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Abstract. The nonlincar dynamics of c¢noidal waves,
within the context of the general N-cnoidal wave solutions
of the periodic Korteweg-deVries (KdV) and Kadomtsev-
Petvishvilli (KP) cquations, are considered. These equations
arc important for describing the propagation of small-but-
finite amplitude waves in shallow water; the solutions to
KdV are unidirectional while those of KP are directionally
spread. Herein solutions are constructed from the 8-function
representation of their appropriate inverse scallering
transform formulations. To this end a gencral thcorem is
employed in the construction process: All solutions to the
KdV and KP equations can be written as the linear
superposition of cnoidal waves plus their nonlinear
interactions. The approach presented here is viewed as
significant because it allows the cxact construction of N
degree-of-freedom cnoidal wave trains under rather gencral
conditions.

1 Introduction

Recently measured laboratory-generated, shallow water,
unidirectional wave trains have been analyzed using the
inverse scattering transform (IST) for the Korteweg-deVrics
equation (Korteweg-deVries, 1895) in the so-called
hyperelliptic-function representation (Osborne and Pedti,
1993, 1994). A major result of this work was the
identification of "coherent structures” in the data. The
authors identified these structures as croidal waves which
appeared only once in a single period of the measured wave
train; the moduli of the cnoidal waves were substantially
large, but significantly less than 1, 0.7<m < 0.85. The
data investigated by them contained from 2 to 8 cnoidal
waves in each of the 6 measured wave trains.

The appearance of coherent, stable structures which are
not solitons came as a surprise 1o the investigators. An
important issue addressed by them was whether or not

structures of this type could be characterized with inverse
scattering theory. Using the rather unwieldy mathematical
formulation of the hyperelliptic function representation the
structurcs were identificd as interacting enoidal waves. In
this formulation, the cnoidal wave trains are constructed
from a number of nonlincarly interacting hyperelliptic
functions which are phase locked with each other.

The focus in the present paper is to address the presence
of coherent structures not only in the KdV equation, but also
in the KP equation, a two-dimensional generalization of
KdV. To this end I consider N-component cnoidal wave
trains, using an alternative, physically simpler set of basis
functions for KdV and KP which is known as the &-
function representation (Its and Matveev, 1975; Date and
Tanaka, 1976; Dubrovin et al, 1976; Flaschka and
McLaughlin, 1976; McKean and Trubowitz, 1976). 1 discuss
how onc and two dimensional wave trains in this
represenlation can be easily written explicitly as a linear
superposition of cnoidal waves plus terms which include
their pair-wise nonlinear interactions (Osborne, 1994). An
important conscguence of using the 8-functions is that the
cnoidal waves {and therefore the coherent siructures) are
mathematically explicit objects; this is in stark contrast to
the use of the hyperelliptic functions where phase locking
must be invoked o oblain N-cneidal wave solutions,

Since the discovery of the KdV equation (Korteweg and
deVrics, 1895) and the calculation of its travelling wave
solution in terms of a particular Jacobian elliptic function
(the cnoidal wave) an outstanding problem in mathematical
physics has been to determine the general periodic solutions
of KdV in terms of an arbitrary number of cnoidal waves and
their nonlinear interactions. The theoretical issues regarding
this problem are addressed clsewhere (Osborne, 1994). Here
focus on a concrete implementation of this idea to generate
physically rclevant cxamples of nonlincar cnoidal wave
interactions in both one and two dimensions. The goal of
the present paper 18 to specifically address the 6—function
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representation, analytically, physically and numerically, in
order to allow practical application of this mecthod 1o N
degree-of-freedom sclutions to KdV and KP.

The theoretical framework of this paper is based
primarily on the periodic solution to the KdV equation in
terms of the hyperelliptic-function and the é-function
representations as developed in several important papers (Its
and Matveev, 1975; Dubrovin et al, 1976; Flaschka and
McLaughlin, 1976; Date and Tanaka, 1976, MacKean and
Trubowitz, 1976); for the KP equation the relevant
references are included in Krichever and Novikov (1979). A
significant series of papers arc those of Boyd (Boyd,
1984a.b,c: 1990) who explored in detail the case for two
cnoidal waves and their mutual interactions. A number of
important monographs arc available on the general theory of
solitons (Karpman, 1975; Zakharov et al 1980; Ablowitz
and Segur, 1981; Newell, 1985; Ablowitz and Clarkson,
1991).

Asis well known the KdV equation describes small-but-
finile-amplitude, long-wave motion:

N +c,n,+onn, +pn,=0 )

KdV govems the space-time evolution of the nonlinear {ficld,
n{x,t), here assumed to be spatially periodic,
n(x,0)=N{x+L,t), for 0<x<L, L the spatial period.
The cocfficients of (1) are constant paramcters and have
values that depend upon the physical application; these
include surface water waves, internal waves, Rossby waves,
plasma waves, equatorial motions and bores (Long, 1964;
Peregrine, 1964; Benny, 1966; Zabusky and Galvin, 1971;
Maxworthy and Redekopp, 1976; Hammack and Segur,
1974, 1978). For surface waler waves c, =~gh,
a=3c¢,/2h and B=c K’ /6, where h is the water depth
and g is the acceleration of gravity; the associated lincar
dispersion relation is given by: @ =,k —-fk’. While the
results given herein are discussed with regard 10 waler wavcs,
the conclusions are completely general and can be applicd to
any problem for which KdV is valid. Herein the wave
amplitude w(x,r)=An(x,r) for A =ca/6f is used.

For shallow water waves the two dimensional
generalization of the KdV equation is given by the KP
¢quation:

_a'a;[nt+conx+annx+ﬁnm]+%nyy=0 (2)
In the literature this cquation is called KPII to dislinguish it
from the KPI equation, the latter of which is valid for water
depths less than about a centimeter, where surface tension
dominates. The remainder of this paper addresses only KPII,
which generally describes two dimensional shallow water
wave motion in the same depth regime as the KAV equation.
The general solution to (2) depends on both x and y:

n(x,y,1). The lincar dispersion relation for (2) (set a=0)
is given by

2
w=ck, — Bk’ sk 3)
2k,

The 1wo dimensional nature of the waves implies that
they be "directionally spread” about the dominant direction
of wave propagation which is taken to be the x axis. It is in
this sense that KP describes waves which have a spectrum
consisting not only of wave number (or frequency) but also
direction. The solutions to KP are here assumed to be
periodic in both x and y: n(x,y.¢)=m{x+X,y+Y.1),
where X and ¥ are the respective spatial periods.

The remainder of this paper is organized as follows.
Section 2 briefly discusses the single degree of freedom
travelling wave solution of the KdV and KP equations; the
Fouricr wransform for linearized KAV and KP are also
mentioned with emphasis on the fundamental role that
sinusoidal basis functions play in the solution of linear
partial differential cquations with well-defined dispersion
relations. This Section asks the fundamental question: Since
the KdV and KP equations are fully nonlinear, can numerical
implementation of their general periodic solutions be
represented in lerms of N-cnoidal wave trains, just as the
linearized equations can be represented in terms of a linear
superposition of N sinusoidal waves? Herein I focus on the
concrete implementation of a particular resolution of this
problem. Section 3 discusses the inverse scattering
transform in the hyperelliptic-function representation for the
KdV equation; the fact that the hyperelliptic functions act as
a set of nonlinear (Fourier-like) basis functions for KdV is
elaborated on. Section 4 discusses the inverse scattering
transform in the 8—function representation for both KdV and
KP; this Seciion emphasizes the fundamental role that the
g-functions play as an afternative set of nonlinear (Fourier-
like) basis functions for these equations, here described as
"N-cnoidal wave interactions,” Numerical examples of KdV
and KP solutions are discussed in Section 5. The Summary
and Conclusions are given in Section 6.

2 The c¢noidal wave solution te the KdV and KP
equations; Fourier series solutions to the
linearized equations

Korteweg and deVries (1895), who discovered their
equation 100 years ago, found a periodic travelling wave
solution which is known as the cnoidal wave:
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The modulus # of each elliptic function is given by

37°n, 3n,
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where {7 is the Ursell number, & is the wave number and A
is the water depth. The frequency is

o =ck{1+27, / h—2k’h*K*(m)/ 3% } (6)

The scries representation for the cnoidal wave, given in (4),
is the Stokes series solution to the KdV equation (Whitham,
1974). When the modulus m— 0 the cnoidal wave
approaches a sine wave; when m — 1 the cnoidal wave
approaches a solitary wave. The travelling wave (4) thus
offers a way to include nonlincarity and dispersion in a
simple wave propagation model,

The cnoidal wave solution to the KP cquation is given
by

Ak? X n(-1)"q"

nx,t)= 1 I—g* cos[n(K.x ~ ar)]=
-l )
=2n,en’{(K(m)/ z)[K-x - wt];m}
Here
K=(K,.K,); x={x,y) ®)
where the frequency o is defined by:
o =c,[KI{1+27, / h—2k*R*K*(m)/ 37"} (9)

The ¢noidal wave (7) for KP is identical to the ¢noidal wave
solution for the KdV equation except that the KP solution
can propagate in an arbitrary direction defined by K.

An important N degree-of-[recdom solution to the
linearized KAV equation (let & — 0 in (4))

Me+ N, + BNy, =0 (10)

is given by an ordinary Fourier scrics (sce for cxample
Osborne and Bergamasco (1985) and ciled references):

N
n(x,r)=chcos(ij—ijqu) (1
j=
where the commensutable wave numbers are given by

ky=2m/L (12)

and the associated frequencies have the cubic dispersion
rclation
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The spatial Fouricr transform of a wave train 7(x.f)
consists of the set of Fourier amplitudes and phases
{cj,(bi.}, for 1< j£N. The mean of (11) (and of all spatio-
temporal solutions of lincar and nonlinear wave motion
discussed in the present paper) is assumed 1o be zero for the
rcasons discussed in Osborne and Bergamasco (1985). The
form of (11), for uniformly distributed random phases, é;.
has been used extensively for generating linear random
functions (Osborne, 1982). This latter work recently
motivated the study of norlinear random function solntions
to KdV using the periodic inverse scattering transform in the
hyperclliptic-function representation (Osborne, 1993b),
Extending these ideas to two dimensions the lincarized
KP cquation can be written:

d c,
=M+ o+ Bl }+5 1, =0 (14)
This equation has the two dimensional Fourier series
solution for MN degrees of freedom:

nx,y,1)=

=D Con005(KprX = Ot 49, (15)

Here k,, = (km,kyn) and @,, = a)m(kmn) {see (3)
above).

The fact that periodic series solutions (11), (15) to the
linearized KdV and KP equations (10), (14) can be easily
represented spectrally as a linear superposition of sine waves
raises a fundamental question: Can the general solutions to
periodic KdV and KP be represented in terms of cnoidal
waves and their nonlincar intcractions (4), (7}? The
following Sections address this issuc and discuss a simple
scenario for its practical resolution.

3 The hyperelliptic-function series solution of
the KdV equation

The general spectral solution to the periodic KdV
cquation (1) may be written as a linear superposition of
nonlinearly interacting, nonlinear waves (hyperelliptic
Junctions), 1, (x,¢) (Its and Matveev, 1975; Dubrovin et al,
1976; Flaschka and McLaughlin, 1976; Datc and Tanaka,
1976; MacKean and Trubowitz, 1976):

N

An(x, ) =—E, +2[2ﬂj(x-f)—52j—52j+1] (16)

j=1
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where A=a/6f and the E, (1£i<2N +1) are constant
eigenvalues derived from Floquet theory for the time-
independent Schroedinger equation (see theorctical and
numerical discussions in Osborne (1993a)). Eq. {16) reduces
1o a linear Fouricr series (11) in the limit of small amplitude
motion (Osborne and Bergamasco, 1985). It is for this
reason that (16) may be interpreted as a nonlinear Fourier
series.

The spatial evolution of the g, is governed by the
following system of coupled, nonlincar, ordinary differential
equations (ODESs):

di; . pl2 -
—L =20, R ()1 [ [y - 1) an
dx k=1
ik
where 1< j< N and
2N+1
R =T -ED (18)
k=1

The numerical analysis of the hyperelliptic functions is
rather complex and we refer the reader to a detailed
exposition in Osborne (1993a). The time dynamics of the
;(x,1} are also discussed elsewhere (Osborne, 1994),

4 The 8-function solutions to KdV and KP

In addition to the hyperclliptic-function representation
(16) the general solution to the KdV equation may also be
written in terms of the 8-function formulation (Its and
Matveev, 1975; Dubrovin et al, 1976; Flaschka and
McLaughlin, 1976; Date and Tanaka, 1976; MacKean and
Trubowitz, 1976)

2

0
‘ln(xvt)=2Fm®N(n1’n2v"nN) (19)

The 8-function is given by

®N(Ths nz:---nN) =
(20)

= N

N 1 N
R DOTERED 3 Y
—oc k=1 k

MM = =l k=l

Here, as before, N is the number of degrees of freedom in a
particular solution to the KdV equation. The 8-function
phases are given by

M =k X— 0+ ¢,

where the wave numbers, &, the frequencies, @, and the
phases, ¢,, are found by the relations given in the
Appendix; these relations generally depend upon algebraic
geometric loop integrals whose numerical implementation 18
discussed elsewhere (Osborne, 1994). The period matrix B is
constant and provides the amplitudes of the selected cnoidal
waves (along the diagonal) and their mutual pair-wisc
nonlinear interactions (off-diagonal terms).

It is then straightlforward to address the following
theorem (Osborne, 1994):

Theorem I: The 6-function solution to the KdV equation
(19), (20) can be written in the following form
(u(x,0) = An(x,0)):

2

wnn =22 e, )=

ox?
(21}

= u,() +

v “W‘"’J s
Lincar superposition
of cnoidal waves

um(ﬁ)

Monlinear interactions
among the cnoidal waves

where in vector notation;
. IM-T+ LT B R
8, ()= Ze 2 22)
M
The phases of the 6-function are given by
A=kx=0r+9=[m, M0 M| (23)

where the wave numbers, frequencies and constant phases
have the form:

k=[k.kyoky];
o =[w,wy,...04]; (24)
cT)=[¢1-‘F52’---‘§bf\;]

Analytic cxpressions for the interaction terms (1) are
given elsewhere (Osborne, 1994).

The 6-function solution to the KP equation has many
similarities 10 that for the K4V equation. In fact (19}, (20)
still hold. However, the phases 1] ; of the 8—function (20}
are found by the following cxpression

where the £, k,;, @; and ¢, are given by an algebraic
geomelric formulation (Osborne, 1994), We have the

following



Theorem II: The §-function solution to the KP cquation
can be written in the following form (u(x,f) = An(x,0)):
2

u(x,t)=2£c—21n®N(ﬁ)=

(26)
= ucn(ﬁ) + uint(ﬁ)
Linear superposition Nonlinear interactions
where: of ¢noidal waves among the cnoidal waves
i e L1
By(M= 2 e 27)
M
The phases of the 8-function are given by
A=k x+k,y—-or+6=[n.m,,...7x] (28)

where the wave numbers, frequencics and constant phases
have the vector form;

K, =[kqokygn Ryy]

(29)
k, = [kyl,kyz,...km]

o

(_l‘)= [COI,(JJZ,...CON]
(30

$=[¢1!¢2"'-¢N]

The interaction or period matrix B in (27) is a constant
matrix which describes the amplitudes and nonlincar
interaction coefficients of the cnoidal waves; the diagonal
elements define the cnoidal wave amplitndes and the off-
diagonal elements define the nonlincar interactions among
the cnoidal waves. The precise analytical expression for 4, ,
is given in Osborne (1994). Dectails for the numerical
implementation of the above theorems are also given in the
latter reference together with algorithms for the fast
numerical implementation of the approach.

5. Numerical examples

I now apply the above theoretical results to numerical
simulations. In particular I verify the applicability of the 6-
function formulation as an effective method for computing
exact solutions to the KdV and KF equations, To this end I
first consider a solution to KdV in the hvperelliptic function
representation (Fig. 1). Fig. 1(a) shows the solution, while
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Nonlinear Wave Motion is the Sum
of Hyperelliptic Basis Functions
3 T

. - — 2
L (a)
- 41
I 10) /\/\ _ 0
N A=
- — -1
[ ] 2

Basis Functions

0 50 100 150 200 250

Fig. 1. Construciion of KdV wave trains in the hyperelliptic
function representation, see Eq. (16). The solution to KdV (a) is
found by lincarly superposing the hyperclliptic basis functjons
shown in (b),

Fig. 1(b) gives the six hyperelliptic {functions (N=6) used to
construct the solution. Each degree of freedom is indicated in
the figure by p.(x,0), j=1-6. For larger values of j
(~5,6) the functions tend to have more regular shapes (they
are more linear than their counterparts) and for smaller
values of j (~1,2) the functions are more irregular (they are
mor¢ nonlinear). This latter interpretation arises because the
longer, low wave number components feel the influence of
the boltom and are hence more nonlinear. In fact, the two
u, for j=1,2, taken together, form two solitons in the
spectrum, while the other modes (j=3-6) are radiation degrees
of frecdom. This latter observation rccognizes that solitons,
in the hyperelliptic function representation, are constructed
by the lincar superposition of the hyperelliptic modes which
are phase locked with each other. An additional observation
is that the u, are quite irregular in shape duc to the presence
of nonlinear intcractions with the other components. Finally
it is worth pointing out that no single 4, is a solution to
the KdV equation, only their linear superposilion (16)
constitutes a solution. Further details on the spectral
structure of this particular approach to solving the KdV
equation are given elsewhere (Osborne, 1993a).

In order to contrast the hyperelliptic functions with the
@-functions I show in Fig. 2 a typical solution to KdV in
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X

Fig. 2. Construction of KdV wave irains in the §-function
representation. The basis funciions are ordinary cnoidal waves
as shown in (a)-(d); cach cnoidal wave has jts associated
modulus m, as shown in the figure. The nonlinear interactions
among the cnoidal waves are given in (e). The linear
superposition of the cnoidal waves plus the nonlinear
interactions (sum of (a)-(e)) give the solution to KdV as shown

in {f}.

the #—function representation as constructed by Theorem 1.
In this approach onc computes a sum of cnoidal waves plus
nonlinear interactions. In the present case there are four
degrees of frecdom, N=4; these are the cnoidal waves in Fig,
2(a)-(d). Each cnoidal wave is of course a solution to the
KdV equation and in the present case their associated moduli,
respectively, are given by m=0.98 (a soliton), 0.88 (a
Stokes wave), 0.70 (a Stokes wave) and (.37 (a sine wave).
The spatial variation in the amplitude duc to pair-wise
nonlinear interactions is given in Fig. 2(e); this latter
consists of an irregular wave train which has a root-mean-
square amplitude of about one third that of the total wave
train shown in Fig. 2(f). This solution to KdV has been
constructed by summing panels (a)-(e) of Fig. 2 as required
by Theorem L. One observation about the 6-functions is
that they differ substantially from the hyperelliptic
functions. Here is a list of some of the differences: (1) The

261D 40232

5= 2236

1 J8=12.828 320

fZ-1414 J3=2236

Fig. 3. Wave-vector diagram for an example solution of the
KP equation. Here there are four wave vectors with their
associated values and directions as plotied on the axes (k,,k,).

4, are quite irregular and gencrally are not solitons, while
the 0—funclions are very regular, e.g. cnoidal waves, and
individually can be solitons. (2) The y, are not generally
solutions to the KdV equation, while each 8-function
(cnoidal wave) is a solution. (3) The 8-functions are a more
physical basis set (as constructed from cnoidal waves) than
are the hyperclliptic functions,

I now look at the KP cquation and the requisite
numerically-gencrated solutions. A first observation is that
there are no hyperclliptic function solutions for KP
(Osborne, 1994); in the leap from one spatial dimension
(KdV) to two spatial dimensions (KP) one finds that the
hyperelliptic functions no longer exist. On the other hand
the 6—functions remain a quite natural representation for KP,
even in two spatial dimensions, A second observation is that
the nonlincar interaciions for KP can be quite different than
those for the KdV equation, suggesting that computation of
the B matrix is highly non trivial. This occurs because of
the different dircctional properties of interactions among the
travelling wave solutions of KP (Miles 1977). Waves which
propagate in ncarly the same direction interact 'strongly’
while those propagating in very different directions interact
‘weakly.' This physical result leads to a quite different
structure in the algebraic geometric relationship between the
Cauchy initial condition 7{x,0} and the specciral inverse
problem in the 6—function formulation (Osborne, 1994).
Consequently the nonlinear interactions as characterized in
the period matrix B for KP can be quite different than those
for the KdV equation. The physical consequences of this
stalement cannot be over emphasized, as the following
numerical example indicates.

The four wave-number components considered in the
example solution for the KP equation are shown in Fig. 3.
Notc that the first two components (labelled 1 and 2 in the
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figure) point in nearly the same dircetion, while the second
two (labelled 3 and 4) point in a different relative dircclion.
However, the two pairs are at near right angles with one
another. Therefore the interaction pairs may be classified in
the following obvious notation: {1,2) (strong interaction),
(3,4) (strong), (1,3) (weak), (1,4) (weak), (2,3) (weak) and
(2,4) (weak). This mixture of pair-wise interactions is of
course non trivial to construct mathematically in terms of
the period matrix B. These results are beyond the scope of
the present paper and the details have been left to the
litcrature {Osbome, 1994),

Tt is quite instructive to see how the 8function solution
works for this four degree-of-freecdom case. Theorem I has
been used to construct these numerical results. Tn Fig. 4 are
the four degrees of freedom (the amplitudes and moduli have
been taken to be the same as in the previous cxample given
for the KAV equation in Fig. 2). Fig. 4(a} is esscntially a
solitary wave, Figs. 4(b), (c) are Stokes waves and Fig. 4(d)
is a sine wave. These four components have been linearly
summed in Fig. 5(a). The nonlinear interaction terms
(including both strong and weak interactions) are shown in
Fig. 5(b). Finally the solution 10 the KP cquation is given
in Fig. 5(c); this has been compuled as the linear
superposition of panels (a), (b) of Fig. 5. Noie that the
nonlincar interaction contribution (Fig. 5(b}) is ronghly one
third of the total root-mean-square wave amplitude; clearly
the nonlinear interactions are an important aspect of this
formulation.

Another interesting result, from the point of view of this
author, is the fact that the sum of cnoidal waves in Fig. 5(a)
seems Lo be rather irregular when contrasied with the
solution to KP as shown in Fig. 5(¢). The nonlincar
interactions have in effect smoothed out the resultant
solution to the KP equation. A further interesting
observalion is that the sclutions of KdV and KP, as
discussed from the points of view of Theorems I and II, can
be viewed in terms of 'particles’ (i.e. cnoidal waves) and
‘gluons' (nonlinear interactions). The particle contribution
consists of a wide variety of nonlinear behavior, i.e. linear
(sine waves), moderately nonlinear (Stokes waves) and
strongly nonlinear (solitons) wave forms. The nonlinear
interaction contribution requires explicit knowledge of the
cnoidal waves themselves in order to determine the 'gluon
flux.'

6 Summary and Conclusions

This paper emphasizes the important role of the 8-
{unction representation for constructing shallow water wave
trains in both one and two spatial dimensions. The fact that
the 8-functions are uniquely related to the inverse problem
for the Cauchy initial condition for the periodic XdV and XP
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equations is of course an imporiant consideration, since the
mathemalical machinery for construciing N degree-of-
freecdom solutions is thereby guarantced. The main thrust of
the present paper is the namerical constraction of particular
low degree-of-freedom solutions which shed new light on
the physics of shallow waler wave trains. A major future
effort relates to the development of fast numerical codes for
the implementation of this approach lo the experimental
analysis of laboratory and oceanic wave trains. Further
refinement in the physical accessibility of periodic inverse
scattering theory through enhanced numerical capabilily and
physical understanding, particularly in an experimental
conlext, is underway.,

Appendix - Computation of wave numbers,
frequencies, phases and interaction matrix of the
f-function representation

This Appendix summarizes determination of the wave
numbers, k;, frequencics, @,, phases, ¢, and the period
matrix, B, in the 8—function solution o KdV (Its and
Matveev, 1975; Dubrovin et al, 1976); Flaschka and
McLanghlin, 1976; Date and Tanaka, 1976; MacKean and
Trubowitz, 1976). While some knowledge of algcbraic
geometry is required for the derivation of the following
formulas, the results can be implemented numerically with
conly rudimentary understanding of algebraic geometric
methods (Osbome, 1994).

The 6-function is 27 periodic in cach of the N phases

T]j

O[(m +27), (11, + 27, My +27)] =

(A1)
=0[m. M5 Ty ]

Normalized holomorphic differentials on the Riemann
surface I' (sece R(E) below) are then introduced

4Q (E) = zc

where R(LE} is given by

Em™E

R1/2(E) (AZ)

2N+1
[Ie-20
k=1

R(E)=
and the following normalization condition is assumed to
held:

EﬁdQA(E)=27ri5,y~ (A3)

]
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These are the " a cycles" or contour integrals around the
‘open bands' .E,,) in the Floquet spectrum,
Combining (A.Z) and (A.3) yields:

N
Zcmfmj =275,
mzl
(A4)
B Em—ldE
J"’J' - RUZ(E)
oy
which in matrix notation is
C=2mJ™ (A.5)
The normalization coefficicnts C,,. in (A.2) arc then given
by Osborne (1993a):
-1
m-—l
Cm=2mf(Pp—E_%__| =
IN+1

H(E E,)

A6
£, o (A.6)

E™'dE

=7
J. 2N+1
(E -E)

The phases 7, of the 6—function (20) are found by the
following Abelian integrals

M, (P Py P)) =

N Pu(xd) (A7)

=—i2 J.arnj(E) —Kx-0+0,
m=1 E,,

where P, (x,0)=[u,(x,0),0,] for 1$ms j. Eq. (A7) may
be interpreted as a linearization of the hyperelliptic function
representation of the flow, ie. integralion over the
holomaorphic dilferentials (A.2) from the lower band edge
E, to the hyperelliptic functions g (x,f) in effect
linearizes the i;. This leads 10 the lincar 8-function inverse
problem for KdV described in Scction 4. Equations (A2} and

(A.7) are an Abel transform pair. Generally speaking the
phase of the hyperelliptic functions 7, (A.7) depends upon
the main spectrum (E,,1<i<2N+1) and the space-time
evolution of the auxiliary spectrum [u (X.0), crj], 1<j<N.

It then follows that the wave numbers K,, and
frequencics ¢, arc given by

K;=2Cy;
(A.8)
2N+
©; =8Cy-1,; +4Cn; D B,
i=l
Both K and @, arc rcal constants since the €, and the E,
arc real constants. The usval nonlincar dispersion law for a
single degree of {recdom may easily be obtained from (A.8).
The K, arc commensurable wave numbers in the cycle
intcgral basis considered here, while the frequencies @, are
generally incommensurable.
The phases ¢, are found by fixing x=0, 1=0 in (A.7)
o get:

" £, (0,0)

0, =—i2 J‘dQJ(E)=

m=1

Ean (A9
£,(0,09

N\ E*E X
--i¥cn | YL

me= E

where
£ (0.0)
m~1 '
@ = E”2 d
R“(E)

E,

i

(A.10)

Thus the constant phases ¢, ol the hyperelliptic functions
depend upon the stariing values of the hyperelliptic
functions p1,(0,0) and the Riemann sheet indices 0.

The period matrix is given by:

B, =§dgn(5) =

B (A.11)
N
E"E _
=ZC
s R (E)

where



EZJ m—i
ij=2J- E_db (A12)

The integrals are¢ over the "S-cycles” of the theory (for a
discussion with regard to the numerical analysis see Osborne
(1994)). Fast algorithms for computing 8-{unctions for
KdV, together with a gencralization to the KP equation, are
also discussed in the latter reference,
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