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Abstract
This paper investigates whether the inherent non-stationarity of macroeconomic time
series is entirely due to a random walk or also to non-linear components. Applying the
numerical tools of the analysis of dynamical systems to long time series for the United
States, we reject the hypothesis that these series are generated solely by a linear
stochastic process. Contrary to Real Business Cycle theory, that attributes the
irregular behavior of the system to exogenous random factors, we maintain that the
fluctuations in the time series cannot be explained only by means of external shocks
plugged into linear autoregressive models. A dynamic and non-linear explanation may
be useful for the double aim of describing and forecasting more accurately the
evolution of the system. Linear macroeconomic models that find empirical
verification on linear econometric analysis are therefore seriously called in question.
On the contrary non-linear dynamical models may enable us to educe more complete
information about economic phenomena from the same data sets used in the empirical
analysis from Real Business Cycle Theory. We conclude that Real Business Cycle
theory, and the unit root autoregressive models in general, are an inadequate device
for a satisfactory understanding of economic time series. A theoretical approach
grounded on non-linear metric methods, may however allow to identify non-linear
structures that endogenously generate fluctuations in macroeconomic time series.
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1 Introduction

The aim of this paper is to identify the nature of the dynamics of macroeconomic
time series. When time series are characterized by zero autocorrelation for all
possible leads and lags, the issue of distinguishing between deterministic and
stochastic components becomes an impossible task when linear metric methods
are used (Hommes 1998).

This impasse arises from the fact that linear methods are only appropriate to
detect regularities in time series like autocorrelations and dominant frequencies
(Graybill 1961, Conover 1971, Oppenheim and Schafer 1989), while fluctuations
in real economic time series are generally characterized by zero autocorrela-
tion and zero dominant frequency. Economic fluctuations look really similar
to background noise, which does not possess dominant frequencies (except zero
frequency) and each noisy impulse is serially uncorrelated. The spectral anal-
ysis of economic fluctuations, seemingly as complex as noise, has lead many
economists to consider these fluctuations like random variables with identically
independently distributed (i.i.d.) events.

As a matter of fact the i.i.d. hypothesis is an obvious necessity for all linear
models (not only the economic ones) to describe, at least approximately, the
irregularities in the observed data. In the past two kind of linear economic
models based on the 7.7.d. hypothesis in the residuals have been presented. In
the first model, known as the deterministic trend model, variables evolve as a
function of time along a linear trend while shocks temporarily shift the value
of the variable from the value of the linear trend. In the second model (the
stochastic trend model) variables evolve as a function of their foregoing values
and a shock shifts the value of the variable from the lagged value (Rappoport
and Reichlin 1989). In this second case any shock does evidently affect the value
of the variable at all leads and, therefore, it has a persistent effect. Moreover
the time series is entirely determined by the occurrence of all past shocks (Fuller
1998, Maddala and Kim 1998).

Following the seminal article the Nelson and Plosser (1982), the empirical
evidence in the last twenty years has contradicted the linear deterministic and
the stationary models. The stochastic trend model put forward by Nelson and
Plosser seemed, instead, not to be contradicted by empirical results.

In this paper the Nelson and Plosser model will be called in question because
it is based on the hypothesis that fluctuations are i.i.d. while they are not.
This hypothesis, in our opinion, obscures existent non-linearities that may be
endogenized in non-linear models.

This article is organized as follows. In section 2 the main stylized facts of-
fered by the recent linear econometric analysis are presented. In section 3 we
put forward the hypothesis that non-linearities of the system may be a deter-
ministic cause of the irregularities in economic time series and we introduce a
procedure, based on recent signal processing techniques, that allows to iden-
tify the existence of non-linearities in the system and, hopefully, to disentangle
non-linearities (signals) from stochastic components (noise). In section 4 we



present results obtained using artificial non-linear and autoregressive models.
In particular we use the arsenal of tools from non-linear dynamics to identify
the hidden deterministic structure that is underlying the time series. In sec-
tion 5 we present results obtained using non-linear metric techniques applied
to monthly seasonally adjusted time series of some US macroeconomic time se-
ries (industrial production, employment, consumer price index, hourly wages,
etc.) and some sector specific like the production in the Hi-Tech sector. The
common result that stands out from this analysis is that all the time series we
analyzed are also characterized by non-random structures in the residuals and
therefore the i.7.d. hypothesis is simply inconsistent with facts. The choice of
assuming the residual components as random neglects the existence of a complex
phenomenon. Instead, it is even theoretically possible to reduce any stochastic
component that perturbs unpredictably the system and thus peak the non-linear
deterministic component' . In section 6 we illustrate some theoretical implica-
tions that we can infer from our empirical results about the Real Business Cycle
theory grounded on stochastic components with persistent effects.

2 Empirical evidence

In the last twenty years we have witnessed a huge progress in the statistical and
econometric analysis of time series which as given economists a more profound
knowledge about the relations between economic variables. The discovery and
the realization that time series do not show any tendency to evolve along a
deterministic log-linear growth path, while the cyclical reversible component,
assumed by classical econometricians, does not exist at all, has deeply marked
the direction of the empirical research in the last two decades.

Recent econometrics works have provided a solid empirical basis that is in
contrast to the theoretical results of the early neoclassical growth models a la
Solow (1956) and the Business Cycles models a la Lucas (1972, 1977 and 1980).
Nelson and Plosser (1982) have provided empirical verification to the theoretical
alternative of Real Business Cycle, despite the conventional wisdom of classical
econometrics that assumed ex-ante stationarity for all the economic variables.
Nelson and Plosser have shown that many macroeconomic time series® are not
stationary at all, and the stationary stochastic models developed in the '70s do
not actually find any empirical foundation®.

1See Kantz and Schreiber 1997.

2Nelson and Plosser have analyzed fourteen macroeconomic time series for the US (with
starting date between 1860 and 1909 and with final date 1970). Among these there are
real GNP, nominal GNP, industrial production, employment, the unemployment rate, the
consumer index rate, nominal wages and real wages.

3In the classical econometric works, time series were considered stationary along a deter-
ministic trend, that is variables are a linear function of time:

T =pPt+a+ e

with €, ~ N (0,0’2) i.4.d. residuals, o and 3 are parameters, ¢ is time, and x¢ is a single



On the contrary, Nelson and Plosser have shown that the irregularity present
in macroeconomic time series could simply be explained by the introduction of
random shocks with persistent effects as happens in unit root processes®.

These results were in sharp contrast with the classic econometric works,
which aflirmed that the irregularity in economic time series were due to tran-
sitory shocks, and have been crucial in bringing the research direction towards
the theory of Real Business Cycle.

The acknowledged contribution of the Nelson and Plosser work has been
to have discovered the non-stationarity in the time series and the absence of
any deterministic trend. The introduction of random external shocks as the
unique generator of the irregularity in the behavior of economic systems, does
not contradict the results put forward by Nelson and Plosser.

Without the injection of external shocks, time series would move exactly in
the direction that the neoclassical theory predicts®. However in the presence of
external shocks, economic systems move irregularly in the way that is described
by the Real Business Cycle models (Prescott 1998).

In this article we try to move a step forward starting from this empirical
evidence.

Our aim is to identify the process that generates the non-stationarity in time
series without stating ex ante, contrary to Nelson and Plosser, that the non-
stationarity is the direct consequence of a stochastic process. Actually there
may be many possible non-linear deterministic alternatives to the stochastic
explanation to the non-stationarity in time series.

Treating economic fluctuations as endogenous non-linear process, and there-
fore object of analysis, may contribute to a better understanding about the
temporal evolution of time series. Our aim is to understand the dynamics of
fluctuations as the evolution of the system may depend entirely on them. We
believe that the practice of assuming fluctuations as random i.i.d. variables
with a probability distribution equivalent to noise is basically wrong since, as
we shall see in section 5, residuals are characterized by a structure that is very
different from noise and even from any other kind of random variable. This
result leads us to conclude that it is feasible to discover deterministic laws that

observation of the variable & at time t.

In this case the time series of the variable x is stationary along a time trend and residuals
have only temporary effects. The short run component may be insulated regressing @ against
time and assuming the regression line as the abscissa This procedure was approximately the
one that was used in the ’70s to analyze short run cycles.

4In the unit root processes, time series are not stationary and follow a random walk like:

Tt = pri—1 + ¢ with g4 = N(O, 0'2) i.5.d. residuals and p = 1. This process is called
unit root because x¢—1 is multiplied by a parameter that is equal to one (or close to one).
Residuals have persistent effects since, as we can see, each fluctuation will not be reabsorbed
in the future: @t = x4—1+ et =xt—2+et—1+est=...=co+e1+ ... +et—1 4+ c¢. The signal
¥t is therefore generated by the past and present noise €. Since noise is a i.4.d. random and
exogenous variable, we conclude that the variable x; depends entirely on a variable which we
don’t know anything about.

58ee about this argument King, Rebelo and Plosser (1988 a, b).



shape the underlying non-linear structures®.

Before we introduce in section 5 a procedure for the analysis of economic
time series inspired by chaos theory, we present some recent developments in
the literature, which we call unit root literature, that confirms the results put
forward by Nelson and Plosser. Thus, we compare the results of the unit root
literature with those from the alternative literature stream that we call broken
trend literature. We will show that these two streams obtain only seemingly
opposite empirical results, and that both fail to resolve the issues they claim to
explain (the nature of time series).

Nelson and Plosser showed that many macroeconomic time series were indeed
not stationary and that the stationary models developed in the '70s did not
have any empirical ground. Nelson and Plosser showed that the irregularity in
time series could be explained by random shocks that have persistent effects
over time. This view sharply contrasts with the classical econometric works
that maintained that the irregularities in time series were due to transitory and
reversible shocks.

The empirical findings by Nelson and Plosser were theoretically fundamental
since, until the '80s, economists presented models which solution was a linear
trend (in a logarithmic scale) for many of macroeconomic variables, and cycles
were essentially seen as short term fluctuations without effects in the long run.
Just as an example of these models, consider the growth models of the '60s
a la Solow (1956) and the business cycle models a la Lucas (1972, 1977 and
1980) based on monetary disturbances with transitory effects; at those times
it was believed that the development path of macroeconomic variables was a
linear trend (e.g. long-run growth for GDP, consumption etc.) and all the
irregularities, mainly due to monetary factors, averaged out in the long run.
The unjustified and unsupported belief of the existence of a long run stable
solution has been hard to eradicate and still many economists seem not to have
realized the basic message of the paper by Nelson and Plosser. For example,
many growth models have presented steady state long run solutions and have
still to respond to the multitude of econometric works on unit roots in the ’80s
and ’90s, which prove that random productivity shocks are the driving force
of growth in an inherently linear economic system. The linear growth models
mathematically need to incorporate some exogenous random shocks to generate
artificial time series that can resemble the real ones. If we wish not to introduce
random shocks and we wanted that the model were able to generate similar non-
stationary time series like the real one, the only truly way would be to make
our model non-linear.

In section 5 we show that the structure of the exogenous shocks that have
been observed does not look random at all, and therefore we need to look at
these shocks not as exogenous factors but as a result of endogenous interactions.
Our aim is to understand these interactions that has been hitherto considered

61n order to identify successfully the deterministic laws in the time series from the observed
fluctuations, the removal of truly stochastic component is a critical factor. If we were able to
remove all the stochastic components we could better focus on the dynamics of the determinant
components.



as exogenous shocks. Consequently the usual procedure of plugging into models
normally %.i.d. random shocks is very approximative. The probability of a
normal distribution is the one typical of white noise while, as we will show
in more detail in section 5, the residual components have indeed a structure
far different from white noise. This result leads us to think that it would be
worthwhile to unravel the hidden structures of the residuals.

While the residual component may also contain a white noise structure, we
will show that this structure is not the prevailing one.

Before we present in more detail a procedure to analyze economic time se-
ries, we briefly review the recent unit root literature. We compare the results
suggested by the unit root literature with those empirical works of the so called
broken trend literature. We show that the broken trend literature turns out to
generate seemingly opposite results to the unit root literature but, as the unit
root literature, it does not provide an ultimate response to the issues it claims
to explain.

2.1 Recent results from the Unit Root literature

Many recent related works have been published after the Nelson and Plosser
paper and their results differ mainly for the test function that has been used in
the verification of the non-stationarity hypothesis.

Some papers simply confirm that the non-stationarity of economic time series
is a recurrent characteristic in many countries. Similarly to Nelson and Plosser,
Lee and Siklos (1991) found that macroeconomic time series for Canada are
not, stationary. Mills (1992) obtained basically the same results for the UK,
McDougall (1995) for New Zealand, Rahman and Mustafa (1997) for the Asian
countries, Sosa for Argentina (1997), Gallegati (1996), de Haan and Zelhorst
(1994) for Ttaly.

The macroeconomic variables that are more frequently analyzed are GDP,
GNP, GDP and GNP per capita, industrial production, employment, unem-
ployment rate and the consumer price index. Occasionally other variables like
savings (Coakley, Kulasi and Smith 1995), investments (Coorey 1991, Coakley,
Kulasi and Smith 1995), wages (Coorey 1991), exchange rates (Durlauf 1993,
Parikh 1994, Wu and Crato 1995, Serletis and Zimonopoulos 1997, Welivita
1998), money and velocity of money (Al Bazai 1998, Serletis 1994) have been
analyzed.

The remarkable result from these studies is to have pointed out that almost
every time series in any country is characterized by the presence of a unit root,
or equivalently by a stochastic process like a random walk.

This result also seems not to depend on the frequency of observation: Wells
(1997), Osborn, Heravi and Birchenhall (1999) have found similar results using
both quarterly and monthly data’.

7Since the power of the Dickey-Fuller test increases with the frequency of observations, the



The one exception to the existence of unit root in macroeconomic time series
is the unemployment rate. This non-conformity was first noticed by Nelson
and Plosser and has been confirmed by the majority of unit roots researchers
afterwards®.

In table 1 we list the main works that ascertained the existence of a unit
root in macroeconomic time series. For each author we mark with the ”+” sign
the variable that was found to follow a random walk, and with the =" sign the
variable for which the results were mixed.

2.2  The broken trend hypothesis

Rappoport and Reichlin (1988) put forward the hypothesis that there could exist
a broken deterministic trend that cannot be identified by the Dickey-Fuller test.
Rappoport and Reichlin showed that in the case of a broken and deterministic
trend, the Dickey-Fuller test produces spurious results, since it is incapable to
reject a false null hypothesis (the unit root hypothesis). Rappoport and Reichlin
have moreover revealed empirical evidence concerning the existence of a broken
trend in many macroeconomic time series. They indeed rejected the hypothesis
of a random walk for many real variables (like industrial production, real GNP,
real per capita GNP and money supply) though not for all of them®.

Since the results obtained by the broken trend literature are open to discus-
sion in the sense that the studies hitherto published do not lead to a general
rejection of the random walk hypothesis, we question whether the broken trend
hypothesis provides the ultimate answer to the nature of economic time series.

As we shall see in section 4, the Dickey-Fuller test cannot be used to distin-
guish a random walk from a non-linear dynamics. In the presence of a broken
trend or non-linear dynamics the Dickey-Fuller test does not allow us to reject
correctly the random walk hypothesis, even when we know a priori that the
time series is generated by a deterministic process. If we want to discriminate
stochastic processes from the deterministic ones we should use other tests. The
BDS test by Brock, Dechert and Scheinkman may allow us to detect non-linear
structures in a time series. We will use the BDS test for its good power prop-
erties and flexibility in sections 4 and 5 together with other qualitative and
quantitative metric tools that allow us to uncover non-linear structures among
datal®.

use of quarterly or monthly data are to be preferred to yearly data (see Maddala and Kim
1998).

8Except Banerjee et al. (1992), Bresson and Celimene (1995), Dolado and Lopesz (1996),
Leybourne et al. (1999).

9The consumer price index and nominal wages for instance were found to follow a random
walk.

L0 Other tests for nonlinearity have been proposed in the past. The Tsay (1986) and Engle
(1982) tests are discussed in Brock et al. (1991) and compared to the BDS tests. The BDS test
has been shown to have higher power against a number of non linear alternatives respect to
the Tsay test and similar to the Fngle test. Contrary to the Engle test, the BDS test has been



Now we briefly review the results from the literature on broken trends claim.

Probably one of the works that most influenced the direction of research of
time series analysis has been the paper by Perron in 1989. Perron as well as
Rappoport and Reichlin showed that, when fluctuations are stationary along a
broken trend, the Dickey-Fuller test is not able to reject the unit root hypothesis.
Perron developed a test that allows to correctly reject the i.i.d. null hypothesis
if the series is characterized by a broken trend. Perron applied his test to the
same time series of the US that were used by Nelson and Plosser, after arbitrarily
assigning the date in which the structural break occurs. Perron concludes that
the null 7.7.d. hypothesis can be rejected also at a high confidence level for
almost all the time series.

Similar results were obtained by Raj (1992) studying macroeconomic time
series for Canada, France and Denmark , Rudebusch (1992) for England, Linden
(1992) for Finland, Wu and Chen (1995) for Taiwan, Soejima (1995) for Japan.

Other authors checked for a broken trend in specific time series. Diebold and
Rudebush (1989), Duck (1992), Zelhorst and de Haan (1993), Ben, David and
Papell (1994), Alba and Papell (1995), McCoskey and Selden (1998) have found
a broken trend for the GDP in many countries. Alba and Papell (1995) for GDP
per capita and Li (1995), Gil and Robinson (1997) found similar dynamics in
industrial production, Simkins (1994) in the wages in 8 OECD countries and
McCoskey and Selden (1998) in the G7, Raj and Scottje (1994) in the US
income distribution, Culver and Papell 1995, Leislie, Pu and Wharton (1995),
and MacDonald (1996) in the exchange rates. Given these results we could check
whether the broken trend hypothesis explains the dynamics of unemployment
rate better than the unit root hypothesis. However Nelson and Plosser already
found that the US unemployment rate tended to be stationary, and the works
by Hansen (1991), Li (1995), Leslie, Pu and Warton (1995), Song and Wu (1997,
1998), Gil and Robinson (1997), Hylleberg and Fngle (1996) simply confirm the
empirical evidence presented by Nelson and Plosser.

In table 2 we present the main works that support the hypothesis of a broken
sign

9

trend in macroeconomic time series. For each author we mark with the
the variable that was found stationary along a broken trend.
Criticisms to both the broken trend and the unit root hypothesis have been
put forward by many authors. Zivot and Andrews (1990, 1992) estimate the
position in time of the structural break and find that the existence of the broken
trend is not that clear in many of the time series that were analyzed by Perron.

shown to have power also against generic non linear alternatives with zero autocovariances
where the Engle test fail.

Other tests for determinism have been developed in the past. However a statistical work that
compares the power of all these tests for a wide number of nonlinear alternatives has not been
developed. Moreover some tests may have better power then others for particular non linear
alternatives and for a certain number of data points. For instance the Engle test performed
better then the BDS test in detecting GARCH structures and the BDS test performs also
with data that have zero autocovariances. The choice for a certain statistical test should take
into account the type of data we are dealing with. we opted to use the BDS test for the main
reason that it has good power properties against an unspecified nonlinear alternative with
finite but large samples like we had at our disposal.



Cushing and McGarvey (1996) found that the fluctuations in the macroeconomic
time series are more persistent compared to what stationary models indicate,
but they are also less persistent than unit root models suggest. Mixed results
were also obtained by Leybourne, McCabe and Tremayne (1996) for many US
macroeconomic time series, Krol (1992) for the production of many US sectors,
and Crosby (1998) for the Australian GDP.

It seems therefore that not every time series is characterized by a unit root.
What does this suggest? Are time series generated by a deterministic process or
by chance? This issue has not been well formulated neither in the unit root nor
in the broken trend literature. It has been indeed associated with the idea that
a non-stationary process is a random walk process. As we will see in section
4, not all the non-stationary processes follow a random walk. Indeed, there
may exist many deterministic non-linear processes that are not stationary and
become stationary after differentiating with respect to time.

3 The non-linear hypothesis

After twenty years from the publication of the Nelson and Plosser article, we
now have two literature streams that debate around the nature of the time
series: the one that underlines the existence of a random walk and the one that
asserts the complete linear (though with a break) determinism in the economic
time series.

We will show in section 5 that the empirical evidence around the nature of
economic time series can be clearer than the one provided by both the unit root
literature and the broken trend literature.

Our analysis proceeds with the following steps:

1) Selection of the time series with a minimal number of observations. Brock
et al. (1991) have proved that a number of at least 400 observations would be a
good starting point, if not a necessary condition, to obtain trustful results from
the non-linear dynamics tools, like the BDS test, maximal Liapunov exponents,
entropy level etc.''. It is therefore necessary to rely on seasonally adjusted
monthly data for a sufficiently long period'?. The time series we used are those
of the US and data were provided by the Bureau of Labor and Statistics and
the Bureau of Economic Analysis.

2) We take the natural logs of the original time series if the time series tend
to diverge exponentially.

3) We differentiate the time series once with respect to time and eventually
remove linear autocorrelation in the residuals and we check for stationarity via
the augmented Dickey-Fuller test.

11gee the statistical appendix.
12We exclude the possibility to analyze any time series of GDP and GNP because of the
dearth of data, since these time series are at most quarterly.



4) We calculate the level of spatio-temporal entropy'?, that is a statistical
index of the degree of disorder of the system. If the time series of the residual
were generated by a random process the level of entropy should be close to the
maximal value. However also non-linear processes may present a high degree of
disorder and reach values of entropy close to that of white noise'*. On the other
hand we should expect a low level of entropy for processes that are deterministic
and autocorrelated'®. However we should not overestimate the importance of
the calculus of entropy; in fact it does not allow us to distinguish a random
process from a complex deterministic one and even between periodic cycles and
linear trend. Nevertheless entropy measures may help us to comprehend the
level of complexity of a time series.

5) We calculate the values of the maximal Liapunov exponents that charac-
terize the time series, to see how fast nearby trajectories diverge over time. If
the maximal Liapunov exponents turns out to be negative, it means that tra-
jectories tend to converge to a stable fixed point. If it were zero we would have
found a limit cycle. If it were positive the time series is either characterized by
chaos or a random walk. We anticipate that the residuals of the linear models
that explain the economic time series generally present a positive value for the
maximal Liapunov exponent and a high level of entropy and this indicates how
is difficult to forecast them in the long run'®.

6) We proceed with our investigation regarding the nature of the process. We
use Ruelle plots'” to uncover, from the qualitative point of view hidden struc-
tures in the time series. In addition we use the BDS test to verify quantitatively
and in reliable way the existence of non-linearity in data.

7) We check our results randomly shuffling the time series and we verify
whether the results that we obtain from the BDS test applied on a randomly
shuflled time series are indeed different from the results that we obtained per-
forming the BDS test on the original time series'® . This verification is extremely
important since, if the two results turn out to be different, it means that the
time order of the original time series is significant and there exists causality in
data.

13 As calculated by BE. Kononov (1999), VRA 4.2 program.

l4gee section 4.3, the case of the tent map.

15T,ike for instance the one depicted in section 4.3 for the Rossler residuals.

165ee statistical appendix.

17 They are also called recurrence plots.

183 This step is also sometimes called “shuffle diagnostic” (see Lorentz 1989) via "surrogate
time series” (Kantz and Schreiber 1997). A ”surrogate” time series is essentially the shuffle of
the original time series preserving all the linear properties of the time series like frequencies,
amplitudes and eventual linear autocorrelations. We have derived the surrogate time series
for all the economic time series we have analyzed, but we called them with the more general
and less specialistic term of ”shuffled time series”.



4 Results from artificial time series

Before applying the described procedure to real time series, we present some
results obtained from artificial time series, whose deterministic process that
generates the data is known. The study of artificial time series serves to test
the reliability and effectiveness of the results obtained with the technics at our
disposal.

We present some cases of deterministic systems that produce a dynamics
very similar to a random walk and we check whether the non-linear dynamics
tools allow us to gain more information about the nature and the evolution of
the time series under consideration. We will see that the information gain from
using the numerical tools of non-linear time series analysis may be relevant and
may lead us to consider the issues of dynamics from a very different perspective.

4.1 Trends

We consider first the most simple limit case, that is the case of growth along
a linear trend. In particular we check the results from the Dickey-Fuller test
when a linear time series grows deterministically with time. Thereafter we apply
non-linear metric tools to this series to see which kind of information we may
extract from a time series. The application of non-linear techniques to a linear
system may not seem to be necessary, but this step will allow us to compare the
information that we can obtain from a linear system with linear statistics and
non-linear dynamics tools.

In the trend stationary case, residuals have no persistent effects and the time
series is stationary along a linear trend. If we consider the variable z; as a linear
function of time t: x; = xg + ¢t + ¢ where zg is the initial value (in our case it
is equal to zero), ¢ is a parameter and ¢, is a random variable normally %.7.d..
Running the Dickey-Fuller test we should reject correctly the null hypothesis of
a unit root and the Durbin-Watson statistics, DW, should be around 2 (when
DW =~2, residuals have no serial correlation)lg.

Suppose that we are interested to study the dynamics of a variable that
could be the GDP, ¥, in a model of ours. In our model we assume that GDP
grows at the yearly rate g = 2%:

Yo =yo(l+9)" — Iny, =Inyo(l +g)* — Iny, =Inyo +¢In(l +g)
Suppose that lny; is perturbed by a normally 4.i.d. exogenous shock e:
Iny, =Ilnyo +tln(l +g) + <.

Set Iny; = z; and In(1 + g) = ¢ we obtain:

195ee the statistical appendix to for the exact critical values of the DW test.

10



Ty = xg + ¢t + £, where g = 0.02 and ¢ = 0.02.

The time evolution of z; is represented in fig. 1.

Applying the Dickey Fuller test we decidedly reject the null hypothesis of
unit root (tab. 3). The Dickey-Fuller test turned out to be -21.28 while the
critical value at 5% significance level is -3.41. For values less than 3.41, the
null hypothesis is rejected, as it is in this case. The Durbin-Watson statistics
turned out to be close to 2 and this confirms that the residuals are not serially
correlated. In this case, the Dickey Fuller test was able to correctly reject the
null hypothesis of a stochastic trend and to accept correctly the alternative
hypothesis of a linear trend.)

Let us now turn our attention to some qualitative and quantitative mea-
surements obtained with non-linear dynamics tools. The value of entropy that
characterizes the levels is 0%, and this indicates that the time series is character-
ized by an almost null degree of disorder. In fact residuals are all concentrated
around a linear trend, which represents a long term equilibrium path. If we
analyze the residuals, which were assumed to be normally i.i.d., the level of en-
tropy turns out to be 90%, a value relatively close to the ideal limit of 100% of
a purely casual process (a value that is very difficult to reach in series generated
by the simple algorithms of a random number generators)go. This indicates
that the degree of disorder of a system characterized only by a random variable
normally i.i.d. is very high.

We have calculated the value of the maximal Liapunov exponent for the
residuals, in order to measure the rate the sensitive dependance on initial con-
ditions, that is the rate of divergence of nearby initial states. It turned out to
be positive (tablel8, row normal 4.¢.d. process) and so high that residuals follow
a unpredictable dynamics®'. As we will see in section 4.3, high values of the
maximal Liapunov exponent and entropy are also typical of many non-linear
systems (and not only of stochastic systems).

The calculus of the Liapunov exponents and of entropy gives a scalar output.
There are also qualitative visual devices that consent to uncover complex struc-
tures in data and even to single out exceptional historical events. They are the
phase portrails and the recurrence plots. The phase portrait is simply a graph-
ical representation that plots the value z(t) against z(t — k) where 0 < h < t.
In fig. 3 the residuals £(t) are plotted against (¢ — 1)%2.

The recurrence plots by Eckmann, Kamphorst and Ruelle (1987) are a graph-
ical tool for the qualitative analysis of time series based on phase portraits
and allow us to uncover deterministic structures that could not be revealed
by phase plots. In the most simple recurrence plots, the distances between
each observations are measured and marked by a grey tone. On the axis each
point corresponds to a dated observation. The diagonal is the locus where
||z(t) — z(t — h)|| = 0 where A = 0 and the corresponding tone is white.

2056e the statistical appendix.

21g6e the statistical appendix also for a numerical example.

22We could obviously plot residuals e(t) against the residuals of any preceding period like
e.g. &(t —4). Knowing ex ante that ¢ is the result of a random number generator, the
e(t) — e(t — 4) plot is qualitatively equivalent to the e(t) — (¢ — 1) plot.
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In the case of a deterministic trend the distance grows with the temporal
distance of observations. The most distant observations are z(0) and z(T'),
hence the points [2(0) — z(T)] and [z(T) — z(0)] are marked by a black tone
(fig. 4). The points along the parallels to the 45 degree line are characterized by
the same grey tone and this indicates that the couples of observations that keep
the same temporal distance are also characterized by the same spatial distance
(represented by the same grey tone).

On the contrary, recurrence plots of normally i.7.d. residuals, should neither
present any continuous line between points nor particular areas characterized by
the same grey tone. The fact that some nearly continuous lines may be noticed
(fig. 5), is due to the random number generator , which is a mathematical algo-
rithm and therefore does not produce purely unstructured time series. However
fig. 5 shows much less structure than the Ruelle plot in fig. 4 and is close to
the one of a purely normal i.i.d process.

Actually, Ruelle plots may allow to single out much more hidden structures,
when they compare embedded vectors?® instead of single observations. Ruelle
plots mark the distances between points®>* with a tone of gray. If we choose
m = 1 we obtain the figures 4 and 5. If we chose different values of m, we would
have also graphs similar to fig. 4 and 5. However, in other cases especially in
the cases of chaotic systems, the choice of appropriate values for m allows to
uncover structures, otherwise neglected.

To discriminate a stochastic process from a process that contains a deter-
ministic structure we apply the BDS test. The null hypothesis is that the time
series is characterized by an i.i.d. process, while the alternative hypothesis is
that the time series follows a non-linear law. Applying the BDS test to the
residuals randomly generated at computer, we have found a value for the BDS
function equal to -1.28 and a critical value of 1.96 at 5% significance level. As
we expected, we accept the null i.4.d. hypothesis®®.

From this simple exercise we have obtained the following results:

23The embedded vectors are simply defined as:

X; = {mi—(m—l): i (m—2) ...;y®; } where x; is the observed value at a certain point at time
and m is called embedding dimension.

For example suppose to have a series of 10 observed values of a certain variable x:

x={8,5,6,9,4,4,1,7,3,2,7}

we obtain the following embedded vectors:

X2 = {®o_(2_1),%2_(2-2)} = {w1, @2} = {8,5}

x3 = {®3_(2_1),83_(2-2) } = {w2, 23} = {5,6}

x4 = {®4_(2_1),84_(2-2)} = {ws, 24} = {6,9}

x10 = {Z10-(2-1)» T10-(2-2)} = {@9, 210} = {3,7}

for m = 2.

and x = {®2, 3 24, ..., 10, } is the embedded time series for m = 2.

The embedded time series are of great importance in nonlinear dynamics because thanks
to them, as it has been shown by Takens (1981), we may uncover some properties like the
correlation dimension of an unknown underlying motion law that generated the time series
itself from the observed values of the process.

24 e. between vectors X;
258ee the statistical appendix for a discussion of the BDS test, size and power properties.
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- using the Dickey Fuller test we have correctly concluded that the time
series on levels is stationary and follows a deterministic trend.

- the entropy indicates that the time series of levels is stable and the time
series of residuals is extremely unstable. The maximal Liapunov exponents of
residuals is sharply positive, and this indicates that nearby trajectories diverge
over time. Both the values of entropy and the maximal Liapunov exponent do
not provide a definitive answer to the question as regards the nature of time
series.

- recurrence plots and phase portraits allow us to identify the existence
of structures that are different from those of a normally i.i.d. process.

- the BDS test allows us to better appreciate the importance of the time
order in time series, that is to detect the existence of deterministic structures in
time series. In this case we were not able to detect any deterministic structure in
the residuals since there weren’t any (except for the ones of the random number
generator algorithm).

4.2 Random walks

In a similar way as we have done in the case of deterministic trends, we now
analyze an other limiting case, the random walk. The random walk hypothesis
is not generally rejected by the unit root literature and it is at the core of Real
Business Cycle theory.

In order to verify the results that we obtain with the Dickey-Fuller test and
the non-linear dynamics tools, we perform a controlled experiment with a known
random walk process.

In the random walk case the residuals, contrary to what happens in the case
of deterministic trends, have persistent effects and cumulate over time, without
being reabsorbed even partially in the future. The time series is not stationary,
does not follow a linear trend, but can still grow in a quite similar way to the
case of the deterministic trend. From a visual comparison between a series that
grows like a random walk and a series that grows along a deterministic linear
path, it is often not possible to distinguish the nature of the two time series.
The Dickey-Fuller test serves to single out which of the two time series is the
one that follows a random walk.

In a random walk process, the value of the variable x; depends on its lagged
value x;_1 and a normally i.72.d. shock &;:

Ty =T 1+¢€

Suppose now that we are interested in the dynamics of a variable y that
grows yearly at the average rate of 2%, as an effect of the camulation of shocks:
Iny, =Iny; 1+, —lny, —Iny, 1 =&, — lnﬁ%1 =g — 1y = ety 128 with

et =~ N(0.02lny; 1, 0%) i.i.d.

26 Assuming positive shock, at worst we have null growth.
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Plotting the log series against time we can see a dynamics (fig. 6) similar to
the case of deterministic trend (fig. 1). It is not possible to determine which of
the two time series is the random walk through a direct visual inspection alone.
A growth trend exists, but it is a stochastic one.

To distinguish between a stochastic trend and a deterministic trend we apply
the Dickey Fuller test and, as we expected, we are not able to reject the unit
root hypothesis. The value of the test function turned out to be -1.98 while the
critical value is -3.41 at 5% significance level (tab. 4). Residuals turned out not
to be serially correlated (Durbin-Watson statistic is 1.99).

The entropy level, the maximal Liapunov exponent, the BDS test and Ruelle
plots of the residuals are exactly the same of those obtained for the deterministic
trend case’”. Inasmuch as the aim of non-linear dynamics is to detect complex
structures in residuals, both in the case of stochastic growth and deterministic
growth, residuals are stochastic and the tools of non-linear dynamics cannot
be used to detect linear determinism. The proper instrument to detect linear
determinism is indeed the Dickey-Fuller test.

4.3 Non-linear walks

Autoregressive tent map growth

We check what happens when we apply the Dickey-Fuller test to an artificial
time series in which the value of the variable depends on its lagged value and a
deterministic non-linear residual. We will apply the BDS test and other tools
of non-linear dynamics to identify the deterministic structures that the Dickey-
Fuller test is not able to detect.

Suppose that a time series is generated by the following deterministic law:

e =2¢4_1 fore;_1 < 0.5
t = 2(1 — 815,1) for g1 < 0.5

this system is known as the lent map and was published in the Economic
Journal by Scheinkman (1990) and by Vastano and Wolf (1986) in a work-
ing paper of the University of Texas. The particularity of this system is that

Ty =Xp_1+ 0.04.’1}15,1815 with { c

it is a chaotic system but it has the same statistical properties of a uniform
distribution.
Similarly to the random walk, 0.04¢, has an average value equal to 0.022%,
A visual inspection of the generated time series z; (fig. 7) may lead us to
confusion because the time series x; looks very similar to the time series with
a deterministic or stochastic trend. In order to see whether the system follows
a stochastic or a deterministic trend we apply the Dickey-Fuller test and we

27The residuals in both cases were obtained from the same random number generator.

28Because of the finite approximation of the program we used, we could not obtain more then
50 observations. Consequently we have added a very small ratio of white noise to each g4 so
that the system does not repeat itself even in the long run. We have added 0.000001 N (0.5, 1)
noise.
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can’t reject the unit root hypothesis. In fact the value of the test function
turned out to be -1.8 (table 5) while the null hypothesis is rejected for values
less than -3.4 at 5% confidence level. The time series appears to be similar to
the stochastic trend or to the deterministic linear trend. But we know that it
is neither. The Durbin-Watson statistic turned out to be exactly equal to 2.00,
and this indicates that residuals are not serially correlated. At this stage we
would apply again the Dickey-Fuller test to the residuals to see whether they
are stationary, and we would conclude that the process is autoregressive of order
one with i.7.d. residuals.

This conclusion would only be partially true. The process is autoregressive
of order one and therefore there exist a unit root, but the residuals (represented
in fig. 8) are deterministic and therefore, knowing the law that generates the
residuals, the process would be perfectly predictable. In this case we must be
very careful to interpret the results obtained with the Dickey-Fuller test; it
suggests that it is not possible to refuse the null hypothesis of the existence of
a unit root, and therefore the hypothesis of autoregressive process of order one
where residuals have persistent effects. However the residuals, as in this case,
can be non-stochastic. Consequently the Dickey-Fuller test is a tool that is not
suitable to uncover whether the series follows a deterministic law, except for the
special case that the series follows a deterministic linear trend. The acceptance
of a unit root hypothesis and the presence of not serially correlated residuals
does not authorize us to take for granted that the time series has a stochastic
origin.

From the values of entropy (78%) and the positive maximal Liapunov ex-
ponent we may infer that the system is nearly unpredictable. However these
characteristics are typical of both stochastic and chaotic processes. In order to
infer the existence of non-linear structures we have performed the BDS test.
The value of the BDS statistic turned out 99.2 and this allows us to reject the

null 7.4.d. hypothesis with a minimal probability to be in error??.

Autoregressive Rossler growth

Consider the following system:

Ty =Xp_1+ 0.02.’1}15,1(% + 1) (ﬁg 10)

where 0.02(% + 1) has an average equal to 0.02, and ¢, is the result of a
deterministic chaotic time series that generates aperiodic cycles *° (see fig. 11).

Applying the Dickey Fuller test we would reject the null hypothesis of au-
toregressive process of order one and accept the alternative hypothesis of a
deterministic trend. The Dickey-Fuller statistic turned out to be -57.52, a value
enormously greater than the respective critical value (-3.97 is the corresponding
5% critical value) (table 6). The Durbin-Watson statistic turned out to be 0.09
and residuals are indeed serially correlated. Given these results we would think
that the time series follows a deterministic trend and fluctuations are cyclical
with reversible effects. However our model is autoregressive of order one, it

298ee in appendix the high power of the BDS test against the tent map.
30For a detailed description of the Rossler process see Lorentz (1989) or Gandolfo (1997).
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does not follow a deterministic trend and the time series is entirely generated
by fluctuations ¢; that have persistent effects.

The value of entropy of the residuals is 15% and this low value implies that
the system tend to preserve a certain stability. The maximal Liapunov exponent
is positive and therefore the evolution of the system is sensitive with respect to
its initial conditions, but since its value is close to zero, it suggests that the
system is also cyclical. In fact it has aperiodic cycles, thus, the system is also
chaotic. The recurrence plots of the residuals (fig. 12), just like a simple graph
against time (fig. 11), shows a cyclical and aperiodical dynamical structure.

The confirmation of the existence of non-linear structures in the time series
follows from the high value of the BDS statistic (table 6). The null 4.7.d. hy-
pothesis is rejected. Though the BDS test also in this case is able to detect
correctly the existence of non-linear structures in the data, we may better ap-
preciate its use with serially uncorrelated residuals, as in the cases of the tent
map and the seasonally adjusted real time series.

5 Empirical evidence: the US time series

In the past 15 years the detection of non-linearities in real economic time series
has turned out a very difficult task. The main problem is to apply the non-linear
dynamics tools to time series that contain a sufficient number of observations.
In order to reliably calculate the BDS test a quite high number of observations is
needed. Around 400 observations are necessary to detect low dimensional non-
linearities. If we wish to discover more complex structures, we need even a higher
number of observations. This is due to the fact that the BDS test has a very low
power for small finite samples®'. In tab. 7, we show that using a small sample
from a random walk growth process, the BDS test rejects spuriously the null
i.i.d. hypothesis (see the high value of the BDS statisticgg). The application
of the BDS test, as well as all the tools of non-linear dynamics based as the
BDS test on the correlation dimension, on small samples may produce spurious
results®®. In section 4.2 the problem of spurious results did not arise since the
sample was sufficiently large and the test power high.

When we have at our disposal time series with a very limited number of
observations, as in the case we have tested in tab. 7 where the observations were
160, it is necessary to use linear metrics while the use of non-linear dynamics
tools would too often produce wrong results. For instance, the frequency of
observations for GDP is only quarterly and data are available starting from
1959. Though the Bureau of Economic Analysis is going to release these data
this year from 1929, we could only have a maximum of 280 observations and this

3lgee the statistical appendix.

328ee column Win,n.

337n the statistical appendix the finite sample property of the methods of nonlinear dynamics
based on the correlation integral are discussed.

16



limitation would not allow us to prove the existence of a non-linear dynamics®*.

Moreover a series like GDP is somewhat peculiar: it is the result of the sum of
the production of all the sectors and the production of each sector may have
a dynamics of its own. Time series of different sectors are characterized by
specific values of amplitude, frequency and phase. If we simply sum the values
of production (that is the amplitude of the signal) of each sector, we generate a
time series of GDP, whose signal characteristics like amplitude, frequency and
phase are not shared with other time series. The GDP time series may not be
appropriate to display structural changes in the sectorial time series.

Chavas and Holt (1991) have chosen to analyze a very specific time series of
which it was already known to have a cyclical nature: the Pork Cycle. Chavas
and Holt have shown the existence of aperiodic cycles in the quarterly time
series of the US quantities and prices of pork meat from 1910 till 1984. Chavas
and Holt have the great merit to have proved that fluctuations in time series
may have a non-linear origin.

In the analysis that follows, we focus on some main macroeconomic and
sector time series. We check whether it is possible to extract signals from the
residuals that economic literature has assumed to be stochastic. What we want
to ascertain whether the residuals also contain present a non-linear component
together with a truly stochastic component. What we are trying to find is
whether important temporal linkages are present between residuals. We will
attempt to falsify the results of rejection of the null i.i.d. hypothesis. We will
proceed to a random shuffle of the time series in order to break any temporal
link among data and we will apply non-linear dynamics tools on the shuffled
time series. If the results of non-linear test on both the original and the shuffled
time series are similar, it means that time linkages are not important and the
time series is generated by a stochastic process, otherwise there is evidence that
time cannot be ruled out and there exists a non-linear component.

5.1 Industrial production

Time series for industrial production is certainly one of the most complete avail-
able. Data go back to 1919 and the frequency of observation is monthly.
Applying the Dickey-Fuller test®® to the log of the observed values, we cannot
reject the null hypothesis of a unit root (table 8).
Afterwards we have estimated the following linear model that best fits the
data:

34 A generally accepted result is that the GDP time series, as pointed out by the vast
literature on unit roots and cointegration, is characterized by a stochastic trend, but it cannot
reliably tested with the nonlinear numerical tools because of a paucity of observations. Hence
we cannot ascertain whether the GDP is really characterized by a nonlinear dynamics.

35gince some time series were autocorrelated in the residuals, we have used for all the real
time series the "augmented” form of the Dickey-Fuller test including more lags, trend and
intercept. The number of lags we have considered is the minimal that consents to obtain
uncorrelated residuals. See statistical appendix or Harris (1995) for more details.
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Y () =0.024+099Y(t — 1)+ 0.51[Y(t — 1) = Y (¢t — 2)] + (2.89E — 0.5)t + ¢

where Y(t) are the observed values of the industrial production in terms of
value®®. The Durbin Watson statistic is 1.95 well within the acceptance range
1.89-2.10 and this indicates that residuals are not serially correlated.

From the original series Y we focused on the residuals ¢ (fig. 13). The
residuals appears also to be characterized by a very complicate dynamics if we
look at its entropy level (80%) (table 8).

The calculus of the maximal Liapunov exponent depends on the parameter
of the embedding dimension m. There exists a maximal Liapunov exponent for
each value of m. The maximal Liapunov exponents are all positive for different
values of m and this stands to indicate a high sensitivity of the time series with
respect to its initial conditions (table 18).

The existence of a structured dynamics seems also corroborated by the Ruelle
plot3” (fig. 14) where the presence of continuous lines is clear. In fig. 14 we can
easily detect, without any a priori historical knowledge, the periods in which
significant historical events have perturbed the industrial production. From
this recurrence plot we can see that the first years of the '20s, the years around
1933 and 1944, have been characterized by anomalous dynamics. The embedded
vectors represented by the single points around those dates show a big distance,
marked with a dark color, compared to nearly all the other vectors. Moreover,
we can see that after the 400th embedded vector, the dynamics is more settled
and seems also to repeat (see the bright area on the upper right). What is
evident in fig. 14 is the existence of a structure that differs from a random walk
(fig. 5).

To ascertain whether the time series is generated by a non-linear determinis-
tic process we have applied the BDS test. The null i.i.d. hypothesis is strongly
rejected (tab. 9, column W, x). A similar test based on the same statistic
of the BDS test is the dimension test (tab. 9, column d,,). The correlation
dimension d,, grows very slowly with m and tends to converge to a fixed value.
This is typical of a process that is not guided by chance (Hommes 1998)38.

If we randomize the order of the events of the original time series, we find
that the values of the BDS test and the correlation dimension turn out to be
very different from the values obtained using the original time series and we
correctly accept the null 7.7.d. hypothesis for the shuffled time series. This is
evidence that the time order of the residuals of the original time series is not
random, and a temporal causality in the fluctuations exists.

We conclude that residuals in industrial production show a structure that
cannot come from a mere linear stochastic process and therefore a non-linear
explanation is necessary to understand the temporal causality of events. This

36 A1l the sector time series we have considered are in terms of value.

375btained setting m = 5.

385imilar results were also obtained adding a small percentage of noise (5% of the variance).
We added noise to the time series simply because, when the nonlinear structure is well defined,
adding a small stochastic component should not change significantly the result of the test.
FEven if there were small i.4.d. measure errors these should not call in question the obtained
results.
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result show that in the residuals there exist clear non-linear structures and
consequently residuals should be studied as they were signals rather than noise.

5.2 Empirical analysis of other macroeconomic time se-
ries: industrial production in the main US sectors,
employment, hourly wages and consumer price index

A thorough analysis of each sector would require too much room and would
be beyond the aim of this article that wants to obtain general results around
the existence of deterministic structures in macroeconomic time series. Shortly
we synthesize the results obtained by analyzing some of the main US macroe-
conomic time series. We have limited our analysis to the main sectors of the
American economy®®, employment, hourly wages and the consumer price index.
For the economic variables characterized by seasonal cycles we analyzed the
seasonally adjusted ones. The frequency of observations is monthly. Data go
back to 1947 for the transportation sector, industrial machinery and electrical
machinery, 1967 for the hybrid Hi-tech sector (computers, semiconductors and
communications), 1939 for employment, 1932 for hourly wages and 1913 for the
consumer price index.

All the time series (log transformed), except employment, seem characterized
by a unit root, since for most of them we are not able to reject the null i.i.d.
hypothesis of the Dickey-Fuller test (tables 11, 12, 13, 14, 15, 16 and 17) with
high confidence levels (higher than 5%)40. These results are qualitative similar
to those obtained by Nelson and Plosser. For all the time series, the estimated
residuals of the linear model*! that fits best the data turn out to be serially
uncorrelated (the null hypothesis of the Durbin-Watson test is never rejected
even at high confidence level for all the time series, tab. 11, 12, 13, 14, 15, 16
and 17).

All the time series we analyzed (tab. 11, 12, 15 and 17) are characterized by
high entropy values (generally higher than 70%) that are typical of both chaotic
and stochastic processes. For all the time series we found positive values of the
corresponding maximal Liapunov exponents (tab. 18) and this result suggests
that nearby trajectories diverge over time at a positive exponential rate. The
interesting result is that all the time series are characterized by a liapunov
exponent decidedly lower than the one of a normal i.i.d. process, and lower
than the one of the tent map. This means that even if time series have to
be considered unpredictable in the long run, in the short run they are more
predictable than a i.i.d. process and a deterministic process like the tent map*?.

39That is those that are the most important with respect to the value added.

40 owever for transportation equipment production and industrial machinery production
we are not able to reject the null hypothesis only at 1% significance level.

41gee the estimated equations directly inside tables 11, 12, 13, 14, 15, 16 and 17.

4274 {s worthwhile to mention that in section 5.1 we found a maximal Liapunov exponent
for the industrial production close to zero, indicating the presence of cycles.
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The presence of structures different from those typical of a normal stochastic
process, has been pointed out by the recurrence plots of all the time series. If
we compare fig. 15, 16, 17, 18, 19, 20, 21 with fig. 5 (fig. 5 is typical of an
unstructured random process), it is clear the existence of structures (repetitive
continuous lines over time) in the distances (represented by the intensity of
grey) between the embedded vectors (represented by each single point in the
coordinates) 43.

The application of the BDS test provides us further information about the
existence of determinism in time series. Applying the BDS test to all the time
series at our disposal, we are not able to accept the null 7.i.d. hypothesis. All the
series are characterized by high values of the BDS statistic beyond their respec-
tive critical values (column W, y tables 19, 20, 21, 22, 23, 24 and 2544). The
dimension test*®, based as the BDS test on the calculus of the correlation dimen-
sion, allows us in some cases to measure the dimension of the chaotic attractor
that characterizes the time series. Without going into the details, the dimension
test is based on the fact that a truly stochastic process is characterized by the
growth of the correlation dimension with the increase of the embedding dimen-
sion, while a truly chaotic process is characterized by the correlation dimension
tending to settle to a constant value when the embedding dimension increases
(Hommes 1998). This constant value represents the dimension of the chaotic
attractor. In all the series we have analyzed the correlation dimension (column
dm in tables 19, 20, 21, 22, 23, 24 and 25) grows less than proportionally with
respect to ”m”, but in many cases we cannot detect a clear tendency of the
correlation dimension to settle clearly to a constant value (column d,, in tables
19, 20, 21, 22, 23, 24, 25 and fig. 22). For all the time series we have analyzed,
the BDS test suggests that the time series contain a deterministic structure,
but it is not possible to quantify, via the dimension test, the dimension of the
underlying attractor of the time series*®.

To check furthermore our results we have randomly ordered the real time
series and applied BDS and calculated the dimension correlation of the shuffled
time series to see whether temporal linkages were relevant. In all the cases

43The presence of continuous lines in the recurrence plots indicates that the embedded
vectors represented by each point keep approximately the same distance with respect to all
the vectors that belong to the continuous line. In a normal é.i.d. process, each vector is
randomly distant from any other vector and the probability that nearby vectors have similar
distances is very low. Thus in a normal i.i.d. process we should not notice any continuous
line in the recurrence plots).

445ee also the statistical appendix for critical values and the finite sample characteristics of
the test.

45Note that the “dimension test”, contrary to the BDS test, is not really a statistical test
since critical values are not specified. It’s a numerical tool that suggests the existence a
deterministic dynamics when the calculated correlation dimension tend to a fixed value when
the embedding dimension grows.

46This phenomenon may be due to the presence of a stochastic component in the time
series. It should be therefore important to filter our data in order to separately analyze
the only deterministic component and to quantify the dimension of the chaotic attractor.
The future application of filters that allow us to reduce and hopefully remove the stochastic
component may allow us to detect the dimension of chaos for all the real time series for which
we have already uncovered the presence of chaos.
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the values of the BDS and the dimension tests of the shuffled time series were
notably different. We could not reject the null hypothesis of the BDS test for
all the shuflled time series and the correlation dimension also was also higher
(tables 26, 27, 28, 29, 30, 31, 32 and fig. 23) with respect to the original time
series (tables 19, 20, 21, 22, 23, 24, 25 and fig. 22). This is a confirmation that
temporal linkages between residuals are really important and therefore that just
a probabilistic hypothesis on the residuals of macroeconomic time series does
not have an empirical foundation.

6 Concluding remarks

We have first shown the theoretical possibility (section 3 and 4) and latter
the empirical evidence (section 5) that in the serially uncorrelated residuals
there are present non-linear signals that, in the models with a deterministic
(linear or broken) or stochastic trend, are hypothesized to be normally i.i.d.,
like white noise. Doing in this way, both the purely stochastic and linearly
deterministic models substitute non-linear signals with noise. The approach
that we put forward is to separate the stochastic component (that is indeed
present in the residuals) from the deterministic component and study these two
components separately. To be successful in this task we need a data filter based
on the concepts of non-linear dynamics. In this paper we have limited our
analysis to the detection of the existence of clear non-linearities in the residuals
of macroeconomic time series. We have detected non-linearities in all the time
series we analyzed. All the time series we have considered are thus characterized
by determinism, notwithstanding all the series (except employment) are non-
stationary and residuals are serially uncorrelated. If all this is true, in the short
run, we may make better predictors than simple autoregressive models.

The problem of distinguishing between the two alternative hypothesis, de-
terministic trend or stochastic trend, was at the core of unit root and broken
trend literature (section 2), but for us it was not the first issue. Our aim was
indeed to detect non-linear structures in those components that linear stochas-
tic models have assumed as exogenous factors. As far as in linear stochastic
models noise plays the relevant role to make ”non-stationary” basically station-
ary processes, it was for us of primary importance, from the theoretical point
of view, to check whether a component of what has been considered noise may
have an endogenous explanation. If this is the case as confirmed in section 5,
economic variables may not follow a stationary path even in absence of exter-
nal shocks and the observed non-stationarity may be the consequence of the
relations between the economic variables.
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Statistical appendix

Our basic statistical issue is to understand whether the dynamics behind the
residuals is the result of non-linearities or just of a random process. In sections
4 and 5 we have analyzed some cases of both artificial and real time series,
and we applied to these time series some statistical tools like the Dickey-Fuller
unit root test to check for stationarity and the Durbin-Watson statistic to check
whether the residuals were serially uncorrelated. This appendix gives some
basic information about the statistical tools used in this paper. More technical
information about testing for unit roots may be found in Harris (1995) Boswijk
(1996), Maddala and Kim (1998). We also provide some introduction for testing
non-linear dynamics with the BDS test and measures about the stability of the
systems with Liapunov exponents, entropies and the visual tool of recurrence
plots. A comprehensive and technical description of the BDS test is found
in Brock et Al. (1991), while advanced material about Liapunov exponents,
entropies and recurrence plots may be found in Tong (1990) and in Kantz and
Schreiber (1997). In this appendix we summarize the logics and some results of
both the linear and non-linear time series methods that are strictly necessary
for the understanding of the paper.

a ) The Durbin-Watson test

The Durbin-Watson test is a parametric hypothesis test. The Durbin-
Watson statistic measures the relation between adjacent residuals. Serial corre-
lation in the residuals that are adjacent in time constitutes a problem that should
be removed. In fact, serial correlation leads ordinary least squares to biased es-
timates of the parameter coefficients, and is symptomatic of bad model specifi-
cation (Johnston 1984), that is the functional form of the model (z, = ;1 +¢;)
is inappropriate because some variables (e.g. lagged errors ¢, = pe;_1 + v, with
—l<p<landv~N (07 02)) are omitted (Harvey 1990).

The Durbin-Watson statistic DW is defined as DW = =2 — — — ~

2(1 — p) where é\t are the OLS estimated residuals. If there is no correla-
tion between adjacent residuals, DW will be around 2. Given the equation
€t = pet_1+v¢ with vy ~ N (07 0), the null hypothesis of zero autocorrelation is
Hy : p = 0,while the alternative is p # 0. Since DW =~ 2 (1 — p), the DW will
be close to 2 under the null hypothesis p = 0. In the case of strong positive serial
correlation, it will be near zero. In the case of negative serial correlation, the
Durbin-Watson statistic has a value between 2 and 4. Critical values depend
on the sample size. In presence of large samples (i.e. more than 200 obser-
vations) DW is approximately normally distributed with mean 2 and variance
4/N with N the number of observations (Harvey 1990). Based on this result,
we can easily derive the critical values for any size of the test for one tailed test
against either positive or negative autocorrelation. The null hypothesis of zero
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autocorrelation is rejected if the DW statistic is less than its critical value for
the case of positive autocorrelation alternative hypothesis and greater than its
critical value for the case of negative autocorrelation alternative hypothesis.

In the case of normal distribution NV (2, %) the repartition function F(z) is

4

N
The null hypothesis of zero autocorrelation is rejected if the DWW statistic

2 . a2
equal to —= [* ™% du with 2 = (—\/_2) and —=e¢ % du ~ N (0,1).

is less than its critical value for the case of positive autocorrelation alternative
hypothesis. The probability that N (2, %) assumes values less than its critical
value z is F'(2). If the size of the test is 5% we have: a = P(Z < 2) = F(z2) =

5% = 1—95% = 1 — F(1.6449) = F(—1.6449). » = &2 — 16449 — z =

VE
2—1.6449 % ,/+.

If the size of the test is 3%, © = 2—1.96 %  / % while for o = 1%, the critical

N
e.g. if N=1021 the critical value corresponding to a 5%, 3% and 1% size of
the test are respectively 1.897, 1.877 and 1.854.
As the sample size grows the critical values tend to 2! The null hypothesis of

value is 2 =2 — 2.326 % 4/ &

no serial correlation is rejected in favor of positive serial correlation if DW is less
than its critical value at a fixed level of significance. Similarly the null hypothesis
of no serial correlation is rejected in favor of negative serial correlation if DW
is greater than its critical value at a fixed level of significance.

For a 5% size of the test we have: « = P(Z > 2) = 1—F(z) = 5% = 1-95%,

— F(2) = 95% = F (1.6449) and 2 = if/;él = 1.6449 — z = 2 4 1.6449 % |/ &
N

If the size of the test is 3%, x = 2+ 1.96% |/ + while for a = 1%, the critical

value is @ = 2 + 2.326 % +.

e.g. if N=1021 the critical value corresponding to a 5%, 3% and 1% size of
the test are respectively 2.103, 2.123, 2.146.

The rule of thumb suggested by some econometric software of considering
serial correlation in serious consideration only for values less 1.5 or greater than
2.5 is therefore wrong for large sample, while it could be accepted for small
samples (like 20 or 30 observations). As large sample increases for the same
size of the test we should calculate its critical values in the way as it has been
shown.

b) The ARCH Test

We have used the Lagrange Multiplier ARCH Test (ML ARCH test) for
autoregressive conditional heteroskedasticity in the residuals (Engle 1982).

To test the null hypothesis that there is no ARC'H up to a certain order in
the residuals, the following regression for the squared residuals is fitted:
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€2 =00+ 0162 |+ ... +uy

where £; is the residual and u; an exogenous input. We have used EViews
3.1 software which reports two test statistics from this test regression. The
Obs*R-squared statistic is the Engle LM test statistic. The F-statistic is an
omitted variable test for the joint significance of all lagged squared residuals.
We reject the null hypothesis of zero heteroskedasticity and no omitted variables
if the respective p-values are lower than the significance level (generally set at

1,3,0r 5 %).
¢) The Dickey-Fuller test

The Dickey Fuller test is a parametric hypothesis test. With the Dickey-
Fuller test we are concerned with testing whether the parameter ¢ of the re-
gression equation x; = ¢z, 1 + & is equal to 1 with &; ~ 1.:.d.(0,02). z; with
1 = 1...T" are the natural logarithms of the real quantities. Since real time se-
ries do not show an ever increasing growth rate we are only concerned whether
¢ =1 (i.e. the series is non-stationary) or alternatively ¢ < 1 (i.e. the series is
stationary).

Applying the difference operator A: Ax; = xy — x4 1, Tt = ¢xr_1 + ¢ —
Az = (¢ —1)x4—1 +¢¢ The null hypothesis ¢ = 1 is equivalent to (¢ — 1) =0
and the alternative to (¢ — 1) < 0.

Dickey and Fuller (1976)47, via Monte Carlo techniques, derived a t-test
from the data generated by the random walk process Azx; = x;_1 + ;. The
critical values of the Dickey-Fuller test for prefixed levels (10, 5, 2.5 and 1%) of
significance are:

T 10% 5% 25% 1%

25 -1.60 -195 -226 -2.66
50 -1.61 -1.95 -225 -2.62
100 -1.61 -1.95 -2.24 -2.60
250 -1.62 -1.95 -223 -2.58
500 -1.62 -1.95 -2.23 -2.58
oo -1.62 -195 -2.23 -2.58

The null hypothesis is rejected when the {-ratio is smaller than its critical
value. Testing for a unit root using the regression equation Az = (¢ — 1)z 1+
¢; implies that the process has zero mean (i.e. no stochastic trend) and no
deterministic trend.

A more general regression equation is: x; = a+ 8t + ¢xy 1+ — Axy =
a+Pt+ (¢ —1)x4—1 +e; where @ and 3 are parameters. « indicates that there
is a stochastic trend (drift) while 3¢ indicates that there is a deterministic trend.
Given the regression equation Az, = a+3t+ (¢ — 1) 24— 1 +¢, the critical values
of the Dickey-Fuller test are:

473ee Harris 1995.
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T 10% 5% 25% 1%
25 -3.24 -3.60 -395 -4.38
50 -3.18 -3.,50 -3.80 -4.15
100 -3.15 -345 -3.73 -4.04
250 -3.13 -343 -3.69 -3.99
500 -3.13 -3.42 -3.68 -3.98
oo -3.12 -341 -3.66 -3.96

and the null hypothesis is rejected when the {-ratio is smaller than its critical
value. In the case where the data generating process is unknown, the use of the
regression equation Az, = a + 8t + (¢ — 1) z4—1 + & is to be preferred to
Ax; = (gb — 1) ;1 + ¢ since the latter is only valid when the mean of the time
series is zero while we do not know the true mean of the time series. The more
general specification of the regression equation prevents us to get spurious results
when there is not any a priori information about the existence of a deterministic
or stochastic trend in the time series. However Az = a+ 0t + (gb — 1) Ti_1+¢&;
is an autoregressive model of order 1. If the true data generating process were of
order>1, that is Az; would depend on other lagged terms than x;_ 1, €, would
turn out to be autocorrelated as an effect of the mispecification. Autocorrelated
errors invalidate the use of the Dickey-Fuller distribution, which are based on
the assumption of white noise (Harris 1995). Changing the estimating equation

to the augmented Dickey-Fuller regression, we have:
p—1

Az, = a+ Bt +(p—Dai—y + > (¢, — 1) Azy—y + g where (¢ —1) =
i=1

o

(6=1) =1

1

If (¢ — 1) = 0, against the alternative (¢ — 1) < 0,2, contains a unit root.
The same critical values of the case Azy = a + Jt+ (¢ — 1) 24—1 + &, may be
used, although they are valid as an asymptotic approximation (Boswijk 1996).
A large negative t-statistic rejects the hypothesis of a unit root and suggests
that the series is stationary. In this paper we have used the augmented form of
the Dickey-Fuller test and the critical values are those from Mac Kinnon (1991)
for various sample size.

k3

d) Grassberber-Procaccia correlation sum (integral)

The Grassberber-Procaccia correlation sum is defined as the fraction of all
possible pairs of points in a m-dimensional (i.e. vectors of m-elements) lying
within a distance € (Dechert 1994, Hommes 1998). Intuitively the correlation
sum is a measure of concentration of scattered points.

Its formula is:

N N
Cov () = e 0 Z+1X (e = [1%: — x;1)

t=1j=1
where N is the number of observation of a m-dimensional vector time series
X = [x’i7 Lidly-eny xi+m]7
x; the observations and 1 = 1,2,...,N.
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lx; — x;]| is the euclidean distance between vectors, i.e.

V(@i = 25)? + (@is1 = 2j01)? + oo+ (Tigm — Tjrm)?

X is a function that:

X (€= [lxi = x]) = Lif ||lxi — x| <e,

x (€= [xi —x5])) = 0 if ||lx; — x| = €.

Two important theorems (we refer the reader to the original references for
the proves) are related to the correlation sum, the correlation dimension and
the BDS statistic that will be discussed below:

Theorem 1 as N — oo, Cp n (€) — Cp (€) = Pr(||x; — x| <€) with
probability one (Brock et al. 1991).
Therefore for a sufficiently large number of observations the correlation sum

measures the probability that two randomly chosen vectors x; and x; are ¢-close
to each other:

N N
Crnv (€) = WZIZIX (€= lIxi = x5|) ~ O (€) = Pr(|lxi — x4]| <€)
i=1j=

Theorem 2 ifx; is generated by a stochastic i.i.d. process lim (Cp n (€) — Cy n (€)™) —
0 with probability 1 (Brock, Dechert1988).

Therefore for a sufficiently large number of observations C,, y (¢€) ~ Cy ny (€)™
if the underlying process is i.t.d..

e) Correlation Dimension

In Gy,
! nN(E) and

The correlation dimension d,, is defined as: d,, = lim lim
e—=0N — o0

can be readily obtained once we have computed the correlation sum C, v (€).
Let us analyze some limit cases:
Cm.n (€) = 1 is defined as the fraction of all possible pairs of points (or
vectors) are lying within a small distance €, so it may assume any value between
0 and 1.

Suppose that C,, y (€) = 0, that is there are no pairs of points (or vectors)
lying within a small distance €. d,, = % = oo. For a random process the
dyy — 00.

Suppose that Cp, n (€) increases towards 1, that is the fraction of all pos-
sible pairs of points (or vectors) are getting inside within a small distance .
InCh, N (€) decreases towards In1 = 0 and with it d,, that tends towards 0.
This is the case in which all the observations are all lying close each other and

all inside a distance €. The phenomenon is completely stable and determined.
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Now non-linear mathematical systems are able to generate time series where
0 < d, < oco. For pseudo random generator d,, — oo, while for any other
system d,, tend to a finite value. For example in the case of the tent map it is
easy to calculate that d,,, — 1; for this case and others see Hsieh (1991). With
the calculus of the correlation dimension seems therefore to be possible to detect
determinism. However this experimental procedure is not a statistical test.
Brock, Dechert and Scheinkman (1987) have therefore provided a statistical
hypothesis test with a null hypothesis of ¢.i.d. against any departure from .7.d.

f) The BDS statistic, size and power

The BDS test is a non-parametric hypothesis test. Contrary to paramet-
ric tests, like the Durbin-Watson and the Dickey Fuller tests, it does not test
whether a particular parameter assumes a given value. Indeed it tests whether
data are independent and identically distributed.

We have seen that theorem 2) implies that C,, vy (€) ~ Ci n (€)™ if the
underlying process is 7.7.d..

Brock et al (1987) have also proved that WC’WN (€) — C1,n (€)™ converges to
a normal distribution (one can also compute Cp, n (€) and C; y (€) and show
the same results):

Theorem 3 as N — oo, if X; is generated by a stochastic i.i.d. process then,
VNChy (€) = Ciy ()™ — N(0,0) and Wy, y (€) = VNEm2lCnldn
where 0, N (€) is a consistent estimator of the asymptotic standard error of

[Crnv (€) = Crn (9],

Wi n (€) = N () O )N(E)m is the BDS statistic and converges in dis-

O’m,N(E

tribution to a standard normal N (0, 1).

Size

As N — oo the critical value corresponding to a 10%, 5% and 2% size of
the two side test are respectively |1.64], |1.96] and |2.33|. The null hypothesis of
i.i.d. is rejected if the W, y (€) is greater than its critical value at a fixed level
of significance.

However as any other test that relies on its asymptotic distribution, we need
the critical values for the finite sample distribution. Brock et al. (1991) and
Hsieh (1991). These values were found via Monte Carlo simulations. They have
generated random number samples of different sizes (100, 500 and 1000) and
6 distributions (standard normal, student-t with 3 degrees of freedom, double
exponential, chi square with 4 degrees of freedom, uniform and bimodal). They
applied the BDS test and repeated this experiment 2000 times (5000 for samples
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of 100 and 500 data points) for different values of m (m = 2,m = 5 and m = 10)
and € (5 = i, %, 1, %, 2). If we use a 5%, 2.5% or 1% significance level, we should
reject 5%, 2.5% or 1% of the replications. Brock et al. and Hsieh found the size
of the test for different critical values (+1.64,£1.96, £2.33 which correspond to
5%, 2.5% or 1% size of the standard normal in case of one side test) of the

parameters m and ¢ for different finite sample sizes.

These were the main results from Monte Carlo simulations (see Brock et al.
1991 for all the tables of the BDS test):

1) The finite sample property is quite poor for samples of 100 points. We
report the results from the normal distribution. We can easily see that the BDS
test rejects the null hypothesis ¢.2.d. at least 3 times more than it should.

Size of BDS Statistic, Standard Normal

e/o
m=2N=100 o5 050 100 150 200 V(1)
% < —2.33 283 13.1 3.90 3.94 5.62 1.00
% < —1.96 321 17.2 802 7.1 9.18 2.50
% < —1.64 35.6 21.9 12.3 12.04 13.8 5.00
% > 1.64 27.9 165 10.0 9.02 10.1 5.00
% > 1.96 952 13.4 6.44 566 7.12 2.50
% > 2.33 230 10.4 378 296 4.5 1.00

Using the 4.i.d. time series generated by the other distribution (especially
the uniform and the bimodal) did not change the picture very much. The null
hypothesis is spuriously rejected too often when the sample size is small.

If we increase the sample size to 500 and 1000 data points, the BDS dis-
tribution becomes more normal and its asymptotic distribution (the standard
normal) gives a much better approximation of the finite sample BDS distribution
(especially when N=1000). Similar results (see Brock et al.1991) were obtained
when the samples were obtained from the other i.i.d. processes (student-t etc.)

Size of BDS Statistic, Standard Normal

e/o
m=2,N =500 0.25 0.50 1.00 1.50 2.00 N(0.1)
% < —2.33 8.62 196 1.10 1.28 1.34 1.00
% < —1.96 13.0 444 3.04 3.26 3.52 2.50
% < —1.64 17.1 824 598 6.20 6.78 5.00
% > 1.64 16.9 932 6.92 6.04 6.58 5.00
% > 1.96 12.6 576 3.76 3.36 3.86 2.50
% > 2.33 8.98 3.42 1.80 1.68 1.88 1.00
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elo

m=2,N=1000 (o5 050 100 150 200 YO
% < —2.33 465 1.40 1.05 0.90 0.80 1.00
% < —1.96 895 3.25 290 245 2.65 2.50
% < —1.64 133 6.55 5.60 6.30 6.15 5.00
% > 1.64 950 6.20 4.70 4.20 5.50 5.00
% > 1.96 6.30 3.70 2.25 240 2.50 2.50
% > 2.33 360 1.55 0.90 0.70 0.90 1.00

2) increasing the embedding dimension m the asymptotic distribution may
provide a better approximation of the finite sample BDS distribution.

Size of BDS Statistic, Standard Normal
e/o

m=5N=500 " 495 050 1.00 150 200 VO
% < —2.33 128 081 094 1.16 1.12 1.00
% < —1.96 171 248 224 288 2.92 2.50
% < —1.64 21.8 558 552 562 5.86 5.00
% > 1.64 197 724 512 520 568 5.00
% > 1.96 161 456 3.10 2.96 3.16 2.50
% > 2.33 120 281 1.56 128 1.6 1.00
m =5, N = 1000 ¢/o N(0,1)
’ 025 050 1.00 1.50 2.00 ’

% < —2.33 6.05 0.70 0.70 085 0.60 1.00
% < —1.96 955 225 230 255 2.50 2.50
% < —1.64 137 460 535 550 5.40 5.00
% > 1.64 144 6.80 535 575 5.0 5.00
% > 1.96 110 420 310 350 3.55 2.50
% > 2.33 755 225 1.95 170 1.60 1.00

However for large values of m the finite sample property gets poor again.
The reason is that there may be too few observations. In fact Wi, v (6) =

N N(€)7621 v and if we calculate for example (1 y (0.25) we find C; y (0.25) =

Om,N E)
0.14. If m = 10, Cy x (0.25)'° = 2.89255F — 09. If we compute Cy y (0.25)"°
when we have for 1000 observations C; n (0.25)10 = 0, that is the probability
to find pairs of 10-dimensional vectors within € = 0.25 is zero. The computed
Wi n (€) becomes large and we spuriously reject the null é.i.d. hypothesis.
Brock et al. (1991) suggest to keep the maximal value of m around %. For
£ =0.25, N = 1000 and m = 10 we reject 95% the right null hypothesis in-
stead of 1%. If we increase the ratio < to 1 we have very good results and the
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N(0,1) is a good approximation of the finite sample BDS distribution. This is
why by increasing € we also increase the probability to find vectors closer than
¢. However from the preceding tables increasing < beyond 2.0 is not generally
recommended since the size of the BDS tends to be too small compared to the
normal distribution (it would spuriously accept too often the null hypothesis).
Mostly the choice of £ = 1 or 1.5 gives a good size of the test. We have computed
the BDS test for many different values of < between 2 and 0.25.

Size of BDS Statistic, Standard Normal
elo elo

m =10, N = 1000 0.95 L00 N(0,1)
% < —2.33 95.0 0.40 1.00
% < —1.96 95.15 1.35 2.50
% < —1.64 95.4 3.85 5.00
% > 1.64 3.75  6.40 5.00
% > 1.96 3.70 3.90 2.50
% > 2.33 3.60 2.00 1.00

Power

The BDS test has asymptotic power against the following specific alterna-
tives:

- first order autoregression AR(1): x; = pz;_1+e¢, |p| <1land e ~ N (0,1)

- first order moving average M A(1): z; = pgi_1+¢, |p| < land g, ~ N (0, 1)

- tent map: x; = 2x;_1 if z, < 0.5 and x; = 2 — 2x;_¢ if z; > 0.5

- threshold autoregression TAR(1) (Lim 1980*%) : 2y = pzy 1+, |p| < 1
ife, <Tand z,=o0x—1+e,|0|<1if 2, >T and e, ~ N (0,1)

- non-linear moving average N M A (Robinson 197749): Ty = €+ €415t 2
and g, ~ N (0,1)

- autoregressive conditional heteroskedasticity ARCH (Engle 1982): z, =

2

0
0

?

2er and 22 = 28 + px? | and &, ~ N (0,0), 0 < p < 1, z; has variance %
- generalized autoregressive conditional heteroskedasticity GARCH (Boller-

slev 1986): z; = 2, and 22 = 23+px? | +022 ; and e, ~ N (0,1),0 < p+o < 1,

2
x; has variance f’?ﬁ—@
It rejects the null hypothesis of 7.2.d. with probability one for 0 < £ < 2.

For finite samples Monte Carlo simulations showed that (see Brock et al.
1991 for all the tables of the BDS test):

1) the BDS test has different power against different alternatives. As an
extreme case see that for a sample size of 100 data points and a significance
level of 1%, the power against a GARCH model is only 14.4%, that is the

485ee Tong 1990.
4956e Tong 1990.
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probability to accept the alternative when this is the true one is only 14.4%.

On the contrary in the case the time series is generated by a the tent map the
power is maximal.

Power of BDS Statistic

elo
m=2N =100 N
tent GARCH
% > 1.64 100%  25.6%
% > 1.96 100%  20.2%
% > 2.33 100% 14.4%

2) the BDS test increases its power with the sample size. As an example,

notice that for N=1000, in the case of GARCH model, the power of the test
increases to beyond 80%

Power of BDS Statistic

elo
m=2 1.00
GARCH N = 100  CARCH N =500 GARCH N = 1000
% > 1.64 25.6% 67.8% 90.4%
% > 1.96 20.2% 58.9% 85.9%
% > 2.33 14.4% 48.3% 80.3%

3) the BDS test increases its power with the embedding dimension but for
a large embedding dimension the power of the test falls:

Power of BDS Statistic

elo
N = 1000 100
GARCHm =2 GARCHm=5 GARCHm =10
% > 1.64 90.4% 93.9 0%
% > 1.96 85.9% 98.4% 0%
% > 2.33 80.3% 97.2% 0%

4) The BDS test has good power properties against all the alternative con-
sidered when the number of data points is 1000. When the data points available
are around 500, the BDS shows good power except for the GARCH alternative:
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Power of BDS Statistic
N = 1000 e/o
m=>5 1.00
tent AR(1) MA(1) TAR NMA ARCH GARCH
% > 1.64 100%  100% 100%  98.8% 100% 100% 98.9%
% > 1.96 100%  100% 100%  97.2% 100% 100% 98.4%
% > 2.33 100%  100% 100%  94.5% 100% 100% 97.2%
Power of BDS Statistic
N =500 elo
m=>5 1.00
tent AR(1) MA(1) TAR NMA ARCH GARCH
% > 1.64 100% 100%  99.6% 98.8% 100% 100% 87.4%
% > 1.96 100% 100%  99.3% 97.2% 100% 100% 83.0%
% > 2.33 100% 100%  98.5% 94.5% 99.6%  99.9% 76.6%

5) Comparing the power results of the BDS test over a 500 data points time
series to that of other non-linear tests, specifically the Tsay and Engle tests,
the BDS test performs better or similar to these tests. The Engle test performs
slightly better than the BDS tests in the case of GARCH structures. However
the BDS contrary to the Engle test (which look for non-zero autocovariances) is
able to detect non-linearities independently from the value of autocovariances.

g) Liapunov exponents

The Liapunov exponent quantifies the sensitive dependence on initial con-
ditions (states). Take for example a one dimensional dynamic system z; =
f(x¢—1) like the tent map:

x; = 2241 for x4 < 0.5
2 =2(1—2 ) for z; 1 <05

We know that for the tent map, given an initial state xq, there will correspond
one and only one x;between 0 and 1. If the process were uniformly distributed
between 0 and 1, x; could assume any value between O and 1 with the same
probability. In the case of the tent map, z1 has only one specific correspondent
Z¢+1 between 0 and 1. This means that the system is dependent on initial
conditions.

If we take another possible initial state x¢ + € close to zg, f (zg + €p) will
be still close to f (o), but it will be more distant than zo + ¢y from zg. After
some periods the two orbits will appear to be totally uncorrelated. This is
because the two orbits are divergent. The system is characterized by sensilive
dependence because two nearby initial states lead to two different orbits which
are divergent.

The Liapunov exponent measures the average rate of divergence of nearby

initial states.
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After N periods, the distance between the two orbits is (Hommes 1998,
Kantz and Schreiber 1997):

| Y (o 4 €0) — [V (w0)| = ‘(fN),(OCO)GO‘

If we denote with ey the distance at time N between the two orbits we may
define the exponential divergence of nearby orbits as:

eEN = 606/\N
ey = €9 when A\ = 0, that is the case of a cyclical series or a steady state
en < €9 when X\ < 0, that is the case of convergent series towards a a steady
state
en > €9 when X > 0, that is the case of divergent series

|7V (2o + o) — f (wo0)| ~ ‘(fN)' (xo)eo‘ — oV
() (o) = Y — A= I (7))

Using the chain rule for (fN), (x0) and taking the limit ¢ — co

N-1 .
A= lim + > In|f'(f (x0))|
— OO i=0
A is the Liapunov exponent. Notice that if we have a positive A, say A = In 2,
after 10 periods

€102 — 910 — 1024 — | 10 (g + c9) — £1 (w0)| = 1024co

that is after 10 periods the distance between f10(zq + ¢p) and f19(z¢) is
on average 1024 times greater than f (zg + ¢o) and fO (z¢). If the initial true
value were xg + €p and we had measured zg, after 10 periods we would have an
amplified error on average 1024 times greater than the initial error. The larger
the Liapunov exponent the more difficult the prediction is, and so the Liapunov
exponent is a measure of predictability.

When we have a time series, we do not know the true function f, but we have
its realizations, that is a time series. We have used the following algorithm by
Kantz (1994)50 to compute numerically the Liapunov exponent, directly from
the time series without knowing the true or an estimated function of f.

Suppose to observe a point (or vector) x; that is very close to z;. z; and x;
are the observed values of the underlying function. Take the distance between
these two observations €¢; = x; — ;. €; grows exponentially with time.

After N periods, the distance between the two points is:

50See Kantz, Schreiber (1997).
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A is the value of the Liapunov exponent. Since from one single time series
can define as many different Lyapunov exponents as the number of embedding
dimension m, we can restrict ourself to the maximal Liapunov exponent that
is the most relevant for our analysis. Numerically one can derive a robust
consistent and unbiased estimator for the maximal Liapunov exponent (Kantz
and Schreiber 1997). One computes:

N-1
P=x | gy 2 e — Tisal
=0 zeg(z;)

T

& (x;) is the neighborhood of z; with radius ¢;. |£(x;)| denotes the number
of observed values within the neighborhood of x;. n is the number of iteration.
® varies with n and its slope gives an estimate of the Liapunov exponent.

h) recurrence plots

A recurrence plot (x;,%;) is a graphical representation of the euclidean dis-
tance ||x; — x;|| in the correlation integral in two dimensions.

It is easy to produce a recurrence plot via an ordinary excel program or alike
for the x function in the correlation integral:

X (e—xi —x;]]) = 1 if ||x; — x;|] < € and we give to the correspondent
point (x;,x;) in the recurrence plot the color white

X (€ —||x; —x;]|) = 0 if ||x; —x;|| > € and we give to the correspondent
point (x;,x;) in the recurrence plot the color black.

When ||x; — x;|| = O the correspondent point (x;,x;) is white. Along the
45° line x; = x; so that the 45° line x;X; is white.

When ||x; — x;|| is maximal, (x;,x;) is black.

When 0 < ||x; — x;|| < 1, the (x;,%;) assumes a grey tone proportional to
the euclidean distance.

For random signals, the uniform distribution of grey tones over the entire
plot is expected. For non-linear systems a more structured recurrence plot may
be dominant. Any continuous line and zones characterized by the same grey
tone in the plot indicates the existence of correlation between pair of the m-
dimensional points (x;,X;) since they maintain a similar euclidean distance.

h) Kononov entropy
The Kononov Entropy compares the distribution of distances between all
pairs of m embedded vectors over the entire recurrence plot with the distribution

of grays over each diagonal line of the recurrence plot. The result is normalized
and presented as a percentage of “maximum” entropy (randomness). That
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is, 100% entropy means the absence of any structure (uniform distribution of
greys), while other values of entropy implies the stochastic or deterministic
presence of structures.
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Tab.1

Authors Y | YN |Yind. |Yagr.| GNP | GNP/N |Exp.| S| | U exch.r. |c.p.i| M| dM/dt | country
Nelson, Plosser 82 + + = + Usa
Lee, Siklos 91 + + = + C
Coorey 91 + Usa
Mills 92 + UK
Banerjee et al. 92 + + + + 7 OECD,
J
Fung, Lo 92 + Usa
Durlauf 93 + Usa
Parikh 94 + J, UK G
Moca 94 + Usa
Gamber, Sorensen 94 Usa
Haslag et al. 94 Usa
de Haan, Zelhorst 94 + |
Mc Dougall 95 + + = + NZ
Serletis 94 + Usa
Bresson, Celimene 95 + Caraibi
Wu, Crato 95 \ + NZ
Franses, Kleibergen 96 + + = + Usa
Gallegati 96 | + + + I
Serletis, Zimonopoulos 97 + 17 OECD
Wells 97 + + = + Usa
Sosa 97 + Arg.
Nunes, Newbold, Kuan 97 + + = + Usa
Rahaman, Mustafa' 97 + + Asia
Bohl 98 + G7
Weliwita 98 + Asia
Al Bazai 98 + Arabia
Choi, Yu 97 + OECD
Dolado, Lopez 96 + Spagha
Coakley, Kulasi, Smith 95 + |+ OECD
Osborn, Heravi, Birchenhall 99 + G, F, UK
Leybourne, Mc Cabe 99 + Usa
Y= GDP, Y/N GDP per capita, Y ind.= industrial production, Y agr.= agricolture,
Exp.= exportations, S= savings, I= investments, E= employment, U= unemployment rate, r= interest rate, exch.
r. = exchange rate, c.p.i.=consumer price index, M= money, dM/dt= velocity of money; C= Canada,
J= Japan, I=ltaly, NZ= New Zealand, Arg.=Argentina, G=Germany, F=France
Tab. 2
Authors Y |Y/N|Yind. | Ydistr. | GNP | GNP/N | E U | w exch.r. | c.p.i. country
Rudebush 90 - - - - - Australia
Diebold, Rudebush 89 - Usa
Perron 89 - - - - - Usa
Gokey 90 8 OECD
Hansen 91 - UK
Duck 92 - 9 paesi
Capitelli, Scjlegel 91 6 paesi
Raj 92 - - - - - Usa, C, F, DK
Rudebush 92 - - - - - G
Kwaiatkowski et al. 92 - - - - - Usa
Linden 92 - - - - - Finlandia
Simkins 94 - - Usa
Raj, Scottje 94 - Usa
Caselli, Marinelli 94 - |
Wu, Chen 95 - - - - - Taiwan
Ben, David, Papell 94 - 16 paesi
Culver Papell 95 - OECD
Soejima 95 - - - - - J
Li 95 - Usa
Alba, Papell 95 - - Nics
Leslie, Pu, Wharton 95 UK
Wu 96 - Usa
Donald 96 - OECD
Lee 96 - - - - - Usa
Wu, Zhang 96 OECD
Moosa, Bhatti 96 Asia
Song, Wu 97 - 48 stati Usa
Lumsdaine, Papell 97 - - - - - Usa
Gil, Robinson 97 - - Usa
Fleissing, Strauss 97 - G7
Mc Coskey, Selden 98 - OECD
Song, Wu 98 - OECD
Hylleberg, Engle 96 - OECD
Cheung, Chinn 96 - Usa
Dolmas, Raj, Scottje 99 - Usa

Y= GDP, Y/N GDP per capita, Y ind.= industrial production, Y distr=income distribution, w=wages

Exp.= exportations, E= employment, U= unemployment rate, r= interest rate, w= wages

exch. r. = exchange rates, c.p.i.=consumer price index, C= Canada,

J= Japan, I=ltaly, NZ= New Zealand, Arg.=Argentina, G=Germany, F=France, DK= Denmark




Tavola 3: deterministic trend
ADF Test Statistic | -21.2812 1% Critical Value* -3.972
5% Critical Value -3.4166
10% Critical Value -3.1303
*MacKinnon critical values for rejection of hypothesis of a unit root.
Augmented Dickey-Fuller Test Equation
LS // Dependent Variable is D(SER04)
Date: 01/04/00 Time: 16:30
Sample(adjusted): 4 1024
Included observations: 1021 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
SER04(-1) -0.934349 0.043905 -21.2812 0
D(SER04(-1)) -0.049395 0.031317 -1.577254| 0.115
C 4.314082 0.201308 21.43022 0
TREND(1) 0.018503 0.000869 21.2812 0
R-squared 0.492919 | Mean dependent var 0.019791
Adjusted R-squared | 0.491423 S.D. dependent var 0.007961
S.E. of regression | 0.005678 | Akaike info criterion -10.33855
Sum squared resid | 0.032783 Schwarz criterion -10.31924
Durbin-Watson stat | 2.000879
Entropy of levels 0% Entropy of residuals 90%
BDS statistic -1.28 5% Critical Value 1.96
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Fig.4: recurrence plot of a linear trend
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Fig.5: recurrence plot of i.i.d. residuals




Tab 4: random walk
ADF Test Statistic |-1.981912 1% Critical Value* -3.972
5% Critical Value -3.4166
10% Critical Value -3.1303
*MacKinnon critical values for rejection of hypothesis of a unit root.
Augmented Dickey-Fuller Test Equation
LS // Dependent Variable is Y(t)-Y(t-1)
Date: 01/06/00 Time: 03:53
Sample(adjusted): 3 1024
Included observations: 1022 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
Y(t-1) -0.007941 0.004007 -1.981912| 0.0478
Y(t-1)-Y(t-2) -0.043856 0.031348 -1.399032| 0.1621
Intercept 0.056553 0.018177 3.111216 | 0.0019
TREND 0.000157 7.93E-05 1.984763 | 0.0474
R-squared 0.006147 Mean dependent var 0.019756
Adjusted R-squared | 0.003218 S.D. dependent var 0.011278
S.E. of regression | 0.01126 Akaike info criterion -8.969137
Sum squared resid | 0.129064 Schwarz criterion -8.949843
Durbin-Watson stat | 1.992604
BDS stat -1.55 5% Critical Value -1.96
fig.6: random walk growth
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Tab 5: Tent map growth

ADF Test Statistic -1.793037 1% Critical Value* -3.9721
5% Critical Value -3.4166
10% Critical Value -3.1303
*MacKinnon critical values for rejection of hypothesis of a unit root.
Augmented Dickey-Fuller Test Equation
LS // Dependent Variable is Y(t)-Y(t-1)
Date: 01/07/00 Time: 21:51
Sample(adjusted): 3 1019
Included observations: 1017 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
Y(t-1) -0.005239 0.002922 -1.793037 0.0733
Y(t-1)-Y(t-2) 0.040709 0.031371 1.297662 0.1947
Intercept 0.044087 0.013835 3.18672 0.0015
TREND 0.000101 5.69E-05 1.775155 0.0762
R-squared 0.005345 Mean dependent var 0.019587
Adjusted R-squared 0.002399 S.D. dependent var 0.011415
S.E. of regression 0.011401 Akaike info criterion -8.94416
Sum squared resid 0.131676 Schwarz criterion -8.924791
Durbin-Watson stat 2.000374 Prob(F-statistic) 0.14281
Entropy on residuals 78%
BDS stat 99.2 5% Critical Value -1.96
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Fig.9: recurrence plot of “tent map” residuals
Fig 10: Rossler growth
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Fig. 11: rossler residuals
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Tab 6: Rossler growth

ADF Test Statistic -57.52551 1% Critical Value* -3.972
5% Critical Value -3.4166
10% Critical Value -3.1303

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

LS // Dependent Variable is Y(t)-Y(t-1)

Date: 01/08/00 Time: 00:42

Sample(adjusted): 3 1024

Included observations: 1022 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) -0.010692 0.000186 -57.52551 0

Y(t-1)-Y(t-2) 0.997213 0.001786 558.3107 0

Intercept 0.047578 0.000826 57.61396 0

TREND 0.000215 3.74E-06 5751543 0

R-squared 0.996759 Mean dependent var 0.019975

Adjusted R-squared 0.996749 S.D. dependent var 0.010042

S.E. of regression 0.000573 Akaike info criterion -14.92687

Sum squared resid 0.000334 Schwarz criterion -14.90758

Durbin-Watson stat 0.093964

Entropy on residuals 15%

BDS stat 355 5% Critical Value -1.96
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Fig 12: recurrence plot of Rossler growth residuals
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Fig. 13 industrial production residuals



Tab 7

Random residuals

N=160 SD/Spread=0.23988
€ m Cin*N*(N-1)/2]  Cpn *N*(N-1)/2 BDS SD Winn
0.3 2 7548 6686 2.27E+00 3.51E-02 6.48E+01
0.3 4 7548 5466 4.04E+00 4.71E-02 8.58E+01
0.3 6 7548 4502 4.15E+00 3.36E-02 1.24E+02
0.3 8 7548 3745 3.79E+00 1.92E-02 1.97E+02
0.3 10 7548 3138 3.34E+00 9.88E-03 3.38E+02
0.235801 2 6184 5268 2.31E+00 2.44E-02 9.47E+01
0.235801 4 6184 3981 3.37E+00 2.21E-02 1.53E+02
0.235801 6 6184 3031 3.00E+00 1.06E-02 2.83E+02
0.235801 8 6184 2310 2.42E+00 4.10E-03 5.89E+02
0.235801 10 6184 1792 1.94E+00 1.42E-03 1.36E+03
0.18534 2 4982 3993 2.07E+00 1.60E-02 1.30E+02
0.18534 4 4982 2651 2.42E+00 9.46E-03 2.56E+02
0.18534 6 4982 1735 1.76E+00 2.97E-03 5.95E+02
0.18534 8 4982 1162 1.23E+00 7.50E-04 1.64E+03
0.18534 10 4982 798 8.65E-01 1.70E-04 5.10E+03
Tab 8: industrial production
ADF Test Statistic ~ |-3.054169 1% Critical Value* -3.9724
5% Critical Value -3.4167
10% Critical Value -3.1304
*MacKinnon critical values for rejection of hypothesis of a unit root.
Sample(adjusted): 3 982
Included observations: 980 after adjusting endpoints.
White Heteroskedasticity-Consistent Standard Errors &
Covariance
Model: Y(t) = 0.02+0.99*Y(t-1) + 0.51*(Y(t-1)-Y(1-2)+2.98E-05*t+¢
Variable Coefficient Std. Error|t-Statistic  |Prob.
Y(t-1) 0.990541 0.005035| 196.7389 0.0000
Y(t-1)-Y(t-2) 0.515856 0.058228| 8.859306 0.0000
Intercept 0.020007 0.010582| 1.890640 0.0590
TREND 2.98E-05 1.52E-05| 1.959742 0.0503
R-squared 0.999633| Mean dependent var 3.512698
Adjusted R-squared 0.999632| S.D. dependent var 0.926381
S.E. of regression 0.017778| Akaike info criterion -5.217661
Sum squared resid 0.308465| Schwarz criterion -5.197712
Durbin-Watson stat 1.95/5% Critical Value 210 1.89
3% Critical Value 213 1.87
1% Critical Value 215 1.85
Entropy on residuals 80%
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Fig. 14: industrial production, recurrence plot




Tab 9: industrial production
Initial Obs :1 Obs : N =981 SD/Spread 0.0778
€ m Can *N*(N-1)/2 Cmn *N*(N-1)/2 BDS SD Wi dm
0.15 2 417276 374424 0.84 0.07 11.27 0.13
0.15 4 417276 320652 3.23 021 15.14 021
0.15 6 417276 283148 5.22 0.32 16.18 0.28
0.15 8 417276 253273 6.62 0.39 16.83 0.34
0.15 10 417276 229020 7.55 0.43 17.64 0.39
0.10 2 366655 301100 1.44 0.10 13.87 021
0.10 4 366655 229816 4.46 0.23 19.40 0.32
0.10 6 366655 186404 6.09 0.27 22.46 0.42
0.10 8 366655 154549 6.60 0.26 25.64 0.50
0.10 10 366655 129222 6.46 0.22 29.49 0.58
0.07 2 299137 211787 1.70 0.11 15.15 0.31
0.07 4 299137 126771 3.61 0.17 21.52 0.50
0.07 6 299137 84243 3.72 0.13 27.83 0.66
0.07 8 299137 58473 3.15 0.09 36.70 0.79
0.07 10 299137 41336 2.46 0.05 49.79 0.92
Tab 10: indudrial production after randomization
Initial Obs :1 Num Obs : N =972 SD/Spread 0.078183
€ m Can *N*(N-1)/2 Cmn *N*(N-1)/2 BDS SD Wi dm
0.15 2 407865 352843 0.07 0.08 0.92 0.15
0.15 4 407865 266237 0.30 021 1.41 0.30
0.15 6 407865 198895 0.28 0.32 0.88 0.46
0.15 8 407865 150347 0.37 0.39 0.95 0.60
0.15 10 407865 114661 0.46 0.42 1.11 0.75
0.10 2 356288 269396 0.06 0.10 0.61 0.25
0.10 4 356288 154845 0.16 0.23 0.72 0.49
0.10 6 356288 87165 0.04 0.26 0.17 0.74
0.10 8 356288 50171 0.07 0.24 0.29 0.98
0.10 10 356288 30078 0.15 0.20 0.73 1.21
0.07 2 288555 176733 0.04 0.11 0.39 0.37
0.07 4 288555 66483 0.06 0.16 0.38 0.74
0.07 6 288555 24021 -0.03 0.12 -0.21 1.12
0.07 8 288555 9039 0.00 0.08 -0.04 1.49
0.07 10 288555 3582 0.01 0.04 0.31 1.84
Tab 11: transportation equipment production
ADF Test Statistic -3.20| 1% Critical Value* -3.97
5% Critical Value -3.42
10% Critical Value -3.13
*MacKinnon critical values for rejection of hypothesis of a unit root.
Date: 01/12/00 Time: 05:08
Sample(adjusted): 3 633
Included observations: 631 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covariance
Model: Y(t) = 0.13+0.96*Y(t-1) +9.07E-05*t+=
Variable Coefficient Std. Error t-Statistic | Prob.
Y(t-1) 0.961671 0.011496| 83.65159 0.0000
Intercept 0.130879 0.039174| 3.340986 0.0009
TREND 9.07E-05 2.82E-05| 3.221789 0.0013
R-squared 0.994651| Mean dependent var 4.088223
Adjusted R-squared 0.994634| S.D. dependent var 0.486078
S.E. of regression 0.035606| Akaike info criterion -3.827893
Sum squared resid 0.798694| Schwarz criterion -3.806800
Durbin-Watson stat 1.86|5% Critical Value 213 1.86
3% Critical Value 216 1.84
1% Critical Value 219 1.81
Entropy 73%
Tab 18: maximal liapunov exponents [M=1 [M=2 [M=3 [M=4 [M=5
Normal i.i.d. process 3.40(1.4111.24|0.77 085
Tent map 293/091/054[0.36|0.33
Rossler map 0.67[0.06| 0.1 |0.09|0.11
Industrial production 2.68|0.75]10.39]|0.33|0.26
transportation eq. production 1.7110.60|0.44 | 0.36 | 0.36
industrial machinery and eq. 1.7510.64|0.33|0.28 | 0.30
electrical machinery 1811049 | 03 |0.26|0.26
Hi-Tech 1.59]0.46|0.27 |0.21 | 0.25
employment 155|067 | 036 |0.30 | 0.27
hourly earnings 1.81] 0.7 |0.51/0.39|0.36
consumer price index 1.880.93|0.58 |0.45|0.36




Tab 12: industrial machinery production

ADF Test Statistic -3.80] 1% Critical Value* -3.98
5% Critical Value -3.42
10% Critical Value -3.13

*MacKinnon critical values for rejection of hypothesis of a unit root.

Date: 01/12/00 Time: 05:16

Sample(adjusted): 3 632

Included observations: 630 after adjusting endpoints. Newey-West HAC

Standard Errors & Covariance (lag truncation=6)

Estimated equation:

Y()=0.05+Y(t-1)+(0.98-1)Y(t-1)+0.09(Y (t-1)-Y (t-2))+ 0.29(Y (t-2)-Y (t-3))+

0.26(Y(t-3)-Y(t-4))+7.58E-05*

Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 0.981976 0.004596 213.6797 0.0000
Y(t-1)-Y(t-2) 0.092080 0.048112 1.913847 0.0561
Y(t-2)-Y(t-3) 0.297701 0.038453 7.741935 0.0000
Y(-3)-Y(t-4) 0.266935 0.038098 7.006599 0.0000

Intercept 0.046728 0.012004 3.892819 0.0001
TREND 7.58E-05 1.81E-05 4.183524 0.0000
R-squared 0.999672| Mean dependent var 3.854838
Adjusted R-squared 0.999669| S.D. dependent var 0.751639
S.E. of regression 0.013667| Akaike info criterion -5.738187
Sum squared resid 0.116555| Schwarz criterion -5.695847
Durbin-Watson stat 2.04/5% Critical Value 213 1.86
3% Critical Value 216 1.84
1% Critical Value 219 1.81
Entropy 77%
Tab 13: electric machinery production
ADF Test Statistic -2.77| 1% Critical Value* -3.98
5% Critical Value -3.42
10% Critical Value -3.13
*MacKinnon critical values for rejection of hypothesis of a unit root.
Date: 01/12/00 Time: 05:19
Sample(adjusted): 3 468
Included observations: 466 after adjusting endpoints.
White Heteroskedasticity-Consistent Standard Errors & Covariance
Model: Y(t) = 0.05+0.97*Y(t-1)+0.17*(Y(t-1)-Y(t-2)) +1.46E-04*t+¢
Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 0.972734 0.010734 90.61905 0.0000

Y(t-1)-Y(t-2) 0.168208 0.065447 2570158 0.0105
Intercept 0.051494 0.018378 2.801982 0.0053
TREND 0.000146 5.94E-05 2.463291 0.0141

R-squared 0.999237| Mean dependent var 2.984028
Adjusted R-squared 0.999232| S.D. dependent var 0.738549
S.E. of regression 0.020463| Akaike info criterion -4.931857
Sum squared resid 0.193454| Schwarz criterion -4.896285
Durbin-Watson stat 2.06/5% Critical Value 215 1.85
3% Critical Value 218 1.81
1% Critical Value 2.21 1.78
Tab 14: Hi-Tech
ADF Test Statistic 0.578766 1% Critical Value* -3.9854
5% Critical Value -3.4230
10% Critical Value -3.1341
*MacKinnon critical values for rejection of hypothesis of a unit root.
Date: 01/12/00 Time: 05:23
Sample(adjusted): 3 394
Included observations: 392 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covariance
Model: Y(t) = 1.00*Y(t-1)+0.12*(Y(t-1)-Y(t-2))+e
Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 1.003030 0.000331 3031.013 0.0000

Y(t-1)-Y(t-2) 0.117184 0.072128 1.624684 0.1050
R-squared 0.999882| Mean dependent var 3.616656
Adjusted R-squared 0.999881| S.D. dependent var 1.363614
S.E. of regression 0.014846| Akaike info criterion -5.577049
Sum squared resid 0.085960| Schwarz criterion -5.556787
Durbin-Watson stat 2.05/5% Critical Value 217 1.83

3% Critical Value 2.20 1.80
1% Critical Value 2.23 1.74




tab 15: employment

ADF Test Statistic -4.205271 1% Critical Value* -3.9754
5% Critical Value -3.4182
10% Critical Value -3.1313

*MacKinnon critical values for rejectiol

n of hypothesis of a unit root.

Date: 01/12/00 Time: 05:26

Sample(adjusted): 3 726

Included observations: 723 after adjusting endpoints

White Heteroskedasticity-Consistent Standard Errors & Covariance

Model: Y(t) = 0.16+0.98"Y(t-1)+0.27*(Y(t-1)-Y(t-2))+0.27(Y (t-2)-Y(t-3))+2.65E-05*t+5

Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 0.984867 0.004407 223.4963 0.0000
Y(t-1)-Y(t-2) 0.273272 0.101724 2.686414 0.0074
Y(t-2)-Y(t-3) 0.273409 0.107786 2.536593 0.0114

Intercept 0.159671 0.046410 3.440470 0.0006
TREND 2.65E-05 7.56E-06 3.503781 0.0005
R-squared 0.999894| Mean dependent var 11.13037
Adjusted R-squared 0.999894| S.D. dependent var 0.379272
S.E. of regression 0.003908| Akaike info criterion -8.244650
Sum squared resid 0.010966| Schwarz criterion -8.212953
Durbin-Watson stat 2.07/5% Critical Value 212 1.88
3% Critical Value 215 1.85
1% Critical Value 217 1.83
Entropy 68%
tab 16: hourly earnings of production workers
ADF Test Statistic -1.066504 1% Critical Value* -3.9742
5% Critical Value -3.4176
10% Critical Value -3.1309
*MacKinnon critical values for rejection of hypothesis of a unit root.
Date: 01/12/00 Time: 05:31
Sample(adjusted): 3 812
Included observations: 810 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covariance
Model: Y(t) = 1.00*Y(t-1)+0.20%(Y(t-1)-Y(t-2))+0.24(Y (t-2)-Y(t-3))+¢
Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 1.000936 0.000226 4435.214 0.0000
Y(t-1)-Y(t-2) 0.208131 0.122095 1.704661 0.0886
Y(t-2)-Y(t-3) 0.244610 0.104343 2.344289 0.0193

R-squared 0.999928| Mean dependent var 1.073049

Adjusted R-squared 0.999928| S.D. dependent var 1.040165

S.E. of regression 0.008846| Akaike info criterion -6.614069

Sum squared resid 0.063067| Schwarz criterion -6.596656

Durbin-Watson stat 2.04/5% Critical Value 212 1.88
3% Critical Value 214 1.86
1% Critical Value 2.16 1.84

Entropy 71%

Tab 17: Consumer Price Index
ADF Test Statistic -0.846908 1% Critical Value* -3.9719
5% Critical Value -3.4165
10% Critical Value -3.1302

*MacKinnon critical values for rejection of hypothesis of a unit root.

Date: 01/09/00 Time: 04:31

Sample(adjusted): 3 1042

Included observations: 1040 after adjusting endpoints

White Heteroskedasticity-Consistent Standard Errors & Covariance

Model:

Y(t) = 1.00%Y(t-1)+0.33* (Y (t-1)-Y(t-2))+0.16* (Y (t-2)- Y (1-3))+ 0.13*(Y(t-3)-Y(t-4))+¢

Variable Coefficient Std. Error t-Statistic Prob.

Y(t-1) 1.000281 5.11E-05 19561.14 0.0000
Y(t-1)-Y(t-2) 0.330581 0.044570 7.417036 0.0000
Y(t-2)-Y(t-3) 0.166066 0.049745 3.338342 0.0009
Y(-3)-Y(t-4) 0.139494 0.051642 2.701158 0.0070

R-squared 0.999950, Mean dependent var 3.509444
Adjusted R-squared 0.999950| S.D. dependent var 0.836538
S.E. of regression 0.005928| Akaike info criterion -7.414489
Sum squared resid 0.036333| Schwarz criterion -7.395433
Durbin-Watson stat 2.05/5% Critical Value 210 1.90

3% Critical Value 212 1.88

1% Critical Value 2.14 1.86
Entropy 71%




Fig. 15: Transportation equipment production, recurrence plot

Fig. 19: employment, recurrence plot

Fig. 16: industrial machinery production, recurrence plot
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Fig. 20: hourly earnings, recurrence plot
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Fig. 21: consumer price index, recurrence plot
Tab 19: transportation eq. production
Initial O Num Obs : N =633 SD/Spread 0.084826
gl m| Cyin*N*(N-1)/2] Cmn *N*(N-1)/2 BDS SD Wi dm

015 2 173909 156653 0.75 0.07 10.44| 0.3
015 4 173909 130459 219 0.20 10.67| 0.23
0.15| 6 173909 108159 294 0.31 9.48| 032
0.15| 8 173909 89195 3.24 0.38 8.55| 043
0.15| 10 173909 73545 3.29 0.4 794, 053
0.08] 2 137452 104128 1.26 0.11 11.78| 0.26
0.08] 4 137452 64000 251 0.19 12.98| 046
0.08] 6 137452 39852 243 0.19 13.05| 0.65
0.08] 8 137452 25326 2.00 0.14 13.77] 0.84
0.08| 10 137452 16302 1.51 0.10 1497] 1.02
0.05 2 92404 50532 1.01 0.09 11.73] 045
0.05 4 92404 16889 1.00 0.07 13.89] 0.81
0.05| 6 92404 5762 0.49 0.03 1530 117
0.05 8 92404 2210 0.23 0.01 19.99] 148
0.05| 10 92404 884 0.10 0.00 2745 1.79

Tab 20: industrial machinery production
Initiall Obs : 1 Obs : N =633 SD/Spread| 0.15206

€ m| Cin *N*(N-1)/2| Cmn *N*(N-1)/2 BDS SD Wi dm

0.24 2 163689 136658 0.24 0.06 407 0.26
0.24 4 163689 95830 0.56 0.15 3770 051
0.24 6 163689 68468 0.83 0.20 4.06| 074
0.24 8 163689 49788 1.00 0.22 444 097
0.24 10 163689 36668 1.06 0.22 477 118
0.12 2 101842 54157 0.25 0.07 349 061
0.12 4 101842 15594 0.24 0.07 330 1.19
0.12 6 101842 4765 0.15 0.04 3.76] 174
0.12 8 101842 1496 0.07 0.02 408 228
0.12 10 101842 481 0.03 0.01 4.4 281
0.06 2 53464 15021 0.08 0.03 278 0.90
0.06 4 53464 1231 0.02 0.01 290 1.78
0.06 6 53464 111 0.00 0.00 357 2862
0.06 8 53464 11 0.00 0.00 452| 343
0.06 10 53464 2 0.00 0.00 11.83] 4.03




Tab 21: electrical machinery production
Initial| Obs :1 Obs : N =633 SD/Spread 0.118
€ m| Cin*N*(N-1)/2|  Cpn *N*(N-1)/2 BDS SD Wi dm
0.20 2 82091 64531 0.52 0.08 6.53 0.32
0.20 4 82091 42307 1.42 0.17 8.17 0.58
0.20 6 82091 28393 1.69 0.20 8.38 0.83
0.20 8 82091 19154 1.58 0.19 8.39 1.08
0.20 10 82091 13191 1.37 0.16 8.75 1.31
0.12 2 59256 35263 0.60 0.08 7.25 0.54
0.12 4 59256 13961 0.88 0.10 9.26 0.98
0.12 6 59256 5682 0.58 0.06 9.80 1.41
0.12 8 59256 2403 0.32 0.03 10.91 1.82
0.12 10 59256 1013 0.16 0.01 12.08 223
0.08 2 39337 16090 0.37 0.05 7.27 0.74
0.08 4 39337 3056 0.24 0.03 9.05 1.39
0.08 6 39337 631 0.08 0.01 10.69 2.00
0.08 8 39337 132 0.02 0.00 12.46 261
0.08 10 39337 23 0.00 0.00 11.78 3.28
Tab 22: HI-TECH
Initial| Obs :1 Obs : N =393 SD/Spread 0.163
€ m| Cin*N*(N-1)/2]  Cpnn *N*(N-1)/2 BDS SD Wi dm
0.30 2 70894 65691 0.11 0.03 3.66 0.13
0.30 4 70894 56821 0.4 0.10 4.03 0.25
0.30 6 70894 49710 0.76 0.17 4.44 0.36
0.30 8 70894 43569 1.04 0.24 4.4 0.47
0.30 10 70894 38278 1.26 0.29 4.34 0.58
0.15 2 50696 34942 0.4 0.09 4.69 0.4
0.15 4 50696 17959 0.92 0.15 6.27 0.75
0.15 6 50696 10173 1.03 0.13 791 1.05
0.15 8 50696 5714 0.80 0.09 8.52 1.35
0.15 10 50696 3150 0.53 0.06 8.79 1.66
0.10 2 38684 20840 0.37 0.07 4.91 0.57
0.10 4 38684 6942 0.53 0.07 7.24 1.05
0.10 6 38684 2638 0.37 0.04 9.52 1.47
0.10 8 38684 1010 0.19 0.02 11.25 1.89
0.10 10 38684 354 0.07 0.01 11.76 235
Tab 23 Employment
Initial| Obs :1 Obs : N =729 SD/Spread 0.065
€ m| Cin*N*(N-1)/2|  Cmn *N*(N-1)/2 BDS SD Wi dm
0.12 2 238186 222742 0.62 0.06 10.83 0.07
0.12 4 238186 198517 1.97 0.18 11.00 0.13
0.12 6 238186 179940 3.25 0.30 10.92 0.18
0.12 8 238186 164760 4.35 0.40 10.90 0.22
0.12 10 238186 152373 5.29 0.48 11.05 0.25
0.06 2 200714 164181 1.06 0.11 9.99 0.17
0.06 4 200714 118494 290 0.24 1212 0.29
0.06 6 200714 93491 4.19 0.29 14.60 0.37
0.06 8 200714 75910 4.66 0.28 16.82 0.45
0.06 10 200714 62865 4.67 0.24 19.47 0.52
0.03 2 139066 83116 0.95 0.10 9.14 0.34
0.03 4 139066 37180 1.69 0.12 14.67 0.57
0.03 6 139066 20379 1.51 0.07 2215 0.75
0.03 8 139066 12786 1.16 0.03 35.82 0.89
0.03 10 139066 8455 0.84 0.01 60.39 1.01
Tab 24 Hourly earnings of production
workers
Initial| Obs :1 Obs : N =811 SD/Spread 0.045
€ m| Cqn *N*(N-1)/2 Cmn *N*(N-1)/2 BDS SD Wi dm
0.10 2 300298 281709 0.56 0.05 1217 0.06
0.10 4 300298 251488 1.78 0.15 12.04 0.11
0.10 6 300298 229524 3.10 0.25 12.48 0.15
0.10 8 300298 212731 4.37 0.34 12.97 0.19
0.10 10 300298 199799 5.55 0.4 13.58 021
0.05 2 242722 195545 1.37 0.11 12.28 0.17
0.05 4 242722 140183 3.63 0.24 15.40 0.28
0.05 6 242722 109290 4.84 0.26 18.31 0.37
0.05 8 242722 87283 5.08 0.24 21.23 0.44
0.05 10 242722 72064 4.93 0.19 25.51 051
0.03 2 163092 96483 1.33 0.10 12.89 0.33
0.03 4 163092 42048 1.92 0.10 19.00 0.56
0.03 6 163092 21130 1.42 0.05 26.94 0.74
0.03 8 163092 11565 0.91 0.02 41.09 0.91
0.03 10 163092 6958 0.59 0.01 70.26 1.04




Tab 25 c.p.i
Initial| Obs :1 Obs : N = 1041 SD/Spread 0.076
€ m|  Cqin*N*(N-1)/2| Cmnn*N*(N-1)/2 BDS SD Wi dm
0.15 2 476963 429828 0.48 0.06 8.22 0.12
0.15 4 476963 363475 201 0.17 11.69 021
0.15 6 476963 320728 3.77 0.27 13.96 0.27
0.15 8 476963 291773 5.43 0.34 15.90 0.32
0.15 10 476963 268953 6.73 0.39 17.41 0.37
0.08 2 375583 282995 1.28 0.10 12.33 0.26
0.08 4 375583 186959 3.61 0.19 18.60 0.43
0.08 6 375583 142259 4.87 0.19 25.28 0.54
0.08 8 375583 117981 5.33 0.15 34.63 0.62
0.08 10 375583 101467 5.28 0.11 47.91 0.68
0.05 2 256438 145002 1.38 0.09 15.28 0.43
0.05 4 256438 60809 2.00 0.08 24.87 0.72
0.05 6 256438 32519 1.58 0.04 41.64 0.92
0.05 8 256438 19554 1.10 0.01 75.29 1.09
0.05 10 256438 12362 0.73 0.01 145.90 1.24
Tab 26 Shuffled transportation eq.
production
Initial| Obs :1 Obs : N =625 SD/Spread 0.085
€ m Cin *N*(N-1)/2] Cmpn *N*(N-1)/2 BDS SD Wi dm
0.15 2 167844 143825 -0.02 0.07 -0.32 0.17
0.15 4 167844 106236 0.03 021 0.14 0.33
0.15 6 167844 78347 0.04 0.31 0.13 0.49
0.15 8 167844 58772 0.17 0.37 0.47 0.65
0.15 10 167844 44223 0.25 0.39 0.65 0.80
0.08 2 130256 86133 -0.08 0.11 -0.73 0.34
0.08 4 130256 38509 0.01 0.18 0.04 0.67
0.08 6 130256 17089 0.01 0.16 0.03 1.00
0.08 8 130256 7769 0.03 0.12 0.23 1.32
0.08 10 130256 3571 0.03 0.08 0.36 1.63
0.05 2 86275 37323 -0.09 0.08 -1.17 0.55
0.05 4 86275 7233 -0.02 0.06 -0.35 1.09
0.05 6 86275 1435 0.00 0.03 -0.02 1.63
0.05 8 86275 303 0.00 0.01 0.36 214
0.05 10 86275 63 0.00 0.00 0.45 2.66
Tab 27 Shuffled machinery eq. production
Initial| Obs :1 Obs : N =625 SD/Spread 0.145
€ m Cin*N*(N-1)/2| Cmn *N*(N-1)/2 BDS SD Wi dm
0.24 2 160906 132293 -0.01 0.06 -0.12 0.27
0.24 4 160906 88987 -0.07 0.15 -0.48 0.55
0.24 6 160906 59473 -0.14 0.20 -0.70 0.83
0.24 8 160906 39268 -0.22 0.22 -1.00 1.12
0.24 10 160906 25647 -0.27 0.22 -1.23 1.42
0.16 2 124144 78379 -0.05 0.08 -0.64 0.49
0.16 4 124144 31025 -0.09 0.12 -0.73 0.99
0.16 6 124144 12110 -0.09 0.10 -0.84 1.50
0.16 8 124144 4497 -0.08 0.07 -1.24 2.03
0.16 10 124144 1614 -0.06 0.04 -1.48 258
0.10 2 88619 39787 -0.05 0.06 -0.73 0.70
0.10 4 88619 7965 -0.04 0.05 -0.69 1.40
0.10 6 88619 1605 -0.01 0.02 -0.51 210
0.10 8 88619 313 0.00 0.01 -0.59 2.82
0.10 10 88619 57 0.00 0.00 -0.81 3.56
Tab 28 Shuffled electrical machinery
Initial| Obs :1 Obs : N =623 SD/Spread 0.119
€ m Cin*N*(N-1)/2]  Cmn *N*(N-1)/2 BDS SD Wi dm
0.20 2 75400 55812 -0.04 0.08 -0.56 0.37
0.20 4 75400 31027 0.02 0.17 0.12 0.73
0.20 6 75400 17044 -0.01 0.19 -0.03 1.1
0.20 8 75400 9108 -0.07 0.17 -0.39 1.50
0.20 10 75400 4733 -0.10 0.14 -0.72 1.90
0.12 2 54030 28568 -0.04 0.08 -0.53 0.60
0.12 4 54030 8256 0.02 0.09 0.24 1.20
0.12 6 54030 2331 0.00 0.05 0.08 1.80
0.12 8 54030 632 -0.01 0.02 -0.20 243
0.12 10 54030 152 -0.01 0.01 -0.70 3.1
0.08 2 35635 12299 -0.05 0.05 -0.95 0.82
0.08 4 35635 1539 0.00 0.02 -0.04 1.62
0.08 6 35635 170 0.00 0.01 -0.71 2.48
0.08 8 35635 20 0.00 0.00 -0.58 3.31
0.08 10 35635 2 0.00 0.00 -0.80 4.21




Tab 29 Shuffled Hi-Tech
Initial| Obs :1 Obs : N =384 SD/Spread 0.127
€ m| Cin*N*(N-1)/2] Cpmn *N*(N-1)/2 BDS SD Wi dm
0.30 2 67823 62231 0.00 0.03 0.02 0.17
0.30 4 67823 53248 0.23 0.10 2.26 0.30
0.30 6 67823 45897 0.49 0.18 2.80 0.43
0.30 8 67823 39428 0.63 0.24 265 0.55
0.30 10 67823 33623 0.66 0.29 226 0.68
0.15 2 48171 31344 -0.01 0.09 -0.14 0.46
0.15 4 48171 14464 0.31 0.14 214 0.87
0.15 6 48171 6946 0.35 0.12 2.80 1.25
0.15 8 48171 3236 0.23 0.09 2.60 1.64
0.15 10 48171 1462 0.12 0.06 220 2.06
0.10 2 36686 18189 0.00 0.07 -0.06 0.63
0.10 4 36686 4974 0.13 0.07 1.87 1.20
0.10 6 36686 1430 0.09 0.04 243 1.74
0.10 8 36686 398 0.03 0.02 2.29 2.30
0.10 10 36686 118 0.01 0.01 251 2.83
Tab 30 Shuffled employment
Initial] Obs :1 Obs : N =729 SD/Spread 0.065
€ m| Cin*N*(N-1)/2| Cn *N*(N-1)/2 BDS SD Wi dm
0.12 2 235370 212902 -0.06 0.06 -0.97 0.09
0.12 4 235370 174017 -0.15 0.18 -0.87 0.19
0.12 6 235370 141667 -0.28 0.29 -0.94 0.28
0.12 8 235370 115229 -0.36 0.39 -0.92 0.38
0.12 10 235370 94385 -0.34 0.47 -0.72 0.48
0.06 2 195086 145688 -0.10 0.11 -0.92 0.21
0.06 4 195086 82607 -0.02 0.23 -0.10 0.4
0.06 6 195086 47320 0.06 0.26 021 0.62
0.06 8 195086 26960 0.06 0.25 0.23 0.82
0.06 10 195086 15476 0.06 0.20 0.28 1.02
0.03 2 132187 67031 -0.03 0.10 -0.30 0.40
0.03 4 132187 17853 0.04 0.10 0.4 0.79
0.03 6 132187 4644 0.01 0.05 0.22 1.19
0.03 8 132187 1167 0.00 0.02 -0.03 1.59
0.03 10 132187 294 0.00 0.01 -0.12 2.00
Tab 31 Shuffled hourly earnings of
prduction workers
Initial] Obs :1 Obs : N =811 SD/Spread 0.045
€ m| Cin *N*(N-1)/2| Cmn *N*(N-1)/2 BDS SD Winn dm
0.10 2 292001 265248 -0.08 0.05 -1.61 0.08
0.10 4 292001 219041 -0.18 0.15 -1.18 0.16
0.10 6 292001 180107 -0.31 0.25 -1.24 0.25
0.10 8 292001 148842 -0.33 0.34 -0.97 0.33
0.10 10 292001 123654 -0.27 0.40 -0.67 0.4
0.05 2 232257 167814 -0.05 0.11 -0.44 0.22
0.05 4 232257 87685 -0.07 0.22 -0.31 0.43
0.05 6 232257 45437 -0.09 0.24 -0.39 0.65
0.05 8 232257 23140 -0.12 021 -0.55 0.88
0.05 10 232257 11830 -0.09 0.16 -0.56 1.10
0.03 2 151578 71891 0.02 0.10 0.17 0.40
0.03 4 151578 15812 -0.02 0.08 -0.25 0.82
0.03 6 151578 3355 -0.02 0.04 -0.53 1.24
0.03 8 151578 723 -0.01 0.02 -0.48 1.65
0.03 10 151578 157 0.00 0.01 -0.40 207
Tab 32 Shuffled c.p.i.
Initial] Obs :1 Obs : N =1024 SD/Spread 0.077
€ m| Cyn*N*(N-1)/2| Cn *N*(N-1)/2 BDS SD Wi dm
0.15 2 462429 406123 -0.08 0.06 -1.40 0.13
0.15 4 462429 31371 -0.16 0.17 -0.94 0.27
0.15 6 462429 239980 -0.35 0.27 -1.29 0.4
0.15 8 462429 183392 -0.45 0.34 -1.34 0.55
0.15 10 462429 141013 -0.44 0.38 -1.15 0.69
0.08 2 361883 247197 -0.14 0.10 -1.38 0.30
0.08 4 361883 117856 -0.05 0.19 -0.26 0.60
0.08 6 361883 57152 0.05 0.18 0.24 0.90
0.08 8 361883 28241 0.09 0.14 0.60 1.18
0.08 10 361883 14054 0.08 0.10 0.79 1.47
0.05 2 245503 113306 -0.09 0.09 -1.07 0.50
0.05 4 245503 24815 -0.02 0.08 -0.26 1.00
0.05 6 245503 5793 0.02 0.03 0.52 1.48
0.05 8 245503 1417 0.01 0.01 1.02 1.95
0.05 10 245503 302 0.00 0.00 0.56 2.46
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