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Abstract. The Serchio River Valley, in north-western Tus-
cany, is a well-known tourism area between the Apuan Alps
and the Apennines. This area is frequently hit by heavy rain-
fall, which often triggers shallow landslides, debris flows and
debris torrents, sometimes causing damage and death. The
assessment of the rainfall thresholds for the initiation of shal-
low landslides is very important in order to improve forecast-
ing and to arrange efficient alarm systems.

With the aim of defining the critical rainfall thresholds
for the Middle Serchio River Valley, a detailed analysis of
the main rainstorm events was carried out. The hourly rain-
fall recorded by three rain gauges in the 1935–2010 interval
was analysed and compared with the occurrence of shallow
landslides. The rainfall thresholds were defined in terms of
mean intensityI , rainfall durationD, and normalized using
the mean annual precipitation. Some attempts were also car-
ried out to analyze the role of rainfall prior to the damaging
events. Finally, the rainfall threshold curves obtained for the
study area were compared with the local, regional and global
curves proposed by various authors. The results of this anal-
ysis suggest that in the study area landslide activity initiation
requires a higher amount of rainfall and greater intensity than
elsewhere.

1 Introduction

Intense or prolonged rainfall events often cause considerable
landslides, floods, damage and casualties, as frequently hap-
pens in Northern Tuscany. The Serchio River Valley is situ-
ated between the Apuan Alps to the W–SW and the Tuscan-
Emilian Apennines to the E–NE (Fig. 1). The main peaks
reach almost 2000 m a.s.l., while the valley bottom is about
30–100 m a.s.l. (Fig. 2).

Heavy rainfall events characterize the Middle Serchio
River Valley (MSRV), where the mean annual precipita-
tion (MAP) is between 1300 and 1700 mm and can exceed
3000 mm in the Apuan Alps (Fig. 3). In several cases, in-
tense rainstorms striking the study area have triggered many
shallow landslides (mainly soil slips, debris flows), which
have exposed the local population to risk.

Shallow landslides typically involve a small volume of
earth and/or debris, but are characterized by high veloc-
ity and high impact energy. Furthermore, during intense
rainstorms many shallow landslides initiate almost simul-
taneously. Some shallow landslides often direct towards
streams, increasing the torrent load. As an example, on
20 November 2000 heavy rainfall hit the MSRV, inducing
around 150 failures (Fig. 4) and killing 5 people. Other rain-
storms occurred on 20 January 2009, 24 December 2009 and
19 June 2010, triggering many shallow landslides that caused
severe damage to buildings and infrastructures. The shallow
landslides often affect the road network, generally due to a
lack or deficiency of surface water draining systems, which
is a recurrent case in many regions of the world (Anderson
1983; Haigh et al., 1993; Larsen and Parks 1997; D’Amato
Avanzi et al., 2012). For example, during the 24 Decem-
ber 2009 rainstorm 132 landslides affected the roads: 22 oc-
curred along the main roads, the other 110 along local ones.
This generally blocks traffic, often isolating villages and
stopping productive activities (D’Amato Avanzi et al., 2012).

The definition of rainfall thresholds for the initiation of
shallow landslides can provide a crucial decision-making
tool in risk management. In the relevant literature, two ap-
proaches have been proposed for evaluating the relationship
between rainfall and landslide occurrence. The first approach
is based on physical, process-based models (Montgomery
and Dietrich, 1994; Wilson and Wieckzorek, 1995; Wu
and Sidle, 1995; Iverson, 2000; Crosta and Frattini, 2003),
whereas the second approach relies on the definition of
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Figure 1. Map of the Serchio River Valley and location of the three selected rain gauges. Red 2 

rectangle shows the Middle Serchio R. Valley. 3 
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Fig. 1. Map of the Serchio River Valley and location of the three se-
lected rain gauges. Red rectangle shows the Middle Serchio R. Val-
ley.

empirical thresholds (Caine, 1980; Reichenbach et al., 1998;
Corominas, 2000; Aleotti, 2004; Wieczorek and Glade,
2005; Giannecchini, 2006; Guzzetti et al., 2007, 2008;
Cannon et al., 2008; Dahal and Hasegawa, 2008, Brunetti
et al., 2010; Saito et al., 2010).

The physical models generally require numerous and ex-
pensive geotechnical characterization of the materials in-
volved in landsliding, and therefore may be applied only in
restricted areas.

The empirical approach can be classified according to the
geographical extent over which the critical thresholds are
defined (i.e. global, national, regional or local) and by the
type of rainfall information used to determine the threshold
(Guzzetti et al., 2007, 2008).

Rainfall durationD, rainfall intensityI , cumulative event
rainfall E, and antecedent rainfallA(D) are the most com-
monly investigated variables. In particular, landslide initi-
ation is frequently related to rainfall intensity and duration
(Caine, 1980; Aleotti, 2004; Giannecchini, 2006; Guzzetti et
al., 2007, 2008; Cannon et al., 2008; Coe et al., 2008; Dahal
and Hasegawa, 2008). Antecedent rainfall, geological and
climatic context play important roles in triggering landslides,
but the rate of water infiltration and its movement below the
surface are the key aspects of landslide initiation and are con-
sidered in physically based, process driven methods (Caine,
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Figure 2. Map of MSRV. Shades of colour show elevation, from 5×5m DEM. Black triangles 2 

show location of the 3 considered rain gauges. The black frame shows the study area. DEM: 3 

courtesy of the Authority of the Serchio River Basin. 4 
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Fig. 2. Map of MSRV. Shades of colour show elevation, from
5×5 m DEM. Black triangles show location of the 3 considered
rain gauges. The black frame shows the study area. DEM: courtesy
of the Authority of the Serchio River Basin.

1980; Reichenbach et al., 1998; Iverson, 2000; Crosta and
Frattini, 2003; Giannecchini et al., 2007; D’Amato Avanzi et
al., 2009). The empirical approach avoids quantifying the nu-
merous parameters needed by the physically-based models.
It could be used in applying physically-based approaches.

The mathematical or statistical criteria used in defining
critical rainfall thresholds are not usually specified in the
literature, except in rare cases, as in Guzzetti et al.’s re-
views (2007, 2008). A rainfall threshold is generally ob-
tained on a linear or logarithmic-scale graph by drawing the
differentiation line between the rainfall features (e.g. rainfall
duration and intensity) that cause landslides and those that
do not or by drawing the lower boundary of the rainfall fea-
tures resulting in failures. Recently, some authors (Guzzetti
et al., 2007, 2008; Brunetti et al., 2010; Saito et al., 2010),
criticizing the above-mentioned approaches due to their lack
of objectivity and repeatability, have introduced some sta-
tistical methods for the definition of more objective rainfall
intensity-duration (ID) thresholds. A first method is based on
a probabilistic approach (“Bayesian inference method”) and
can be used to determine the minimum-ID threshold for the
initiation of landslides (Guzzetti et al., 2007, 2008; Brunetti
et al., 2010). Brunetti et al. (2010) also adopts a “Frequen-
tist” approach in order to determine the interceptα and the
slopeβ of the power law curve selected to represent the rain-
fall threshold. Other statistical criteria use quantile regres-
sion to determine the ID thresholds objectively (Saito et al.,
2010). In order to define the minimum-ID rainfall thresh-
olds, a quantile regression may be performed for some per-
centiles, for example in the 2nd and 5th percentiles of the
rainfall events dataset.
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Figure 3. Isohyet map of the MSRV for the 1951-1981 interval (after Baldacci et al., 1993, 2 

modified). 3 
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Fig. 3. Isohyet map of the MSRV for the 1951–1981 interval (after
Baldacci et al., 1993, modified).

In this work, the hourly rainfalls recorded by three rain
gauges (Borgo a Mozzano from 1942 to 2010, Mutigliano
from 1937 to 2010 and Vinchiana from 1964 to 2010) of the
MSRV were analyzed and compared with the occurrence of
shallow landslides involving homogeneous areas in terms of
geological, geomorphologic and climatic features.

In accordance with more traditional methods (Giannec-
chini, 2006 and reference therein), the rainfall thresholds and
the normalized rainfall thresholds were obtained using man-
ual fitting methods by determining a differentiation line of
the dataset, including rainfall conditions that did or did not
result in landslides. Considering the fragility of the study
area, the possibility of obtaining and managing more cau-
tionary rainfall thresholds prompted the use of manual fitting.

2 Study area

The MSRV is situated between the Apuan Alps to W–SW
and the Apennine chain to E–NE (Fig. 2). It falls within
the Northern Apennines, a fold-and-thrust belt formed dur-
ing the Upper Cretaceous-Upper Miocene. From the Up-
per Miocene, the tensional tectonics gave origin to tectonic
depressions bounded by NW–SE trending normal faults, in
which either marine or continental successions were de-
posited. From top to bottom, the Ottone unit, the Cane-
tolo unit, and the Tuscan Nappe crop out. These origi-
nated in different paleogeographic domains: the Ligurian,
the Sub-Ligurian and Tuscan domains, respectively (Elter et
al., 1975; Carmignani and Kligfield 1990; Carmignani et al.,
2000; Puccinelli et al., 2012). Pliocene and Quaternary con-
tinental deposits extensively cover the slopes.
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Figure 4. Sketch map of the main shallow landslides triggered during the 20 November 2000 2 

rainstorm in the Vinchiana area. 3 
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Fig. 4. Sketch map of the main shallow landslides triggered during
the 20 November 2000 rainstorm in the Vinchiana area.

The morphology is highly influenced by the geological and
structural features. NW–SE trending normal faults delineate
the fundamental configuration of the Serchio River Valley,
which can be considered as a consequent valley, adapted to
the tectonic structure. The uplift movements of the late oro-
genic stages determined relevant height differences, while
the fluvial and slope processes shaped the landscape. Glacial
processes involved the higher areas close to the main water-
shed (Castaldini et al., 2004).

The climatic conditions of the MSRV are directly related
to the geographical and morphological features. The moun-
tains intercept Atlantic and Mediterranean humid air masses,
forcing adiabatic ascent and subsequent condensation, which
results in heavy precipitation events. The rainfall regime of
the MSRV can be ascribed to the Apennine-Mediterranean
type with transition to the sub-coastal type. It is characterised
by dry summers and cold winters, with a primary peak of
rainfall in autumn and a secondary maximum in spring. The
mean annual rainfall depends on the altitude. It ranges from
1300 mm of the valley floor to about 1800 mm at higher alti-
tudes (Fig. 3, Baldacci et al., 1993).

Intense rainstorms are quite frequent and can trigger a
lot of shallow landslides, mostly involving the colluvium
and debris deposits of the Macigno Fm. (TuscanNappe).
This formation underlies about 35 % of the study area.
It consists of siliciclastic turbidites made of grey-brown
sandstone and normally shows a high sandstone/shale ra-
tio and thick to very thick, coarse-grained strata. Based on
Bieniawski’s (1989) Rock Mass Rating, the Macigno Fm.
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Figure 5. Examples of pluviograph charts (D: rainfall duration; E: cumulative event rainfall; I: 2 

rainfall intensity): record of the 26 September 1942 rainstorm in the Borgo a Mozzano area 3 

(a); record of the 9 January 1979 rainstorm in the Mutigliano area (b). 4 
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Fig. 5. Examples of pluviograph charts (D: rainfall duration;E: cumulative event rainfall;I : rainfall intensity): record of the 26 Septem-
ber 1942 rainstorm in the Borgo a Mozzano area(a); record of the 9 January 1979 rainstorm in the Mutigliano area(b).

can be typically described as a stratified medium strong
rock, intersected by orthogonal, NW and SE trending joint
sets. The joint sets are closely spaced, very persistent, open,
smooth or slightly rough, from moderately to highly weath-
ered and dry to damp. Infilling is not very significant. The
basic Rock Mass Rating is of about 35 (poor rock). Intense
deformation and fracturing of the rock, together with chemi-
cal alteration, lead to a considerable production of debris and
colluvium. These deposits consist of sand and gravel with a
minor part of finer materials (silt and clay) and can mantle
vast slopes, with a thickness commonly between 0.5 m and
2–3 m.

The shallow landslides considered here can be classified as
complex, rapid to extremely rapid debris slide-debris flows
(Cruden and Varnes, 1996) and are also known as soil slip-
debris flows, or simply debris flows (Campbell, 1975). They
commonly involve the entire thickness of the slope deposit,
up to an impermeable or less permeable bedrock (mostly
consisting of the Macigno Fm.). A thin portion (0.5–1 m)
of highly weathered bedrock may also be involved. Af-
terwards, the material usually flows into the riverbeds and
quickly reaches the main valley bottom, where the reduced
slope gradient induces deposition and stops the flowing mass.

3 Methodology

The main rainfall events recorded by three rain gauges in the
MSRV (Figs. 1 and 2) were analysed with the goal of defin-
ing the rainfall thresholds for the initiation of shallow land-
slides.

The analysis of rainfall events shorter than 24 h requires
hourly rainfall data. Therefore it considered different oper-
ating periods for the three rain gauges: from 1935 to 2010
for the Mutigliano rain gauge (34 m a.s.l.), from 1942 to
2010 for the Borgo a Mozzano rain gauge (141 m a.s.l.), and
from 1964 to 2010 for the Vinchiana rain gauge (91 m a.s.l.).

Despite different operating periods of the rain gauges ana-
lyzed, these stations are believed to be the most effective for
the analysis. They are quite close together, since 12 km sepa-
rate the Mutigliano and Borgo a Mozzano rain gauges, while
the Vinchiana one is exactly halfway between them (Figs. 1
and 2).

The rain gauges were equipped with pluviographs until
2000. In 2000 the Borgo a Mozzano and Mutigliano rain
gauges were equipped with electronic rain gauges, while the
Vinchiana rain gauge was replaced by an electronic one about
2 km away (near the village of Piaggione, 45 m a.s.l.).

The mean annual precipitation (MAP) was calculated for
the whole recording time of the stations, including the pe-
riod of both daily and hourly recording. The MAP for each
instrument increases with altitude: 1331 mm at Mutigliano,
1376 mm at Vinchiana and 1565 mm at Borgo a Mozzano.

During the period considered in this research, 335 rain-
fall events were analysed on the basis of the combination of
rainfall durationD and cumulative rainfallE. From 1942 on-
wards, 97 events were recorded by at least two rain gauges.
Since 1964, 29 events have been recorded in all the rain
gauges. Altogether 490 rainfall records were analyzed (195
at Borgo a Mozzano, 155 at Mutigliano, and 140 at Vinchi-
ana).

Each event was evaluated on the basis of the pluviograph
data (Fig. 5). For example, events with low duration (1–
2 h) and high intensity (20–45 mm h−1) or high duration (80–
100 h) and low intensity (1.5–3 mm h−1) and intermediate
events were considered. For each event the following rain-
fall variables were collected: (i) cumulative rainfallE (mm),
(ii) rainfall durationD (h), (iii) mean intensityI (mm h−1),
and (iv) antecedent rainfallA(D) (mm) related to 3, 7, 15 and
30 days.

For each rainfall event, a thorough research on its con-
sequences in the study area (number of shallow landslides,
damage, deaths) was carried out. Areas of about 10–
15 km around each rain gauge were considered in order
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Figure 6. Example of information coming from a local newspaper. The main title reads: 2 

“Many roads affected by landslides” (source: Il Tirreno, 11 November 1982). 3 
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Fig. 6. Example of information coming from a local newspaper.
The main title reads: “Many roads affected by landslides” (source:
Il Tirreno, 11 November 1982).

Table 1. Frequency of the A, B and C events at the three rain gauges
of the study area (A: events that induced ten or more shallow land-
slides; B: events that induced less than ten shallow landslides; C:
events that did not trigger any landslides). %: percentage of events
that fall in A, B and C group for each considered rain gauge.

Rain gauge A events B events C events Total

no. % no. % no. % no.

Borgo a Mozzano 5 3 35 18 155 79 195
Mutigliano 5 3 25 16 125 81 155
Vinchiana 6 4 26 19 108 77 140

to find possible consequences of the rainfall events. Dif-
ferent sources of information were analysed including:
(i) archives of the local municipal councils, (ii) scientific
papers, (iii) technical reports, (iv) regional and local news-
papers, and (v) information provided by local inhabitants.
However, most of the information came from local newspa-
pers (Fig. 6).

The rainfall events investigated were subdivided into three
groups on the basis of the consequences induced on the ter-
ritory and gathered by the archive research. Since the 1980s,
rainfall events can be discriminated on a quantitative ba-
sis: (i) events that induced ten or more shallow landslides
(A events, in the following tables and graphs), (ii) events
that induced less than ten shallow landslides (B events); and
(iii) events that did not trigger any landslides, including those
events for which no information on consequences was found
in archives and newspapers (C events). Before the 1980s, in-
formation about the number and consequences of landslides
are often confused and incomplete. Therefore, on the basis
of qualitative descriptions reported by newspapers and doc-
uments, events that induced several landslides have been in-
cluded in the A-type, while events that only locally induced
few landslides have been considered as B-type. For the A
events, information on the effects is very clear. For exam-
ple, during the 20 November 2000 heavy rainstorm approxi-
mately 150 shallow landslides occurred, causing 5 fatalities.
Table 1 shows number and frequency of A, B and C-type
events for each rain gauge.
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Figure 7. Seasonal distribution of the main rainstorms occurring in the MSRV from 1935 to 2 

2010, recorded at the Borgo a Mozzano, Mutigliano and Vinchiana rain gauges: (a) 3 
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Fig. 7. Seasonal distribution of the main rainstorms occurring in
the MSRV from 1935 to 2010, recorded at the Borgo a Mozzano,
Mutigliano and Vinchiana rain gauges:(a) distribution of all the
rainstorms analysed;(b) distribution of the rainstorms inducing
shallow landslides.

4 Critical threshold analysis

4.1 Intensity-duration thresholds

In the 1935–2010 period the rain gauges recorded many rain-
fall events: 195 at Borgo a Mozzano, 155 at Mutigliano, and
140 at Vinchiana. Most of them were recorded by all three
rain gauges.

The research highlighted that very heavy rainstorms oc-
curred: on 25 November 1990, 20 November 2000, and
19 June 2010 in the Vinchiana area, on 26 September 1942,
21 September 1994, and 20 January 2009 in the Borgo a
Mozzano area, and on 9 January 1979, 9 June 1992, and
5 October 1998 in the Mutigliano area. With reference to the
seasonal distribution, the analyzed rainstorm events prefer-
entially occurred in autumn (almost 50 % in the September-
November period, Fig. 7), the rainiest season in the study
area. Giannecchini (2006) found a comparable seasonal
distribution for the adjacent Southern Apuan Alps, while
Guzzetti (2000) and Guzzetti et al. (2005) obtained simi-
lar results on a national scale for rainfall events that caused
deaths or missing people. Figure 7 shows the seasonal dis-
tribution of all the analysed rainstorms (Fig. 7a) and of those
inducing shallow landslides and damage (Fig. 7b). The most
severe rainstorms usually occurred between September and
November and in the June-August period.

In order to construct the rainfall intensity-duration (ID)
thresholds, all the durationD and intensityI data were plot-
ted together on a bi-logarithmic scale (D on the x-axis,I on
the y-axis), where the A, B and C events were also plotted.
Then, manual fitting was used to draw the critical threshold
curve, i.e. the curves better differentiating the A, B and C
events.

Upper and lower threshold curves can be traced. They
subdivide the ID field into three parts, including the rain-
fall conditions of rainstorms which induce different stability
conditions (Fig. 8). The rainfall events falling between the
two curves should trigger only a few landslides, while those
falling above the upper curve should trigger more than ten
landslides. Below the lower curves no consequences are ex-
pected.
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Figure 8. Intensity-duration correlation for the Borgo a Mozzano (a), Mutigliano (b) and 3 

Vinchiana (c) rain gauges. The lower (blue) and upper (red) threshold curves are shown. (d) 4 

Comparison between the ID thresholds obtained for the study area. The three stability fields 5 

are highlighted; 1) Borgo a Mozzano upper curve; 2) Borgo a Mozzano lower curve; 3) 6 

Mutigliano upper curve; 4) Mutigliano lower curve; 5) Vinchiana upper curve; 6) Vinchiana 7 
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Fig. 8. Intensity-duration correlation for the Borgo a Mozzano(a),
Mutigliano (b) and Vinchiana(c) rain gauges. The lower (blue) and
upper (red) threshold curves are shown. (d) Comparison between
the ID thresholds obtained for the study area. The three stability
fields are highlighted; (1) Borgo a Mozzano upper curve; (2) Borgo
a Mozzano lower curve; (3) Mutigliano upper curve; (4) Mutigliano
lower curve; (5) Vinchiana upper curve; (6) Vinchiana lower curve.

The threshold curves are expressed in the form (Caine,
1980):

I = α×D−β (1)

whereI is the rainfall intensity (mm h−1), D is the duration
of the rainfall event (h),α is the intercept, andβ defines the
slope of the power law curve.

The rainfall thresholds are defined for the range of du-
ration 2< D < 70 h, 1.5< D < 80 h and 1< D < 80 h
for the Borgo a Mozzano, Mutigliano and Vinchiana rain
gauges, respectively (Fig. 8; Table 2). Generally the up-
per thresholds are defined in the range of mean intensity
4< I < 60 mm h−1, while the lower thresholds are defined in
the range of 2< I < 40 mm h−1 (Fig. 8). Inspection of Fig. 8
indicates that both the upper and lower threshold curves are
similar for the three rain gauges.

Rainfall events lasting approximately 10 h are quite fre-
quent in the study area. Therefore, rainfall durations of
both 10 and 24 h were considered. For a rainfall duration
D of 10 h rainfall intensities are 13.4, 13.5 and 12.0 mm h−1

for the Borgo a Mozzano, Mutigliano and Vinchiana upper
thresholds (1, 3 and 5 in Fig. 8d, respectively).

For a duration of 24 h, intensities are 6.7, 6.9 and
6.4 mm h−1 for the Borgo a Mozzano, Mutigliano and
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Figure 9. Bi-logarithmic EMAPI correlation for the Borgo a Mozzano (a), Mutigliano (b) and 3 
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Fig. 9. Bi-logarithmic EMAPI correlation for the Borgo a Moz-
zano(a), Mutigliano(b) and Vinchiana(c) rain gauges. Upper (red)
and lower (blue) critical threshold curves are shown.(d) Compar-
ison between the different thresholds; (1) Borgo a Mozzano up-
per curve; (2) Borgo a Mozzano lower curve; (3) Mutigliano up-
per curve; (4) Mutigliano lower curve; (5) Vinchiana upper curve;
(6) Vinchiana lower curve.

Vinchiana upper thresholds (1, 3 and 5 in Fig. 8d, respec-
tively). The Vinchiana upper threshold is the lowest, i.e. the
most conservative for a duration less than 30 h, and especially
for short events (D ≤ 10 h).

As regards the lower thresholds (Fig. 8), for a duration
of 10 h the rainfall intensity is 7.8 mm h−1, 7.2 mm h−1, and
7.1 mm h−1 at Borgo a Mozzano (2 in Fig. 8d), Mutigliano (4
in Fig. 8d) and Vinchiana (6 in Fig. 8d) rain gauges, respec-
tively. For D ≥ 24 h, the Borgo a Mozzano lower threshold
is less conservative.

Figure 8 also shows some misclassifications of the type of
events. Some A events fall in the B events field and vice
versa. Such exceptions are probably due to uncertainty in the
areal extent of the damage, which can often be based only on
historical description or information by newspapers. Other
misclassifications occur between B and C events. For exam-
ple, in the Borgo a Mozzano case (Fig. 8a) there are 12.9 %
missing events. These missing events are not linkable to def-
inite causes. Occasional and extemporary causes probably
add to the triggering rainfall and induce unexpected land-
slides. Otherwise, bad functioning of the rain gauge could
be an alternative cause.

In Fig. 8 the upper and lower threshold curves iden-
tify three fields with differing degrees of stability. Below

Nat. Hazards Earth Syst. Sci., 12, 829–842, 2012 www.nat-hazards-earth-syst-sci.net/12/829/2012/
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Table 2. Rainfall ID thresholds for initiation of shallow landslides for the Borgo a Mozzano, Mutigliano, and Vinchiana rain gauges.
Equation:D, rainfall duration in hours;I , rainfall intensity in mm h−1. Range: range of validity for the threshold.

Rain gauge Type Equation Range

Borgo a Mozzano
upper curve I = 80.39×D−0.78 2< D < 70
lower curve I = 43.48×D−0.74 2< D < 70

Mutigliano
upper curve I = 75.21×D−0.75 1.5< D < 80
lower curve I = 43.25×D−0.78 1.5< D < 80

Vinchiana
upper curve I = 63.46×D−0.72 1< D < 80
lower curve I = 41.39×D−0.76 1< D < 80
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Figure 10. Bi-logarithmic EMAPD correlation for Borgo a Mozzano (a), Mutigliano (b) and 2 

Vinchiana (c) rain gauges. Upper (red) and lower (blue) critical threshold curves are shown. 3 
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Fig. 10. Bi-logarithmic EMAPD correlation for Borgo a Moz-
zano(a), Mutigliano(b) and Vinchiana(c) rain gauges. Upper (red)
and lower (blue) critical threshold curves are shown.(d) Compar-
ison between the thresholds; (1) Borgo a Mozzano upper curve;
(2) Borgo a Mozzano lower curve; (3) Mutigliano upper curve;
(4) Mutigliano lower curve; (5) Vinchiana upper curve; (6) Vinchi-
ana lower curve.

the lower threshold (blue line) stability generally prevails.
Above the upper curve (red line) instability prevails, while
the field between the two curves includes intermediate or un-
certain stability (Fig. 8d). The probability of each A, B or C
event to fall within a defined stability field can be estimated.
The results are shown in Table 3.

4.2 Normalization

Various authors assert that each area is in equilibrium with
its rainfall conditions (Guidicini and Iwasa, 1977; Govi and
Sorzana, 1980; Cannon, 1988; Bacchini and Zannoni, 2003;

Aleotti, 2004; Giannecchini, 2006). Therefore, in order to
normalize the rainfall data, they are commonly compared to
the mean annual precipitation (MAP).

The MAP was calculated all through the investigated pe-
riod for each rain gauge. The MAP was 1565 mm at Borgo a
Mozzano (from 1921 to 2010), 1376 mm at Vinchiana (from
1930 to 2010), and 1331 mm at Mutigliano (from 1934 to
2010). The MAP is different for each rain gauge, since it
rises with altitude. Guidicini and Iwasa (1977) introduced
the normalized event rainfall (EMAP), i.e. the cumulative
event rainfall divided by MAP. Based on this parameter, the
relationshipsEMAPI and EMAPD were analysed for each
rain gauge (Figs. 9 and 10; Tables 4 and 5).

On the basis of the same empirical approach and manual
fitting used for the identification of the ID thresholds, two
threshold curves were drawn (Figs. 9, 10). For each rain
gauge the bi-logarithmic functionsEMAP(I ) andEMAP(D)
describe the thresholds (Tables 4 and 5).

TheEMAPI and theEMAPD thresholds are expressed by
the Eqs. (2) and (3), respectively:

EMAP = α×I−β (2)

EMAP = α×Dβ (3)

whereEMAP is the normalized event rainfall,I is the rainfall
intensity (in mm h−1), D is the duration of the rainfall event
(in h),α is the intercept, andβ defines the slope of the power
law curve.

Two threshold curves delimit three fields of stability
(Figs. 9 and 10): stability generally prevails (below the lower
curve), uncertain stability (between the two curves), instabil-
ity (above the upper curve). Figures 9 and 10 show that some
B events (triggering less than ten shallow landslides) fall be-
low the lower threshold curves. These missing events can be
due to occasional and extemporary causes or to bad function-
ing of the rain gauge.

Inspection of Fig. 9 and Table 4 indicates that theEMAP,
the critical amount for triggering shallow landslides, de-
creases with increasingI . The lower thresholds obtained
for the three rain gauges are similar. The Borgo a Moz-
zano lower threshold (2 in Fig. 9d) is the most conservative,
while the Mutigliano upper threshold (3 in Fig. 9d) is higher
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Table 3. Frequency of the A, B and C events in each stability field for the three rain gauges. The percentage of the events falling in the
proper field is in bold (theoretically it should be 100 %).

Rain gauge Event type No. events Stability field (%) Intermediate (%) Instability field (%)

Borgo a Mozzano
A 5 0 0 100
B 35 12.9 87.1 0
C 155 86.5 13.5 0

Mutigliano
A 5 0 10 80
B 25 8 80 12
C 125 81.6 18.4 0

Vinchiana
A 6 0 0 100
B 26 3.8 84.7 11.5
C 108 85.2 14.8 0

Table 4. EMAPI thresholds for initiation of shallow landslides for the Borgo a Mozzano, Mutigliano, and Vinchiana rain gauges. Equation:
I , rainfall intensity in mm h−1; EMAP, cumulative event rainfall normalized by MAP. Range: range of validity for the threshold.

Rain gauge Type Equation Range

Borgo a Mozzano
upper curve EMAP = 19.27×I−0.32 3.5< I < 40
lower curve EMAP = 11.40×I−0.39 2< I < 40

Mutigliano
upper curve EMAP = 22.84×I−0.31 4< I < 50
lower curve EMAP = 13.20×I−0.40 1.5< I < 40

Vinchiana
upper curve EMAP = 23.20×I−0.40 4< I < 40
lower curve EMAP = 12.38×I−0.39 2.5< I < 40

than those of Borgo a Mozzano (1 in Fig. 9d) and Vinchi-
ana (5 in Fig. 9d). This result depends on the MAP value.
In fact, the MAP obtained for Mutigliano (1331 mm) is
lower than those for Vinchiana (1376 mm) and Borgo a Moz-
zano (1565 mm). The Vinchiana upper threshold is steeper
(β = 0.40) than those for Borgo a Mozzano (β = 0.32) and
Mutigliano (β = 0.31). This indicates that, for the Vinchiana
upper threshold, the rainfall intensity is more important than
the cumulative rainfall in discriminating rainfall conditions
triggering several or few shallow landslides.

5 Effect of antecedent rainfall

Antecedent rainfall plays an important role in the initiation
of landslides (Wieczorek, 1987), but its influence is difficult
to quantify. It depends on several factors including: local
climatic conditions, slope angle, and heterogeneity of soils
in terms of physical-mechanical properties and permeabil-
ity (Aleotti, 2004). For example, coarse soils with large in-
terparticle voids are very permeable. So, antecedent rain-
fall is not generally a significant factor for triggering debris
flows (Corominas and Moya, 1999). On the contrary, in low-
permeability soils antecedent rainfall can be important in re-
ducing soil suction and increasing the pore-water pressure
(Aleotti, 2004; D’Amato Avanzi et al., 2004).

Several rainfall variables take antecedent rainfall into
consideration, for example the normalized critical rain-
fall (CMAP, Aleotti, 2004) or daily rainfall (R, Dahal and
Hasegawa, 2008). For shallow landslide events, various au-
thors analyse different time intervals to quantify the rainfall
prior to a rainstorm: 3 days (Dahal and Hasegawa, 2008),
5 days (Wieczorek et al., 2000), 10 days (Crozier, 1999;
Glade at al., 2000), 15 days (Aleotti, 2004), or 25 days
(Terlien, 1998). In order to correlate the rainstorms trigger-
ing shallow landslides with antecedent rainfall in the study
area, the cumulative rainfall at time intervals of 3, 7, 15, and
30 days was analysed and compared with the rainstorm fea-
tures.

The cumulative event rainfallE as well as the antecedent
rainfall A(D) were normalized by MAP. The relationship be-
tween normalized rainfall eventEMAP and normalized an-
tecedent rainfallA(D)MAP (A(D)/MAP) of 3, 7, 15, and
30 days for the A, B and C events were plotted together
(Figs. 11, 12 and 13). For antecedent rainfall of 3 and 7 days
the graphs show a pronounced discrimination between events
that triggered shallow landslides (A and B events) and those
that did not (C events). For 15 and 30 days discrimination
is not so evident. In general, theEMAPA(D)MAP relationship
suggests that theEMAP amount needed for triggering shallow
landslides decreases with increasingA(D)MAP.
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Table 5. EMAPD thresholds for the initiation of shallow landslides for the Borgo a Mozzano, Mutigliano, and Vinchiana rain gauges.
Equation:D, rainfall duration in hours;EMAP, cumulative event rainfall normalized by MAP. Range: range of validity for the threshold.

Rain gauge Type Equation Range

Borgo a Mozzano
upper curve EMAP = 5.04×D0.24 3< D < 60
lower curve EMAP = 2.59×D0.31 2< D < 90

Mutigliano
upper curve EMAP = 5.64×D0.26 1.5< D < 50
lower curve EMAP = 3.26×D0.27 1.5< D < 90

Vinchiana
upper curve EMAP = 4.57×D0.29 1< D < 50
lower curve EMAP = 2.73×D0.31 1< D < 80
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 1 

Figure 11. Relationship between normalized antecedent rainfall A(D)MAP and normalized event 2 

rainfall EMAP for the Borgo a Mozzano rain gauge. The time intervals considered are of 3 (a), 3 

7 (b), 15 (c) and 30 (d) days. 4 

 5 

6 

Fig. 11. Relationship between normalized antecedent rainfall
A(D)MAP and normalized event rainfallEMAP for the Borgo a
Mozzano rain gauge. The time intervals considered are of 3(a),
7 (b), 15 (c) and 30(d) days.

6 Discussion

6.1 Comparison of rainfall thresholds

The rainfall ID thresholds obtained for the MSRV (Fig. 8;
Table 2) can be compared with regional and local thresholds
proposed for Italy (Fig. 15a) and with the global thresholds
(Fig. 15b).

Firstly, the thresholds were compared with those proposed
by different authors for some areas of north-western Tuscany
and Eastern Liguria (Figs. 14 and 15a). The thresholds ob-
tained in this work (1–6 in Fig. 15a) fall in the range of rain-
fall intensity and duration defined by other thresholds for sur-
rounding areas (7–16 in Fig. 15a). Furthermore, the slope of
the threshold curves of the areas of north-western Tuscany
(1–12) is similar (Fig. 15a), probably because their climatic,
geological, and geomorphologic features are similar.
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 1 

Figure 12. Relationship between normalized antecedent rainfall A(D)MAP and normalized event 2 

rainfall EMAP for the Mutigliano rain gauge. The time intervals considered are of 3 (a), 7 (b), 3 

15 (c) and 30 (d) days. 4 
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6 

Fig. 12. Relationship between normalized antecedent rainfall
A(D)MAP and normalized event rainfallEMAP for the Mutigliano
rain gauge. The time intervals considered are of 3(a), 7 (b), 15 (c)
and 30(d) days.

In general, as noted by Govi and Sorzana (1980) and
for the Apuan Alps area by Giannecchini (2006), the crit-
ical rainfall amount needed to trigger shallow landslides
rises with the mean annual precipitation (MAP). For ex-
ample, the upper curves obtained for the Southern Apuan
Alps (MAP= 1870 mm) and for the Lower Garfagnana
(MAP = 2498 mm) are higher than those obtained in this re-
search (Fig. 15a). An exception is represented by the Carrara
Marble Basin (Northern Apuan Alps), where shallow land-
slides and debris flows usually involve quarry waste. It often
shows low permeable or impermeable intervals and lies in
valley bottoms and on steep slopes, where landslide suscep-
tibility is higher.

The thresholds obtained in this research were also com-
pared with the ID thresholds proposed for different areas
of Italy, including six regional and three local thresholds

www.nat-hazards-earth-syst-sci.net/12/829/2012/ Nat. Hazards Earth Syst. Sci., 12, 829–842, 2012



838 R. Giannecchini et al.: Critical rainfall thresholds for triggering shallow landslides

 39

 1 

Figure 13. Relationship between normalized antecedent rainfall A(D)MAP and normalized event 2 

rainfall EMAP for the Vinchiana rain gauge. The time intervals considered are of 3 (a), 7 (b), 15 3 

(c) and 30 (d) days. 4 
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6 

Fig. 13. Relationship between normalized antecedent rainfall
A(D)MAP and normalized event rainfallEMAP for the Vinchiana
rain gauge. The time intervals considered are of 3(a), 7 (b), 15 (c)
and 30(d) days.

(Fig. 15a). A high position, namely a larger mean intensity,
is highlighted for the MSRV thresholds (1–6 in Fig. 15a).
This is an expected outcome of the climatic conditions of the
MSRV, which is characterized by high MAP and high fre-
quency of heavy rainfall. This confirms that each area is in
equilibrium with its ordinary climatic conditions, as noted by
Govi at al. (1985) for the Piedmont Region.

The thresholds were also compared with the national
thresholds for Italy obtained by Brunetti et al. (2010)
and some global ID thresholds for shallow landslide oc-
currence proposed by several authors (Fig. 15b), includ-
ing Caine (1980), Innes (1983), Jibson (1989), Clarizia et
al. (1996), Crosta and Frattini (2001), Cannon and Gart-
ner (2005), and Guzzetti et al. (2008). The comparison shows
that the ID thresholds obtained by this study (1–6 in Fig. 15b)
are higher than the global thresholds, for the reasons cited
above.

Also theEMAPI thresholds obtained for the MSRV were
compared with those proposed for some other areas of Italy
(Fig. 16). The upper thresholds for the Borgo a Mozzano
(1 in Fig. 16), Mutigliano (3) and Vinchiana (5) rain gauges
fall in the range of the normalized event rainfallEMAP for the
Piedmont Region (9–10, Govi et al., 1985) and for the South-
ern Apuan Alps (7, Giannecchini, 2006). The lower thresh-
olds for Borgo a Mozzano (2), Mutigliano (4) and Vinchiana
(6) are less conservative than the lower threshold (8) pro-
posed by Giannecchini (2006) for the Southern Apuan Alps
(Fig. 16).
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 1 

Figure 14. Area between Liguria and Tuscany where different authors have identified rainfall 2 

thresholds (base map by Google Maps, 2010). 3 

 4 

5 

Fig. 14. Area between Liguria and Tuscany where different au-
thors have identified rainfall thresholds (base map by Google Maps,
2010).

6.2 Threshold validation

The data used in the elaboration include the whole 1935–
2010 period. Therefore, in order to validate the ID thresh-
olds obtained for the MSRV, the main recent rainfall events
from 1 January 2011 to 20 November 2011 were considered.
In this period of 2011, shallow landslides did not occur in
the study area. Therefore, C-type rainfall events were anal-
ysed. Figure 17 compares the rainfall ID thresholds of Borgo
a Mozzano (Fig. 17a), Mutigliano (Fig. 17b) and Vinchiana
(Fig. 17c) with the ID values of the main 2011 rainfall events.

The main rainfall events recorded at Borgo a Mozzano
in 2011 correctly fall below the lower threshold (Fig. 17a),
whereas the 4 September 2011 event falls between the lower
and the upper threshold curves (intermediate stability field)
in the Mutigliano (Fig. 17b) and Vinchiana (Fig. 17c) graphs.
Nevertheless, this event did not cause landslides in the study
area, but damage to the road network, mainly caused by a lot
of fallen trees. This highlights equilibrium limit conditions
on slopes, which can be represented by uncertainty in the
graphs. Therefore, the results of this validation seem encour-
aging, even if they are based on a small number of rainfall
events.

6.3 Use of rainfall thresholds

The thresholds obtained for the MSRV in this work can pro-
vide guidance for setting up warning systems and planning
emergency actions in the event of heavy rainstorms. De-
cisions on warning and emergency response can be made
on the basis of the comparison of the rainfall forecasts and
real-time measurements with the threshold curves. Thus, the
threshold curves can help in preparing hazard scenarios, pro-
vided that a reliable weather forecast is available.

When the combination of duration and rainfall intensity
exceeds the upper threshold curve, tens of shallow landslides
can be anticipated (Fig. 8d). If the rainfall events fall between
the upper and the lower thresholds (field of intermediate
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 1 

Figure 15. Comparison between the ID thresholds obtained in this study with some local, 2 

regional, national and global thresholds. The thresholds for the MSRV are colour: dark blue, 3 

Borgo a Mozzano upper curve; blue, Borgo a Mozzano lower curve; green, Mutigliano upper 4 

curve; light green, Mutigliano lower curve; red, Vinchiana upper curve; orange, Vinchiana 5 

lower curve. a) thresholds for MSRV (colour) and surrounding areas (black), local (gray) and 6 

regional (gray dashed) thresholds; source: 1-6, this work; 7) Lower Garfagnana (Governi, 7 

2005); 8-9, Southern Apuan Alps (Giannecchini, 2006); 10-12, Carrara, Fossacava and 8 

Rifugio Belvedere (Carrara Marble Basin, unpublished data); 13-14, Portovenere (Cinque 9 

Terre area, Giannecchini et al., 2010); 15-16, Levanto (Cinque Terre area, Giannecchini et al., 10 

2010); 17, Valtellina, Lombardy (Cancelli and Nova, 1985); 18, Moscardo Torrent, NE Alps 11 

(Marchi et al., 2002); 19, Valzangona, Northern Apennines (Floris et al., 2004); 20, 12 

Lombardy (Ceriani et al., 1994 in Bacchini and Zannoni, 2003); 21, Campania (Calcaterra et 13 

al., 2000); 22, Piedmont (Aleotti, 2004); 23-25, Abruzzo (Brunetti et al., 2010). b) global 14 

(black) and national (gray) thresholds compared with MSRV (colour) thresholds; source: 1-6, 15 

this work; 26, Caine (1980); 27, Innes (1983); 28, Jibson (1989); 29, Clarinza et al. (1996); 16 

30, Crosta and Frattini (2001); 31, Cannon and Gartner (2005); 32-35, Guzzetti et al. (2008); 17 

36-38, National thresholds for Italy (Brunetti et al., 2010). 18 

 19 

20 

Fig. 15. Comparison between the ID thresholds obtained in this study with some local, regional, national and global thresholds. The thresh-
olds for the MSRV are coloured: dark blue, Borgo a Mozzano upper curve; blue, Borgo a Mozzano lower curve; green, Mutigliano upper
curve; light green, Mutigliano lower curve; red, Vinchiana upper curve; orange, Vinchiana lower curve.(a) thresholds for MSRV (colour)
and surrounding areas (black), local (gray) and regional (gray dashed) thresholds; source: (1–6), this work; (7), Lower Garfagnana (Governi,
2005); (8–9), Southern Apuan Alps (Giannecchini, 2006); (10–12), Carrara, Fossacava and Rifugio Belvedere (Carrara Marble Basin, un-
published data); (13–14), Portovenere (Cinque Terre area, Giannecchini et al., 2010); (15–16), Levanto (Cinque Terre area, Giannecchini et
al., 2010); (17), Valtellina, Lombardy (Cancelli and Nova, 1985); (18), Moscardo Torrent, NE Alps (Marchi et al., 2002); (19), Valzangona,
Northern Apennines (Floris et al., 2004); (20), Lombardy (Ceriani et al., 1994 in Bacchini and Zannoni, 2003); (21), Campania (Calcaterra
et al., 2000); (22), Piedmont (Aleotti, 2004); (23–25), Abruzzo (Brunetti et al., 2010).(b) global (black) and national (gray) thresholds com-
pared with MSRV (colour) thresholds; source: (1–6), this work; (26), Caine (1980); (27), Innes (1983); (28), Jibson (1989); (29), Clarinza et
al. (1996); (30), Crosta and Frattini (2001); (31), Cannon and Gartner (2005); (32–35), Guzzetti et al. (2008); (36–38), National thresholds
for Italy (Brunetti et al., 2010).
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Figure 16. Comparison between the EMAPI thresholds obtained in this research with the 2 

thresholds proposed for other areas of Italy. 1) Borgo a Mozzano upper curve; 2) Borgo a 3 

Mozzano lower curve; 3) Mutigliano upper curve; 4) Mutigliano lower curve; 5) Vinchiana 4 

upper curve; 6) Vinchiana lower curve; 7) Southern Apuan Alps upper curve (Giannecchini, 5 

2006); 8) Southern Apuan Alps lower curve (Giannecchini, 2006); 9-11) Piedmont Region 6 

(Govi et al., 1985); 12) Cancia, Dolomites, North-Eastern Italy (Bacchini and Zannoni, 2003).  7 

 8 

9 

Fig. 16. Comparison between the EMAPI thresholds obtained in
this research with the thresholds proposed for other areas of Italy.
(1) Borgo a Mozzano upper curve; (2) Borgo a Mozzano lower
curve; (3) Mutigliano upper curve; (4) Mutigliano lower curve;
(5) Vinchiana upper curve; (6) Vinchiana lower curve; (7) South-
ern Apuan Alps upper curve (Giannecchini, 2006); (8) Southern
Apuan Alps lower curve (Giannecchini, 2006); (9–11) Piedmont
Region (Govi et al., 1985); (12) Cancia, Dolomites, North-Eastern
Italy (Bacchini and Zannoni, 2003).

stability), a few shallow landslides are expected (Fig. 8d).
On the basis of a reliable weather forecast, an appropriate
scenario can be adopted and an emergency system activated.
If a real-time rainfall monitoring system is available, the rain-
fall evolution can be followed and analyzed step by step.

The threshold curves obtained for the Borgo a Mozzano,
Mutigliano and Vinchiana rain gauges are similar (Fig. 8d).
Among them, the Vinchiana ones are more conservative.
They could be used for testing early warning systems for the
entire MSRV, considering its relatively small size and unifor-
mity.

7 Conclusions

The intensity-duration (ID) approach allows us to obtain
rainfall threshold curves for shallow landslide initiation in
the MSRV.

The comparison with other ID thresholds for north-
western Tuscany highlighted the high rainfall thresholds for
triggering shallow landslides in the study area. This is linked
to the high mean annual precipitation (MAP) and the high
frequency of rainstorms hitting the study area, which induce
a natural, dynamic equilibrium between climatic features and
slopes.
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 2 

Figure 17. Comparison between the ID thresholds and the main rainfall events occurring 3 

during the January 1, 2011-November 20, 2011 period in the MSRV, for the Borgo a 4 

Mozzano (a), Mutigliano (b) and Vinchiana (c) rain gauges. The lower (blue) and upper (red) 5 

threshold curves are recognizable. 6 

Fig. 17. Comparison between the ID thresholds and the main rain-
fall events occurring during the 1 January 2011–20 November 2011
period in the MSRV, for the Borgo a Mozzano(a), Mutigliano (b)
and Vinchiana(c) rain gauges. The lower (blue) and upper (red)
threshold curves are recognizable.

The analysis of the role of the antecedent rainfall in trig-
gering shallow landslides shows that the antecedent period
in which the cumulative rainfall should be considered ranges
from 3 to 7 days.

Some misclassifications of rainfall events are highlighted
in the threshold plots, probably due to imprecise information
about landslides and damage up until the 1980s. The thresh-
old validation was performed using rainfall events occurring
in 2011, which did not induce shallow landslides and proved
that the threshold curves function.

The manual fitting used to construct the threshold curves
led to cautionary results. However, mathematical and statis-
tical approaches will be tested and compared with the present
results in the next stages of this research.

The threshold curves found by this work can be the basis
to set up warning systems, face hydrogeological emergen-
cies, and assess risk. This requires reliable weather forecast
systems to be in operation.

The evolution of this research is towards defining risk sce-
narios for different rainfall amounts, directly linked to the
rainfall thresholds. This can be crucial for reliable planning
of civil protection strategies.
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