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1. Introduction

The Langlands program for number fields [1] unifies many classical and
contemporary results in number theory and is a vast area of research. It has
an analog for curves over a finite field, which has also been the subject of
much celebrated work [2,3]. In addition, a geometric version of the Langlands
program for curves has been much developed [4—8], both for curves over a
field of characteristic p and for ordinary complex Riemann surfaces. For a
survey that is relatively readable for physicists, with numerous references,
see [9].

Our focus in the present paper is on the geometric Langlands program
for complex Riemann surfaces. We aim to show how this program can be
understood as a chapter in quantum field theory. No prior familiarity with
the Langlands program is assumed; instead, we assume a familiarity with
subjects such as supersymmetric gauge theories, electric-magnetic duality,
sigma-models, mirror symmetry, branes, and topological field theory. The
theme of the paper is to show that when these familiar physical ingredients
are applied to just the right problem, the geometric Langlands program
arises naturally. Seemingly esoteric notions such as Hecke eigensheaves, D-
modules, and so on, appear spontaneously in the physics, with new insights
about their properties.

The first hints of a connection between the Langlands program and quan-
tum field theory came from the work of Goddard, Nuyts, and Olive (GNO),
who showed in 1976 [10] that in gauge theories, though electric charge takes
values in the weight lattice of the gauge group, magnetic charge takes values
in the weight lattice of a dual group. Magnetic charges for general compact
Lie groups had been first analyzed by Englert and Windey [11]. The GNO
analysis motivated the Montonen-Olive electric-magnetic duality conjecture
[12] according to which a specific gauge theory based on a given gauge group
is equivalent to a similar theory with the coupling constant inverted and the
gauge group replaced by its dual.
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Table 1: Examples of the correspondence between
a Lie group G and its Langlands or GNO dual “G.

G g

U(N) U(N)

SU(N) PSU(N) = SU(N)/Zy
Spin(2n) SO(2n) /%o

Sp(n) SO(2n+1)

Spin(2n + 1) Sp(n)/Zs

G2 GQ

Eg ES

For a gauge group G, the GNO dual group is actually the same as the
Langlands dual group G, which plays an important role in formulating the
Langlands conjectures. (For some examples of the correspondence between G
and G, see Table 1.) This was observed by Atiyah, who suggested to the sec-
ond author at the end of 1977 that the Langlands program is related to quan-
tum field theory and recommended the two papers [10,12]. There resulted a
further development [13] in which it was understood that Montonen-Olive
duality is more natural in supersymmetric gauge theory. It was later under-
stood that N = 4 supersymmetry (i.e., the maximal possible supersymmetry
in four dimensions) is the right context for this duality [14], and that the Z,
duality originally proposed has a natural extension to SL(2,7Z) [15,16] when
the theta angle of the gauge theory is included.

In the early 1990’s, extensions of Montonen-Olive duality to string theory
were conjectured [17]. Subsequently, Montonen-Olive duality and its gener-
alizations were studied from many new points of view and were recognized
as a crucial, though still mysterious, ingredient in understanding field theory
and string theory. These developments were far too extensive to be reviewed
here, but one observation of that period, though a sideline at the time, is a
starting point for the present paper. Compactification of N = 4 super Yang-
Mills theory from four dimensions to two dimensions was studied [18,19]
and was shown to lead at low energies to a two-dimensional supersymmetric
sigma-model in which the target space is a hyper-Kahler manifold that is
Hitchin’s moduli space My of stable Higgs bundles [20]. Electric-magnetic
duality in four dimensions reduces in two dimensions to T-duality of the
sigma-model. This particular T-duality was subsequently used mathemati-
cally [21] to show (for SU(NV)) that the Hodge numbers of the Higgs bundle
moduli space of a gauge group G are equal to those of “G. The geometry
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underlying this T-duality was investigated in [22] and subsequently in [23]
for any semi-simple Lie group G.

Other clues about the relation of the geometric Langlands program to
quantum field theory have come from relatively recent mathematical work.
The approach of Beilinson and Drinfeld to the geometric Langlands program
is based on quantization of My, as the title of their paper implies [5]. The
T-duality of My, understood mathematically as a Fourier-Mukai transform,
has been interpreted as a sort of semiclassical approximation to the geometric
Langlands program. This point of view underlies the paper [24]. We under-
stand that there have also been important unpublished contributions by
other mathematicians, including Donagi and Pantev. The second author
learned of this interpretation of the T-duality of My from a lecture by
D. Ben-Zvi at a conference on the geometric Langlands program, held at
the TAS in the spring of 2004. This was an extremely strong hint that it
must be possible to understand the geometric Langlands program using
four-dimensional electric-magnetic duality (which leads to this particular
T-duality) and branes (the natural quantum field theory setting for inter-
preting T-duality as a Fourier-Mukai transform). This hint was the starting
point for the present paper.

To summarize this paper in the briefest possible terms, we will develop
six main ideas. The first is that from a certain twisted version of N = 4
supersymmetric Yang-Mills theory in four dimensions, one can construct a
family of four-dimensional topological field theories in four dimensions. After
reviewing some of the background in section 2, we explain this construction
in section 3. The twisting procedure is formally just analogous to the con-
struction by which Donaldson theory can be obtained [25] from N = 2 super
Yang-Mills theory. The second main idea, developed in sections 4 and 5, is
that, extending the insights of [18,19], compactification on a Riemann sur-
face C' gives in two dimensions a family of topological sigma-models, with
target My, which are “generalized B-models.” Moreover, for a special value
of the parameter, four-dimensional S-duality acts as two-dimensional mirror
symmetry. The third main idea, developed in section 6, is that Wilson and
't Hooft line operators are topological operators that act on the branes of
the two-dimensional sigma-model in a natural fashion. Here we consider an
operator that maps one brane to another (or roughly speaking, one theory to
another), not the more familiar sort of operator in Hilbert space that maps
one state to another. A brane that is mapped by the Wilson or ’t Hooft
operators to, roughly speaking, a multiple of itself is what we call an electric
or magnetic eigenbrane. S-duality will automatically exchange the electric
and magnetic eigenbranes. The fourth main idea, explained in section 8, is
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that, in the right context, electric eigenbranes are in natural correspondence
with homomorphisms of 7, (C) to the complexification of the Langlands dual
group G¢. The fifth main idea, developed in sections 9 and 10, is that 't
Hooft operators correspond naturally to geometric Hecke operators similar
to those of the geometric Langlands program but acting on Higgs bundles
instead of ordinary G-bundles. It takes one more important idea, developed
in section 11, to make contact with the usual formulation of the geometric
Langlands correspondence. We show that, because of the existence of a
canonical coisotropic brane on My, the magnetic eigenbranes in our sense
are naturally associated to D-modules (modules for the sheaf of differential
operators) on the moduli space M(G, C') of holomorphic G-bundles on C.

Sections 7, 8, 9, and 10 of this paper and some expository portions of
other sections are primarily adapted from a forthcoming book [26] which will
also contain some additional results. This material is included here to make
the paper more comprehensible.

One obvious gap in our analysis is that we consider only the unramified
case of the geometric Langlands correspondence. We expect that it is possible
to apply somewhat similar ideas to the ramified case. A second major gap is
that we do not shed light on the utility of two-dimensional conformal field
theory for the geometric Langlands program [5,9,27-30] . The last of these
references applies conformal field theory to the ramified case. Hopefully it
will prove possible to deduce the conformal field theory approach from the
gauge theory approach of this paper. In fact, there is an analogy even at a
naive level [31] between conformal field theory and the theory of automorphic
representations, which is the basis of the Langlands program. Finally, though
we have nothing to contribute about this here, an additional clue about the
relation of the Langlands program with physics presumably comes from the
diverse ways that automorphic forms enter string theory. For a tiny sampling
of this, see [32-40].

A K. would like to thank D. Arinkin, R. Bezrukavnikov, and D. Orlov
for useful conversations. In particular, Orlov’s explanations in 2002 about
the abelian case of the geometric Langlands program partially motivated the
paper [41], which will enter our story in section 11.

E.W. would like to thank the many mathematicians who over the years
have explained matters relevant to the Langlands program, including A.
Beilinson, P. Deligne, V. Drinfeld, and K. Vilonen, and especially M. F.
Atiyah, D. Ben-Zvi, R. Donagi, E. Frenkel, and D. Kazhdan, and most
recently M. Goresky and R. MacPherson. In addition, among others, T.
Hausel, N. Hitchin, M. Hopkins, P. Kronheimer, L. Jeffrey, J. Morgan, G.
Moore, D. Morrison, N. Nekrasov, M. Thaddeus, C. Vafa, and E. J. Weinberg



Electric-magnetic duality and the geometric Langlands program 7

clarified some points relevant to the present paper, and many of the physicists
at the TAS, including S. Hellerman, K. Intriligator, J. Maldacena, N. Seiberg,
and J. Walcher, made helpful comments.

2. N =4 Super Yang-Mills Theory And S-Duality

In this section, we recall a few properties of N = 4 super Yang-Mills theory
and its S-duality.

2.1. Review Of N =4 Super Yang-Mills Theory

As in the original work [42], N = 4 super Yang-Mills is most easily con-
structed by dimensional reduction from ten dimensions. Ten dimensions is
the maximum possible dimension for supersymmetric Yang-Mills theory by
virtue of Nahm’s theorem [43], and for given gauge group G, there is a
very simple supersymmetric Lagrangian which moreover is unique up to the
choice of a few coupling parameters if we ask for a Lagrangian quadratic in
the curvature. In this paper, we always assume G to be compact and denote
its complexification as G¢. This differs from most other expositions of the
geometric Langlands program.

Spacetime Conventions We begin by describing some conventions. We
will work with Lorentz signature — + + ...+ or Euclidean signature + +
+...+4. Basically, when emphasizing questions of topological field theory,
we will use Euclidean signature, but when we want to stress that the con-
structions are natural in physically sensible, unitary quantum field theory,
we use Lorentz signature.

We write the metric of ten-dimensional Minkowski space R™? or Euclidean
space RI? as ds? = Z?,J:o grydet dz’ = F(dz®)? + (dz')* + ... + (dz°)2.
These have symmetry groups SO(1,9) or SO(10), whose spin representa-
tions 8t and 8~ are of rank 16. They are real (and dual to one another) in
Lorentz signature, while in Euclidean signature they are complex conjugate
representations.

The gamma matrices I';, I = 0,...,9 (which in Lorentz signature are
real) reverse the chirality, mapping 8* to 8, and obey the Clifford algebra
{I';,T';} = 2g;;. Moreover, the operator

(21) f: Forl Fg

acts on 8T or 8 as multiplication by 1 or —1. Because 8" and 8§~ are
dual, we can regard the I'’s not as maps from $* to 8T but as bilinear maps
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I;:8"®8T —w RorI';: 8 ®8~ — R. (In this paragraph, we assume Lorentz
signature; in Euclidean signature, all such maps are to C, since the spinors
are complex.) If 3,y € 8", it is conventional to write SI';y for the bilinear
map I';(3,7), which can also be written in components as Zszl L' ap3%9°.
(The bar in (3 is conventional for spinors and should perhabs be read as
transpose, not complex conjugation.) A standard convention is to define
't 1,..1, to be zero if the indices Iy, I, ..., I, are not pairwise distinct and
otherwise to equal the product I'y,I'y, ---I'y,. So I', 1, 1, reverses the chiral-
ity if k is odd, and again can be regarded as a bilinear map 8T ® 8t — R (or
8~ ® 8~ — R). These maps are symmetric for £k = 1,5,9 and antisymmetric
for k = 3,7. For 3,7 € 8", we again write BFIL“I” for these bilinear maps
Uy,..1.(8,7). For k even, we have T';r, 5 : 8 — 8%, or equivalently we
have bilinear maps I';,;, 7, : 8T ® 8~ — R, again denoted Ary, .. .-

Fields, Transformation Laws, And Lagrangian The fields of ten-
dimensional super Yang-Mills theory are the gauge field A, which is a connec-
tion on a G-bundle F, and a fermion field A that is a section of 87 ® ad(E);
in other words, A is a positive chirality spinor field with values in the adjoint
representation of G. In Lorentz signature, A is real, since the bundles 8 and
8~ are real. In Euclidean signature, A is not real but its complex conjugate
does not enter the formalism. The covariant derivative is D = d+ A and the
curvature of A is F = D? =dA+ AN A.

We consider A and A to take values in the real Lie algebra of G, which
has real structure constants. This means that, in a unitary representation
of G, A and A take values in antihermitian matrices. This is opposite to the
usual physics convention, but is in accord with the math literature. (Taking
the fields to be antihermitian may look unnatural for G = U(1), which is
the reason for the usual physics convention, but it avoids unnatural factors
of i for general G.) In a standard set of physics conventions (see p. 4 of [44]),
the covariant derivative is D = d —iA’ with a hermitian gauge field A’. The
relation between our antihermitian A and this hermitian gauge field A’ is thus

(2.2) A=—iA
The curvature of A’ is defined as F’ = i(D)* = dA’ —iA’ N A’ so
(2.3) F=—iF"

We use the symbol “Tr” to denote an invariant and negative definite
quadratic form on the Lie algebra of G. As we assume G to be simple, such
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a quadratic form is unique up to a constant multiple; we normalize it so
that for M = S*, the characteristic class # il o It BN F takes arbitrary
integer values. For G = SU(N), this quadratic form can be obtained as a
trace in the N-dimensional representation, which motivates denoting it as
Tr. Since our Lie algebras are generated by antihermitian matrices, Tr is
negative-definite.

With this understood, the supersymmetry transformation laws and the
Lagrangian of ten-dimensional super Yang-Mills theory can be described as
follows. The generator of supersymmetry is a constant spinor € that takes
values in 8, and hence obeys

(2.4) F'e=ce.

(T was defined in (2.1); we take € to be bosonic.) The supersymmetry trans-
formation generated by € is

65A[ - ZEF[)\

(2.5) 1
55)\ == EFIJFIJG.

For any field ®, the symbol d¢® is short for! Zil[e“Qa,@}, where Q,,
taking values in 87, are the sixteen supersymmetries. The symbol dg stands
for supersymmetric variation. The invariant action is?

1 1 _
(2.6) Iy =— / d"z Tr <§FUF” — z‘ArfD,A> ,
€

with an arbitrary constant e, the gauge coupling. The verification of super-
symmetry is described in [42]. Finally, the conserved supercurrent that gen-
erates the supersymmetries (2.5) is

1
(2.7) J' = §TrFJKFJKFI)\.
The bosonic symmetry of this theory is not just SO(1,9) but the

“Poincaré group” P, which is an extension of SO(1,9) by the “translation”
group of R"Y. This translation group is isomorphic to R*® itself (regarded

In a Zy-graded algebra, the symbol [A, B} denotes AB — (—1)ABBA.

2This is written in Lorentz signature, with the usual convention in which the
kinetic energy is positive. For Euclidean signature, one must change the overall
sign of the Lagrangian to make the bosonic part of the action positive definite.
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as an abelian group), and P is an extension
(2.8) 0 — R"Y — P — SO(1,9) — 1.

The generators of RY are called the “momentum operators” P;. The algebra
obeyed by the conserved supercharges (0,, a =1,...,16 is

10
(29) {Qm Qb} = Z I‘ibj:)l-
I=1

In addition, the @, commute with P; and transform under SO(1,9)
as 8.
Dimensional Reduction To Four Dimensions To reduce to four
dimensions, we simply take all fields to be independent of the coordinates
2% ...,2° The components A;, I = 0,...,3 describe the four-dimensional
gauge field A = Zz:o A, dx*, while the components A;, I > 4, become
four-dimensional scalar fields ¢; = A;44, i = 0,...,5. The ten-dimensional
curvature F7; has three types of contribution; depending on whether the
number of indices I,.J in the range 4,...,9 is zero, one, or two, we get
a four-dimensional curvature F),,, a derivative D,¢; of a scalar field, or a
commutator [¢;, ¢;] of scalar fields.

The bosonic part of the action, in four dimensions, has all three types of
contribution and becomes

(2.10) 6

3 3 6
Lk faan (33 Bor eSS papra s ) Sloer)

p,v=0 pn=0 i=1 2,7=1

Together with the part of the action involving fermions, which can be simi-
larly written in four-dimensional terms, though we will not do so, this is the
essentially unique four-dimensional gauge theory with the maximal possible
supersymmetry. If G is simple and if we want a Lagrangian quadratic in
derivatives (the case that leads to a sensible quantum theory), the action is
unique except for the choice of parameter e and, in four dimensions, another
possible parameter that measures the topology of the G-bundle E:

[
(2.11) Ij=—— [ hFAFR
72
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This last term is 6 times the second Chern class or instanton number of the
bundle. The parameters ¢ and # combine into a complex parameter

0 471

2.12 = — 4+ —.
( ) T 27 e2

As long as we are on R* or any four-manifold M with H*(M,Z) = 0
(for the generalization, in which 7;(G) comes into play, see [45,26]), there
is an elementary symmetry 7 — 7 + 1, which expresses the fact that
(1/87?) [ TtF A F is integer-valued, and that in quantum mechanics one
only cares about the action modulo an integer multiple of 27. Equivalently,
f is an angular variable, with 8 = 6 + 27.

The SO(1,9) (or SO(10)) symmetry in ten dimensions becomes, after
dimensional reduction to four dimensions, SO(1,3) x SO(6) (or SO(4) x
S0O(6)). Allowing for the presence of spinors in the theory, the symmetry
is really Spin(1,9) reduced to Spin(1,3) x Spin(6) (or Spin(10) reduced to
Spin(4) x Spin(6)). The group Spin(6) is isomorphic to SU(4) and is known
as the “R symmetry group” of the theory. We will call it SU(4)x.

The chirality condition T'e = € in ten dimensions becomes in four dimen-
sions

(2.13) IT'e = e,

where T’ = o' T'oI's measures the Spin(1,3) chirality and IV = T',I'5 ... Ty
measures the Spin(6) chirality. I' and I" have eigenvalues +i; (2.13) means
that the eigenvalue of I is minus that of T. The two eigenvalues of T dis-
tinguish the two spin representations of Spin(1,3), while the eigenvalues
of I similarly label the spin representations of Spin(6). The complexifica-
tion of Spin(1,3) is SL(2) x SL(2) and the two spin representations cor-
respond to the representations (2,1) and (1,2) of SL(2) x SL(2) (here
(2,1) is the two-dimensional representation of the first SL(2) tensored
with the trivial one-dimensional representation of the second SL(2), and
vice-versa for (1,2)). The spin representations of Spin(6) are the defining
four-dimensional representation of SU (4)RAand its dual; we denote them
as 4 and 4. We pick orientations so that I" acts as i~! or ¢ on the (2,1)
and (1,2), respectively, and T acts as ¢ and i~! on the 4 and 4. So
(2.13) means that the four-dimensional supersymmetries transform under
Spin(1,3) x Spin(6) ~ SL(2) x SL(2) x Spin(6) as

(2.14) (2,1,4) @ (1,2,4).

The fermion fields A transform the same way under Spin(1,3) x Spin(6).
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If we write Q 45, A =1, 2, X =1,...,4 for the supersymmetries of type
(2,1,4), and similarly Q%, A=1,2, Y =1,...,4 for those of type (1,2,4),
then the algebra generated by the supersymmetries is the reduction of (2.9),

3
{@ ,QY} — 5 Y l—w P
(215) AX A X l; AAT M

{Q,Q} ={Q,Q} =0,

where now the four momentum operators P, generate the translations of
R'3. With suitable boundary conditions, additional terms appear [13] on
the right hand side of (2.15) (they are related to the extra six momenta that
were dropped in going to four dimensions, and their magnetic duals). They
will make a brief appearance at the end of this section.

2.2. S-Duality

A review of S-duality is unfortunately beyond our scope in this paper. We
will just mention a few relevant facts.

Since its imaginary part is positive, 7 = 0 /27 + 4mi/e* defines a point in
the upper half plane . The group SL(2, R) acts on H in the standard fashion
7 — (ar+b)/(cT+d), with ad —be = 1.3 The transformation T : 7 — 7+1 is
simply a 27 shift of the angle # and thus a classical symmetry of the theory
on R?*, for any gauge group G. The S-duality conjecture asserts that there
exists an additional quantum symmetry that inverts 7, exchanges G with
L@, and exchanges electric and magnetic charges. Moreover, this symmetry,
which we will call S, combines with the classical symmetry 7' : 7 — 741 to
generate an infinite discrete subgroup I' of SL(2,R).

The most familiar case is the case that G is simply-laced. Then

(2.16) S = (_01 é)

acts as 7 — —1/7, and together with T" generates the group SL(2,Z).

If G is not simply-laced, then the S-transformation is not 7 — —1/7.
Rather, it is 7 — —1/ny7, where ng is 2 for F; and 3 for G,. This transfor-
mation can be achieved by the SL(2,R) transformation

(2.17) 5= <_3n_g 1/\0/”_9>.

3The group that acts faithfully on H is the quotient PSL(2, R), but in application
to four-dimensional gauge theory, one really needs the double cover.
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This presence of a factor of 2 or 3 in the action of S on 7 can be seen [46,47]
by examining the BPS mass formulas for electric and magnetic charges and
reflects the relation between roots and coroots for these groups. It also can
be extracted from a string-theoretic explanation of S-duality for non-simply-
laced groups [48]. The factor of 2 or 3 means that the duality groups for G
or F; are not simply SL(2,Z), but certain infinite discrete subgroups of
SL(2,R) that are known as Hecke groups.

The remaining simple Lie groups Sp(k) and Spin(2k + 1) (and their
respective quotients by Z,) require some special comment, because these
are the only simple Lie groups such that G and G have non-isomorphic
Lie algebras. The Yang-Mills Lagrangian and therefore the definition of the
7 parameter depend only on the Lie algebra g of the gauge group. Hence,
whenever G and G have the same Lie algebra, we can discuss how the S-
transformation acts on 7 without distinguishing whether we have in mind 7
of a theory with gauge group G or 7 of a theory with gauge group “G. This
indeed is what we have implicitly done so far.

For the pair Sp(k) and Spin(2k + 1), however, there is no equally direct
way to compare the two 7 parameters. Hence, one may introduce separate
gauge coupling parameters, say 7 for Sp(k) or Sp(k)/Z, gauge theory, and 7/
for Spin(2k +1) or Spin(2k+1)/Zs = SO(2k + 1) gauge theory. If one nor-
malizes the respective T parameters so that the respective T-transformations
act by 7 — 7+ 1 and 7" — 7/ + 1, then S acts by 7 = —1/27/, 7/ = —1/27,
just as for Fy. (Thus we set ny = 2 for Spin(2k + 1) and Sp(k).)

This normalization is natural, since it leads to the most uniform gauge
theory formulas for arbitrary gauge groups. A slight complication is that
there is for the same groups a second normalization that one might also
consider natural. A useful string theory realization of the Sp(k)/Spin(2k+1)
duality, involving orientifold threeplanes [49], actually motivates a different
normalization. In this normalization, the Sp(k) theory is described by a
coupling parameter 7 = 27, so that S acts simply by 7 = —1/7/, but instead
T acts by 7 — 7 + 2. (In figure 3 of [49], the Sp(k) theory appears twice,
precisely because the Sp(k) coupling parameter 7 is normalized in that paper
so that the T-symmetry acts by 7 — 7 + 2.)

A final comment on this is that the assertion that Montonen-Olive dual-
ity exchanges G and G is not quite the whole story. On R*, this is an
adequate description, but on a general four-manifold, the full story is some-
what more elaborate. A G-bundle on a four-manifold has a characteristic
class £ € H*(M, (@), studied in this paper in section 7. A path integral
can be defined for each value of £, and the resulting partition functions Z,
transform as a unitary representation of the duality group [45,26].
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How much of this is important for the geometric Langlands program?
The basic geometric Langlands duality is the transformation S that acts
as T — —1/ng7. It acts on the canonical parameter ¥ (introduced in sec-
tion 3.5) by ¥ — —1/n,¥. The basic geometric Langlands duality involves
comparing ¥ = oo to ¥ = 0. These are exchanged by .S regardless of the
value of ng. So the value of ngy is not very important for the basic geomet-
ric Langlands duality. In section 11.3, we come to a generalization of the
geometric Langlands duality to arbitrary W. Here the precise duality group
is important and, therefore, the value of n, does play a role.

Transformation of Supersymmetries There is one question about
Montonen-Olive duality that actually will play a bigger role in this paper:
How does it act on the supersymmetries?

We cannot the answer this question by inspection of the classical
Lagrangian, because, apart from the subgroup generated by 7 — 7+ 1, I
does not consist of symmetries of the classical theory. This after all is what
makes S-duality interesting. So obtaining the answer will require a more
subtle reasoning.

Before determining the answer, let us ask to what extent the answer is
a b

d
by S and T'. Such an element acts on 7 by 7 — (a7 + b)/(ct + d) and on
the supersymmetry algebra by an automorphism. This automorphism is not
uniquely defined, since it could be combined with a symmetry of the N = 4
super Yang-Mills theory (at a fixed value of 7). An important simplification
is that, according to the Montonen-Olive conjecture, v commutes with the
Poincaré group. Moreover, one can define it to commute with the global
R-symmetry group SU(4)r.* Combining these facts, it follows that v acts
as a scalar multiplication exp(i¢) on the supersymmetries that transform
as the 4 (that is, the QAX) and as exp(—i¢) on those that transform as 4
(the QX). Moreover, ¢ must be real to preserve the real structure of the
algebra (with respect to which, in Lorentz signature, P is hermitian and
@ is the hermitian adjoint of Q). We will call these symmetries U(1) chiral
rotations. The action of v is defined up to an element of the center of SU(4)%.

unique. Consider an element v = of the duality group I' generated

4To show this, we first observe that conjugation by 7 generates an automorphism
of SU(4)r. This automorphism is necessarily inner, as the classical theory has
no symmetry that acts trivially on spacetime and by an outer automorphism of
SU(4)%. Finally, given that v generates an inner automorphism of SU(4)%, we can
combine it with an SU(4)r element that generates the inverse automorphism to
get a duality symmetry that commutes with SU(4)x.
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The center is generated by an element J that acts as i on the 4 of SU(4)r
and —i on the 4. Thus ¢(v) is defined up to ¢(v) — ¢(y) + /2.

To determine ¢(), we can compute the action of v in any convenient
state. We choose to perform the computation on the Coulomb branch of the
theory, where the gauge group is broken to U(1)" and the supersymmetry
algebra is centrally extended by electric and magnetic charges. For an abelian
gauge group such as U(1) or U(1)", one can calculate everything explicitly
and thereby determine how ~ acts on the supersymmetries. Or one can use
the realization of N' = 4 super Yang-Mills theory as the gauge theory on a
D3-brane of Type IIB superstring theory; this gives a geometrical way to
determine the action of v on supercharges for G = U(1) (and this approach
also extends directly to classical groups such as U(N)).

We will follow the alternative approach of determining the result by
examining the mass formula for BPS states. To simplify notation, we focus on
an N = 2 subalgebra of the supersymmetry algebra, which has a pair of right-
handed supercharges QiA, i = 1,2 and