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ABSTRACT

This paper addresses the issue of correcting type errors in model transformations in realistic scenarios where neither predefined
patches nor behavior-safe guards such as test suites are available. Instead of using predefined patches targeting isolated
errors of specific categories, we propose to explore the space of possible patches by combining basic edit operations for model
transformation programs. To guide the search, we define two families of objectives: one to limit the number of type errors
and the other to minimize the alteration of the transformations’ behavior. To approximate the latter, we study two objectives:
minimizing the number of changes and keeping the changes local. Additionally, we define four heuristics to refine candidate
patches to increase the likelihood of correcting type errors while limiting behavior deviations. We implemented our approach
for the ATL language using the evolutionary algorithm NSGA-II, and performed an evaluation based on three published case
studies. The evaluation results show that our approach was able to automatically correct on average more than 82% of type
errors for two cases and more than 56% for the third case.

KEYWORDS Model transformations, Program repair, multiobjective optimization.

1. Introduction

Model-Driven Engineering (MDE) is increasingly used for prod-
uct development in industries like automotive, telecom or bank-
ing (Whittle et al. 2014). In those industries, the primary interest
in modeling recently shifted from producing complex models
— mainly for documenting software systems — to using these
models to (semi-)automatically generate software artifacts by
means of model transformations (Combemale et al. 2016).
Model transformations usually take as input models ex-
pressed in a modeling language (i.e., metamodel), which can
be of general-purpose (e.g., UML) or domain-specific (e.g.,
AUTOSAR for automotive systems). The outputs of model
transformations can be either models (possibly conforming to
different metamodels), or texts such as source code or XML
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documents. In this paper, we focus on the former, i.e., model-
to-model transformations. Model transformation programs can
be written in general programming languages or transformation-
dedicated languages such as ATL (Jouault et al. 2008). These
programs usually describe transformation rules that indicate
how to transform elements of the input models into elements of
the output models. Whether they are learned automatically from
examples, like in (Baki & Sahraoui 2016), or written manually,
these transformations must be checked to ensure they are free of
errors. Transformation languages such as ATL are dynamically
typed, making transformation programs particularly prone to
type errors, such as referring to elements that do not exist in the
metamodels, or initializing properties with values of the wrong

types.

A way to automatically correct type errors is to provide pre-
defined patches for each category of errors (Cuadrado et al.
2018). Although this approach may be useful for developers, it
suffers from two limitations. Firstly, predefined patches require
an intensive knowledge to modify them or to define new ones
(e.g., for new categories of errors). Secondly, they fix errors
individually without considering possible interactions between
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them (Cuadrado et al. 2018) and may thus introduce new errors
while trying to fix existing ones. Another way to tackle the
correction of type errors is to use automatic program repair tech-
niques such as search-based algorithms. These techniques have
been proven to efficiently support developers for debugging
and correction tasks (Monperrus 2018). Contrary to predefined
patches, they enable to explore a space of potential patches,
and may help overcome the aforementioned limitations. These
techniques closely relate to oracles checking whether the pro-
gram behavior is correct after applying a patch, test suites being
the most popular oracles (Monperrus 2018). A transformation
program has an incorrect behavior (i.e., suffers from behavior
deviations or "semantic errors") if it produces output models
that are not the expected ones. However, a substantial amount of
knowledge is required to provide representative test suites that
would constitute a relevant oracle (Staats et al. 2011), especially
for transformations that use complex structures as input/output.
Moreover, in the specific context of type errors, valuable patch
solutions may fix most of the errors but not all, and the resulting
transformation cannot be executed — and then be tested — as type
errors are syntactic errors. Relying on test suites to guarantee
that type error patches preserve a transformation behavior is
thus hardly possible.

In this paper, we define an automated method for patch rec-
ommendation fixing type errors in model transformation pro-
grams without relying on predefined patches nor test suites. This
method does not seek end-to-end correction, but rather to alle-
viate developers’ tasks by avoiding patch maintenance and test
suites definition. Thus, its goal is to recommend to developers
patches correcting the most errors possible while minimizing
the alteration of the behavior of a given faulty transformation.
In a first phase, we propose to explore the space of possible
combinations of basic edit operations to find the sequences (i.e.,
patches) that repair several type errors simultaneously. To limit
the transformation’s behavior deviation, we explore the idea
of using several objectives to guide the search, as surrogate to
test oracles. We test two objectives: a) minimizing the changes
introduced by the patches and b) preserving the transformation
footprint with respect to the involved input/output languages.
We analysed the behavior of faulty transformation programs
corrected by this first phase and identify four types of recurring
behavior deviations, along with the edit operations introducing
them, which may be prevented by following simple guidelines.
However, implementing these guidelines in objectives would
be too resource-consuming and make the method non-tractable.
Thus, we define four heuristics to improve the decisions made
during the exploration phase and apply them once, in a second
phase, on the best patches obtained in the first phase, to further
prevent possible behavior deviations.

We evaluate these two phases using three existing ATL
model-to-model transformations, with a published dataset con-
taining several mutations of these transformations with various
errors and error categories. The evaluation of the first phase
showed contrasting results: while we succeeded to correctly
fix, on average, respectively 80% and 73% of the type errors
while preserving a correct behavior for two transformations, this
correction rate was lower (36%) for the third transformation.
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However, after applying the heuristics during the second phase,
the correction rates increased, on average, to 83%, 82% and
57%, respectively.

We made the following contributions:

— We adapt an evolutionary algorithm to automatically gen-
erate patches which can fix several type errors at the same
time in model transformation programs;

— We show that two objectives (namely, minimizing the
changes and keeping the changes local) help to guide the
patch generation to limit the behavior deviation of a cor-
rected model transformation program;

— We define four heuristics to refine the obtained patches and
show that these heuristics further limit behavior deviation.

The remainder of this paper is organized as follows. Section 2
gives the necessary background and discusses issues related
to automatically fixing type errors in model transformations.
Section 3 describes the two-step approach to fix type errors
without predefined patches nor test cases. An implementation
and an evaluation of our approach are provided in Section 4.
Section 5 presents related work. We discuss our findings and
conclude in Section 6.

2. Background

In this section, we first give some background information about
ATL and type errors in ATL transformation programs. Then,
we discuss the challenges of repairing these transformations.
Finally, we present NSGA-II (Deb et al. 2000), the evolutionary
algorithm we use in our approach.

2.1. Type Errors in ATL Transformations

Listing | presents an excerpt of an ATL transformation program
of UML activity diagrams into Intalio business process models',
borrowed from (Cuadrado et al. 2018). The two metamodels
are shown in Fig. 1.

ATL transformation programs consist in a source metamodel
(IN), a target metamodel (OUT), and a set of transformation
rules. Each rule is named and describes a pattern in the source
metamodel (from part, also called the input pattern) and a pat-
tern in the target metamodel (to part, also called the output
pattern). An ATL transformation program uses an execution
mechanism triggering a rule when an object in the input model
matches the input pattern of the rule. When the rule is executed,
an object is created in the output model according to the output
pattern of the rule. For example, the rule activity2diagram
(lines 7-12) states that each object instance of the Activity
class of UML (line 8) triggers the creation of an object, instance
of the BpmnDiagram class of Intalio (line 9).

1 create OUT : Intalio from IN : UML;

2 .
3 3 helper context UML!Activity def: allPartitions

4 :Sequence (UML!ActivityPartition) =
self.partition>collect (p | p.allPartitions)->flatten();

from a : UML!Activity

5

6

7 rule activity2diagram {
8

9 to d :

Intalio!BpmnDiagram (

! http://www.intalio.com/products/bpms
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Figure 1 Excerpts of UML activity diagrams (AD) metamodel and Intalio Business process model (BPMN) metamodel

10 artifacts <- a.name,
11 pools <— a.allPartitions

2 12 )}

14 rule activitypartition2pool {
: UML!Comment

16 to p : Intalio!Pool,

17 1 : Intalio!lLane (

18 activities <- a.node->reject (

19 e|e.oclIsKindOf (UML!ObjectNode) )
20 )}

Piooo

Listing 1 Excerpt of an ATL transformation program, from
UML Activity Diagram to Intalio BPMN

An input object may trigger the creation of several output ob-
jects. For instance, the rule activitypartition2pool (lines
14-20) states that each object instance of the Comment class of
UML (line 15) triggers the creation of two objects in the output
model: one instance of the Pool class of Intalio (line 16) and
the other instance of the Lane class of Intalio (line 17). Input
and output objects are related by a trace link: it is possible to ac-
cess properties of the input object and to set those of the output
object. For instance, the rule activity2diagram initializes
the properties artifacts and pools of BpmnDiagram depending
on properties it accesses in Activity (lines 10-11). Property
initialization, called binding in ATL, may use a property of the
input object (line 10), a helper (similar to methods, as defined
in lines 3-5) to reshape the input object property (line 11), or
OCL expressions (lines 18-19). Properties can be attributes
with native types, or references towards objects. When a bind-
ing’s right-hand side (RHS) is a reference to an object of the
input model, it needs to be transformed into elements of the
output model to be assigned to the property of the left-hand side
(LHS). In this case, a binding resolution mechanism takes place
to retrieve the corresponding elements of the output models. It
relies on rules which can perform this transformation, i.e., with
a from part corresponding to the type of the input model object
(binding’s RHS), and a to part corresponding to the type of the
output model property (binding’s LHS).

Models are primary artifacts that are exploited through model

transformations (Sendall & Kozaczynski 2003). Transforma-
tions use a type system mostly defined by the source and target
metamodels, i.e., the input and output pattern elements in trans-
formations have to refer to existing elements in the involved
metamodels (Cuadrado et al. 2017). Consequently, a type error
can be introduced in a transformation program by accident dur-
ing development (developer or domain expert error) by wrongly
using the metamodel types. It can also result from changes in
the metamodels it uses, but this case is out of the scope of this
paper. Resolving type errors in ATL is thus difficult because of
the declarative nature of the transformation language and the
dependencies towards the involved metamodels. In the follow-
ing, we illustrate type errors using the transformation program
excerpt of Listing 1.

A common type error concerns properties’ types in bind-
ings, such as in line 10. In the Intalio metamodel, the property
artifacts refers to objects of type Artifact. However, in the
RHS of this binding, the input object property name is of type
String, causing an incompatible type error. Invalid types are
also frequent errors. As mentioned earlier, each rule is triggered
by an input object that is compatible with the from part of the
rule. The rule activitypartition2pool is thus triggered
by objects conforming to Comment in the UML metamodel
(line 15). If we look closely to the UML metamodel of Fig. 1,
there is no Comment element: this raises the error invalid type.
Another common error concerns the binding resolution. Let
us consider the binding of line 11. The RHS of the binding
calls a helper returning objects of type ActivityPartition
from UML metamodel. The LHS of the binding is the prop-
erty pools, with type Pool from Intalio metamodel. To resolve
this binding, there must be a rule in the transformation pro-
gram having UML!ActivityPartition as input pattern, and
Intalio!Pool as output pattern, which is not the case in our
excerpt: this raises a possible unresolved binding (Cuadrado et
al. 2018) error.
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2.2. Challenges of Fixing Model Transformations

Existing research on model transformation repair generally fol-
lows the precept that errors sharing “the same symptoms, the
same root cause, or the same solution” can be fixed in the same
fashion (Martinez et al. 2014). Concretely, for a class of equiv-
alent errors, a predefined patch is applied to all instances of
this kind of error. Cuadrado et al. present an evolvable list of
patches tailored as a response to every characterized type of
syntactic error (Cuadrado et al. 2018). The authors point that
the proposed list may evolve with new error types or with the
refinement of existing patches. Additionally, one may want
to adapt patches to other transformation languages. Defining,
refining and adapting patches require an important amount of
knowledge, thorough study of their impact and manual main-
tenance effort. Another issue mentioned by the authors is that
the order in which one applies predefined patches may bring
unexpected interactions and side effects on the transformation,
e.g new errors can be injected or contradictory changes may
loop. We believe that an approach that dynamically explores
candidate patches, rather than applying predefined ones, can
circumvent the above-mentioned issues. As patches can be seen
as sequences of basic edit operations, such an approach can
automatically explore the space of possible sequences that fix
several typing errors at once, without creating new ones.
Another important issue is to ensure that the original behav-
ior/semantics of the transformation is not altered — or at least
that the semantic discrepancy is circumscribed and character-
ized. The common way to ensure this behavior preservation
after changes is to use an oracle such as test suites, pre-/post-
conditions, or possibly other specifications. Yet, in the context
of domain-specific problems such as those MDE offers to solve,
the necessary knowledge required to build a relevant and trust-
worthy oracle is not always available (Baudry et al. 2010). Since
we are dealing with faulty transformations that cannot be al-
ways executable, we cannot rely on test cases to systematically
evaluate potentially good candidate patches. Indeed, these may
not correct all errors, resulting in partially corrected transforma-
tions that potentially cannot be executed. In our approach, we
propose to consider, in addition to the objective of correcting
the most type errors possible, two other objectives to limit be-
havior deviation, and thus view the exploration of the space of
candidate patches as a multi-objective optimization problem.

2.3. NSGA-Il, a Multi-Objective Evolutionary Algorithm

Evolutionary population-based algorithms (EPAs) are auto-
mated methods solving optimization problems by iteratively
evolving a population of candidate solutions toward a near-
optimal one. For multi-objectives optimization problems, EPAs
are designed to find a set of optimal solutions, called non-
dominated solutions, or Pareto set. A non-dominated solution
provides a suitable compromise between all objectives such that
one objective cannot be further improved without degrading
another objective.

In this paper, we use NSGA-II, a well-known fast multi-
objective genetic algorithm, that is suitable to the kind of prob-
lem we are solving (Ali et al. 2020). The adaptation of NSGA-II
to our problem is described in Section 3. NSGA-II works on
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Figure 2 NSGA-II Algorithm (Deb et al. 2000)

a population of N candidate solutions. In the first iteration, a
population Py of N /2 solutions is randomly created (Fig. 2
(1)). The solutions of P are then bred to create a population
Qo of N /2 new solutions (2) by using two genetic operators: a
mutation operator slightly changing a candidate solution of Py
to add it in Qg, and a crossover operator cutting two candidate
solutions of Py in two parts and recombining them to obtain
two new solutions for Qgy. Qp is then merged with Py into an
initial population of size N. Then, thanks to an objective func-
tion, the N solutions are sorted into dominance fronts (3a). A
solution s1 dominates a solution s; for a set of objectives {O;}
if Vi, Oi(Sl) > Oi(Sz) and 3] | O]'(S1) > Oj(Sz). The first
front includes the non-dominated near-optimal solutions. The
second front contains the solutions that are dominated only by
the solutions of the first front, etc. The fronts are included in
the parent population P; of the next generation following the
dominance order until the size of N /2 is reached. If this size
coincides with part of a front, the solutions inside this front
are sorted, to complete the population, according to a crowding
distance which favors diversity in the solutions (Deb et al. 2000)
(3b). In this way, P; retains the N/2 best solutions of the current
iteration. This process is repeated (4) until a stop criterion is
reached, e.g., a number of iterations or one or more objectives
greater than a certain threshold. At each iteration, the best re-
tained solutions are not the same, and as new solutions are bred
based on the best candidates of the previous iteration, they tend
towards optimal-solutions. This process does not require user
intervention.

3. Multi-step derivation of patches

3.1. Approach Overview

We propose a two-step approach to generate repair patches for
transformations containing multiple type errors, as depicted in
Fig. 3. The first step, “Exploration phase”, takes as input a faulty
transformation and the source and target metamodels defining
the domain type system, and produces candidate patches. This
step has two goals: (1) exploring the space of possible patches
with the objective of correcting as much as possible type errors,
and (2) minimizing the deviation from the original behavior by



combining two lightweight surrogate objectives to testing.

Faulty MT

Source MM

Refinement
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Candidate
patches

Recommended
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Figure 3 Overview of the proposed two-step approach

As the first step is based on an evolutionary population-
based algorithm, the exploration evaluates an important number
of solutions. Consequently, we cannot afford to use resource-
consuming objectives to limit behavior deviations. Alternatively,
after a patch solution is produced by the first step, we refine it
in a second step to increase the likelihood that type-error fixes
do not alter the behavior. “Refinement phase” exploits four
heuristics that better determine the parameters of some opera-
tions included in the candidate patches or propose alternative
operations, without introducing new type errors in the transfor-
mation. The refinement phase thus directly modifies the patches
produced during step 1. As step 1 consists in a multiobjective
optimization process, it produces a set of solutions rather than
a unique one, i.e., the pareto set. Thus, an automated heuristic
can select a solution to refine or we can refine all the alternative
solutions. After the refinement, the alternative patch sets could
be presented to the user for her to select the ones to be applied
to fix the faulty transformation. If the set of alternatives is too
large, it is possible to use a recommendation system that selects
a smaller set of representative solutions as defined in (Batot et
al. 2017). Note that the generation of candidate patches and the
application of selected ones are entirely automated. The only
required user intervention is the selection or approval or alter-
ation of the patches to apply. In the remainder of this section,
we describe both steps of this process.

3.2. Exploration Phase

In order to adapt NSGA-II, like any evolutionary population-
based algorithm, to our problem, three key points must be de-
fined: solution representation, solution derivation, and fitness
evaluation.

Solution representation.  As our approach seeks to produce
relevant patches, solutions handled by NSGA-II will take the
form of sequences of edit operations. We define a sequence
of edit operations with a vector of n positions, where n is the
number of edit operations to be applied on the ATL transfor-
mation program. We use the basic edit operations listed in
Table 1 (Cuadrado et al. 2018) to build our candidate sequences.

The operation binding creation adds a new binding in a rule.
Type of source/target pattern element changes the type of the
fromor to part of arule. Type of variable collection changes the
type of a collection such as the type UML!ActivityPartition
of the Sequence in line 4 of the listing. The operation Type

Table 1 Set of basic edit operations of model transformations
taken from (Cuadrado et al. 2018)

Operator Target

Creation Binding

Type Type of source/target pattern element
modification  Type of variable or collection

Type parameter (e.g., ocllsKindOf(Type))

Feature name  Navigation expression (binding RHS)

modification ~ Target of binding (binding LHS)

Operation Predefined operation call (e.g., oclIsKindOf)

modification  Collection operation call (e.g., includes)
Iterator call (e.g., exists, collect)

Deletion Rule, helper, binding ...

parameter changes the parameter Type of a function such as
oclIsKindOf (). Navigation expression replaces the property
in the RHS of a given binding by another property, and Target
of binding replaces the property of the LHS of a given binding
by another property. Predefined operation call modification,
Collection operation call modification and Iterator call modifi-
cation replaces a function call by another one (e.g., collect ()
or flatten() from line 5).

As we are dealing with type errors in transformations, it is im-
portant to pay a special attention to the delete operators. Indeed,
sequences with these operators may artificially resolve some
errors by removing faulty fragments of statements, statements
or rules containing errors. Behavior-safe guards are essential
to prevent the solution to simply delete the faulty parts, but as
stated before, we cannot rely on them in our case. Therefore,
we ignore delete operators at this stage of our work. For the
sake of consistency, in our evaluation in Section 4, we do not
consider errors that require delete operations.

Fig. 4 presents an example of a sequence of two edit oper-
ations (i.e., a patch) which can be applied on Listing 1 to fix
some of the type errors identified in Section 2.1.

In candidate sequences, each edit operation is identified by a
name as defined in Table 1. The two operations of Fig.4 have
four parameters: ruletoModify, objectToModify, oldValue, and
newValue. For example, the edit operation Target0fBinding
changes the target of the binding (its LHS) from artifacts
to documentation in the rule activity2diagram in line
10. The edit operation TypeOfSourcePatternElement re-
places Comment by Activity in the input pattern of the rule
activitypartition2pool. Applying this patch on Listing |
produces the Listing 2 in which two type errors of different cat-
egories have been simultaneously corrected: the incompatible
type error of line 10 is fixed as properties documentation and
name are both of type String, and the invalid type error of line
15 is fixed as Activity is an existing element of the source
metamodel. Note that this patch does not correct all type errors
but only some of them. It is likely that it will not be retained as
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Operation1: TargetOfBinding

("activityZdiagram", "d" "artifacts", "documentation")

Operation2: TypeOfSourcePatternElement

(“activitypartition2pool’, "a", "Comment’, "Activity")

Figure 4 Example of a sequence of two edit operations (patch) which can be applied on the transformation of Listing 1

a good candidate by the automated approach.

1 create OUT : Intalio from IN : UML;

A oo
3 3 helper context UML!Activity def: allPartitions
4 :Sequence (UML!ActivityPartition) =

5 5 self.partition—>collect (p |

p.allPartitions)—>flatten();
6

7 rule activity2diagram {

8 from a : UML!Activity

9 to d : Intalio!BpmnDiagram (
10 documentation <- a.name,
11 pools <— a.allPartitions

2 12 )}

1 14 rule activitypartition2pool {
5 15 from a

: UML!Activity

16 to p : Intalio!Pool,

17 1l : Intalio!Lane (

18 activities <- a.node—>reject (

19 e|e.oclIsKindOf (UML!ObjectNode) )

20 )}

Listing 2 Model transformation program of Listing 1 after
applying the patch of Fig. 4

A solution is then defined by selecting a sequence of opera-
tions and by assigning values to their parameters. The solution
space thus spans over all potential combinations of operations,
their parameterizations and their order.

As stated in Section 2.3, the first iteration will generate a
population of random sequences of edit operations. These can-
didates are then evaluated using an objective function to retain
the best ones, that will be bred in the next iterations to derive
new better candidates. Usually, numerous breeding iterations
are needed before obtaining near-optimal solutions.

Solution derivation. At each iteration, two operators derive
new candidate solutions from existing ones: crossover (recombi-
nation of the existing genetic material), and mutation (injection
of new genetic material). A sequence of operations is a con-
venient representation for breeding through genetic operators.
In our adaptation, we use single point crossover operator. This
operator consists in cutting the operation sequences of two se-
lected solutions into two parts and in swapping the parts at the
right of the cut point to create two new solutions, as illustrated
in Fig 5.
cut point,

’ TargetOfBinding ’ TypeOfSourcePatternElement‘

|
’ NavigationExpression | IteratorCallI NavigationExpression ‘ %T

| | CROSSOVER
N

’TargetOfBinding | NavigationExpression ‘

’ NavigationExpression | IteratorCall ‘ TypeOfSourcePatternElement‘

Figure 5 Example of single point crossover operation on the
patch of Fig. 4 and another patch of 3 operations
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The mutation operator introduces random changes into can-
didate solutions. In our adaptation, it selects one or more oper-
ation(s) from a solution sequence and either replaces them by
another type of edit operation or modifies the parameters, as
illustrated in Fig. 6

TargetOfBinding
("activity2diagram’,
"d", "artifacts", "edge")

NavigationExpression
(“activity2diagram", "d’,

"a.name", "a.source

Figure 6 Example of 2 mutation operations applied on the

patch of Fig. 4: one mutation on a parameter ("documenta-
tion" replaced by "edge") and another one on the operation

type ("TypeOfSourcePatternElement" replaced by "Naviga-
tionExpression")

Fitness evaluation. For NSGA-II to select the best sequences
of edit operations for the next iteration, it needs to rank candi-
date solutions, which is done by an objective (or fitness) func-
tion. A good solution is a sequence of operations which, when
applied on a transformation, (i) fixes the type errors and (ii)
limits the behavior deviations. The objective of fixing type er-
rors can be directly evaluated by tools based on transformation
language features, such as static fault analysis. This is our first
objective:

(1) Fixing type errors or, to minimize the number of trans-
formation errors. We used this objective to check the number
of errors in the transformation rules after applying the sequence
of change operations. To measure the number of errors, we
use the AnATLyzer tool (Cuadrado et al. 2018), which finds a
wide range of syntactic errors (including type errors) in ATL
transformations using static analysis. Formally, the objective
function for a solution S is: Minf1(S) = |Errors(S)].

The objective to limit behavior deviations poses a significant
challenge and is difficult to capture with a single objective.
In this paper, we explore the combination of two additional
objectives that we believe could help limit behavior alterations:

(2) To favor solutions of small size o7, to minimize the num-
ber of operations. This objective represents the number of
operations in (i.e., the size of) a candidate sequence. We used
this objective to reduce the deviation from the initial transforma-
tion, and then the risk of changing the semantic. Additionally,
we want to prevent the solutions to grow unnecessarily large
and escape the bloating effect (de Jong et al. 2001). Formally:
Minf2(S) = |V(S)|, where V is the solution’s sequence of
operations.

(3) To keep changes local or, to minimize the alteration
of the metamodels’ footprint: The footprint of the source or
target metamodels defined by an (initial or candidate) trans-
formation is estimated by the number of elements from both
source and target metamodels that the candidate solution em-
ploys (resp. does not employ) whereas the original trans-



formation does not (resp. employs) (Burguefio et al. 2015).
Formally, the third objective can be expressed as follows:
Minf3(S) = |SFP(O) — SFP(S)| + |TFP(O) — TFP(S)],
where SFP and TFP are the footprints in the source and target
metamodels, extracted from the original transformation O and
the candidate transformation S. To extract the footprint set of
a transformation for a metamodel, we use the tool defined by
Burgueiio et al. (Burguefio et al. 2015).

These objectives are conflicting in essence. For instance,
fixing several type errors may necessitate the use of several edit
operations, which is conflicting with the objective of minimizing
the number of edit operations used in a patch. The difficulty
lies in finding a good compromise between these objectives: we
solve this multi-objective patch derivation problem by adapting
the evolutionary population-based algorithm NSGA-II (Deb et
al. 2000) described in Section 2.3. Once the best candidates
of the current iteration are selected, they are used as a basis to
derive new solutions in the next iteration.

3.3. Refinement Phase

The exploration phase produces a set of candidate patch solu-
tions corresponding to the Pareto front (first front) of the last
iteration of NSGA-II. These solutions may remove completely
or partially syntactic type errors detected by AnATLyzer, but
may also alter the expected behavior of the transformation while
doing so. There are many reasons that could explain this phe-
nomenon. For example, the choice of a parameter for a given
change operation is made without checking the global consis-
tency with the other change operations in the sequence. Another
example is when many type-compatible possibilities exist for a
given parameter, one is selected randomly without a proper way
to evaluate the likelihood of each possibility to semantically
correct the error.

One can sophisticate the decision process of operation and
parameter choices in the exploration phase to limit behavior de-
viation, but this comes at high computation cost considering the
number of explored solutions. Thus, we decided to alternatively
refine one or more solutions produced by the exploration phase.
As the refinement concerns a few solutions, we can afford a
more resource-consuming decision process. After analyzing
the used change operations, we identified four for which we
can define heuristics to improve the decisions made during the
exploration phase. In what follows, we present the improve-
ment heuristics for these operations. The goal of these heuristics
is to limit behavior deviations that may have been introduced
while correcting type errors during the exploration phase. They
may also correct some remaining type errors. Even though the
heuristics directly modify the patches (i.e., sequences of edit
operations), we illustrate their mechanisms on transformation
program excerpts, as it is easier to comprehend.

(1) Target of binding. This edit operation changes the LHS
of a binding. It may thus produce several bindings having the
same target property in a given rule, even though a property
should not be initialized more than once.

In these cases, the heuristic seeks to change the LHS of nec-
essary bindings until no property is initialized several times, as
illustrated in Fig. 7. First, the heuristic performs an edit distance

computation between the target property and the different RHS
properties: the binding with the minimum distance is ignored
on the next step as it is considered the correct initialization
(@). Then, the heuristic retrieves the list of accessible target
properties, and computes the edit distance with each RHS of the
remaining bindings (). Finally, it modifies the target properties
with the closest property of this list (©).
from f: UML!ControlFlow
to e: Intalio!SequenceEdge ( @
° V target <- f.target, - target: Vertex
X target <- f.source = - Vertex

) T ]
(3]

SequenceEdge

Figure 7 Heuristic for the operation TargetOfBinding

When the binding RHS is of type String, changing the
LHS to any String property prevents typing errors. However,
it is common to select an incorrect LHS with regards to se-
mantics. Steps @ and ® can be applied in this particular case.
Applying this heuristic in Listing 2 would change the binding
documentation <- a.name (line 10) to name <- a.name,
which is more coherent.

(2) Navigation expression. This operation may change a
binding’s RHS to have a different type than the binding’s LHS
(see Fig. 8), causing a type mismatch error (@). When the prop-
erty in the binding’s LHS is of type String, the heuristic first
retrieves the list of accessible properties which are of String
type in the input model element (®). Then, it selects from this
list the property’s name having the smallest edit distance with
the LHS property’s name (®) and replaces the RHS accordingly
(®). This heuristic only applied for String properties.

BpmnDiagram

- name: String 2L

from a: UML!ActivityPartition
to d: Intalio!BpmnDiagram (
name <- a.edge, - edge: ActivityEdge
| o | -[namej String
. . ©

0 3

ActivityPartition

)

Figure 8 Heuristic for navigationExpression

(3) Type of source (target) pattern element. This edit op-
eration may introduce an improper type in the from part of a
rule. We have seen previously that each binding which takes
into account references towards objects should be resolved (i.e.,
associated with the correct rule in the transformation). The
correct rule has its from part corresponding to the type of the
RHS of the binding and its to part corresponding to the type of
the LHS of the binding. We could use the RHS of the binding
that refers to that rule to infer the correct type for the from part.
The third heuristic (see Fig. 9) checks existing bindings to find
the one with a LHS whose type is equivalent to the to part of a
given rule (@). Then, it verifies if the type of the RHS of this
binding corresponds to the from part of the rule, and changes
the latter accordingly if it is not the case (@). This heuristic can
be applied when there exists only one rule having a given type
in its to part.

The same verification can be done the other way around for
verifying the to part of the rule.

(4) Type parameter (e.g., oclIsKindOf(Type)). This edit
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BpmnDiagram

Activity

- partitions:|ActivityPartitions

isOfType

rule activity2diagram {

from a: UML!Activity

to-d: Intalio!BpmnDiagram (
——— > pools <- a.allPartitions,

)}

@ rule activitypartition2pool {
from a: UML!Activity
to p: Intalio!Pool (

- pools: Pool
)f

Figure 9 Heuristic for typeOfSourcePatternElement

operation changes the Type parameter defined in functions
such as oclIsKindOf or oclAsType. Based on OCL defi-
nition, Type parameter of oc1IsKind0f, for example, must
inherit from the type defined before (i.e., the inferred type).
For instance, in Fig. 10, UML!NamedElement should inherit
the inferred type of a.node, i.e., ActivityNode. The fourth
heuristic first retrieves the inferred type (@), then checks
whether the Type parameter inherits from this type. If not
(M), the heuristic changes the Type parameter by a subclass
of the inferred type (). If oc1IsKindOf is followed by a
property, e.g., (ele.oclIsKindOf (UML!NamedElement) ->
select(ele.Language)), the heuristic randomly chooses a
Type which has access to that property (here OpaqueAction).

ActivityPartition

from a: UML: ActivityPartition

to l: Intalio!lane ( @ inferred type —
activities <- a.node -> reject( ActivityNode
e|e.oclIsKindOf (UML!NamedElement) |@®
|
inherits? X OpaqueAction ‘ ObjectNode
(3] L: :String

Figure 10 Heuristic for TypeParameter

Listing 2 contains two semantic errors (on lines 10 and 15)
that are fixed by heuristics 1 and 3. This produces the trans-
formation in Listing 3, now free of type error and behavior
deviation.

1 create OUT : Intalio from IN : UML;

2 2

5 15 from a

3 helper context UML!Activity def: allPartitions

4 :Sequence (UML!ActivityPartition) =

5 self.partition—>collect (p | p.allPartitions)->flatten();
6

7 rule activity2diagram {

8 from a : UML!Activity

9 to d : Intalio!BpmnDiagram (

10 name <- a.name,

11 pools <— a.allPartitions
2 12 )}

13

14 rule activitypartition2pool {
: UML!ActivityPartition

16 to p : Intalio!Pool,

17 1 : Intalio!Lane (

18 activities <- a.node->reject (

19 e|e.oclIsKindOf (UML!ObjectNode) )
20 )}

21

Listing 3 Model transformation program of Listing 2 after
applying the heuristics
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4. Automatix - Preliminary Tool and Evaluation

We implemented our approach in a tool, called Automatix, and
performed an empirical evaluation’. The rest of this section
describes the investigated research questions, details the eval-
uation procedure used, presents the results, and discusses the
threats to the validity of our evaluation.

4.1. Research Questions

As we explore many solutions during our evolutionary algo-
rithm, it is legitimate to question whether the results are due to
our search strategy or to the amount of candidate solutions ex-
plored during the search. Thus, we start by performing a sanity
check to compare the number of type errors fixed by patches
obtained with our approach during the exploration phase and
by patches obtained with a random search. Then, we assess
whether the patches obtained after the exploration phase limit
the alteration of the behavior of the transformations. Note that
we do not evaluate the behavior of the output models that can
be generated with a corrected transformation, but the behavior
of the transformation program itself. Finally, we do the same
evaluation, but for patches obtained after the refinement phase.
In summary, we formulate the following research questions:

RQO: Are our results attributable to an efficient exploration
of the search space, or are they due to the large number of
candidate solutions we explore?

RQ1: Is the exploration phase able to correct type errors in
transformations while limiting behavior deviations?

RQ2: Is the refinement phase (combined with the explo-
ration phase) able to correct type errors in transformations while
limiting behavior deviations?

4.2. Evaluation Setup

To assess our approach’s performance, we followed a rigorous

protocol depicted in Fig. 11.
Faulty Model

Exploration—Refinement

Semantic
Discrepancy

MT, @

Original Model
Transformation

Repaired Model

1-Mutants Transformation

Figure 11 Evaluation procedure overview

Steps 1 and 2 correspond to the creation process of faulty
transformations from existing correct model transformations.
Then, step 3 is the patch generation with Automatix, and step 4
the application of these patches on the faulty transformations.
Finally, we assess the behavior deviation of the repaired transfor-
mations in step 5, by performing a semi-automated comparison

2 For the review process, the experimental data and the code of Automatix can
be downloaded using the link https://bitbucket.org/zahravaraminy/ecmfa2021/
src/master
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against the original model transformations (RQ1 and RQ2).
Note that this comparison is not part of our approach, and is
only carried out for the evaluation process. The sanity check
(RQO) uses the output of step 2 to perform a random search, and
compare the results with the output of step 4.

We applied our evaluation on three existing third-party trans-
formations, Class2Table, PNML2PN and UML2BPMN from
the ATL Zoo®. Class2Table takes as source a class diagram and
outputs a relational database schema. PNML2PN enables to
produce a Petri net from an XML Petri net representation in
the PNML format. Finally, UML2BPMN transforms a UML
Activity Diagram into a business process model (Intalio BPMN)
(Schumacher et al. 2013). Table 2 presents information charac-
terizing the 3 transformations and their input/output metamod-
els.

Table 2 Transformations used in the evaluation. Cells with
two values represent input/output metamodels

Classe2Table = PNML2PN  UML2BPMN
LoC 136 91 118

Rules 8 5 9

Helpers 4 0 6
Classes 6/5 13/9 248/20
Attributes 3/1 4/3 103/13
Associations 11/8 28/20 774/59
Inheritance 53 14/8 291728

associations

To limit introducing bias in our evaluation, we used a list of
existing faulty transformation mutants provided by the QuickFix
project (Cuadrado et al. 2018) (Fig. 11, step 1). Each mutant
MT; corresponds to the original correct transformation MT,
in which one error of a given class was injected, among the
type error categories in ATL transformations (Cuadrado et al.
2018). To create transformations with multiple errors, we se-
lected randomly, for each of the three transformation problems,
6 sets with respectively 3 to 8 mutants coming from distinct
error categories. Then, we merged the mutants in each set to
form 6 faulty transformations M T3_g with various numbers of
type errors (Fig. 11, step 2). Note that we performed the merge
sequentially and, then, the number of errors in the resulting trans-
formations can be lower or higher than the number of merged
mutants, as some errors may overlap or create new errors as side
effects. This allowed us to consider faulty transformations with
different numbers of errors, from all error categories, except
those requiring delete operations to be fixed, as explained in
Section 3.2. As we are using a probabilistic approach, we run
this creation process 5 times for each transformation problem.
Thus, for a given number of mutants (between 3 and 8), we
obtained 5 different faulty transformations, based on different
types of mutants. In the end, we obtained for each transfor-
mation problem 30 different runs (5 * 6 faulty transformations
MT3_g).

For each faulty transformation, we created an initial popula-
tion of 50 random solutions, i.e., sequences of edit operations.
The edit operations are generated for rules with flagged type
errors. We complete the initial population by 50 additional

3 http://www.eclipse.org/atl/atI Tranformations

solutions obtained by crossover and mutation. We limited the
number of generations to 500: for each run, our algorithm thus
explores 50,000 possible solutions (500x100). For the other
parameters, the crossover and mutation rates are respectively
set to 0.8 and 0.2, values that usually perform well (Haupt &
Ellen Haupt 2004).

In this evaluation, Automatix takes as input a faulty transfor-
mation, and produces candidate patches in the form of sequences
of change operations in two phases: one of exploration, and
another of refinement (Fig. 11, step (3)). To perform the evalua-
tion, we define the following independent variables w.r.t. to the
faulty transformations:

— #MUT - Number of mutations applied on the original
transformation to derive the faulty one.

— #ERR;,, — Number of type errors found on the transforma-
tion after #MUT mutations were applied.

We then define dependent variables w.r.t. the obtained candidate
patches:

— #ERR,,;; — Number of type errors found on the transfor-
mation after a recommended patch has been applied.

— #OPE - Size of a recommended patch in number of change
operations.

— #ITE — Number of algorithm iterations before a recom-
mended patch is found, i.e. #ERR ¢(patches) = 0-

— SEM - Rate of errors corrected while preserving the be-
havior, after the exploration phase (EP) and after the re-
finement phase (RP).

We used AnATLyzer to detect the type errors in the input
and output transformation programs. This tool also allows us
to identify which type errors of the input faulty transformation
have been corrected.

Although, the exploration phase may produce more than one
solution in the Pareto set, we decided to select only one for
the refinement and for the comparison with the random search.
To this end, we first select the solution that fixes the highest
number of type errors according to AnATLyzer. In the case of a
tie, we choose one with the shortest operation sequence. The
two criteria were enough to reduce the possibilities to only one
solution for all runs.

4.3. Evaluation Results

Table 3 summarizes the results of the different runs of our ap-
proach on the mutant configurations described in the setup, for
respectively Class2Table, PNML2PN and UML2BPMN trans-
formations (col. 1). #ERR;;,, #ITE and #OPE are average values
of the 5 faulty transformations based on the same number of
mutants (#MUT). For #ERR,;;, we give the min, average and
max values for the 5 runs. On average, the majority of errors
introduced by the mutants (#ERR;,, - col. 3), were successfully
corrected (#ERR,,;; - col. 6-8 indicating the min, average and
max of the number of errors left after applying the patches found
by Automatix), according to AnATLyzer. We checked manually
that the errors left are those intially introduced and not newly
created ones by the patches. For all the cases, we obtained at
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least one solution without any error left (min = 0). Addition-
ally, we did not observe a significant correlation between the
number of inputs errors/mutants and the number of generations
to find a solution (#ITE - col. 4). We note that we obtained
slightly better correction rates for transformations having fewer
errors, along with smaller execution times.

Table 3 Results of Automatix. #ERR;,,, #ITE and #OPE rep-
resents averages values for the 5 faulty transformations ob-
tained after merging #MUT mutants.

e - m
% % E @ | #ERR,, SEM
g o 3
€ % E|EP |RP
3 34 [ 134 3 |0 0 0] 68% | 68%
é 4 6 448 4 |0 0 0]7% | 82%
% 5 78 [568 5 |0 0 0]91% | 93%
Sle6 84 |2268 6 |0 0 0]91%|91%
7 96 |2618 58 |0 06 1|71% | 75%
8 1062765 7 |0 02 1|87% | 8%
3 58 [84 32/0 0 0]|78% | 89%
Z |4 7 1372 4210 04 2| 72% | 19%
g 5 84 |18 520 0 0] 80% | 8%
£le 92 | 1792 58]0 02 1|76% | 87%
7 84 | 786 6 |0 08 1| 69% | 76%
8 98 |2446 74 |0 04 1]|67% | 78%
3 32 [ 1624 3 |0 0 0| 45% | 83%
E 4 42 |35 3410 06 1]34% | 41%
% 5 68 | 116 520 02 1|44% | 72%
% 6 68 |[192 54,0 08 1|40% | 53%
7 78 2296 56 |0 08 2|25% | 52%
8 8 72 5810 12 2]2% | 40%

4.3.1. RQO - Sanity Check To perform the sanity check we
limited ourselves to a sample of runs. We considered faulty
transformations with 2, 4, 6 and 8 mutants for the problem of
Class2Table. We compare the results obtained by Automatix
to those of a random search for the considered transformations.
Since Automatix explores 50,000 solutions for each run, the
random exploration also picks, for each run, the best individual
from 50,000 solutions generated randomly, such as the initial
population in Automatix. As for Automatix, the random explo-
ration was also performed 5 times for each faulty transformation.

As shown in Table 4, the solutions obtained with Automatix
correct on average clearly more errors than random ones. Except
for transformations with two mutants (first line), the difference
between the two strategies is statistically significant (T-Test with
a p-value lesser than 0.001), and with a high effect size (Cohen’s
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Table 4 Automatix vs random results for Class2Table.

Average #ERR,,; | Mann Witney | Effect Size
HMUT | Automatix | RDN p-value Cohen’s d
2 0.0 0.2 0.374 -
4 0.0 2.8 <0.001 10.6
6 0.4 5.8 <0.001 8.6
8 3.0 6.4 <0.001 3.24

d greater than 3)*.

4.3.2. RQ1 - Error Correction after Exploration Phase
(EP) We consider that an error is actually corrected in a
transformation program when the change brought by the patch
matches the corresponding code fragment in the original correct
transformation MT,. To assess that (Fig. 11, step 5), we fol-
lowed a two-step process. We started by applying an automated
text diff between the original transformation MT, (the ground
truth) and the transformation MT, fixed by a patch obtained
after the exploration phase. Then, we manually checked the
discrepancies flagged by the diff to determine the number of
errors that were corrected without altering the behavior of the
transformation (call them semantically fixed) and reported the
rate of these errors with respect to #£ERR;, in columns SEM(EP).
In this way, we are sure to determine if the applied patches ob-
tained automatically are actually correcting type errors and not
just making AnATLyzer not detecting them.

As shown in column SEM(EP) of Table 3, the actual correc-
tion rates were good for two transformation problems. Indeed,
we succeeded to correct on average between 68% and 91% of er-
rors for Class2Table, and between 67% and 80% for PNML2PN.
For the third transformation problem UML2BPMN, the results
were less good with an average actual correction rate between
25% and 45%, although some executions reached higher scores.
After this phase, we noted that most of the residual type errors
still detected by AnATLyzer are Operation not found and Fea-
ture not found, suggesting that they are the most difficult to
fix. Among the type errors that have been corrected but that do
not preserve the behavior of the transformations, we observed
notably Invalid type, Feature not found and Compulsory feature
not initialized. These classes of errors require substituting or
adding one of the many features present in the metamodels with
compatible types: this obviously increases the risk of choosing
a wrong feature. When analyzing the semantic discrepancies
for UML2BPMN, we noticed that, in addition to the complexity
of the involved metamodels, these make an intensive use of
inheritance. In fact, in a large hierarchy, there are potentially
many types that can access the same set of attributes/references:
having many options to fix a type error by substituting a type by
another one increases the possibility to select the wrong type,
and thus introducing a behavior deviation. Fixing errors like
Invalid type and Feature not found with correct solutions is thus

4 According to Sawilowsky (Sawilowsky 2009), an effect size greater than 2 is
considered as huge



even more difficult in this case.

4.3.3. RQ2 - Error Correction after Refinement Phase
(RP) To answer RQ2, we perform the same semantic dis-
crepancy but this time on patches obtained after executing
the refinement phase on the candidate patches generated by
the exploration phase. As shown in column SEM(RP) of Ta-
ble 3, the results indicate an improvement of the correction
rates with behavior preservation in all three transformation
problems (increased rates are shown in boldface in the table).
For Class2Table, the correction rate increased on average from
80.7% to 82.7%. Over the 6 faulty transformations, 3 witnessed
a higher rate (transformation with 4, 5, and 7 mutants). The
improvement was more important for PNML2PN, for which the
average correction rate jumped from 73.7% to 82.5%. In this
case, all the faulty transformations saw their correction improve.
Finally, for UML2BPMN, we observed sizeable improvements
of correction rates from 35.7% on average to 56.8%. Here
again, the improvement concerned all the faulty transformations
reaching a rate of 83% for the ones with 3 mutants.

Similarly to the exploration phase, we observed that most
of remaining type errors still detected by AnATLyzer are of
classes Operation not found and Feature not found. Among the
errors whose correction introduce behavior deviations, we noted
Compulsory feature not initialized, and Feature not found for the
UML2BPMN transformation, suggesting that this second phase
works particularly well with Invalid type errors. In the rates
shown, we do not include errors that were partially corrected
thanks to the heuristics. For example, we observed that for some
bindings, the RHS was actually corrected but not the LHS. This
means that the impact of the refinement phase can be much
higher than one indicated by the correction rates.

In conclusion, we show that the proposed approach is able to
correct multiple type errors at the same time. The evaluation re-
veals that the two behavior-oriented objectives of the first phase
circumscribe the risk of behavior alteration. It also shows that
the combination of exploration and refinement phases allows
to generate patches that correct most of the type errors while
preserving the behavior. These results are evidence that deep-
ening the analysis of edit operations and the possible behavior
deviations they may introduce help guiding the search through
new objectives or refinement heuristics.

From another perspective, when running this experimenta-
tion, we found that a limitation of this approach is the execution
time, as obtaining patches takes hours. In fact, the high exe-
cution time is mainly due to the objective to keep the changes
local. For this objective, we retrieve metamodels’ footprints
using an external tool which is not optimized for the kind of
problem we solve. For the rest, including the 2 other objectives,
the execution time takes a few seconds. We plan to develop our
own implementation of the footprint retrieval to optimize the
execution.

4.4. Threats to Validity

There are some threats that may call into question the validity of
our evaluation results. First, the faulty transformations used in
the evaluation contain mutants and not errors actually introduced

by developers. We used this external data set because it is
independent from our project and was used to evaluate the state-
of-the-art work. Moreover, it covers a large spectrum of error
types. Finally, the random combination of basic mutants we
used can be representative of the randomness with which errors
can be introduced by developers.

Another limitation of our work at this stage of our project, is
that we do not consider some of the error types (mutations). In
addition to errors that require delete operations mentioned ear-
lier in the paper, we do not handle errors on ATL transformation
helpers. We expect to extend our work in the near future to also
consider both families of errors. In the same vein, we tested our
approach only with the Atlas Transformation Language (ATL)
as a model transformation language. We do believe that the pre-
sented approach can be generalizable and adapted to consider
other transformation-dedicated languages. This can be done by
considering specific versions of edit operations corresponding
to the targeted language.

Our approach does not produce a single solution, but a Pareto
set of solutions. For the sake of automated evaluation, we
selected from the Pareto set the solution with the minimum
number of errors left. In the case of a tie, we choose the solution
with minimum #OPE. We did the same for RQO with the random
exploration. In a real setting, other solutions, discarded for their
larger size, can be presented to the user, as well as alternative
solutions. This can be done by using a diversity strategy to
propose a representative sample of solutions (Batot et al. 2017).

We performed a manual inspection of the solutions to evalu-
ate the semantic discrepancy between fixed transformations and
original ones. In future evaluations, we plan to use a test suite
of pairs of input-output models to assess the behavior preserva-
tion. Of course, this is possible only for solutions with no type
errors.

5. Related Work

The work presented in this paper crosscuts two research areas:
program repair in general and verification and validation of
model transformations. In the following subsections, we discuss
representative work of both areas.

Program Repair: There is a plethora of works that try to
automatically fix bugs in programs using different approaches
such as genetic programming (Le Goues et al. 2013), machine
learning (Jeffrey et al. 2009; Martinez & Monperrus 2013) or
SMT solvers (Demarco et al. 2014). Most of the existing work
targets a specific type of errors such as buggy IF conditions,
memory allocation errors and infinite loops (Le Goues et al.
2012; Logozzo & Ball 2012; Muntean et al. 2015; Perkins et al.
2009; Demarco et al. 2014). To evaluate the patches, most of the
approaches use test suites as oracle. However, other oracles such
as specifications (pre-/post-conditions) were also explored (Pei
et al. 2014). Although these approaches produced promising
results, they cannot be used to fix transformation typing errors.
As mentioned in Section 2.2, test suites are difficult to use
and specifications are often not available. Moreover, we aim at
correcting simultaneously a variety of errors.

Model Transformation verification and validation: In
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this research area, there are three families of work: transforma-
tion testing, verification and validation of transformations, and
transformation repair.

In the first family, Gogolla et al. (Gogolla & Vallecillo 2011),
for example, presented a model transformation testing approach
based on the concept of Tract, which defines a set of constraints
on the source and target metamodels, a set of source-target con-
straints, and a tract test suite, i.e., a collection of source models
satisfying the source constraints. Then, they automatically gen-
erated input models and transformed the source model into the
target model. Finally, they verified that the source/target models
satisfy those constraints. There are other approaches to test the
model transformations using other techniques such as graph
patterns (Balogh et al. 2010), model fragments (Mottu et al.
2008), Triple Graph Grammars (TGGs) (Wieber et al. 2014) or
a combination of these approaches (Giner & Pelechano 2009).

In the second family, for example, Troya et al. (Troya et al.
2018) presented the Spectrum-Based Fault Localization tech-
nique and used the results of test cases to determine the proba-
bility of each rule of transformation to be faulty. Similarly Bur-
guefio et al. (Burguefio et al. 2015) presented a static approach
for detecting the faulty rules in model transformations. Their
approach uses matching functions that automatically create the
alignment between specifications and implementations. Oakes
et al. (Oakes et al. 2018) presented one method to fully ver-
ify pre-/post-condition contracts on declarative portion of ATL
model transformations. Their approach transforms the declara-
tive portion of ATL transformations into DSLTrans and uses a
symbolic-execution to produce a set of path conditions, which
represent all possible executions to the transformation. To ver-
ify the transformation, they verify pre-/post-condition contracts
on these path conditions. Finally, Cuadrado et al. (Cuadrado
et al. 2014) presented a combining approach involving a static
analysis and constraint solving to detect errors in model transfor-
mations. They detected potentially problematic statements and
then used a witness model to confirm the erroneous statements.
We also used this technique for calculating the number of errors,
which is defined as a fitness function.

All the above-mentioned approaches allow to find behavior
errors and/or localize the faulty rules/statements. However, they
do not propose patches to repair the errors, which is the goal of
our approach. Yet, they can be used upstream of our approach
like we did with AnATLyzer.

For work that fixes transformation errors, we distinguish
between errors generated by the evolution of metamodels as
addressed by Kessentini et al. (Kessentini et al. 2018) and errors
introduced by the developers. For these errors, to the best of
our knowledge, the only existing work is Quick fix (Cuadrado
et al. 2018), which allows the correction of detected errors in
ATL model transformation. In this approach, they used the
static analyser presented in (Cuadrado et al. 2014) to identify
errors in ATL model transformations. Then, they extended the
analyser to generate a catalogue of quick fixes, which depends
on static analysis and constraint solving, for identified errors in
ATL transformations. Then, quick fixes propose changes in the
transformation based on the kind of error. The user selects a
suitable fix among the proposed ones and applies interactively.
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The differences with our work are that we aim at fixing errors
jointly without predefined patch patterns, and also we target to
generate a patch without requiring human assistance, except
for selecting, among the final candidate patches, the one to be
applied.

Model transformations are not the only MDE artefacts tar-
geted by repair approaches. There are many research contribu-
tions to generate patches for various modeling artifacts. Models
are those that gather much attention as evidenced by the study of
Macedo et al. (Macedo et al. 2017). Another example of MDE
artifact repair is given by Hegedus et al. (Hegedus et al. 2011)
in which the authors used state-space exploration techniques to
generate quick fixes for Domain-Specific Modelling Languages
(DSMLs).

6. Conclusion and future work

In this paper, we explored the idea of fixing type errors in model
transformation programs without relying on predefined patches.
Considering that a patch is a sequence of basic edit operations,
our approach explores the space of candidate sequences guided
by two families of objectives: correcting type errors and limit-
ing behavior deviations. While the correction of type errors is
relatively easy to measure using transformation language fea-
tures, behavior preservation poses many challenges. To tackle
these issues, we proposed a two-phase approach to find candi-
date sequences that limit behavior deviations. The first phase
combined two objectives during the exploration to prevent be-
havior deviations: minimizing the size of the sequence and
keeping the changes local. During a second phase, we applied
four heuristics on the obtained patches to improve the decisions
made during the exploration phase. An evaluation of our idea
showed that the first phase corrected a majority of type errors
for two transformation problems, Class2Table and PNML2PN,
most of the time without altering the behavior. We also showed
that refining the patches obtained after the exploration using the
four proposed heuristics significantly improved the quality of
the patches in terms of limiting behavior deviations for the three
transformation problems, including UML2BPMN.

As a future work, we plan to further investigate alternative
objectives to limit behavior alterations to achieve correct and
complete patches. We also envision to inject some heuristics
when selecting edit operations (initial population generation and
mutations) to decrease the probability of altering the behavior.
Finally, we seek to widen our approach to repair semantic errors,
i.e., incorrect behaviors of transformation programs, leading
them to produce output models that are not the expected ones.
Semantics errors may be caused by binding the wrong attribute,
or using the wrong helper, without necessarily inducing a type
error. Until now, we worked with ATL transformations having
type errors and that could not always be executed, which hin-
dered the possibility to use a fully automated process to assess
the transformation behavior alteration and work precisely on
semantic errors. Our work is now at a stage where we can obtain
ATL transformations with no type error: in the future, we thus
plan to use more rigorous alternatives to assess behavior alter-
ations, such as pairs of correct input/output model examples.



Using such behavior-safe guards will also allow us to safely
consider the delete operators in the patch derivation process.
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