
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

35

Mapping of Behavior Model using Model-Driven

Architecture

Mohammed Abdalla Osman Mukhtar
Azween Bin Abdullah

Department of Computer & Information Science
Universiti Teknologi PETRONAS

Tronoh, Malaysia

ABSTRACT

Mapping and transformation is a twin process in a high level

system abstraction, which they playing corner stone of model

driven architecture (MDA) technique. But the researchers on

this field gave most attention for the static systems

abstraction, while we find that almost systems in the world are

dynamic with high frequency behavior changing. In this paper

we will focus on what is the work has been done on behalf to

behavior model transformation depending on four aspects;

firstly is the semantics of behavior model, secondly is about

the completeness of platform independent model (PIM),

thirdly is about some language which are supporting behavior

model transformation process, and the last aspect is the model

composition which can be the perfect approach to deal with

describing the large system that definitely has high

complexity and hard understanding scale.

General Terms

Model Driven Architecture, Model Transformation, Software

Engineering and Modeling.

Keywords

MDA; QVT; PIM; PSM; OCL; Model Transformation.

1. INTRODUCTION
For MDA approach there is still no agreement on how

behavior aspects should be supported. There are a lot of effort

has been done on model mapping and transformation from

PIMs to PSMs in many application domains. Much works

which have been done using MDA approach give attention on

behavior aspects in PSMs. In this paper, we will provide a

good monitoring for behavior model mapping either using

vertical mapping (refinement) or horizontal mapping (from

PIM to PSM).

 The central idea of the OMG‟s Model Driven

Architecture (MDA) is that developer should be used to

develop models, not programs. That is not to privilege a

graphical over a textual programming, but rather to make the

developer to be enabled to work at as a high level of

abstraction as is feasible. The general scenario of MDA is a

single platform independent model (PIM) might be created

and transformed, automatically, into various platform specific

models (PSMs) by the systematic application of

understanding concerning how applications are best

implemented on each specific platform. The OMG‟s queries,

views and transformations (QVT) standard [1] defines

languages in which such transformations can be written [2].

Depending on four aspects, we can trace the progress in

development of behavior models mapping and transformation.

First aspect is about the semantics of behavioral (Operational)

models, second aspect is the completeness of behavior

platform independent model (PIM), beside the languages that

are working on the field of behavior model mapping and

transformation as a third aspect, and the last aspect which is

about the new trends for model composition.

2. SEMANTICS OF BEHAVIORAL

MODELS
All work which has been done in this field is about defining

the description semantics of Object Constraints Language

(OCL) or the programming or modeling languages. For that,

metamodeling became in the beginning of this decade has a

widely useful tool to describe the (abstract) syntax of

modeling languages. As [3] said there is already two

approaches to describe OCL constraints semantics (like this

constraint eval: CONSTRAINT x STATE →

{true,false,undefined}), which can be defined either

mathematically by using structural induction over

CONSTRAINT (refer to[4]), or logically like using

Isabelle/High-Order Logic (HOL).

These two approaches have a good manner to evaluate

OCL constraints in a formal and non-ambiguous method, but

they still have some disadvantages, first disadvantage is this

gap between OCL‟s official syntax definition which is given

as metamodel, and the OCL‟s syntax which is given in

structural induction. Second one which is the main drawback

is the understandability.

The main technique to heal the rift of this gap and to get

good understandability is metamodeling. Metamodels are

already used to define abstract syntax with very expressive

and easy to understand, it is already also used to define the

semantics of class diagrams that technique is provided by

OMG using Evaluation-Metaclasses [3], which this approach

is provided using transformation rules written in QVT.

Figure1 shows metamodel for OCL abstract syntax, and

figure2 shows metamodel for the semantics of OCL. In [5]

also applying graph transformation (Model Transformation) to

OCL constraints semantics.

Now, in recent years, OCL becomes a constraint language

that is applied to various modeling languages, instead of just it

is a language used to constrain UML models. This includes

Domain Specific Languages (DSLs), and meta-modelling

languages like MOF or Ecore. The new trend is going on

providing firstly variability to OCL parsers to work with

different modeling languages, second variability concentrate

on the technical space which models are implemented in (like

Java, Ecore, or a specific model repository).

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

36

Figure 1: MetaModel for OCL – Syntax [3]

Figure 2: MetaModel for OCL – Semantics [3]

In [6] argue that all OCL tools support variability at the

model level (OCL compilers), for that he said we can support

variability at the model instance level (OCL interpreter) and

proposed a generic adaptation architecture for OCL

interpreters that hides models and model instances behind

well-defined interfaces. This enables reuse of the complete

OCL infrastructure including the OCL parser, standard library

and interpreter. There is also some work done for modeling

operational semantics of domain specific modeling language

(DSML) as what is doing in [7], which is applying this

approach to petri nets as well as for a stream - oriented

language from the domain of earthquake detection.

3. COMPLETENESS OF PLATFORM

INDEPENDET MODEL (PIM)
If we trace the development of MDA approaches, we will

find that most researchers had gave their attention on

structural aspects of platform specific model (PSM) level and

in generating code, but they had gave less attention to the

platform independent model (PIM) level and the behavior of

the modeled applications. We did not find a lot of work about

this aspect, but we only aware of one paper, which present an

MDA based that incorporates behaviour modelling at the PIM

level in the development of a specific category of applications

[8]. In this paper they mentioned that behavior PIM can be

divided to more than one layer of abstraction, the first one is

more independent than the other layers, while the deep one

can be near more to PSM.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

37

In [8] they had applied their approach to a Mobile System

(called M-MUSE DSL), therefor we find that the platform-

independent design phase has been decomposed in the service

specification and platform-independent service design steps.

The platform-independent service design model should be a

refinement of the service specification, which implies that

correctness and consistency particularly of behavioral issues

have to be addressed in the refinement transformation.

However, when trying to realize this refinement

transformation, they noticed that the gap between service

specification and platform-independent service design is

rather wide, so that correctness and consistency was hard to

guarantee in a single refinement transformation T1. Therefore,

they introduced an intermediate step in which the service

specification behavior is refined (see figure 3). This

intermediate step results in an intermediate design called

service design refined model and their final PIM is renamed to

service design component model, the refinement

transformation T1 has been consistently decomposed in two

transformations T1‟ and T1”.

Figure 3: PIM levels and transformation between these levels [8]

4. SUPPORTING LANGUAGES FOR

MAPPING OF BEHAVIOR MODELS
There is a lot of transformation languages working as a tool to

make the transformation operation full automated, we have

chosen a three types of these languages depend on some

criterion. First one is Query, View, Transformation

(abbreviated by QVT) which is most standardized, which is

sponsored by Object Management Group (OMG). The second

one is KerMeta (abbreviation of Kernel Metamodel), it is

domain specific language, it is building basically on Object

Oriented Programming, and it can be plugged on Eclipse. The

third one is MATA (abbreviation of Modeling Aspects using a

Transformation Approach), from its‟ name we can see that it

is building on Aspect Oriented Programming. Now we need to

take each language individually, and focusing the light on

some its‟ features, and making technical comparison.

4.1 Query/View/Transformation (QVT)
QVT (Query/Views/Transformation) is the OMG

standard language for specifying model transformations in the

context of MDA. It is regarded as one of the most important

standards since model transformations are proposed as major

operations for manipulating models. [8].

The three concepts that are used in the name of the QVT

language as defined by OMG documents are: [9].

Query: A query is an expression that is evaluated over a

model. The result of a query is one or more instances of types

defined in the source model, or defined by the query language.

View: A view is a model which is completely derived from

another model (the base model). There is a „live‟ connection

between the view and the base model.

Transformation: A model transformation is a process of

automatic generation of a target model from a source model,

according to a transformation definition.

QVT languages are arranged in a layered architecture

shown in Figure 4. The languages Relations and Core are

declarative languages at two different levels of abstraction.

The specification document defines their concrete textual

syntax and abstract syntax. In addition, Relations language

has a graphical syntax. Operational Mappings is an imperative

language that extends Relations and Core languages.

Relations language provides capabilities for specifying

transformations as a set of relations among models. Core

language is a declarative language that is simpler than the

Relations language. One purpose of the Core language is to

provide the basis for specifying the semantics of the Relations

language. The semantics of the Relations language is given as

a transformation RelationsToCore. This transformation may

be written in the Relations language.

Sometimes it is difficult to provide a complete declarative

solution to a given transformation problem. To address this

issue the QVT proposes two mechanisms for extending the

declarative languages Relations and Core: a third language

called Operational Mappings and a mechanism for invoking

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

38

transformation functionality implemented in an arbitrary

language (Black Box implementation).

Figure 4: Layered Architecture of QVT Language

4.2 Kernel MetaModel (KerMeta)
KerMeta is a meta-language for specifying the structure and

behavior of models; it has been also developed as a core

language for Model Driven Engineering (MDE) platform.

KerMeta is an executable metamodelling language

implemented on top of the Eclipse Modeling Framework

(EMF) within the Eclipse development environment. Figure 5

show three main windows in KerMeta Graphical Interface,

which the first one is the metamodel using class

diagram(which is a subset from UML class diagram MOF

metamodel), the second widows is the KerMeta code to

describe the class diagram, and the last one is the

summarization for the class diagram.

Kermeta is a language for specifying metamodels,

models,and model transformations that are compliant to the

Meta Object Facility (MOF) standard [11]. The object-

oriented meta-language MOF supports the definition of

metamodels in terms of object-oriented structures (packages,

classes, properties, and operations). It also provides model-

specific constructions, such as containments and associations

between classes [10].

4.3 MATA
MATA takes a different approach to aspect-oriented

modeling (AOM) since there are no explicit join points.

Rather, any model element can be a join point, and

composition is a special case of model transformation. The

graph transformation execution engine, AGG, is used in

MATA to execute model compositions, and critical pair

analysis is used to automatically detect structural interactions

between different aspect models. MATA has been applied to a

number of realistic case studies and is supported by a tool

built on top of IBM Rational Software Modeler.

 Figure 6 [12] shows the base model slice which is

composed of a set of base models. Similarly, an aspect model

slice is composed of a set of aspect models. Base models are

written in standard UML. Aspect models are written in the

MATA language and are defined as increments of the base

models or other aspect models. Each aspect model describes

the set of model elements affected by the aspect (i.e. the

joinpoints) and how the base model elements are affected.

Note that an aspect model can only be defined as an increment

of a model of the same type; for example, sequence diagram

aspects can extend base sequence diagrams but not base state

diagrams.

Figure 5: KerMeta Graphical Interface [10]

5. MODEL COMPOSITION
Model composition is a technique, which used with behaviour

models for building bigger models from smaller models, thus

allowing system designers to control the complexity of a

model-driven design process. But many these model

composition techniques are themselves very complex because

they compose the internal member of participating models in

non-simple manner.

In [13] they apply some of the ideas from modular

programming to reduce the complexity of model

Operatinal

Mappings

Relations

Black

Box

Core

extends

extends

extends

extends

RelationsToCore
Transformation

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

39

compositions, trying to provide a model composition

technique with a proposed modular that treats the participating

models as black boxes. They argue that it will be simple, it

Figure 6: An Overview of MATA [12]

does not require a separate language for expressing the

composition, and the resulting composed model will be easy

to understand by the modular nature of the model

composition.

There is a lot of approaches have been proposed

depending on different components. Feature model

composition [14] is a one of these approaches, therefore

Model-Based Engineering (MBE) and Aspect-Oriented

Modeling (AOM) communities have developed a set of model

composition techniques and tools. For that there is an interest

in determining how these techniques perform with feature

model composition and which techniques are the most

suitable.

Aspect model composition is another approach of combining

two models, MB and MA, where an aspect model MA is said

to crosscut a base model MB. As such, aspect model

composition is a special case of the more general problem of

model fusion. A number of techniques and languages have

been developed to specify how MA crosscuts MB, and, in

particular, how MA and MB should be composed [12].

CONCLUSION
In this paper we are focusing on behavior model

transformation to push the wheel of behavior model

transformation development, and to be aware about some

aspects that we can contribute on to participate in these

developing. These aspects are Semantics of Behavior Models,

Completeness of Platform Independent Model (PIM), Model

Composition, and Supporting Languages for Mapping of

Behavior Models.

6. REFERENCES
[1] O.M.G. (OMG), “Meta Object Facility (MOF) 2 . 0

Query / View / Transformation Specification,”

Transformation, 2008.

[2] P. Stevens, “Bidirectional model transformations in QVT:

semantic issues and open questions,” Software &

Systems Modeling, vol. 9, Dec. 2008, pp. 7-20.

[3] S. Marković and T. Baar, “Semantics of OCL specified

with QVT,” Software & Systems Modeling, vol. 7, Mar.

2008, pp. 399-422.

[4] O.M.G. (OMG), “OMG Object Constraint Language,”

Management, vol. 03, 2010.

[5] P. Bottoni, M. Koch, F. Parisi-presicce, and G. Taentzer,

“Consistency Checking and Visualization of OCL

Constraints,” Constraints, 2000, pp. 294-308.

[6] C. Wilke, M. Thiele, and C. Wende, “Extending

Variability for OCL Interpretation,” 2010, pp. 361-375.

[7] G. Wachsmuth, “Modelling the Operational Semantics of

Domain-Specific Modelling Languages,” Structure,

2008, pp. 506-520.

[8] L.M. Daniele, L.F. Pires, and M.V. Sinderen, “An MDA-

Based Approach for Behaviour Modelling of Context-

Aware Mobile Applications ∗ ,” Behaviour, 2009, pp.

206-220.

[9] I. Kurtev, “State of the Art of QVT : A Model

Transformation Language Standard,” Data Engineering,

2008, pp. 377-393.

[10] N. Moha, S. Sen, C. Faucher, O. Barais, and J.-M.

Jézéquel, “Evaluation of Kermeta for solving graph-

based problems,” International Journal on Software

Tools for Technology Transfer, vol. 12, Apr. 2010, pp.

273-285.

[11] O.M.G. (OMG), “Meta Object Facility (MOF) Core

Specification,” Management, 2006.

[12] J. Whittle, P. Jayaraman, A. Elkhodary, and A. Moreira,

“MATA : A Unified Approach for Composing UML

Aspect Models Based on Graph Transformation *,”

2009, pp. 191-237.

[13] P. Kelsen and Q. Ma, “A Modular Model Composition

Technique,” 2010, pp. 173-187.

[14] M. Acher, P. Collet, P. Lahire, and R. France,

“Comparing Approaches to Implement Feature Model

Composition,” Springer-Verlag Berlin Heidelberg 2010,

2010, pp. 3-19.

