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ABSTRACT: 
 
The progression in urbanization increases the need for different types of underground infrastructure. Consequently, infrastructure 
and life cycle management are rapidly gaining in importance. Mobile reality capturing systems and cloud-based services exploiting 
georeferenced metric 3D imagery are already extensively used for infrastructure management in outdoor environments. These 
services minimise dangerous and expensive field visits or measurement campaigns. In this paper, we introduce the BIMAGE 
Backpack, a portable image-based mobile mapping system for 3D data acquisition in indoor environments. The system consists of a 
multi-head panorama camera, two multi-profile laser scanners and an inertial measurement unit. With this system, we carried out 
underground measurement campaigns in the Hagerbach Test Gallery, located in Flums Hochwiese, Switzerland. For our performance 
evaluations in two different tunnel sections, we employed LiDAR SLAM as well as advanced image-based georeferencing. The 
obtained absolute accuracies were in the range from 6.2 to 7.4 cm. The relative accuracy, which for many applications is even more 
important, was in the range of 2-6 mm. These figures demonstrate an accuracy improvement of the subsequent image-based 
georeferencing over LiDAR SLAM by about an order of magnitude. The investigations show the application potential of image-
based portable mobile mapping systems for infrastructure inventory and management in large underground facilities. 
 
 

1. INTRODUCTION 

Underground construction and infrastructure gain importance 
with the ongoing progression in urbanization. This applies in 
particular to underground network infrastructures such as 
subways. Digitization trends on a broad scale lead to a rapid 
and massive transformation of the construction and real estate 
industry as well as infrastructure management. New methods 
and tools such as BIM (Building Information Modelling) and 
VDC (Virtual Design and Construction) in combination with 
new technologies for geospatial data capture and exploitation 
enable a paradigm shift in the way buildings and infrastructure 
are designed, tested, built, maintained and refurbished. The 
establishment of fully three-dimensional collaborative processes 
and workflows with stakeholders from multiple domains require 
accurate, detailed and up-to-date 3D geo data. New image-
based mobile reality capturing techniques in combination with 
cloud technologies, such as presented by Nebiker et al. (2015), 
hold the potential to provide such data and services in a rapid, 
cost-efficient and user-friendly manner. As shown by Puente et 
al. (2013) current commercial mobile mapping systems (MMS) 
are dominated by LiDAR as primary sensors and with cameras 
as complimentary sensors. However, first road- and railway-
based mobile mapping experiments were based on stereo 
camera systems and date back to the early 1990ies (Novak, 
1991; Schwarz et al., 1993). Since then image-based outdoor 
mobile mapping systems have evolved into multi-stereo systems 
(Cavegn & Haala, 2016) and into high-performance 360° stereo 
systems (Blaser et al., 2018b; Blaser et al., 2017; Meilland et 
al., 2015) with an unparalleled information richness and 
density. 
In terms of positioning technologies, the vast majority of 
outdoor mobile mapping solutions currently rely on direct 
georeferencing using GNSS and INS. However, alternative 

approaches are required for positioning and pose estimation in 
indoor or underground environments and in environments with 
poor GNSS coverage such as forests or urban canyons. Recent 
developments in indoor localization and mapping benefit from 
and build on methods and techniques, namely SLAM 
(simultaneous localization and mapping), from the robotics and 
more recently from the computer vision communities (Stachniss 
et al., 2016; Thrun, 2002). Indoor and underground mobile 
mapping not only requires new georeferencing strategies, but 
also new platforms. Solutions using carts, like Viametris iMMS 
(Thomson et al., 2013), work well in large unobstructed spaces 
but are not suitable for typical indoor environments with stairs, 
closed doors, obstructed floors due to ongoing construction etc. 
Thus, the focus in research and commercial development has 
shifted towards portable or ‘personal’ mobile mapping systems 
(Lethola et al., 2017; Nüchter et al., 2015). However, with very 
few exceptions, such as the image-based UltraCam Panther 
(Vexcel, 2018), most developments focus on LiDAR-based 
systems and point clouds. Griesbach et al. (2014) introduce an 
even smaller Integrated Positioning System (IPS) “DMT PILOT 
3D” for underground localization and mapping, equipped with a 
stereo camera system and an INS. Other mapping sensors could 
also extend their system. Blaser et al. (2018a) introduce the 
BIMAGE backpack, a portable high-performance mapping 
research platform and system built on top of the Robot 
Operating System (ROS). The system is designed for the 
creation of 3D image data spaces and for the image-based 
building and infrastructure management (Nebiker et al., 2015). 
It features LiDAR SLAM-based real-time 3D mapping with a 
subsequent novel image-based georeferencing approach using 
relative orientation constraints leading to significant improve-
ments in relative and absolute accuracies. 
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In this paper, we examine the potential for using the BIMAGE 
backpack in underground environments. As test area, we use the 
Hagerbach Test Gallery located in Flums Hochwiese, 
Switzerland. For the investigations, we collected data in various 
galleries with different stages of development.  
First, we describe the image-based mobile mapping system 
BIMAGE backpack, which we use for our investigations. 
Further, we introduce the test site Hagerbach Test Gallery. In a 
performance evaluation, we examine the absolute and relative 
accuracies, show and apply different methods for significant 
accuracy improvement. Further, we discuss the results in terms 
of potential use. 
 
 

2. IMAGE-BASED MOBILE MAPPING SYSTEM 

The new image-based Mobile Mapping System (MMS) 
BIMAGE backpack should support kinematic 3D data acquisi-
tion in indoor environments. Similar to existing outdoor MMS 
(Burkhard et al., 2012; Blaser et al. 2018b), the indoor environ-
ments should be captured and represented as georeferenced 3D 
image spaces. Nebiker et al. (2015) describe the concept and the 
construction of geospatial 3D image spaces and discuss the 
advantages over 3D point clouds, namely in terms of handling 
and user-friendliness. Associated depth values for almost every 
pixel enable 3D measurements directly in the image with a 
single mouse click. With given exterior orientation parameters, 
the web application can calculate absolute 3D coordinates. 
Along with the depth information, 3D images can optionally 
contain further pixel-based information layers, e.g. quality of 
depth values or object classification. 
A prototypic indoor MMS, even for research purpose, should be 
portable and extensible in order to cover as many use cases as 
possible and to study different sensor configurations. Further, 
the mapping sensors should cover the indoor environment as 
completely as possible. Precise georeferencing is essential in 
mobile mapping. Most outdoor MMS use inertial navigation 
systems (INS) combining GNSS and IMU. The absence of 
GNSS in indoor environments precludes this sensor combina-
tion from being applied. A possible way to overcome the lack of 
GNSS is to replace GNSS with LiDAR-based simultaneous 
localization and mapping (SLAM) (Hess et al., 2016). Sub-
sequent image-based georeferencing can further improve the 
LiDAR-based camera poses and transform them into a global 
reference frame as well (Cavegn et al., 2016). 
 
2.1 System configuration 

We mounted all sensors on a robust aluminium frame, which we 
fixed on a backpack carrying frame. The system contains a 
FLIR Ladybug5 multi-head panorama camera. The panorama 
camera consists of five radially arranged camera heads with a 
horizontal line of sight as well as a sixth camera head pointing 
upwards. The resolution of a single camera head is 5 MP. 
Further, we tilted the panorama camera by a few degrees to 
achieve a roughly horizontal camera plane when a person 
carries the backpack (see Figure 1, no. 2). The overlapping of 
images allows stitching them together to a panorama image, so 
that the surrounding frame is barely visible. For navigation, we 
use two Velodyne VLP-16 multi-profile LiDAR scanners as 
well as an XSens MTI-300 IMU. One of the two LiDAR 
scanners sits on top of the frame and is tilted by 30° to cover 
mainly the walls as well as some parts of the floor and the 
ceiling (see Figure 1, no. 1). The second, vertically mounted 
LiDAR scanner (see Figure 1, no. 5) covers mainly the floor 
and the ceiling. The second LiDAR is complementary to the 

first one and gives additional geometric stability to the resulting 
fused point cloud. The 3D LiDAR SLAM algorithm registers 
both LiDAR point clouds to a voxel-based map, which is 
created simultaneously and used to estimate the relative system 
pose (see section 2.2). A 12 V battery with a capacity of 20 Ah 
(see Figure 1, no. 6) powers all system components. The current 
system weight is about 20 kg. Blaser et al. (2018a) give a 
detailed system overview with the main specifications of all 
components used. 
 

 
Figure 1. System overview demonstrating our backpack indoor 

mobile mapping system BIMAGE Backpack (Blaser et al., 
2018a). 

 
2.2 Sensor synchronization and acquisition software 

Sensor synchronization of MMS platforms is essential and 
exerts a direct influence on the measuring accuracy. The 
reference time of the BIMAGE backpack is on Computer II 
Arduino Nano (see Figure 2). Computer II generates a pulse per 
second (PPS) and a NMEA string as well and synchronizes all 
navigation sensors continuously. The acquisition software on 
Computer I is able to generate and to send a trigger command to 
Computer II. Then, Computer II triggers the panorama camera 
as well as the flashlights with an electric pulse and sends the 
precise trigger time back to Computer I (see Figure 2). 
The acquisition software follows a modular and flexible concept 
and bases on the Robot Operating System (ROS). ROS is an 
open-source robotic framework, which is widely used in robotic 
communities. It contains numerous existing tools and a 
comprehensive hardware support. Quigley et al. (2009) give an 
introduction of principles, paradigms and the functionality of 
ROS. Particularly noteworthy is the flexible graph-based 
communication concept consisting of nodes, messages, topics 
and services. A node describes a software module, which we 
represent as an ellipse in our software schema (see Figure 3). 
Nodes can communicate with each other by passing messages in 
a strictly predefined data structure through given topics. In our 
software schema, we represent topics as rectangles (see Figure 
3). Either, a node can publish messages to one or more topics 
(red arrows) or can subscribe to one or more topics to receive 
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messages (blue arrows). By contrast, services offer synchronous 
communication. A node can advertise a service with predefined 
data structures of both request and response, similar to a web 
service. We represent services and topics as rectangles in our 
software schema (see Figure 3) but indicate the communication 
with services with green arrows. 
 

 
Figure 2. Schema with sensor synchronization and data flow 

(Blaser et al., 2018a). 

 
A ROS bag node subscribes all messages from navigation 
sensors and writes the raw messages within a bag file on the 
hard disc (see Figure 3). Further, the Cartographer node – con-
taining the 3D LiDAR SLAM algorithm Google Cartographer – 
subscribes all messages from navigation sensors as well. Hess et 
al. (2016) introduce the functionality of Google’s Cartographer 
exemplarily with their 2D LiDAR SLAM. Since the 3D LiDAR 
SLAM provides a real-time system pose, our conditional trigger 
node supports spatial trigger criteria, such as distance intervals 
and orientation differences, as well as non-spatial criteria such 
as time difference and triggers a command if necessary. The 
node of Computer II advertises a trigger command service, 
publishes the trigger time and logs all incoming messages from 
Computer II, which triggers the panorama camera hardware-
based. The Panorama Camera node returns all six images from 
the camera heads strung together in one image. The Image 
Slicer node re-separates the images and different Image Writer 
node instances write the single images.  
Our prototypic MMS initializes completely indoors. The 
starting position of the LiDAR SLAM defines the origin of the 
local coordinate frame. In addition, the LiDAR SLAM provides 
a map overview containing the trajectory; the fused LiDAR 
point cloud as well as the 2D visualization of the voxel map 
(see Figure 4, top). A further tab in the graphical user interface 
of our data acquisition software provides a preview of all 
camera heads (see Figure 4, bottom). Camera trigger constraints 
based on time, distance or angle can be set in this tab. 
Furthermore, the acquisition software provides four different 
camera configuration pre-sets for different lightning conditions. 
The camera configuration can be set manually as well. 
Blaser et al. (2018a) provide an even more detailed description 
of the implemented acquisition software. 
 

 
Figure 3. Schema with the implemented ROS software 

structure. ROS nodes are represented as circles and ROS topics 
as rectangles. Red arrows depict ROS publishers, blue arrows 
ROS subscribers and green arrows ROS services (Blaser et al., 

2018a). 

 

 
Figure 4. Screenshots of the data acquisition software. Top: 
Cartographer SLAM preview, Bottom: Image preview and 

conditional trigger settings (Blaser et al., 2018a). 
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2.3 Data post-processing workflow 

For the data post-processing workflow, we use pre-calibrated 
parameters of the panorama camera. Blaser et al. (2018) 
describe the calibration procedure of the multi-head panorama 
camera Ladybug5. They estimate the interior orientation para-
meters (IOPs) of each camera head and the relative orientation 
parameters (ROPs) between the camera heads with a multi-con-
strained bundle adjustment. They use the equidistant camera 
model (Abraham & Förstner, 2005) for the camera heads. 
Further, we adopted boresight parameters (BAPs) between the 
panorama camera and the body frame, as well as between the 
laser scanners and the body frame from the construction plan. 
The analytical calibration of BAPs is still pending. 
After data acquisition, we export the so-called cartographer 
state from LiDAR SLAM. In the following steps, we extract the 
trajectory from cartographer state and interpolate image events 
in order to get SLAM-based image poses (see Figure 5). Within 
a separate process, we undistort all raw images from the 
panorama camera heads using pre-calibrated IOPs. 
At this stage, we can already build image-based web services 
with undistorted images and corresponding SLAM-based 
camera poses. Further, we can already carry out coordinate 
measurements with forward intersection using image measure-
ments from several consecutive images. 
 

 
Figure 5. Flow chart indicating our data post-processing 

workflow (Blaser et al., 2018a). 

 
Cavegn et al. (2018) extended the SfM pipeline COLMAP 
(Schönberger & Frahm, 2016) with Georeferencing capabilities 
by integrating prior EOPs and exploiting ROP constraints. In 
application scenarios with high accuracy requirements, we aim 
to improve LiDAR SLAM-based camera poses with a sub-
sequent image-based georeferencing. Hence, we use LiDAR 
SLAM-based EOPs of the first camera as initial values, and fix 
ROPs of the other camera heads with the pre-calibrated values. 
Cavegn et al. (2018) describe the complete process of integrated 
Georeferencing used COLMAP in detail. Good lighting condi-
tions and a structurally rich environment for proper and well-
distributed feature detection are essential. 
 
 

3. TEST SITE 

The Hagerbach Test Gallery (VSH) constitutes a suitable 
research and development infrastructure for investigations and 
practical tests in underground mining. VSH was founded in 
1970 and is located in Flums Hochwiese, Switzerland. The 
Amberg Group is the owner of VSH and mining companies can 
rent galleries to develop and test their innovations. In addition 
to a concrete mixer and other construction infrastructure, 
Amberg Group operates a laboratory for construction materials 
testing underground (VersuchsStollen Hagerbach AG, 2019). 
The VSH grew over the years to a widely branched and 
complex tunnel system with various stages of development and 
drilling diameter (see Figure 6). 
 

 
Figure 6. Ground plan of the Hagerbach Test Gallery (VSH). 
Dark grey areas depict accessible tunnels, while the access of 

light grey areas is restricted. Both test areas “safety tunnel” (1) 
and “SCAUT tunnel” (2) are delineated with red dash-dotted 

lines. 

 
3.1 Reference data 

Accurate reference data was acquired in a measurement cam-
paign using high-end tachymetry. Rechsteiner & Wisler (2018) 
provide a detailed description of the reference point measure-
ments as well as the geodetic adjustment. The VSH contains 
127 reference points marked with screw bolts. They evaluated 
the entire reference point network using least-squares adjust-
ment and with minimal constraints in order to prevent error 
influences of reference points from former measurement cam-
paigns. The maximum standard deviation in planar space 
amount to 4.1 mm and 0.9 mm in vertical respectively. 
 
3.2 Hagerbach Test Gallery 

For our investigations, we chose two separate test sites with 
different shaping. Our first test site named “safety tunnel” (see 
Figure 6, (1)) is designed as a road tunnel with different 
extension levels (see Figure 7, top). Our second test site (see 
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Figure 6, (2)) is the tunnel of the Swiss Center of Applied 
Underground Technologies (SCAUT). In contrast, the “SCAUT 
tunnel” contains an innovative test setup for the automatic 
installation of emergency exits as well as railway infrastructure 
(see Figure 7, bottom). 
 

 
Figure 7. Test site “safety tunnel” (1) is developed as a road 

tunnel with different stages of development (top). In contrast, 
the test site “SCAUT tunnel” (2) contains the infrastructure for 

a railway tunnel as well as a crosscut to the rescue tunnel 
(bottom). 

 
 

4. PERFORMANCE EVALUATION 

In both test sites “safety tunnel” (1) and “SCAUT tunnel” (2), 
we carried out data acquisition with the BIMAGE backpack. In 
order to overcome the low lighting conditions, we fixed addi-
tional spotlights sideward on the backpack. In addition, we set 
the camera trigger constraints to a distance interval of 2 m. The 
data acquisition procedure of the first test site “safety tunnel” is 
loop-shaped with an overlap area (see Figure 8, left). Further, 
we captured the second test field “SCAUT tunnel” with an 
additional tunnel after a sharp turn. 
The LiDAR SLAM also provides a 3D point cloud with co-
registered LiDAR data. Plane projections of the 3D point cloud 
are useful for a first visual assessment of the SLAM estimation 
(see chapter 4.1). 
For quantitative investigations, we compare image-measured 
points with reference points. Within four consecutive images 
with corresponding camera poses, we measure target points and 
estimate relative 3D point coordinates with bundle adjustment-
based forward intersection using a self-developed Python tool. 
Afterwards, we transform the 3D points into the reference frame 
performing a 6DoF coordinate transformation. 

4.1 SLAM-based Georeferencing 

The loop-shaped data acquisition of our first test site “safety 
tunnel” (see Figure 8, left) starts nearby the fork at the top right 
(S) and terminates at the fork bottom right (E). There is an over-
lap area between start and endpoint needed for loop-closure. By 
contrast, the trajectory in our second test site “SCAUT tunnel” 
(see Figure 8, right) begins in the first curve at the top left (S), 
turns at the end of the “SCAUT tunnel” and returns to near the 
starting point (E). 
 

 
Figure 8. Point cloud projections to the XY-plane from 3D 

LiDAR SLAM algorithm. Point clouds from test site “safety 
tunnel” (1) are left and those from test site “SCAUT tunnel” (2) 
are right. We processed the point clouds at the top (a) with the 

original SLAM parameter set and the point clouds at the bottom 
(b) with the optimized parameter set. 

 
The projection of the 3D point cloud resulting from LiDAR 
SLAM onto the XY-plane yield a first visual quality indicator 
of the SLAM estimation (see Figure 8). First, we performed the 
SLAM algorithm with the standard configuration, whereby a 
significant loop-closure error occurred in the test field “safety 
tunnel” (see Figure 8a). We could overcome the loop-closure 
error with continuous SLAM parameter optimization, namely 
by increasing the rotation weight of the Ceres Scan matcher and 
by increasing the number of node optimizations. Rechsteiner & 
Wisler (2018) describe the LiDAR SLAM parameter optimiza-
tion in detail. Similar to the first test site “rescue tunnel”, we 
performed the LiDAR SLAM for the “SCAUT tunnel” with 
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both parameter sets. The point cloud projection based on the 
optimized SLAM parameter set (see Figure 8, 2b) shows less 
noise compared to the point cloud projection based on the 
original SLAM parameter set (see Figure 8, 2a).  
 
4.2 Image-based Georeferencing 

In order to perform subsequent image-based georeferencing, we 
introduce undistorted images from all individual camera heads 
into the SfM-Pipeline Agisoft PhotoScan. Additionally, we 
introduced all corresponding camera poses to the first camera 
and fixed the ROPs between the first and all other camera 
heads. Further, we did not introduce any target points. Hence, 
the optimized camera poses from the bundle-adjustment 
completely refer to the initial LiDAR SLAM-based camera 
poses. Processing time and resulting reprojection errors are 
similar to Cavegn et al. (2018).  
 
4.3 Results and discussion 

Using a) LiDAR SLAM-based image poses, processed with 
standard SLAM configuration, b) LiDAR SLAM-based image 
poses, processed with optimized SLAM-parameters as well as c) 
improved image poses from subsequent image-based geo-
referencing, we measure signalized target points within four 
consecutive images and estimate 3D coordinates with a bundle 
adjustment-based forward intersection. 
 
4.3.1 Relative accuracies 
First, we analyse the empirical standard deviations from forward 
intersection. They represent the precision of 3D coordinate 
observations. The relative orientation accuracies in-between 
consecutive images affect the precision of 3D coordinate 
observations the most. Cavegn et al. (2018) investigate on the 
influence from ROP calibration on 3D measurements. They do 
not observe any significant influence from ROP calibrations on 
3D measurements. Hence, in this contribution we also use 
image measurements from different camera heads. The precision 
of a 3D coordinate observation indicates the achievable relative 
coordinate measurement accuracy and is a good measure for the 
accuracy of a 3D distance. 
Our investigations show a significant improvement of the 
precision of 3D measurements. It ranges from 76-123 mm for 
case a) using SLAM-poses determined with standard parameters 
and improves to 61-81 mm for case b) using SLAM-poses 
determined with optimized parameters. Case c) using camera 
poses from image-based georeferencing significantly improves 
the precision of 3D measurement to 2-6 mm (see Figure 9 and 
Table 1). Using SLAM poses, the precision of 3D 
measurements was worse by factor two in test field “SCAUT 
tunnel” (2) compared to test field “safety tunnel” (1). We 
assume the larger diameter of test field “SCAUT tunnel” and 
thereby the lower point cloud density as a reason. Following the 
fact that a lower point cloud density leads to a poorer feature 
detection in the LiDAR SLAM. 
By contrast, when using poses from image-based georeferencing 
for 3D coordinate observation, a narrower tunnel impedes 
bundle adjustment, due to worse intersection conditions. 
 
4.3.2 Absolute accuracies 
In order to analyse absolute accuracies, we transform each 
dataset containing 3D measurements to the ground truth 
coordinate frame using the same four ground control points 
(GCPs) (see Figure 10). Further, we estimate the differences 
between the transformed 3D measurements and ground truth. 
For each dataset, we separately report mean differences for 

GCPs, CPs within the test site (without extrapolation) as well as 
for all available CPs (see Table 1). 
RMSE of CPs between image-based georeferencing and ground 
truth inside our first test field “safety tunnel” amount to 62 mm 
and inside our second test field “SCAUT tunnel” to 74 mm. 
Outside the test site “SCAUT tunnel” steadily rising differences 
up to 540 mm occur (see Figure 10). Reasons could be 
erroneous image matching or extrapolation effects from 3D 
coordinate transformation. Outside the “safety tunnel”, we 
determined differences within the similar amount as outside the 
“SCAUT tunnel. As for the “SCAUT tunnel”, we can mention 
the same error influences as in the “safety tunnel”. Moreover, 
the lighting conditions outside the “safety tunnel” were 
significantly worse. 
 

 
Figure 9. Boxplot with the precision of the 3D coordinate ob-
servations. Bright blue boxplot represent precisions from test 

site 1) “safety tunnel” and dark blue boxplot represent data set 
from test site 2) “SCAUT tunnel”. Precisions of datasets a) base 
on LiDAR SLAM-based poses processed with standard SLAM 
configuration and b) with optimized configuration. Precisions 

of datasets c) base on image-based georeferencing. 

 
Our investigations show an accuracy increase by factor eight, 
from 2.83 m to 0.35 m in test field “safety tunnel” using b) 
SLAM poses processed with optimized parameters instead of 
using a) SLAM poses processed with original parameters. The 
improvement amounts to factor three, respectively from 0.72 m 
to 0.23 m in the other test field “SCAUT tunnel” (see Table 1). 
The reason for the improvements are eliminated systematic 
deviations as a result of the automatically detected loop-
closures (see chapter 4.1). 
After image-based georeferencing, the RMSE within both test 
sites range from 62 mm to 74 mm. They are similar to 
accuracies which have been reported with image-based street-
level MMS in difficult urban environments (Blaser et al., 2017). 
It should be noted that the VSH offered equally challenging 
conditions to the BIMAGE backpack. On the one hand, difficult 
geometrical conditions for the LiDAR SLAM algorithm with 
hardly any long edges and extended planes. On the other hand, 
disadvantageous lighting conditions for image-based 
georeferencing. In Blaser et al. (2018a) we achieved better 
results by factor two under simpler conditions. 
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Figure 10. Overview plan of image-based georeferencing. Green 
points represent camera locations. We transformed all datasets 
into the reference frame with a 6DoF coordinate transformation 

using the red ground control points (GCP). Red and blue 
vectors represent the coordinate differences in XY-plane to the 

reference points. Black vectors represent the differences in 
altitude. All vectors are scaled by factor 50. 

 

Method Test 
site 

Precision 
[mm] 

Accuracy [mm] 
GCPs CPs 

central 
All CPs 

SLAM 
a) 

1) 76 194 279 2’839 
2) 123 450 985 724 

SLAM 
opt. b) 

1) 61 135 165 347 
2) 81 259 300 233 

Image-
based c) 

1) 6 61 62 246 
2) 2 51 74 222 

Table 1. Precision and accuracy values for ground control 
points (GCPs), check points within the central area (CPs cen-

tral) and all check points (All CPs) from both a) standard and b) 
optimized LiDAR SLAM-based image poses as well as from c) 
image-based georeferencing. The table contains results of both 
test sites 1) “safety tunnel” and 2) “SCAUT tunnel”. Precision 
indicates the mean RMSE of forward intersection of a single 

point measurement. Accuracy shows the RMSE of residuals to 
tachymetry. 

 
 

5. CONCLUSION AND OUTLOOK 

In this contribution, we carried out kinematic data acquisition 
underground with the presented portable image-based MMS 
BIMAGE Backpack in the two differently developed test sites 
“safety tunnel” and “SCAUT tunnel”. We examined both 
SLAM-based and image-based georeferencing with qualitative 

and quantitative methods. 3D point clouds, resulting from the 
LiDAR SLAM algorithm and projected onto the XY-plane gave 
a first visual indication of the quality of the SLAM estimation. 
Using this indicator, we continually improved the SLAM 
configuration so that the algorithm closed the loops. For the 
quantitative investigations, we measured signalised target points 
within four consecutive images and calculated 3D coordinates 
with bundle adjustment-based forward intersection. The 
empirical standard deviation of forward intersection indicates 
the precision of a 3D coordinate measurement. We obtained 
standard deviations of 3D coordinates using SLAM-based 
camera poses in the range of 61 to 123 mm and using improved 
camera poses with image-based georeferencing in the range of 2 
to 6 mm. This corresponds to an increase in relative accuracy by 
more than an order of magnitude. These results show that with 
relative measurements, e.g. 3D distances, centimetre accuracy 
can also be achieved in demanding underground environments. 
It should be noted that relative measurements cover a large part 
of everyday applications. 
In order to compare the estimated 3D coordinates with ground 
truth, we transformed the 3D coordinates into the ground truth 
coordinate frame. We achieved an accuracy increase by factor 
three to eight, using the optimized SLAM camera poses. The 
subsequent image-based georeferencing showed a further 
increase in accuracy by a factor of two to four. We achieved 
absolute accuracies in the range of 62 to 74 mm. These 
accuracies are similar that those obtainable with an image-based 
street-level MMS in challenging urban conditions. 
Our investigations show a great potential for use in various 
underground application areas. These range from maintenance 
and inventory to the creation of a digital twin using 3D 
geospatial images. A current development step involves the 
robust generation of depth maps. The additional depth layer 
enables 3D measurement directly in the image with just one 
mouse click. As a next step, we will prototypically develop 
interfaces to BIM. In future, existing BIM objects should be 
augmented in the 3D images, which allows, for example, checks 
for data completeness. Furthermore, we envisage to construct 
and edit BIM objects directly within the image-based 3D web 
service. 
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