A Note on the Theorem of Stone-Weierstrass

Sin-ei Takahasi*

Theorem of Stone-Weierstrass for C^* -algebra A is the assertion that only a sub- C^* -algebra of A which separates the union of the w*-closure of pure states and $\{0\}$ is A itself [1]. As a corollary of the theorem we have the following:

LEMMA 1. Let T be a compact Hausdorff space, $\mathfrak{A} = ((A(t))_{t \in T}, \Theta)$ the continuous field of C*-algebras on T, and A the C*-algebra defined by \mathfrak{A} . Suppose that a subalgebra B of A satisfies the following:

1 For any $t \in T$ and $\xi \in A(t)$, there exists $x \in B$ such that $x(t) = \xi$,

2 For any $t_1 \neq t_2$ of T and $\xi \in A(t_1)$, there exists $x \in B$ such that $x(t_1) = \xi$, $x(t_2) = 0$ in $A(t_2)$. Then we have A = B.

The proof is almost the same as that of Corollaire 11.5.3 of [1].

Now let T be a compact Hausdorff space, $A = C^*$ -algebra, and A^T the C^* -algebra of continuous maps of T into A. Then A^T is the C^* -algebra defined by the constant field on T defined by A. For a subset S of A^T and $t \in T$, $\tilde{\iota} = \{t' \in T \mid f(t) = f(t') \text{ for all } f \in S\}$ is called the set of constancy for S. Then the sets $(\tilde{\iota})_{\tilde{\iota}\tilde{\iota}} T$ of constancy for S constitute an upper semi-continuous decomposition of T. If we set

 $\tilde{T}(S) = \{ \tilde{t} \mid t \in T \},\$

 $\tilde{T}(S)$ becomes a compact Hausdorff space under the natural topology [2].

DEFINITION 1. Let S be a subset of A^T . We say that S has sufficiently many elements if for any $x \in A$ and $t \in T$, there exists $f \in S$ such that f(t) = x.

Received May 10, 1969.

^{*}Department of Mathematics. Faculty of Science, Ibaraki University, Mito, Ibaraki, Japan.

Sin-ei Takahasi

DEFINITION 2. Let A be a C*-algebra with unit element e. For any compact Hausdorff space T and a sub-C*-algebra S of A^T which contains 1 $(1(t)=e \text{ for all } t \in T)$ and has sufficiently many elements, assume that if S separates T, $(Ce)^T \cap S$ separates T already. Then we say that A is of C-type.

LEMMA 2. Let A be a C*-algebra of C-type, T a compact Hausdorff space, and S a sub-C*-algebra which contains 1 and has sufficiently many elements. Then an isometric *-isomorphism of S onto $A^{\tilde{T}(s)}$ is defined canonically.

Set $\tilde{f}(\tilde{\iota}) = f(t)$ for $f \in S$ and $t \in T$. Then it is obvious that the map $f \to \tilde{f}$ is an isometric *-isomorphism of S into $A^{\tilde{T}(s)}$. Denote the image of S by \tilde{S} . Since \tilde{S} separates, \tilde{T} we have $(Ce)^{\tilde{T}} \subset \tilde{S}$ by the definition of C-type and the classical Stone-Weierstrass theorem. For any $x \in A$ and $\tilde{\iota}_1 \neq \tilde{\iota}_2$ of \tilde{T} , there exists $\alpha \in (Ce)^{\tilde{T}}$ such that $\alpha(t_1) = e \in A$ and $\alpha(t_2) = 0 \in A$ by Urysohn's theorem. Since \tilde{S} has sufficiently many elements, there exists $\tilde{f} \in \tilde{S}$ such that $\tilde{f}(\tilde{\iota}_1) = x$, hence we have $\alpha \ \tilde{f} \in S$, $(\alpha \ \tilde{f})(\tilde{\iota}_1) = x$ and $(\alpha \ \tilde{f})(\tilde{\iota}_2) = 0$. Accordingly it follows that $\tilde{S} = A^{\tilde{T}(s)}$ by lemma 1.

DEFINITION 3. Let S be a family of functions on T, T_0 a subset of T, and f a function defined on T. If there exists $g \in S$ such that g(t)=f(t) for all $t \in T_0$, f is said to belong to S on T_0 .

DEFINITION 4. Let A be a C^* -algebra with unit element e. For any compact Hausdorff space T and a self-adjoint subalgebra S_0 of A^T which contains 1 and has sufficiently many elements, assume that if, for any closed subalgebra S containing S_0 , $f \in A^T$ belongs to S on every set of constancy for S_0 , f belongs to S. Then we say that A satisfies the S-condition.

THEOREM. Let A be a C^* -algebra with unit element. Then A is of C-type if and only if A satisfies the S-condition.

Since S is a closed subalgebra of A in definition 4, it may as well be assumed that S_0 is also closed (i. e. a sub-C*-algebra of A). Accordingly, we can reduce the proof to the proof of G. Šilov [3] from femma 2.

REMARK. If we take complex numbers for A, our theorem is nothing but the theorem of Šilov.

References

- [1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, (1964) 222-235.
- [2] C. E. Rickart, General theory of Banach algebras, D. Van Nostrand, Princeton, (1960) 124-128.
- [3] G. Šilov, On rings of functions with uniform convergence, Ukrain. Math. Zurnal 3 (1951) 404-411.