2

i /C2
0 ) ≤ σ2

0 .

In the following theorems G denotes some arbitrary function space.

Lemma 8.4.1. Suppose that Assumptions A and A1 are satisfied. Assume further that
G is a class of functions, with supg∈G ‖g‖n ≤ R and there exists a constant c depending
on Assumption A1 only, such that for all δ > 0 satisfying

√
nδ ≥ c

(∫ R

0

H1/2(u,G, Qn)du ∨R
)

(8.8)

we have that

P
(

sup
g∈G

∣∣∣ 1
n

n∑

i=1

εig(xi)
∣∣∣ ≥ δ

)
≤ Ce−

nδ2

C2R2 . (8.9)

Proof. See [51, Lem. 3.2].

Lemma 8.4.2. Assume that ε1, ..., εn are i.i.d. with mean zero and E(ε2
1) = σ2 < ∞.

Set Gn(R) = {g ∈ G : ‖g‖n ≤ R} and suppose that

1

n
H(δ,Gn(R), Pn) −→ 0 for all δ > 0, R > 0.

Then

sup
g∈Gn(R)

|〈ε, g〉n| = sup
g∈Gn(R)

∣∣∣∣∣
n∑

i=1

εig(xi)

∣∣∣∣∣ = oP (1)

for every R > 0.

Proof. This follows directly from the proof of [51, Thm. 4.8].
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