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Abstract. We present a new evaluation framework for
implicit and explicit (IMEX) Runge—Kutta time-stepping
schemes. The new framework uses a linearized nonhydro-
static system of normal modes. We utilize the framework
to investigate the stability of IMEX methods and their dis-
persion and dissipation of gravity, Rossby, and acoustic
waves. We test the new framework on a variety of IMEX
schemes and use it to develop and analyze a set of second-
order low-storage IMEX Runge—Kutta methods with a high
Courant-Friedrichs—Lewy (CFL) number. We show that the
new framework is more selective than the 2-D acoustic sys-
tem previously used in the literature. Schemes that are stable
for the 2-D acoustic system are not stable for the system of
normal modes.

1 Introduction

Differences in phase speeds between slow and fast waves in
atmospheric models motivate development of time-stepping
schemes with an implicit component to avoid expensive
time-step restrictions imposed by fast waves on explicit
methods. The nonlinearity of the equations and the expense
of solving globally coupled linear equations often impose
a prohibitive cost on the solvers required by fully implicit
methods and hybrid implicit—explicit (IMEX) schemes that
leverage the strengths of both have become common. Here,
we develop a new framework for evaluating IMEX methods
for atmospheric modeling.

We follow approaches of Durran and Blossey (2012),
Weller et al. (2013), Lock et al. (2014), Rokhzadi et al.
(2018), and others to present an evaluation framework that
is simpler than a full 3-D model while still containing the
challenges associated with the presence of both slow and fast
modes. Our framework is based on the normal mode analy-

sis for systems introduced in Thuburn et al. (2002a, b) and
Thuburn and Woollings (2005).

We focus on IMEX Runge—Kutta (RK) methods and their
use in our primary application, the High-Order Method Mod-
eling Environment (HOMME) dynamical core (Dennis et al.,
2012; Taylor et al., 2020). HOMME is the nonhydrostatic at-
mospheric dynamical core of the US Department of Energy
Exascale Earth System Model’s (E3SM) (Rasch et al., 2019)
atmosphere component. HOMME is formulated in horizon-
tally explicit, vertically implicit (HEVI) form and is well
suited for IMEX RK schemes in which terms that carry ver-
tically propagating acoustic waves are treated implicitly.

We adapt the techniques of Thuburn and Woollings
(2005), hereafter TW2005, to the specific system of equa-
tions and prognostic variables in HOMME as well as other
dynamical cores. In particular, we use a system of nor-
mal modes for a mass-based vertically Lagrangian coor-
dinate system with a Lorenz-staggered vertical discretiza-
tion. We construct a spacetime operator for this system and
study its properties, including stability, dispersion, and dis-
sipation. Compared with the previously used 2-D acoustic
system and the compressible Boussinesq equations (Durran
and Blossey, 2012; Weller et al., 2013; Lock et al., 2014;
Rokhzadi et al., 2018), this system provides more complex-
ity and more closely resembles the equations used in modern
dynamical cores. It contains a full set of modes: east- and
west-propagating acoustic and gravity waves and westward-
propagating Rossby waves. It is linearized about a hydro-
static reference state and has the commonly used constant-
pressure boundary condition at the model top.

Using the new framework, we develop a family of second-
order, high-CFL (Courant-Friedrichs-Lewy), low-storage
IMEX RK schemes and analyze their suitability for opera-
tional use in E3SM’s high-resolution science campaigns.
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The remainder of this paper is structured as follows. In
Sect. 2, we present the linearized system of equations asso-
ciated with our formulation of the nonhydrostatic dynamics
equations and compute its spatial numerical dispersion prop-
erties. Section 3 introduces the spacetime operator and de-
scribes our analysis of its numerical stability properties. In
Sect. 4, we compare the stability diagrams of several schemes
and develop a new family of IMEX RK methods with desir-
able stability and storage properties. In Sect. 4.4, we investi-
gate convergence of IMEX methods with respect to vertical
resolution. Section 5 concludes the paper.

2 Linearized system for normal modes

In this section, we define the linearized system of equations
that corresponds to the HOMME nonhydrostatic dynamics
model. Then we present a discretization — which we broadly
define here to include the choices of prognostic variables,
equation of state, boundary conditions, and staggering — of
this system corresponding to HOMME’s discretization. We
obtain analytical and numerical frequencies for, respectively,
the analytical and discretized systems and confirm that the
discretization is nearly optimal. Therefore, we can subse-
quently use the system to investigate properties of IMEX
spacetime operators.

2.1 Description of the system

In Thuburn et al. (2002a, b) and TW2005, the Euler equations
for a dry adiabatic atmosphere are simplified to study nor-
mal modes. Various approximations about the geometry and
Coriolis terms are made, and the systems are linearized about
a hydrostatic reference state at rest. Furthermore, TW2005
presents such systems for different choices for thermody-
namic variables, vertical coordinates, and equations of state.
We use a vertical coordinate based on hydrostatic pressure
(Laprise, 1992), where hybrid pressure levels are located on
constant s surfaces, and s is the vertical Lagrangian coordi-
nate satisfying s =0, following Lin (2004). Therefore, we
adopt the system of Egs. (20)—(24) in TW2005 for the shal-
low atmosphere approximation and a Lagrangian vertical co-
ordinate:

_ (1O, 99
u = fv (pr o+ 8x> (1
vt:—fu—<ia—p+%) @)
pray 9y
. o 1 dp
We=—8—0 - g 3
P =gw 4
f0u dv
o= o (5+5> 5)

Here, u, v, and w are velocity components, p is pressure,
p is density, ¢ is geopotential, g is the gravity constant, f
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is the Coriolis parameter, o is pseudo-density defined with
respect to the vertical coordinate (see Taylor et al., 2020, for
details), and 6 is potential temperature. The superscript “r”
denotes variables defined by reference profiles of a linearized
hydrostatic steady state with constant temperature 7p. The
subscript “t” denotes partial differentiation with respect to
time. Variables u, v, w, ¢, p, and o are first-order perturbed
quantities, about the reference state, as follows from linear
analysis.

After substituting single-mode solutions in which each
field is proportional to exp(ik,x +ilyy —iwt), this formu-
lation is equivalent to the system of Eqgs. (20)—(24) in the
isentropic coordinate from TW2005. With inclusion of the
B effect as in Eqgs. (55)—(56) of TW2005, this system is as
follows:

ik
—iwu:fv—i—K—;,Bu—ikx (%-Hb) (6)
. ik .
—za)v:—fu+K—;,3v—lly <§+¢) @)
—ia)u}:—gir—p—gr ®)
o o
—lwp = gw )
—iwo = —0o" (ikyu +ilyv), (10)

with linearized equation of state (EOS)

)4 1 o 1 ¢

pr_l—/c;_l—/c@g'

1)

We also retain a version of the system of Eqgs. (6)—(10) with
time derivatives on the left-hand side:

iky . p
utzfv—l—ﬁﬂu—lkx F+¢ (12)
ikyx (P
vtz—fu—i—ﬁﬂv—lly(F—i—qS) (13)
o
we=—g o= (14)
o =gw (15)
oy =—0" (ikyu +ilyv). (16)

In addition to the variables and constants defined above,
k = R/cp is a thermodynamic constant, and k, and [, are
horizontal wavenumbers with K2 = k2 + lf. Here and later
in the text, the subscripts x and y in k, and /, do not denote
differentiation in x or y; we use this notation to be consistent
with the symbols for horizontal and vertical wavenumbers
introduced in Weller et al. (2013) and Lock et al. (2014).
The subscript 6 denotes partial differentiation with respect
to potential temperature. In Egs. (6)—(10), (11), and (12)-
(16), the variables p', o', p', and derivative ¢y, are variables
defined by the reference profile of a linearized hydrostatic
steady state with constant temperature 7. The variables u,
v, w, ¢, p, and o are first-order perturbed quantities about
the reference state. All variables are scalar quantities.
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We note that since 6 = 0, the linear system associated
with the TW2005 isentropic model is equivalent to the lin-
ear system derived with a vertically Lagrangian coordi-
nate. We use the same bottom boundary condition (BC)
¢ =0 for the systems of Egs. (6)—(10) and (12)—(16) as
in TW2005. We replace the rigid lid boundary condition
with a constant-pressure boundary condition, which for the
perturbed-pressure variable becomes pip = 0. This BC is
more typical for a mass-based vertical coordinate.

We define meridional wavenumber [, = 0, temperature of
reference state Top = 250K, depth of domain in the verti-
cal direction D = 10° m, Coriolis parameters g =1.619 x
107" s~ 'm~! and f =1.031 x 10~*s~!, gravitational ac-
celeration g = 9.80616 ms~2, and thermodynamic constants
R=1287.05Jkg" 'K !andc, =1005.0Tkg 'K~

To study the dispersion properties of the system of
Egs. (6)—(10), we choose horizontal wavenumber k, =
27/ 10° m~! and set the number of vertical levels Njey = 20.
Dispersion and dissipation diagrams of the spacetime oper-
ators are also computed with the same njey and ky to match
frequencies and eigenvectors of the spacetime operators with
ones from the spatial discretization.

To form a spacetime operator using Eqgs. (12)-(16) and
study the stability of IMEX schemes, we set njey = 72, to
emulate the default configuration of E3SM, and vary k,
throughout a representative parameter space resolvable by
anticipated high-resolution models. In regimes in which sta-
bility is controlled by the CFL condition associated with
acoustics modes, we desire an IMEX method whose stability
will not depend on the number of vertical levels. In Sect. 4.4,
we study the stability of IMEX schemes for a varying num-
ber of vertical levels.

2.2 Analytical frequencies and dispersion relations

The problem of finding frequencies w in the system of
Egs. (6)-(10) is equivalent to investigating the spectrum of
a differential operator. Since we replace the boundary con-
dition at the top of the model, we obtain a slightly different
dispersion relation for internal modes compared with previ-
ous work. Additionally, in contrast to TW2005, there are no
external modes in our system.

To derive the dispersion relation from Egs. (6)-(10), we
follow Sect. 3 of TW2005 and Thuburn et al. (2002b). The
dispersion relation is independent of the choice of vertical
coordinate and is most easily found using the height coor-
dinate, z. In TW2005, the hydrostatic equation, elimination,
and use of the EOS yield the ODE (Eq. 57):

(0, +A)@0; +B)p+C=0, an

where the constants A and B are related to the static sta-
bility and sound speed, respectively, of the isothermal ref-
erence state and C(w) is a cubic function of the frequency
w. Expressions for A, B, and C are defined as in TW2005
(Eq. 58). As in TWS2002b, we make the change of variable
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p = pexp (%) to obtain

(B — A)?
—

In our setting, the ODE (Eq. 18) has bottom boundary condi-
tion

pztap=0, a(@)=C(w)— (18)

. B—A_
Dzt — P= 0 (19)
at z = 0 and top boundary condition p =0 atz = D.

We first assume a > 0. The cases a < 0 and a = 0 are dis-
cussed below. With m = /a and a solution of form p(z) =
c1sin(mz) + cp cos(mz), we obtain the internal modes. From
the top boundary condition, we recover

0= p(D) =cysin(mD)+cycos(mD) = cp = —cytan(m D).

From the bottom boundary condition, we recover

B—A

- B—-A _
0= PZ(O)+TP(O) =cim+c

2m
"B=a°

=) =—C

Combining these, we obtain a condition on wavenumber m:

py= 2" 20
tan(m )_B—A' (20)
In TW2005, the internal modes obey m = nw /D, where n >
0 is the mode number. In Eq. (20), for large m, wavenumbers
are close to ‘7 + 575, where n is a positive integer.

Due to the nonlinearity of Eq. (20) with respect to m,
wavenumbers m obeying Eq. (20) are found numerically in
MATLAB by solving Eq. (20) for the first njey values of m;,
ie{l,...,nev}, nev = 20. We recover three wave branches
(acoustic, gravity, and Rossby) by solving the quintic equa-
tion,

(B—A)

a(w)=C(w) — ———— =m?

1 i 21

that follows from substituting a = ml2 in Eq. (18) and solv-
ing for w for each m;. Three branches of internal waves are
plotted as solid blue lines in Fig. 1.

External modes are derived assuming a < 0 in Eq. (18).
Solutions are then represented by p(z) = c1e”* + coe™™%,
m = /—a. This leads to the equation

2m

tanh(mD) = ﬂ,

(22)

which does not have a solution, as follows. First, rewrite it
as tanh(njz) = (BE—T&)D with m = mD. Since ﬁ > 3, the

line (BE—’X)D and the curve tanhm do not intersect except at
the origin. The origin is not a solution since we assumed
a <0 and thus m # 0. Similarly, the choice a =0 cannot
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have solutions satisfying the boundary conditions for our par-
ticular value of D.

Analytically, one can recover external modes if the depth
of the domain, D, is larger. We searched for values m in
Eq. (22) for D = 40000 m and D = 50000 m and used these
values in Eq. (21). We obtained five real roots with magni-
tudes of the order of 10’6, 10’3, and 10’2, as expected. We
were unable to locate external modes in discretized systems
with large domain sizes. To search, we examined eigenvalues
and eigenvectors using the fact that external modes have zero
vertical structure in the vertical velocity coordinate.

2.3 Numerical frequencies in the HOMME
discretization

To discretize the right-hand side of the systems of Egs. (12)—
(16) and (6)-(10) vertically in space, we use a Lorenz stag-
gering and place u, v, and o at the midpoints of the model’s
niey vertical levels, and ¢ and w at its njey + 1 level interfaces.
This staggering is denoted [wz, uvo]. Due to the choice of
boundary conditions, ¢ and w are zero at the bottom of the
domain; therefore, we solve only for their nje, interface val-
ues, excluding the bottom interface. The total vector length
in the discretized system is Snjey.

Our placement of variables requires four discrete opera-
tors: one to interpolate ¢ from interfaces to midlevels, one
to approximate the derivative ¢ at midlevels, one to interpo-
late o from midlevels to interfaces, and one to approximate
the derivative py on interfaces. Derivatives are formed us-
ing second-order finite differencing with constant level spac-
ing A6. Interpolation to and from midlevels is implemented
via simple averaging of neighbor values. Applying these op-
erators at each level and interface, we can now write the
discretization of the system of Egs. (12)-(16) as the matrix
equation

U =MU. (23)

Matrix M has a size of 5njey X Snjey. The eigenvalues of M are
discrete representations of quantities —iw in Egs. (6)—(10),
and the eigenvectors of M correspond to the three branches
of waves: Rossby, gravity, and acoustic.

We compute the numerical eigenvalues of M with MAT-
LAB, then match a vertical mode to each numerical eigen-
value. To find a vertical mode, we wrote a routine to count
zeros in an imaginary eigenvector part that corresponds to
w. For the five smallest wavenumbers, we diagnose n = 1/3
manually. A few solutions for the highest wavenumbers for
Rossby and gravity waves become oscillatory. Counting ze-
ros for these is inaccurate; instead, we diagnose them using
the monotonicity of numerical eigenvalues.

The numerical dispersion relation for the discretization of
the system of Eqs. (6)—(10) is plotted in Fig. 1, with blue
diamonds for westward-propagating waves with w < 0 and
red stars for eastward-propagating waves with w > 0. As
in TW2005, system [wz,uvo], which is characterized by
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Figure 1. Analytical and numerical dispersion relation for the sys-
tem of Egs. (6)—(10). Solid blue curves, from top to bottom, are
acoustic, gravity, and Rossby branches of analytical solutions for .
Blue diamonds are negative numerical eigenvalues and red stars are
positive numerical frequencies .

its staggering, choice of prognostic variables, and EOS, is
in category 2b. Categories for discretizations are defined in
TW2005. The optimal category is category 1; methods in this
category have numerical dispersion very close to analytical.
The next most optimal methods belong to the set of cate-
gory 2 methods. Category 2b methods have a nearly optimal
dispersion relation. Rossby frequencies are overestimated, as
shown in Fig. 1, where numerical frequencies for the Rossby
branch for large mode numbers are larger by absolute value
(Rossby frequencies are negative) than their analytical coun-
terparts.

3 Stability of IMEX methods from eigenvalues of a
spacetime operator

In the previous section, we evaluated the properties of the
spatial discretization for the system of Egs. (6)—(10). We now
combine the spatial discretization with a temporal discretiza-
tion and then evaluate the resulting spacetime operator.

3.1 Spacetime operator

Similarly to Weller et al. (2013) and Lock et al. (2014), we
form a spacetime operator from the system of Eqs. (12)-
(16) and compute its spectrum numerically. To be stable, the
eigenvalues of the spacetime operator should lie on or inside
of the unit circle.

The spacetime operator is defined by the underlying IMEX
scheme. Given a linear ODE

yi=Sy +Ny, (24)
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where S and N are the stiff and non-stiff parts already dis-
cretized in space, the spacetime operator Q can be formed
from the double Butcher tableau of explicit (left) and implicit
(right) tables associated with a particular IMEX scheme:

ot m

Here, A denotes the explicit matrix for an IMEX scheme and
has no relation with the constant A used in Sect. 2.2. We
follow the literature in using this notation.

The matrices A ={aj;,} and A={a;;}, ji,j2=
1,...,v, where v is the number of stages, and vectors ¢ =
{cj1} and ¢ = {¢;1}, which determine the location of inter-
nal stages, obey the constraints c¢; =}, aj j, and ¢, =
> 5,41 j»- The weight vectors are b = {b;>} and b= {l;jz}.
Upper-diagonal and diagonal coefficients of the explicit ma-
trix by definition are zero: aj, j, =0, j1 < jo. We are only
interested in diagonally implicit Runge—Kutta (DIRK) meth-
ods; therefore, in the implicit matrix, a i, =0for ji < jo.

Later we refer to order of accuracy conditions for IMEX
schemes, as defined, for example, in Rokhzadi et al. (2018).
First-order conditions are

ijl = Zl;jl =1. (25)
J1 J1

Second-order conditions include the first-order conditions,
conditions for each table, and the following coupling con-
ditions for the explicit and implicit tables:

N A . 1
ijl Ch = ijl Ch = ijl Cih = ijl Cjp = 3 (26)
J1 J1 Ji Ji

For details on how to construct a spacetime operator, see
Lock et al. (2014), Eq. (29) or (41), where the spacetime
operator is either a scalar or a 3 x 3 matrix and is called
an amplification factor. Here, the spacetime operator is a
(5n1ey) X (Snjey) matrix.

To form a spacetime operator from the system of
Egs. (12)—(16), we should define its stiff and non-stiff parts.
For the stiff part, represented by matrix S, we consider the
right-hand side terms of the equations for vertical velocity
and geopotential:

o Py
-8 — prs and gw.
o

It can be shown analytically (Steyer et al., 2019) or numeri-
cally, using MATLAB scripts for this project, that the eigen-
values of S coincide with frequencies for acoustic waves. All
other terms on the right-hand side of Egs. (6)—(10) contribute
to the non-stiff matrix N. Unlike in the 2-D acoustic system
(Lock et al., 2014), the spectrum of N does not coincide with
the slow modes of the system of Egs. (12)—(16), and N is not
linear in ky, in the sense that N # k,Ng for some constant
operator No.
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3.2 Stability diagrams

To investigate the numerical stability of time-stepping
schemes, it is common to refer to the 2-D acoustics system
(Weller et al., 2013; Lock et al., 2014; Steyer et al., 2019):

0 0 1 0 0 0
yo=—iky [0 0 O)y—ik, [0 0O 1]y, @7
2 0 0 0 ¢ 0

with horizontal wavenumber k,, vertical wavenumber k,,
and ky =2 /Ty and k, = 2w /T, for wavelengths T, and 7.
In this system, the spacetime operator has three eigenval-
ues, which we denote by A. They are functions of C, and
C;, = A(Cy, C;), for Courant numbers C, = csky At and
C, = csk; At, where ¢ is the speed of sound, and k, and k,
are horizontal and vertical wavenumbers, respectively. The
full stability diagram can then be plotted as a function of C,
and C; or related quantities.

The relation A = A(Cy, C;) does not hold for the system
of Egs. (12)—(16) and its corresponding spacetime operator.
In this system, the eigenvalues are functions of three parame-
ters, A = A(ky, At,njey). For each k,, and At, there are 5nyjey
eigenvalues. To study the stability properties in this three-
dimensional parameter space, we consider two regimes. We
first set njey = 72, to emulate the default configuration of
E3SM, and vary k, throughout a representative parameter
space resolvable by anticipated high-resolution models. In
the second regime, we fix ky to the highest frequency resolv-
able by a model with 3 km grid spacing and consider a range
of vertical levels. As we are interested in IMEX methods
that treat vertical acoustic waves implicitly, an ideal method
should remain stable for all choices of njey.

In the first regime, we plot stability diagrams with hori-
zontal wavelength 7, on the horizontal axis and Af on the
vertical axis. We vary T, from approximately 2 to 220 km
and the time-step range from 0.5 to 400s. For each k, and
At, we compose a spacetime operator that corresponds to
a particular IMEX method. The operator’s eigenvalues are
computed numerically using one of MATLAB’s solvers. The
largest-magnitude eigenvalue is saved to an array that is then
plotted on a stability diagram. We declare a spacetime oper-
ator stable if its largest-magnitude eigenvalue has magnitude
of less than 1+ €0, with €] = 1072, In our diagrams, stable
regions are colored white.

3.3 Diagrams for dispersion and dissipation

Knowing the eigenpairs (—iwy, my) of the space operator M
as in Eq. (23) and the eigenpairs (4 j, g ;) of the IMEX space-
time operator Q, we recover additional properties of each
IMEX scheme.

For small time steps A, we expect the relationship be-
tween the space operator M and the spacetime operator Q
constructed for At step to be

q;~myand Aj =1lje """ (28)

Geosci. Model Dev., 13, 6467-6480, 2020
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for some real /; > 0 and real @;. We also expect each pair
(q I my) to be uniquely matched.

Ideally, I; =1 and @; = ay; that is, there are no dissipa-
tion or dispersion errors from time stepping. In practice, we
observe at least some numerical dissipation from applying an
IMEX scheme, especially for acoustic waves.

To make dissipation and dispersion diagrams, we use the
Munkres algorithm (Munkres, 1957) and its MATLAB im-
plementation (Cao, 2020) to uniquely match each ¢ ; with
<myp.q;>

lmllg ;| >
an inner product. Then we examine the corresponding eigen-
value A; from the spacetime operator and compute its abso-
lute value /; and its @; from Eq. (28). We discuss dissipation
and dispersion diagrams further in Sect. 4.3, where we apply
them for the family of IMEX M2 methods.

my, using the cost function — where < -, - > denotes

4 Selectiveness of new framework

In Sect. 4.1, we provide an example of a scheme that ap-
pears to be stable for many practical choices of time steps
if it is analyzed with the system of Eq. (27) but is unstable
for these time steps if analyzed with the system of normal
modes (Egs. 12-16). We also apply the new framework for
two schemes presented in Giraldo et al. (2013) and Rokhzadi
et al. (2018).

4.1 Scheme M1

In tables (29), we present a six-stage IMEX scheme based
on one of the explicit Runge—Kutta methods in Kinnmark
and Gray (1984b). The explicit table (Eq. 29, top) is a low-
storage, third-order method with a high CFL of /15 ~ 4.
We construct the implicit table (Eq. 29, bottom) using a
backward-Euler method for all implicit stages except the last
one. The last stage is constructed to have three positive co-
efficients, including a nonzero coefficient on the main diag-
onal of matrix A, and to obey the second-order convergence
conditions for IMEX methods, Egs. (25)—(26). The method
has the same time locations of explicit and implicit internal
stages and is second-order accurate. It satisfies a stiffly accu-
rate condition; that is, the last row of A matches components
of b.

Geosci. Model Dev., 13, 6467-6480, 2020

0/0 0 0 0 00
1/501/5 0 0 0 0 0
1500 15 0 0 0 0
130 0 1/3 0 0 0
120 0 0 12 0 0
110 0o 0 0 10
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ol o o 0 0 0 0
1500 15 0 0 0 0
1500 0 15 0 0 0
/3] 0 0 0 13 0 0 (29)
12, 0 0 0 0 1/2 0
1 |5/18 5/18 0 0 0 8/18
5/18 5/18 0 0 0 8/I8

4.1.1 Plotting details

We plot three stability diagrams for the M1 scheme: Fig. 2a,
with axes (k,At, k;At); Fig. 2b, with axes (T, At) for the
2-D acoustics the system of Eq. (27); and Fig. 2c, with axes
(Ty, At) for the system of normal modes (Eqgs. 12-16). In
Fig. 2a, the x axis kAt varies from 10~* to 10! and the
y axis kAt varies from 10™* to 10%. In each dimension,
we use 100 logarithmically spaced points. As in Lock et al.
(2014) and Steyer et al. (2019), for each pair of k, At and
k, At, the spacetime operator from Eq. (27) is computed us-
ing IMEX M1 method given by tables (29).

Figure 2b and c use the horizontal wavenumber &, that cor-
responds to the wavelength 7. In the figures, T, varies from
approximately 2 to 220 km, with 100 logarithmically spaced
points. Since the acoustic system of Eq. (27) requires k., for
Fig. 2b we make k. span the range Ko = ky x [1072, 10*]. On
the y axis, the time step varies from 0.5 to 400 s, again with
100 logarithmically spaced points. For each pair of (k,, Ar),
we compute a set of spacetime operators based on k; € K
via the same procedure as for Fig. 2a. If for each k, the op-
erator is stable, then point (7%, At) is stable in Fig. 2b. We
chose to use wavelength on the x axes of the stability dia-
grams, rather than wavenumber, to make it easier to identify
horizontal resolutions.

Figure 2c is generated identically to Fig. 2b except that its
results come from the system of Eqs. (12)-(16). Since the
spatially discretized system is discretized in the vertical di-
rection, there is no need to define k.

These stability diagrams are not scaled by the number of
stages in the IMEX methods.

4.1.2 Stability of the M1 schemes

When using the stability diagrams in Fig. 2a, b based on the
2-D acoustic system, as in Lock et al. (2014), the scheme
appears stable for reasonable time steps and resolutions as
indicated by the large white (stable) regions. Both figures

https://doi.org/10.5194/gmd-13-6467-2020



0. Guba et al.: A framework to evaluate IMEX schemes for atmospheric models 6473

show that the stability of the IMEX scheme is the same as
the stability of its explicit table, which is defined by Courant
number Sv; ~ 4, as follows. In Fig. 2a, a straight vertical
line going through a point kx At = Syj; remains in the white
region, and in Fig. 2b the stable (white) region lies below
the straight line with slope 1 that goes through the point that
corresponds to values (Smi/(csky), At). Indeed, the approx-
imate values 7, =2000m, At =4s, k, =0.0031 m~ !, and
cs =317 ms~ !, which is the speed of sound of the constant
reference state in the system of Eqs. (12)—(16), satisfy the
last condition.

However, in Fig. 2c, time steps based solely on the stability
of the explicit table in Eq. (29) are not stable. That is, the 2-D
acoustic system in Eq. (27) does not have enough complex-
ity to indicate that the method can be unstable in practice.
Compared to Eq. (27), the system of normal modes contains
a full set of modes: east- and west-propagating acoustic and
gravity waves and westward-propagating Rossby waves. It
is linearized about a non-constant hydrostatic reference state
and has the commonly used constant-pressure boundary con-
dition at the model top.

4.2 Schemes ARK2(2,3,2) (Giraldo et al., 2013) and
IMEX-SSP2(2,3,2) (Rokhzadi et al., 2018)

In Rokhzadi et al. (2018), one of the ARK?2(2,3,2) methods
from Giraldo et al. (2013) is compared with a new scheme,
IMEX-SSP2(2,3,2). The family of ARK2(2,3,2) schemes is
characterized by parameter a3, in the explicit table (Giraldo
et al., 2013). In Rokhzadi et al. (2018), the authors choose
the method with a3 = %(3 + 2\/5), which we denote here as
ARK?2(2,3,2)(1). Rokhzadi et al. (2018) apply optimization
to derive an ARK2 method with improved accuracy, stabil-
ity, and strong stability preserving (SSP) properties relative
to ARK?2(2,3,2)(1) for a linear wave equation, the 2-D acous-
tics system, the compressible Boussinesq equations, and the
van der Pol equation as in Durran and Blossey (2012), Weller
et al. (2013), and Lock et al. (2014). We compare these two
methods and method ARK2(2,3,2) with az» = 0.85, which
we denote ARK2(2,3,2)(2), using our system of normal
modes (Egs. 12-16). We conclude that ARK?2(2,3,2)(2) and
IMEX-SSP2(2,3,2) have very similar stability properties, as
shown in Fig. 3b and c, but the stable (white) region for
ARK?2(2,3,2)(1) is significantly smaller, as shown in Fig. 3a.

4.3 A set of low-storage, high-CFL IMEX schemes

We develop a set of methods we denote M2 using a second-
order, explicit, low-storage, CFL-4 Runge—Kutta scheme
from Kinnmark and Gray (1984a). Low-storage, high-CFL
methods developed in Kinnmark and Gray (1984a) and Kin-
nmark and Gray (1984b) are used in HOMME, the non-
hydrostatic atmospheric dynamical core of E3SM’s atmo-
sphere component. It is practical to extend existing explicit
RK schemes to IMEX RK methods. We analyze the stability,

https://doi.org/10.5194/gmd-13-6467-2020

dispersion, and dissipation properties of these M2 schemes
using the system of normal modes (Eqgs. 12-16).

4.3.1 Definitions

We start with the second-order explicit table (Eq. 30, top)
from one of the methods in Kinnmark and Gray (1984a). For
the implicit table (Eq. 30, bottom), we choose the same times
for internal stages and make all but the last implicit stage
backward Euler. Internal backward-Euler stages provide sta-
bility and do not affect the second-order accuracy conditions
for IMEX given by Egs. (25)—(26).

The M2 methods vary only in their last implicit stage. We
require the last implicit stage to obey a stiffly accurate condi-
tion and have only non-negative entries in its table. The last
stage is defined by the vector d, whose entries correspond
to the last row of the implicit Butcher tableau, as shown in
the table of Eq. (30), bottom. Moreover, here we consider
only schemes with at most three nonzero entries in d to limit
storage. In practice, using an IMEX method in a 3-D model
with topography will require storing geopotential and verti-
cal velocity terms for each internal stage that corresponds to
dj, #0, j1 <v. Therefore, we focus on methods that limit
such storage space.

0/0 0 0 0 00
/4114 0 0 0 0 0
16| 0 16 0 0 0 0
3/8/ 0 0 3/8 0 00
120 0o 0 12 0 0
1o o o0 0 10
0 0 0 0 10

0 0 0 0

1/4 1/4 0 0

0

3/8
1/2

0 0
0 0

16 0 0 1/6 0
0 / (30)
0 0

where
(d1,dr,d3,ds,ds,dg) =d.

We consider the first- and second-order variants of the M2
methods listed in Table 1.

Variants M2a, M2b, and M2c, where M2c¢ was introduced
in Steyer et al. (2019), are second-order methods with good
stability properties; their dispersive and dissipative character-
istics are different, as shown below in Fig. 4. Variants M2be
and M2cn are the two extremes of the M2 family. In M2be,
the last stage is the backward-Euler method. Thus, it is first-
order accurate, and we expect this scheme to be the most sta-
ble but also the most dissipative. We expect method M2cn,
which has the Crank—Nicolson method for the last stage, to
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Table 1. The M2 schemes.
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Name  Last stage Vector d Order
M2a d=(3/11,0,3/11,0,0,5/11) 2
M2b d=1(0,0,3/5,0,0,2/5) 2
M2c d=(2/7,2/7,0,0,0,4/11) 2
M2be Backward Euler d=(0,0,0,0,0,1) 1
M2cn Crank—Nicolson d=(1/2,0,0,0,0,1/2) 2
M2cno  Crank—Nicolson with off-centering d = (1/2—-0.02,0,0,0,0,1/2+ 0.02) 1

have no dissipation for hyperbolic problems like ours. We
also analyze method M2cno, whose last stage is the Crank—
Nicolson method with off-centering, since off-centering is a
common approach to stabilize time-stepping schemes (Dur-
ran and Blossey, 2012; Staniforth et al., 2006).

4.3.2 Stability diagrams and dispersion and dissipation
diagrams

Stability diagrams for the M2 schemes are shown in Figs. 4a—
¢ and 5a—c, which follow the plotting procedures described
in Sect. 4.1.1. We plot numerical frequencies of the space op-
erator Q and the spacetime operator M to evaluate how the
numerical time-stepping methods preserve the frequencies
from the space discretization Q. Hyperbolicity of the system
of Egs. (12)—(16) implies exact time integration will conserve
the frequencies. Inexact time integration will introduce er-
rors, which we evaluate below. We also evaluate numerical
damping since exact time integration has none. Note that we
compare the properties of the spacetime operator with those
of the space operator integrated exactly in time, but we do
not compare solutions of the spacetime operator with analyt-
ical solutions of the system of Eqgs. (12)—(16). This choice of
comparison focuses on the numerical errors due solely to the
time-stepping methods.

Dispersion and dissipation plots are shown below the sta-
bility diagrams, for the spacetime operator Q with eigenpairs
(Aj,qj), in Figs. 4d—f and 5d-f. In each figure, At =50s
and njey = 20. The top plots show numerical frequencies
Aj vs. vertical mode number. Red diamonds are numeri-
cal frequencies of the space operator for east- and west-
propagating acoustic waves. Blue squares represent east-
and west-propagating gravity waves for the space opera-
tor. Black diamonds are frequencies for west-propagating
Rossby waves for the space operator. Red stars, blue plus
signs, and black stars are for corresponding branches of the
spacetime operator. Vertical mode number and wave charac-
terization are obtained by uniquely matching eigenvector ¢ ;
to its counterpart, eigenvector my, of the space operator M,
also computed using 20 vertical levels.

The bottom plots in Figs. 4d—f and 5d—f show the amplifi-
cation factors of eigenvalues, |A |, for the spacetime operator.
The red stars, blue plus signs, and black stars are for acous-
tic, gravity, and Rossby waves, respectively. Each plot shows
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amplification factors near 1 for gravity and Rossby waves,
with additional damping of the acoustic modes. We discuss
these differences further in the next section.

4.3.3 Analyzing the M2 schemes

Due to their different final stages, the M2 schemes have
different stability properties and dispersive and dissipative
characteristics. To evaluate stability, we focus on the regions
having smallest spatial resolution and highest wavenumbers,
since these are the regions where nonhydrostatic effects are
most prominent. Evaluation of stability is easy: larger stable
(white) regions imply larger stable At for those methods.

As expected, due to the presence of the last backward-
Euler stage in the implicit table, the M2be scheme is the most
stable. Recall that analytically for hyperbolic problems, the
backward-Euler method is unconditionally stable and is very
dissipative. For the M2be method, the largest stable Ar at
T, =2km is approximately 4s, which is at least twice as
large as the largest stable At for the other schemes.

It is desirable to have an IMEX method with stability prop-
erties similar to those of an explicit method used for the non-
stiff part of the system of Eq. (24). In other words, it is desir-
able to be able to integrate a nonhydrostatic system using an
IMEX method with a time step as large as the time step used
to integrate a hydrostatic system using an explicit Runge—
Kutta method. Therefore, we compare the stability of the
IMEX method M2be with the stability of the Runge—Kutta
method consisting of the explicit table in M2be, a method we
denote MExplicit, when it is applied to the non-stiff part of
Eq. (24). The stability region of M2be in Fig. 5a is almost as
big as the stability region of MExplicit (not shown here) up to
a minor difference at approximate wavelength 7, = 220 km.
That is, the stability region of M2be is the biggest region we
could possibly get from an IMEX scheme whose explicit ta-
ble is part of the M2 set.

It is harder to rank schemes using dispersion and dissipa-
tion diagrams. All schemes preserve the dispersion and dis-
sipation relations for gravity and Rossby waves to a high de-
gree. But they perform very differently for acoustic waves.
Method M2be has the largest dissipation for acoustic waves
and is the only scheme that does not have regions of neg-
ative group velocity for acoustic waves. Method M2cn has
opposite characteristics: it does not dampen acoustic waves,
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Figure 4. Properties of M2 schemes: stability, dispersion, and dissipation diagrams.

and the errors in the acoustic frequencies are much larger.
M2cno, a first-order variation of M2cn, has dispersion errors
that are very similar to M2cn while introducing low-degree
dissipation into acoustic waves.

Since acoustic waves can be considered insignificant for
atmospheric applications due to their low energy, one is
tempted to discard numerical errors in the dispersion and dis-
sipation of acoustic waves. However, there is an argument
(Thuburn, 2012) that correct representation of even energet-
ically weak waves in the atmosphere is crucial for accurate
restoration of hydrostatic balance.

Among other second-order schemes (M2a, M2b, and
M2c¢), it is hard to declare a clear winner. Due to its smaller
largest stable Ar at 7, =2km and large dispersion errors,
M2a may be less competitive. Compared with M2c, M2b has
slightly larger maximum stable At at T, =2km, and its er-
rors in dispersion for acoustic waves are smaller, but its dissi-
pation is larger. Indeed, its larger dissipation is probably what
causes its better stability compared with M2c. However, de-

Geosci. Model Dev., 13, 6467-6480, 2020

pending on the evaluation criteria, M2c can be viewed as a
better scheme than M2b. For example, it has less dissipa-
tion and its dispersion is very similar to that of the Crank—
Nicolson method, which is widely used for hyperbolic prob-
lems.

4.3.4 Role of the implicit table

We chose to limit our search for a suitable M2 method by
varying only the vector d in the implicit table. Since the
second-order accuracy conditions for the M2 family depend
only on the last implicit stage, we make all other implicit
stages (stages 2-5) use the backward-Euler method to pre-
sumably maximize stability. One could also try to use Crank—
Nicolson or off-centered Crank—Nicolson methods for im-
plicit stages 2-5.

To understand how the implicit stages influence dissipa-
tion of acoustic waves, we consider the expression for the
final solution of Eq. (24) using Lock et al. (2014), Eq. (15),
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Figure 5. Properties of M2 schemes: stability, dispersion, and dissipation diagrams.

and the definition of the M2 family in Eq. (30):
Y =y At N, "+ A +dy AL S (Y, 1")

1
+dy A1 S (y(2),t" + ZA:)

+de At S(y(6),t +At) .

1
+d3 At S|y, " +6At

+dy AtS

1
+ds At S|y, " + = S A

3
y@ " +8At>

Scheme M2cn, given by its final implicit stage (dy, ..., de) =
(1/2,0,0,0,0,1/2), does not have dissipation. For M2cn,
the solution y"*! is directly influenced by intermediate im-
plicit stages 2—5 only by the non-stiff term. Also, its final
implicit stage is represented by the Crank—Nicolson method,
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known to be non-dissipative for hyperbolic problems. We
conclude that both of these facts contribute to the lack of
dissipation in M2cn. Scheme M2be has final implicit stage
(dq,...,ds) =(0,0,0,0,0,1), which gives the backward-
Euler method. Similarly to the backward-Euler method for
hyperbolic problems, M2be is very dissipative.

We suggest that the dispersion and dissipation of acoustics
waves can be tuned by working only with the implicit table
of any method.

4.4 Stability properties with respect to vertical
resolution

For an explicit time-stepping method, the most restrictive
CFL condition is usually that associated with the verti-
cally propagating acoustic waves and the stable time step
decreases linearly with Az = D/njey. Ideally, with an im-
plicit treatment of vertical acoustic waves, an IMEX method
should remain stable as njey is increased, and the stability
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should be controlled only by the CFL condition associated
with the horizontal resolution.

To analyze this aspect of various IMEX methods, we fix ky
to the highest frequency resolvable by a model with 3 km grid
spacing and vary the number of vertical levels from njey, = 20
to njey = 100. We plot the method’s stability as a function of
nley using a logarithmic scale (up to rounding to the near-
est integer) and 50 sample points. The stability diagrams are
made very similarly to the ones in Fig. 4; the only difference
is the horizontal axis, which now is njy. We vary At from 1
to 10s with logarithmic spacing and 100 samples. Note that
the horizontal axis is not defined by a vertical wavenumber,

Geosci. Model Dev., 13, 6467-6480, 2020

k;, because for any fixed resolution Az the model supports
waves with many vertical wavenumbers.

Figure 6 contains stability diagrams for schemes M1,
ARK2(2,3,2)(1), ARK2(2,3,2)(2), and M2b. For schemes
M1 and ARK2(2,3,2)(1), the stability is independent of Az,
as desired, only for up to approximately njey, =57 (Az >
175 m). In Fig. 6a-b, the stable region for the approximate in-
terval njey € [20,57] (Az € [175,500] m) is under a straight
line for some Ar = Aty. For finer Az, the stable regions lie
below a line with a constant slope for both schemes.

In contrast, for methods ARK2(2,3,2)(2) and M2b, sta-
bility is always controlled by the horizontal resolution: in
Fig. 6¢, the stable region is below the horizontal line A#y >~
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7.2's. To further support this conclusion, we also computed
eigenvalues of the spacetime operator for method M2b, Ar =
7s, and a few large values of njey, up to 600. The spacetime
operator for all large njey was stable.

We do not present stability diagrams for Az studies for
other methods from this paper because they are identical to
Fig. 6¢ up to the value of Afy. That is, the stability of meth-
ods IMEX-SSP2(2,3,2) and M2 methods is controlled by the
horizontal wavelengths.

5 Conclusions

We developed a new framework to evaluate IMEX RK meth-
ods for atmospheric modeling. The framework uses a system
of normal modes and is proven to be simple but more selec-
tive than the 2-D acoustics system used in the literature. For
example, the M1 method from Sect. 4.1 appears to be sta-
ble for a large set of time steps and resolutions when using
the 2-D acoustics system. If the method is evaluated with the
system of normal modes, it is unstable for the same set of
time steps and resolutions.

The new framework gives us insight to develop a set of
second-order, low-storage, high-CFL IMEX RK methods to
use in atmospheric dynamical cores. Furthermore, we use the
spacetime operator built with the system of normal modes to
investigate dispersion and dissipation of IMEX RK schemes
for three types of waves: gravity, Rossby, and acoustic.

One extension of this work would be to investigate selec-
tiveness of the framework based not on the system of normal
modes (Egs. 12—16) but on a system of compressible Boussi-
nesq equations as in Durran and Blossey (2012).

Code availability. The current version of scripts is available from
the project website (https://github.com/E3SM-Project/sta-imex, last
access: 19 December 2020) under the BSD three-clause license.
The exact version of the model used to produce the results used
in this paper is archived on Zenodo (Guba and Steyer, 2020,
https://doi.org/10.5281/zenodo.3785712). Scripts for the work pre-
sented here were written in MATLAB and executed in MATLAB
R2018b. Descriptions of the scripts are provided in file README,
which is archived with the scripts in Guba and Steyer (2020). To
reproduce the dispersion and dissipation plots, one needs to down-
load the implementation of the Munkres algorithm for MATLAB
separately at Cao (2020).

For this submission, we created the script paper_figures.m,
also archived on Zenodo (Guba and Steyer, 2020), which sets pa-
rameters and launches the MATLAB scripts to produce all paper
figures in the order they appear. The script contains comments to
easily identify the figures.

Sta-imex version 1.0: Copyright 2020 National Technology &
Engineering Solutions of Sandia, LLC (NTESS). Under the terms of
contract DE-NA(0003525 with NTESS, the US Government retains
certain rights in this software. For the full copyright statement, see
Guba and Steyer (2020).
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