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FIXED POINT THEOREMS FROM A DE RHAM PERSPECTIVE∗
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1. Introduction. Let M be a smooth compact oriented Riemannian manifold
of dimension n, and f : M → M a smooth map. Define the Lefschetz number

L(f) =

n
∑

p=0

(−1)pTrace(f∗|Hp(M)).

The classical Lefschetz fixed point theorem states that if f has isolated nondegenerate
fixed points, then

L(f) =
∑

f(b)=b

sign det (dfb − I).

Atiyah and Bott ([AB1],[AB2]) generalized this theorem to complexes of ellip-
tic operators; we briefly recall (under mild restrictions) their theorem. Let E0, E1,
· · · , EN be a sequence of smooth hermitian vector bundles over M , equipped with a
sequence of first order differential operators Di : Γ(Ei) → Γ(Ei+1). This sequence,
denoted Γ(E), is called an elliptic complex if for all i,

Di+1Di = 0,

and

D∗
iDi +Di−1D

∗
i−1 is elliptic.

Here we set Di = 0 for i 6∈ [0, N − 1]. Set

Hp(Γ(E)) = KerDp/ImDp−1.

Given a smooth map f and smooth bundle homomorphisms φp : (f∗E)p → Ep, we
may define endomorphisms Tp : Γ(Ep) → Γ(Ep) by

Tps = φpf
∗s.

When

DpTp = Tp+1Dp, (1.1)

T := (T0, · · · , Tn) is called a geometric endomorphism of the complex Γ(E). It induces
endomorphisms HpT of Hp(Γ(E)), and we define the Lefschetz number

L(T ) =

N
∑

p=0

(−1)pTraceHpT.
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Note that in the important special case where N = 1 and T is the identity map,
L(T ) = index(D0). The Atiyah-Bott theorem expresses the Lefschetz number in terms
of fixed point data.

Theorem 1.2. (Atiyah-Bott, [AB1][AB2]) Let Γ(E) be an elliptic complex. Let
T be a geometric endomorphism of Γ(E) associated to a pair (f, φ), with f : M →
M a smooth map with isolated nondegenerate fixed points, and φ a smooth bundle
homomorphisms φp : (f∗E)p → Ep. Then

L(T ) =
∑

f(b)=b

∑N
p=0(−1)pTraceφp,b

|det(I − dfb)|
.

The proof of this theorem has gone through several incarnations. Set

Lev := ⊕i(D
∗
2iD2i +D2i−1D

∗
2i−1), and

Lod := ⊕i(D
∗
2i+1D2i+1 +D2iD

∗
2i).

The modern analytic proof of both the Atiyah-Bott theorem and the index theorem
starts from the observation that the λ eigenspaces of Lev and Lod are isomorphic
for λ 6= 0. The isomorphism is given by ⊕iλ

−1/2(D2i + D∗
2i−1). Let Tev denote the

restriction of T to ⊕iΓ(E2i). Similarly define Tod. Then one can use this isomorphism
and a Hodge isomorphism to show that

TraceTeve
−tLev − TraceTode

−tLod = L(T ), (1.3)

because the traces over the nonzero eigenspaces cancel identically. Then one can use
elementary heat equation asymptotics to compute that

limt→0(TraceTeve
−tLev − TraceTode

−tLod) =
∑

f(b)=b

∑N
p=0(−1)pTraceφp,b

|det(I − dfb)|
. (1.4)

The heat equation proof of the fixed point theorems was developed by numerous
authors including Berline and Vergne [BV], Bismut [Bi], Donnelly [D1],[DP], Gilkey
[Gil2], Kotake [Ko], Lafferty [La], Patodi [P],[DP], and many others.

In this note we wish to consider new extensions of the fixed point formulas. We
pose the question: when can we extend the Lefschetz theorems to new classes of
maps? More geometrically, passing from maps to their graphs, when can we extend
the Lefschetz theorems to new classes of subspaces of M×M? The classical Lefschetz
theorem applies to all maps, but only gives data associated to a single classical elliptic
complex. If one further assumes that a map is an isometry, then one gains Lefschetz
data associated to the signature complex. The greater the number of complexes for
which one has Lefschetz data for a function f , the better one can analyze f . This
paper was motivated by the observation that the index theoretic proof of the Lefschetz
formulas often requires greater restrictions on the function f (or more generally a
correspondence f) than is actually necessary. For example, as we shall see in Theorem
4.4, a correspondence need only be locally conformal in order to be able to compute its
Lefschetz number associated to the signature complex. Before stating further, more
exotic new fixed point theorems, we explain the elementary ideas underlying the new
results.
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Many older proofs of fixed point theorems (see [T] and references therein), use
an alternate analytic approach, closer in spirit to the original Lefschetz argument.
Translating from the use of Green’s operators in [T] to the current preference for
heat operators, this alternate proof exploits (1.3 and 1.4) but justifies (1.3) slightly
differently, from a de Rham perspective. The intertwining of the eigenspaces with
nonzero eigenvalues is interpreted as follows. Let Γf ⊂M ×M denote the graph of f .
Then TraceTeve

−tLev −TraceTode
−tLod can be computed as the integral over Γf of a

differential form associated to the Schwartz kernels of the heat operators. We call this
form the index form. Splitting the index form into a t−independent summand asso-
ciated with projection onto the kernels of Lev and Lod and a t− dependent summand
associated with all the nonzero eigenvalues, one finds that the t−dependent summand
restricted to Γf is exact. This exactness implies that the traces are t−independent,
yielding (1.3).

In this note we seek larger classes of submanifolds (or more generally closed
currents) Σ in M×M on which the t−dependent summand of the index form becomes
exact. The intertwining condition (1.1) is replaced by geometric conditions on Σ. For
the index form corresponding to the Gauss-Bonnet index, the only condition on Σ is
that it be closed. For the Riemann-Roch index form of an m complex dimensional
compact manifold, Σ can be a complex submanifold. In fact, we may consider more
general currents than submanifolds. Then one requires the currents for the Riemann-
Roch index form to be closed and have Hodge bitype (m,m). In order to obtain
Lefschetz formulas appropriate for families of complex maps, we may consider currents
T associated to a pair (Σ, z) with Σ an m + p complex dimensional subvariety of
M ×M and z a closed (p, p) form. For the index form corresponding to the signature
operator, Σ is required to have the local structure of the graph of a conformal map.
More generally, we may consider extended conformal pairs (Σ, z) (see (4.3)) which
provide Lefschetz formulas appropriate for families of conformal maps.

In addition to these classical index forms, the search for geometries which are
compatible with suitable index forms, where compatibility is understood in terms
of the vanishing of the t−dependent summand, leads to hybrid Lefschetz results.
For example, coisotropic geometry suggests the introduction of a new index form
corresponding to TrJ ∗ e−t∆, where J is an almost complex structure operator and ∗
is the Hodge star operator. Applied to Σ = V1 × V2, with Vi coisotropic, we obtain
intersection formulas, which, however, reduce to formulas obtainable from the Gauss-
Bonnet index form (and are therefore effectively classical).

In a different direction, we examine the elimination of the t− dependent terms
in the index form, via averaging rather than geometry. In the examples we consider,
this requires some homogeneous structure. For example, on an abelian variety, A, we
can integrate the Riemann-Roch index form over a family {Σy = V1 × V2y}y∈A, with
V1 and V2y special Lagrangian varieties. We obtain formulas relating cohomological
data to average intersection data for the family. We obtain similar results for families
of Lagrangian varieties in compact hermitian symmetric spaces.

We doubt that we have come close to exhausting the possible applications of these
elementary ideas. We have worked in the combinatorially trivial regime of transverse
intersections of Σ with the diagonal of M ×M . This corresponds to considering only
isolated nondegenerate fixed points. There is no apparent obstruction to using the
calculus of Clifford modules and Mehler’s formula (as in for example [BGV],[La]) to
treat the more general case, but we do not pursue that direction here.

In the following, we will first recall this de Rham perspective for the classical de
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Rham and Dolbeault complexes. We will then show how to apply it to obtain new fixed
point theorems for conformal relations, coisotropic intersections, and average special
Lagrangian intersections. We end with an appendix in which we adapt standard heat
equation asymptotics to our context.

2. Gauss Bonnet. In this section we illustrate the de Rham perspective on
index theory in the simplest possible case, the Gauss-Bonnet theorem. All the results
in this section are well known. Let Mn be a compact oriented riemannian manifold.
Let ∆p denote the Laplace Beltrami operator on the space Ap of p−forms. Let
ep

t (x, y) denote the Schwartz kernel for e−t∆p . We define the Schwartz n form ep
t (x, y)

by requiring for every p−form f ,

e−t∆pf(x) =

∫

{x}×M

ep
t (x, y) ∧ f(y).

Here we adopt the convention that when treating forms on M ×M , f(x) and f(y) are
shorthand for π∗

1f and π∗
2f respectively, where π1 and π2 denote the projections on

the first and second factors of M ×M respectively. Throughout this note, the Hodge
star operator, unless otherwise subscripted, will denote the Hodge star operator for
M rather than for M ×M . Thus on M ×M , ∗f(y) denotes π∗

2(∗f) and similarly for
∗f(x).

Expanding ep
t with respect to an orthonormal basis of eigenforms {φp

λ} of ∆ we
have

ep
t (x, y) = (−1)p(n−p)

∑

λ

e−tλφp
λ(x) ∧ ∗φp

λ(y).

Then

Tr e−t∆p =

∫

δ

(−1)p(n−p)ep
t ,

where δ denotes the diagonal in M ×M . The Euler characteristic of M is given by

∑

p

(−1)pTr e−t∆p =

∫

δ

∑

p

(−1)p(n−p+1)ep
t .

We call
∑

p(−1)p(n−p+1)ep
t the index form associated to the Gauss Bonnet complex.

Refining the eigen-expansion further in terms of harmonic, closed and coclosed
forms, we have

∑

p

(−1)p(n−p+1)ep
t

=
∑

i,p

(−1)php
i (x) ∧ ∗hp

i (y) +
∑

λ,p

(−1)pe−tλλ−1dψp−1
λ (x) ∧ ∗dψp−1

λ (y)

+
∑

λ,p

(−1)pe−tλψp
λ(x) ∧ ∗ψp

λ(y),

where we take {ψp
λ} to be an orthonormal coclosed eigenbasis and {hi} an orthonormal

basis of harmonic forms. Using the standard relation on k−forms:

d∗ = (−1)k ∗−1 d∗,
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we regroup this expansion as

∑

p

(−1)p(n−p+1)ep
t

=
∑

i,p

(−1)php
i (x) ∧ ∗hp

i (y) + d(
∑

λ,p

(−1)pe−tλλ−1ψp−1
λ (x) ∧ ∗dψp−1

λ (y)). (2.1)

Thus the t−dependent summand of the index form is exact. This reduces the Gauss
Bonnet and Lefschetz fixed point theorems to standard heat equation asymptotics,
which we now recall. (See for example [BGV] or [Gil]). Define the n−form ν on the
diagonal, δ, to be the volume form for the normal bundle Nδ to δ. In particular, if
{µj}j is a local oriented orthonormal coframe on M near b, then near (b, b) ∈ δ

ν := 2−n/2(π∗
1µ

1 − π∗
2µ

1) ∧ · · · ∧ (π∗
1µ

n − π∗
2µ

n). (2.2)

Given a submanifold Wn+c ⊂ M × M intersecting the diagonal transversely in a
submanifold S, we let NW

S denote the normal bundle to S in W . The assumption of
transversality implies that dim NW

S = n and that the projection ΠW (b) : NW
S,(b,b) →

Nδ is an isomorphism. With this notation, heat equation asymptotics (see 8.1) give
for Σ an n dimensional submanifold intersecting δ transversely,

limt→0

∫

Σ

∑

p

(−1)p(n−p+1)ep
t =

∑

(b,b)∈V ∩δ

〈2n/2ν, dVΣ〉
det1/2(Π∗

W ΠW (b))
. (2.3)

Here dVΣ denotes the volume form of the submanifold Σ, identified via the metric
with an element of

∧n
T ∗(M ×M)|δ. Setting

νGB(T(b,b)Σ) =
〈2n/2ν, dVΣ〉

det1/2(Π∗
W ΠW (b))

,

we obtain

Theorem 2.4. (Lefschetz) Let Mn be a smooth compact oriented Riemannian
manifold. Let Σ be a smooth n dimensional submanifold of M ×M . Assume that Σ
intersects δ transversely. Then

∫

Σ

∑

i,p

(−1)php
i (x) ∧ ∗hp

i (y) =
∑

(b,b)∈Σ∩δ

νGB(T(b,b)Σ). (2.5)

The proof of this result consists of integrating equation (2.1) over Σ. The t-
dependent terms are exact, giving us the left hand side of (2.5). On the other hand,
taking the limit as t → 0 and applying (2.3) gives the righthand side. In (8.3) we
show that when Σ is locally the graph of a function f , then as expected,

νGB(T(b,b)Σ) = sign det(I − df).

3. Riemann Roch. Next we turn to the Dolbeault complex. (See [TT] for an
extensive treatment of the Lefschetz theorem for this complex.) Let M be a compact
complex manifold of complex dimension m. Define e0,q

t to be the Schwarz kernel
double form for e−t�q , where �q denotes the Dolbeault Laplacian on (0, q) forms.
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Thus, in the Kähler case it is (up to rescaling t) the summand of eq
t obtained by

projecting e−t∆q onto (0, q) forms. In this case n = dimRM is even, and

e0,q
t (x, y) = (−1)q

∑

λ

e−tλφ0,q
λ (x) ∧ ∗̄φ0,q

λ (y).

We call
∑

q e
0,q
t (x, y) the index form for the Dolbeault complex. We similarly refer to

the index form associated to other elliptic complexes. Let Ap,q denote the space of
differential forms of bitype (p, q).

We first examine whether the cohomology class of the Dolbeault index form is t
independent. We expand it as

∑

q

e0,q
t (x, y)

=
∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y) +
∑

q

(−1)q
∑

λ

e−tλλ−1∂̄b0,q−1
λ (x) ∧ ∗̄∂̄b0,q−1

λ (y)

+
∑

q

(−1)q
∑

λ

e−tλb0,q
λ (x) ∧ ∗̄b0,q

λ (y),

where the bλ are an eigenbasis for the co-∂̄-exact forms. We rewrite this as
∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y) +
∑

q

(−1)qd(
∑

λ

e−tλλ−1b0,q−1
λ (x) ∧ ∗̄∂̄b0,q−1

λ (y))

−
∑

q

(−1)q
∑

λ

e−tλλ−1∂b0,q−1
λ (x) ∧ ∗̄∂̄b0,q−1

λ (y).

Thus we see that the Dolbeault index form is the sum of a t independent form, an exact
form, and a form of type (m+ 1,m− 1). Hence the cohomology class of this form is
apparently not t−independent. Let Σ be a middle dimensional submanifold ofM×M .
Let TΣ denote the corresponding current. If TΣ is of type (m,m) then the integral of
the index form over Σ is independent of t. Every m dimensional complex subvariety
of M ×M determines a current of this type. A theorem of King [K, Theorem 5.2.1]
and its generalization by Harvey and Shiffman [HS] imply that there are essentially
no additional geometric examples. Choosing Σ to be a correspondence, we obtain the
holomorphic Lefschetz theorem for correspondences. From the appendix, we obtain
the following expression for the heat equation asymptotics.

limt→0

∫

Σ

∑

q

e0,q
t =

∑

(b,b)∈Σ∩δ

〈2m/2ν2, dVW 〉
det1/2(Π∗

ΣΠΣ)
, (3.1)

where in a local unitary frame, {ηi}i, of the holomorphic cotangent bundle

2m/2ν2 := (−1)m(m+1)/2(π∗
1 η̄

1−π∗
2 η̄

1)∧· · ·∧(π∗
1 η̄

m−π∗
2 η̄

m)∧π∗
2η

1∧· · ·∧π∗
2η

m. (3.2)

Set

νRR(T(b,b)Σ) :=
〈2m/2ν2, dVW 〉
det1/2(Π∗

ΣΠΣ)
. (3.3)

When Σ is the graph of a holomorphic function f , then a computation like that of
(8.3) gives

νRR(T(b,b)Σ) =
1

detC(I − dfb)
.
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Combining the t independence of the integral of the Riemann-Roch index form on Σ
with the heat equation asymptotics, we obtain the following holomorphic Lefschetz
fixed point theorem.

Theorem 3.4. Let M be a compact Kähler manifold. Let Σ ⊂ M × M be a
holomorphic correspondence. Let {h0,p

i }i be an orthonormal basis of harmonic (0, p)
forms on M . Then

∫

Σ

∑

p

(−1)p
∑

i

h0,p
i (x) ∧ ∗̄h0,p

i (y) =
∑

(b,b)∈Σ∩δ

νRR(TbbΣ).

When Σ is the graph of a holomorphic function f , this reduces to the usual
holomorphic Lefschetz theorem.

At the opposite extreme, we may take Σ = V × W , with V and W smooth
subvarieties of M of complementary dimension. Then V ×W is a middle dimensional
subvariety of type (m,m) of M ×M . This gives a trivial result since the index form
identically vanishes on this variety. So, to recapture standard intersection results, we
simply replace (0, q) forms by (p, q) forms, with p = dimCV , and then repeat the
preceding computations.

3.1. Excess dimensions. Suppose that z is a ∂̄ closed (p, p) form on M ×
M . Then z ∧

∑

q e
0,q
t once again decomposes into a t− independent summand z ∧

∑

q(−1)q
∑

i h
0,q
i (x) ∧ ∗̄h0,q

i (y), an exact summand, and a summand with no (m +
p,m + p) component. So, choosing an m + p dimensional complex subvariety W of
M×M , we obtain once again an equality between cohomological data and fixed point
data. Let S = W ∩ δ. Restricted to (as opposed to pulled back to) δ, we can use the
metric to factor orthogonally

dVW = νW
S ∧ dVS ,

with νW
S a volume form for the fiber of the normal bundle NW

S of S in W . We set

νRR(z, T(b,b)W ) =
〈z(b, b) ∧ 2m/2ν2, dVW (b)〉

det1/2(Π∗
W,bΠW,b)

=
〈z(b, b) ∧ 2m/2ν2, ν

W
S ∧ dVS〉

det1/2(Π∗
W,bΠW,b)

.

Only the (p, a)(0, p − a) component of z contributes to this expression. Here the
multigrading is the refined Hodge grading associated with the product structure. In
particular, a form

∑

|I|=a,|J|=b,|K|=c,|L|=d fIJKLπ
∗
1ω

I ∧π∗
1 ω̄

J ∧π∗
2ω

K ∧π∗
2 ω̄

L has type

(a, b)(c, d).

Notation 3.5. Given a (p, p) form φ, let φ0 denote the sum over a of its
(p, a)(0, p− a) components.

Then

〈z(b, b) ∧ 2m/2ν2, ν
W
S ∧ dVS〉 = 2p〈z0(b, b), dVS〉〈2m/2ν2, ν

W
S 〉,

and

νRR(z, T(b,b)W ) = 2p 〈2m/2ν2, ν
W
S 〉〈z0, dVS〉

det1/2(Π∗
W,bΠW,b)

.

Then our arguments (see Example 3 in the appendix) yield in this case:
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Theorem 3.6. Let W intersect δ transversely in a smooth p dimensional complex
submanifold, S. Then if z is of type (p, p),

∫

W

z(x, y) ∧
∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y) =

∫

S

2p〈2m/2ν2, ν
W
S 〉z0

det1/2(Π∗
W,bΠW,b)

.

Remark 3.7. The reader familiar with the Atiyah-Segal-Singer Lefschetz the-
orems for fixed submanifolds of dimension greater than zero ([ASe],[ASi]) may be
surprised that no curvature data explicitly enters into the above fixed point formula.
As we show in the appendix, it is not the dimension of S in δ but the codimension
of S in W which is germane for determining the simplicity of the fixed point data. If
the codimension is equal to the dimension of M , then no difficult combinatorics or
curvature computations are required.

Suppose now that M is Kähler and that z is d−closed and dual to a cycle V in
M ×M . Suppose further that V is a complex subvariety. Let TV be the current
corresponding to integrating over V . Then

z − TV = ∂∂̄b

for some (m− p− 1,m− p− 1) current b. Then

∫

W

z ∧
∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y) =

∫

V ∩W

∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y).

On the other hand, for V holomorphic,
∫

V ∩W

∑

q

e0,q
t (x, y) =

∫

V ∩W

∑

q

(−1)q
∑

i

h0,q
i (x) ∧ ∗̄h0,q

i (y).

Hence if V ∩W = Y is transverse to the diagonal, then we have

∫

S

νRR(z, T(b,b)W )dVS =
∑

(b,b)∈Y ∩δ

νRR(T(b,b)(Y )). (3.8)

We can reexpress this as

∫

S

2p〈2m/2ν2, ν
W
S 〉z0

det1/2(Π∗
W,bΠW,b)

=
∑

(b,b)∈V ∩S

〈2m/2ν2, ν
V ∩W
(b,b) 〉

det1/2(Π∗
V ∩W,bΠV ∩W,b)

. (3.9)

For example, if W = M ×M , (M connected) this reduces to

∫

δ

z0 =

∫

M×M

z ∧
∑

q,i

(−1)qh0,q
i (x) ∧ ∗̄h0,q

i (y) =
∑

(b,b)∈V ∩δ

〈2m/2ν2, ν
V
(b,b)〉

det1/2(Π∗
V,bΠV,b)

. (3.10)

Observe that equality (3.9) depends on both the hypothesis that z is type (p, p)
and the additional assumption that V is complex. The apparent difference in the 2
sides of the formula is interesting in light of the relation between the two hypotheses
and the Hodge conjecture. In order to extract more information from such relations,
it would be useful to have an infinite family of such formulas for fixed V , z, and W .
Hence we next consider holomorphic Lefschetz formulas for the Dolbeault complex
with coefficients in a holomorphic vector bundle.
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3.2. Holomorphic Coefficients. Consider now the ∂̄ operator with coefficients
in a hermitian holomorphic vector bundle, E. Then the heat kernel becomes

e0,q
t (x, y) = (−1)q

∑

λ

e−tλφ0,q
λ,a(x) ∧ ∗̄φ0,q

λ,b(y)s
a(x)(·, sb(y)),

where {sa}a is a local holomorphic frame and φλ = φλ,as
a in this frame. In order

to obtain a scalar valued differential form, we need additional data in the form of a
holomorphic section Q of Hom(π∗

1E ⊗ π∗
2E

∗,C) over a subvariety W . (In the case of
tensor bundles such sections arise as the pullback to W under the Gauss map of a
global section of Hom(π∗

G(π∗
1E ⊗ π∗

2E
∗),C), where πG : Gn(T (M ×M)) → M ×M

denotes the projection from the grassmanian of n planes in the tangent bundle.) Set
kab(x) = 〈sa(x), sb(x)〉. Let {wa}a denote the holomorphic coframe dual to {sa}a.
Let Qa

c = Q(sa ⊗ wc). This function is a local holomorphic function on W . Then we
can generalize our earlier expansions, writing

∑

q

Q(e0,q
t (x, y)) =

∑

q

(−1)q
∑

i

Qa
ch

0,q
i,a (x) ∧ ∗̄h0,q

i,b (y)kbc

+
∑

q,λ

(−1)qe−tλλ−1Qa
c ∂̄b

0,q−1
λ,a (x) ∧ ∗̄∂̄b0,q−1

λ,b (y)kbc

+
∑

q,λ

(−1)qe−tλQa
cb

0,q
λ,a(x) ∧ ∗̄b0,q

λ,b(y)k
bc,

where the {bλ}λ are again an eigenbasis for the co-∂̄ exact forms. We rewrite this (on
W ) as
∑

q,i

(−1)qQa
ch

0,q
i,a (x) ∧ ∗̄h0,q

i,b (y)kbc + d
∑

q,λ

(−1)qe−tλλ−1Qa
cb

0,q−1
λ,a (x) ∧ ∗̄∂̄b0,q−1

λ,b (y)kbc

−
∑

q,λ

(−1)qe−tλλ−1∂(Qa
cb

0,q−1
λ,a (x)) ∧ ∗̄∂̄b0,q−1

λ,b (y)kbc

−
∑

q,λ

(−1)qe−tλλ−1∂̄Qa
c ∧ b0,q−1

λ,a (x) ∧ ∗̄∂̄b0,q−1
λ,b (y)kbc.

The assumption that Q is holomorphic on W eliminates the last term, and we are
left again with the index form restricted to W as the sum of a t independent form,
an exact form, and a form of type (m + 1,m − 1), where m denotes the complex
dimension. Consequently, the integral of this form over the subvariety W of M ×M
is independent of t.

More generally, we can consider a ∂̄ closed Q ∈ Ar,r(W,Hom(π∗
1E ⊗ π∗

2E
∗,C)),

for any q and repeat the preceding computation to obtain the following generalization
of the holomorphic Lefschetz theorem.

Theorem 3.11. Let W be a r+m dimensional subvariety of M ×M intersecting
δ transversely in a submanifold S. Let Q ∈ Ar,r(W,Hom(π∗

1E⊗π∗
2E

∗,C)) be ∂̄ closed.
Then

∫

W

∑

q

(−1)q
∑

i

Qa
c ∧ h0,q

i,a (x) ∧ ∗̄h0,q
i,b (y)kbc =

∫

S

νRR(trQ, T(b,b)W )dVS .

Specialize this theorem now to the case where Q = z ∧ Q1, with z a harmonic
(p, p) form. Suppose further that z is dual to a complex submanifold V ⊂ M ×M
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intersecting the diagonal transversely. Then arguing as in the preceding section and
retaining its notation we have the following theorem.

Theorem 3.12. Let W be an r+m dimensional subvariety of M×M intersecting
δ transversely in a submanifold S. Let Q1 ∈ Ar,r(W,Hom(π∗

1E ⊗ π∗
2E

∗,C)) be ∂̄
closed. Then

∫

W

∑

q

(−1)q
∑

i

z ∧Qa
1c ∧ h0,q

i,a (x) ∧ ∗̄h0,q
i,b (y)kbc

=

∫

S

νRR(z ∧ trQ1, T(b,b)W )dVS =

∫

S∩V

νRR(trQ1, T(b,b)(W ∩ V ))dVS∩V .

4. Signature. Let M be a 4k dimensional compact oriented Riemannian man-
ifold. Let τ denote the involution of the exterior forms defined by Clifford multipli-
cation by the volume form. In particular, if {ωi}i is a local orthonormal oriented
coframe, and if we let e(ωi) denote exterior multiplication on the left by ωi, then

τ = (e(ω1) − e∗(ω1)) · · · (e(ω4k) − e∗(ω4k)).

Recall that the topological signature of M is equal, by the Hodge theorem, to the
trace of τ restricted to the space of harmonic forms of M . The index form for the
signature theorem is given by

st =
∑

p

(−1)pτxe
p
t (x, y).

Here τx denotes clifford multiplication by π∗
1dvol. The de Rham explanation for the

t−independence of the cohomology class of st pulled back to the diagonal is somewhat
different from the cases of the Gauss-Bonnet and Riemann Roch complexes, and
perhaps should be called the Chern-Hirzebruch-Serre explanation (see [CHS, Lemma
4]). As usual, we expand the index form in terms of eigenfunctions, obtaining

st =
∑

p,i

τhp
i (x) ∧ ∗hp

i (y) +
∑

p,λ

e−tλλ−1τdψp−1
λ (x) ∧ ∗dψp−1

λ (y)

+
∑

p,λ

e−tλλ−1τ ∗ dψn−p
λ (x) ∧ ∗2dψn−p

λ (y).

The last sum is clearly exact. The second sum is exact on the diagonal because for
all 2k forms f and F , ∗f(x) ∧ ∗F (y) − f(x) ∧ F (y) vanishes when pulled back to
the diagonal. Forms of degree unequal to 2k do not contribute to the computation
for dimension reasons. Therefore, the class of st pulled back to the diagonal is t−
independent. Integrating st on the diagonal then gives the signature theorem. In order
to find new Lefschetz type theorems, we require a class of submanifolds of M ×M on
which

Bt :=
∑

p,λ

e−tλλ−1τdψp−1
λ (x) ∧ ∗dψp−1

λ (y)

integrates to zero. Let V be a closed n−dimensional submanifold of M × M . A
sufficient criterion to ensure that Bt integrates to zero along V is suggested by the
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diagonal. Call V self dual in middle dimension if it satisfies the condition that for
all 2k forms f and F , ∗f(x) ∧ ∗F (y) − f(x) ∧ F (y) vanishes when pulled back to V .
We remark that if we did not restrict the degree of the forms required to satisfy this
condition, then the current TV associated to V would satisfy dTV = d∗TV = 0, which
has no submanifold solutions, by elliptic regularity.

Let iV : V → M ×M denote the inclusion map. Suppose (x, y) ∈ V , and let
{ωi(x)}i and {ωi(y)}i be any orthonormal frames for π∗

1T
∗M and π∗

2T
∗M . In order

to satisfy the self duality condition, we need

i∗V (ωI(x) ∧ ωJ(y)) = i∗V (∗ωI(x) ∧ ∗ωJ(y)).

At a point (x, y) ∈ V where the maps i∗V π
∗
1 : T ∗

xM → T ∗
(x,y)V and i∗V π

∗
2 : T ∗

yM →
T ∗

(x,y)V are bijective, let f = (i∗V π
∗
2)−1i∗V π

∗
1 . Choose now {ωi(x)}i to be an orthonor-

mal f∗f eigen basis for T ∗
xM , with eigenvalues λi. For multiindices I, let λI =

∏

i∈I λ
i.

Choose ωi(y) =
fωi(x)√

λi
. Then

i∗V (ωI(x) ∧ ωJ(y)) =
1√
λJ
i∗V ω

I(x) ∧ i∗V π∗
2fω

J(x) =
1√
λJ
i∗V (ωI(x) ∧ ωJ(x)).

Hence the condition that V be self dual in middle dimension becomes

λI = λIc

,

for all multi indices I with 2|I| = dimV. This is equivalent to λi = λ, for some λ
independent of i. In particular, this condition is satisfied if f is locally the graph of
a conformal morphism. We call such V a conformal correspondence. Computing the
local heat asymptotics from (8.1) yields

lim
t→0

∫

V

st =
∑

(b,b)∈V ∩δ

∑

|I|=2k〈π∗
1ω

I ∧ π∗
2ω

I , dVV 〉
det1/2(2Π∗

V ΠV )
. (4.1)

We set

νsig(T(b,b)V ) :=

∑

|I|=2k〈π∗
1ω

I ∧ π∗
2ω

I , dVV 〉
det1/2(2Π∗

V ΠV )
.

Then the t−independence of the integral of st pulled back to V gives the following.

Theorem 4.2. Let V be a conformal correspondence in M2m ×M2m. Then
∫

V

hi(x) ∧ hi(y) =
∑

b∈V ∩δ

νsig(T(b,b)V ).

If V is locally the graph of a conformal map f , we can write, for (b, b) ∈ V ∩ δ,
dfb = µk, with µ a positive scalar and k an isometry, with rotation angles θj . Then
block diagonalizing, we find

νsig(T(b,b)V ) = i−mµ
m|det(I − k)|
|det(I − µk)|

m
∏

j=1

cot(θj/2).
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The extension of this theorem to the signature operator with coefficients in a flat
bundle E is more complex than in the Riemann-Roch case. If Q is a locally constant
section of π∗

1E⊗π∗
2E

∗ over a conformal correspondence V , then we have for E unitary,
by the preceding argument:

∫

V

Qabhi,a(x) ∧ hi,b(y) =
∑

b∈Vδ

trQ νsig(T(b,b)V ).

The unitary assumption can be removed at the cost of introducing additional notation;
for simplicity, we will not address the nonunitary case. (See [Lu].) The extension to
closed differential forms, Q, of degree p > 0, with coefficients in π∗

1E ⊗ π∗
2E

∗ and
submanifolds W of M × M of dimension n + p requires a compatibility condition
between W and Q extending the conformal correspondence structure. In simplest
form the compatibility condition becomes

Q ∧ i∗W [f(x) ∧ F (y) − ∗f(x) ∧ ∗F (y)] = 0. (4.3)

We call a pair (W,Q) satisfying (4.3) an extended conformal pair. Such pairs can be
constructed, for example, when W locally has the form of a family of conformal maps
of M over a base B and Q locally has the form of a pullback of a closed form on B.
Define for a p− form z,

νsig(z, T(b,b)W ) :=

∑

|I|=2k〈z ∧ π∗
1ω

I ∧ π∗
2ω

I , dVW 〉
det1/2(2Π∗

W ΠW )
.

We obtain the following theorem.

Theorem 4.4. Let E be a unitary flat vector bundle over M . Let Q be a closed
π∗

1E ⊗ π∗
2E

∗ valued p− form over a submanifold W of M ×M . Assume that (W,Q)
is an extended conformal pair and W intersects δ transversely. Then

∫

W

Qab ∧ hi,a(x) ∧ hi,b(y) =

∫

W∩δ

νsig(trQ, T(b,b)W )dVW∩δ.

The extension to excess dimensions is, of course, easier for the Gauss-Bonnet
index form. We have the following theorem.

Theorem 4.5. Let Mn be a compact Riemannian manifold. Let E be a unitary
flat vector bundle over M . Let Σ be an n + p dimensional submanifold of M ×M ,
intersecting the diagonal transversely. Let Q ∈ Ap(Σ, π∗

1E ⊗ π∗
2E) be d−closed. Then

∫

Σ

Qab ∧ (−1)p
∑

i,p

hp
i,a(x) ∧ ∗hp

i,b(y) =

∫

Σ∩δ

〈tr Q ∧ ν, dVΣ〉dVΣ∩δ

det1/2(Π∗
ΣΠΣ)

.

As we see in Example 2 in the appendix,

∫

Σ∩δ

〈tr Q ∧ ν, dVΣ〉dVΣ∩δ

det1/2(Π∗
ΣΠΣ)

=
∑

a

ǫa

∫

(Σ∩δ)a

tr Q,

where ǫa = ±1 and Σ∩ δ = ∪a(Σ∩ δ)a is the decomposition into disjoint components.
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4.1. Manifolds with boundary. Because we have an analytic proof of the
signature theorem which does not require the linear algebra of the index theorem,
it is natural to consider the signature index form for manifolds with boundary with
local boundary conditions. The well known theorems on topological obstructions to
local boundary conditions for the signature operator [AB] do not directly apply to our
calculations, but one cannot hope to avoid the appearance of the η invariant. In this
subsection we see how this spectral term emerges from local boundary conditions.

Let M4k be a compact manifold with boundary Y . Assume that near Y , M is
isometric to a product [0, l]×Y . Then we may identify the integral of the index form
over δ with the integral over M of

s̃t := −
∑

i

h2k
i (x) ∧ h2k

i (x) −
∑

λ

e−tλλ−1 ∗ d ∗ ψ2k+1
λ (x) ∧ ∗d ∗ ψ2k+1

λ (x)

−
∑

λ

e−tλλ−1dψ2k−1
λ (x) ∧ dψ2k−1

λ (x).

This eigen decomposition is not well defined until we fix boundary conditions. For
simplicity we impose Dirichlet boundary conditions. Then

−
∫

M

s̃t =

∫

M

∑

i

h2k
i (x) ∧ h2k

i (x) +
∑

λ

e−tλλ−1

∫

Y

∗ψ2k+1
λ (x) ∧ d ∗ ψ2k+1

λ (x)

+
∑

λ

e−tλλ−1

∫

Y

ψ2k−1
λ (x) ∧ dψ2k−1

λ (x).

The Dirichlet boundary conditions imply ψ2k−1
λ pulled back to Y vanishes. Hence we

are left with

−
∫

M

s̃t =

∫

M

∑

i

h2k
i (x) ∧ h2k

i (x) +
∑

λ

e−tλλ−1

∫

Y

∗ψ2k+1
λ (x) ∧ d ∗ ψ2k+1

λ (x).

From the usual heat equation asymptotics we have
∫

M

Lk(TM) (4.6)

=

∫

M

∑

i

h2k
i (x) ∧ h2k

i (x) + limt→0

∑

λ

e−tλλ−1

∫

Y

∗ψ2k+1
λ (x) ∧ d ∗ ψ2k+1

λ (x),

where Lk denotes the Hirzebruch L polynomial. Thus we see that even with local
boundary conditions, we obtain a spectral term similar to the eta invariant, although
it is global on M rather than global on Y . Observe that because ∗ does not preserve
Dirichlet boundary conditions (in fact it exchanges them with Neumann), we cannot
diagonalize ∗ in the space of harmonic forms satisfying Dirichlet boundary conditions.
Hence, the harmonic term in (4.6) is not the signature and is not metric independent.
On the other hand, if H2k(Y ) = H2k−1(Y ) = 0, then it is easy to prove that

lim
l→∞

∫

M

∑

i

h2k
i (x) ∧ h2k

i (x) = sig(M).

Hence, in the limit as the length l of the collar tends to ∞, the spectral term will
converge to the eta invariant, by the APS signature theorem [APS]. (The conver-
gence of the spectral term can be proved without invoking the APS theorem, but the
computations are effectively the same as in the proof of that theorem.)
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5. Spinors. The preceding section suggests that the fixed point theorem for
spinors should also extend to conformal correspondences. We now briefly examine
such an extension. Let M2m be a compact, oriented Riemannian spin manifold. Let
S denote the bundle of spinors on M . Let V ⊂M×M be a 2m− dimensional smooth
submanifold. Let (x, y) ∈ V satisfy dπ1T(x,y)V = TxM and dπ2T(x,y)V = TyM . Then
the projections determine a map

A(x, y) := dπ2 ◦ dπ−1
1 : TxM → TyM.

Let PSO(M) denote the oriented frame bundle of M , and let PSpin(M) denote
the principal spin bundle. When A = µ(x, y)k(x, y), with k(x, y) an isometry and
µ(x, y) > 0 a scalar, then k also induces a map from (PSOM)x → (PSOM)y. We
call V a spin conformal correspondence if it is a conformal correspondence, and there
exists a continuous choice of lift of the action of k(x, y) from the frame bundles to
a map kspin : (PSpinM)x → (PSpinM)y, (x, y) ∈ V . A map between principal spin
bundles induces a corresponding map of spin bundles kS : Sx → Sy. Taking into
account the entire conformal map A, we define AS : Sx → Sy to be (see [LM, p.133])

AS = µ(1−2m)/2kS .

Then letting D denote the Dirac operator on spinors (see [LM, Theorem 5.24]),

ASD = DAS .

With these preliminaries, we can extend the Lefschetz fixed point theorem to spin
conformal correspondences. Let {ψλ}λ be an orthonormal basis of eigenspinors with
D2 eigenvalue λ. Let {hi}i be an orthonormal basis of harmonic spinors. Let τS now
denote Clifford multiplication by the volume form, acting on spinors. The index form
for the spinor Dirac operator on a conformal correspondence V is

σt =
∑

λ

e−tλ〈AS(x, y)ψλ(x), τψλ(y)〉dvolM (y).

We expand this as

σt =
∑

i

〈AS(x, y)hi(x), hi(y)〉dvolM (y)

+
∑

λ6=0

λ−1e−tλ〈AS(x, y)Dψλ(x), τDψλ(y)〉dvolM (y).
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At the origin of a geodesic normal coordinate system, we write the t− dependent term
as

∑

λ6=0

λ−1e−tλ ∂

∂yj
〈AS(x, y)Dψλ(x), τc(dyj)ψλ(y)〉dvolM (y)

−
∑

λ6=0

λ−1e−tλ〈∇ ∂

∂yj
AS(x, y)Dψµ(x), τc(dyj)ψλ(y)〉dvolM (y)

=
∑

λ6=0

λ−1e−tλ ∂

∂yj
〈AS(x, y)Dψλ(x), τc(dyj)ψλ(y)〉dvolM (y)

−
∑

λ6=0

λ−1e−tλ〈DAS(x, y)Dψλ(x), τψλ(y)〉dvolM (y)

=
∑

λ6=0

λ−1e−tλ ∂

∂yj
〈AS(x, y)Dψλ(x), τc(dyj)ψλ(y)〉dvolM (y)

−
∑

λ6=0

e−tλ〈AS(x, y)ψλ(x), τψλ(y)〉dvolM (y).

Thus we see that the t−dependent term can be written

∑

λ6=0

e−tλ

2λ
d[〈AS(x, y)Dψλ(x), τc(dyj)ψλ(y)〉i ∂

∂yj
dvolM (y)].

Here iX denotes interior multiplication by X . Thus we see that the t−dependent term
is once again exact. We now obtain the following proposition.

Proposition 5.1. Let M2m be a compact, oriented Riemannian spin manifold.
Let V be a spin conformal correspondence intersecting δ transversely. Then

∫

V

∑

i

〈AS(x, y)hi(x), hi(y)〉dvolM (y) =
∑

(b,b)∈V ∩δ

νspin(T(b,b)V ),

where for V locally the graph of a conformal map f with df = µk near (b, b),

νspin(T(b,b)V ) = ±im2−mµ
1

2
−m|det(I − k)|
|det(I − µk)|

m
∏

j=1

cosec(θj/2).

6. Lagrangian geometry. Suppose now that thatM2m is symplectic with sym-
plectic form ω. Suppose that J is a compatible almost complex structure so that
ω(JX, JY ) = ω(X,Y ), for any vectorfields X,Y on M , and ω(·, J ·) defines a met-
ric. The triple (M,ω, J) is called an almost Kähler manifold. Let V be a coistropic
2m− l dimension submanifold of M . Recall that this means that for every p ∈ V , the
annihilator A(TpV ) of TpV , defined by

A(TpV ) = {v ∈ TpM : ω(v, ·)|TpV = 0}

is a subspace of TpV . Let N denote the normal bundle of V . Let e1, · · · , el be an or-
thonormal basis of A(TpV ). Then Je1, · · · , Jel spanNp since they are contained in Np

and dimA(TpV ) + dimTpV = dimTp(M ×M). Consequently, we can complete the ej
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to an oriented orthonormal basis of TpV , adding vectorfields el+1, Jel+1, · · · , em, Jem.
Let w1, · · · , wl, wl+1, Jwl+1 · · · , wm, Jwm be the dual coframe. Consider an l−form
f := wI ∧ JwK . Observe that ∗f|V = 0, unless I = ∅ and K = {1, · · · , l}. In the
latter case, we observe that

∗(Jw1 ∧ · · · ∧ Jwl) = (−1)l(l+1)/2w1 ∧ · · · ∧ wl ∧ wl+1 ∧ Jwl+1 ∧ · · · ∧wm ∧ Jwm.

We rewrite this as

∗f =
1

(m− l)!
L(m−l)(−1)l(l−1)/2Jf,

where L denotes exterior multiplication by ω. In general, we find that restricted to
V ,

∗ =
1

(m− l)!
L(m−l)(−1)l(l−1)/2J.

This suggests considering a modification of the signature index density, replacing

st =
∑

q

(−1)q(n−q)
∑

λ

τφq
λ(x) ∧ ∗φq

λ(y)

by

Jst =
∑

q

(−1)q(n−q)
∑

λ

Jτφq
λ(x) ∧ ∗φq

λ(y).

Then the t dependent summands in the index density arise from exact φ and coexact
φ. These contribute terms of the form (up to constant factors)

∑

λ Jτλ
−1e−tλdbλ(x)∧

∗dbλ(y) and
∑

λ Jλ
−1e−tλdβλ ∧ dβλ. Up to additional constant factors, for V1

coisotropic, these restrict to V1 ×V2 ⊂M ×M as
∑

λ λ
−1e−tλL(m−l)dbλ(x)∧∗dbλ(y)

and
∑

λ λ
−1e−tλJdβλ(x)∧dβλ(y). These integrate to 0 for Vi closed. The t−invariant

summand of Jst is therefore
∑

p(−1)p(n−p)
∑

i Jτh
p
i (x) ∧ ∗hp

i (y).
Applying (8.1) yet again gives

Proposition 6.1. Let V1 and V2 be 2 transversely intersecting m +
q−dimensional compact submanifolds of a compact almost Kähler manifold M2m,

with V1 coisotropic. Let {hq
j}

bq

j=1 be an orthonormal basis of harmonic q− forms of
M . Then

∑

j

∫

V1

Jhq
j

∫

V2

hq
j =

∫

V1∩V2

< dvolV1
, JdvolV2

>

det1/2(2Π∗
V1×V2,bΠV1×V2,b)

dVV1∩V2
(b). (6.2)

Remark 6.3. This proposition can also be deduced using the Gauss-Bonnet
index form. To see this write

−(−1)(m−q)(m−q−1)/2

q!

∑

j

∫

V1

Jhq
j

∫

V2

hq
j = (−1)m−q

∑

j

∫

V1

Lqhm−q
j

∫

V2

∗hm−q
j

=

∫

V1×V2

ωq ∧
∑

p

(−1)pep
t .

This can be computed using Theorem 4.5. Using the fact that V1 is coisotropic we
recover the equality of the proposition.
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7. Special Lagrangians. Let M2m be a compact Calabi - Yau manifold. Let
V = V1 × V2, with each Vi a special Lagrangian manifold. Recall M Calabi-Yau
implies that there is a nonvanishing holomorphic (m, 0) form, Ω on M . Vi special
Lagrangian means that Vi is Lagrangian and Ω|Vj = eiφjdvolVj , for some constant
phase eiφj . It is obvious that the t−independence of the Riemann-Roch index form
must fail for V , as the integral reduces to

(−1)m

∫

V1

h0,m

∫

V2

h̄0,m + (−1)m
∑

λ

e−tλλ−1

∫

V1

∂̄b0,m−1
λ

∫

V2

∂b̄0,m−1
λ . (7.1)

In the t→ ∞ limit, this reduces to

(−1)me−i(φ1−φ2)vol(V1)vol(V2)vol(M)−1.

On the other hand, the t→ 0 limit (3.1) yields the expression,

limt→0

∫

V1×V2

∑

q

e0,q
t = (−1)m

∑

b∈V1∩V2

e−i(φ1−φ2)

det1/2(2Π∗
V1×V2,bΠV1×V2,b)

.

It seems unlikely that these two limits should coincide. We record their relation:

Proposition 7.2. Let M be a compact Calabi Yau. Let V1 and V2 be two special
Lagrangian submanifolds of M intersecting transversely. Then

ei(φ1−φ2)vol(V1)vol(V2)vol(M)−1 −
∑

b∈V1∩V2

e−i(φ1−φ2)

det1/2(2Π∗
V1×V2,bΠV1×V2,b)

=
∑

λ

λ−1

∫

V1

∂̄b0,m−1
λ

∫

V2

∂b̄0,m−1
λ .

If we weaken Calabi-Yau to Kähler and special Lagrangian to Lagrangian, then
this relation generalizes to

∑

i

∫

V1

h0,m
i

∫

V2

h̄0,m
i −

∑

b∈V1∩V2

νRR(T(b,b)(V1 × V2))

=
∑

λ

λ−1

∫

V1

∂̄b0,m−1
λ

∫

V2

∂b̄0,m−1
λ .

On an abelian variety M = Cm/L , the spectral term has the simple form

1

vol(M)

∑

k∈L∗\0

|k|−2

∫

V1

eik·xdvx

∫

V2

e−ik·ydvy,

and invites data mining. For example, performing Hecke type operations on the
lattice leads to many relations. Even simpler is to consider a 2m parameter family of
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translations V2s = V2 + s. Then integrating the equality in s gives

ei(φ1−φ2)vol(V1)vol(V2)vol(M)−1

∫

S

ds

−
∫

S

∑

b(s)∈V1∩V2s

e−i(φ1−φ2)

det1/2(2Π∗
V1×V2s,bΠV1×V2s,b)

ds

=
∑

k∈L∗\0

∫

S
e−ik·sds

vol(M)|k|2
∫

V1

eik·xdvx

∫

V2

e−ik·ydvy.

Choosing S to be Cm/L, annihilates the spectral term, leaving

ei(φ1−φ2)vol(V1)vol(V2) =

∫

M

∑

b(s)∈V1∩V2s

e−i(φ1−φ2)

det1/2(2Π∗
V1×V2s,bΠV1×V2s,b)

ds. (7.3)

Similar computations can be performed on other homogeneous spaces and for
other index forms. For example, if M = G/K is a compact hermitian symmetric
space and if V1 and V2 are Lagrangian submanifolds, we can use the group G to
translate V2. Then the integral of the shifted spectral term over G becomes

∑

λ

λ−1

∫

G

dg

∫

V1

∂̄b0,m−1
λ

∫

gV2

∂b̄0,m−1
λ =

∑

λ

λ−1

∫

V1

∂̄b0,m−1
λ

∫

V2

∂(

∫

G

dgg∗b̄0,m−1
λ ).

The form
∫

G
dgg∗b0,m−1

λ is invariant and therefore vanishes as it must be harmonic
but λ 6= 0. So we obtain the following theorem.

Theorem 7.4. Let M be a compact Hermitian symmetric space. Let V1 and V2

be two Lagrangian submanifolds of M intersecting transversely. Then

∑

i

∫

V1

h0,m
i

∫

V2

h̄0,m
i = V ol(G)−1

∫

G

dg
∑

b∈V1∩gV2

νRR(T(b,b)(V1 × gV2)).

The same argument gives the following.

Theorem 7.5. Let M = G/K be a compact symmetric space. Let V1 and V2 be
two middle dimensional submanifolds of M intersecting transversely. Let {hi}i be an
orthonormal basis for the harmonic forms in middle dimension. Then

∑

i

∫

V1

hi

∫

V2

hi = V ol(G)−1

∫

G

dg
∑

b∈V1∩gV2

νsig(T(b,b)(V1 × gV2)).

Thus the average of the local signature numbers gives the intersection number of
V1 and the Poincare dual of V2.

8. Appendix: heat equation asymptotics. Let E be a Dirac bundle over a
smooth compact Riemannian manifold Mn. (See [LM, p.114]). Let D be the associ-
ated generalized Dirac operator. We review here the construction of an approximation
to e−tD2

. The Cauchy integral formula

e−tD2

=
−1

2πi

∫

γ

e−λ(tD2 − λ)−1dλ
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reduces the construction to approximating (tD2 − λ)−1. The standard method of
approximation (see [Gil] or [BGV]), which we will follow here, is to construct an
approximation in coordinate neighborhoods. These local approximations are then
patched together using partitions of unity and auxillary cutoff functions. We will
suppress this latter patching step in our discussion.

Fix y ∈M and geodesic coordinates centered at y. Define

Pλ,Nf(x) =

∫

e2πi(x−y)·u
N

∑

j=0

(4π2t|u|2 − λ)−j−1aj(x, y)f(y)dydu,

with a0 = Id in our choice of local frames. The remaining aj are chosen inductively
with

(4π2t|u|2 − λ)−jaj(x, y) = −(tD2
x − 4πituk∇k)(4π2t|u|2 − λ)−jaj−1(x, y),

for 1 ≤ j ≤ N . This gives the recipe

(4π2t|u|2 − λ)−j−1aj(x, y)

= (−t)j(4π2t|u|2 − λ)−1[(D2
x − 4πiuk∇k)(4π2t|u|2 − λ)−1]ja0(x, y).

With this choice,

(tD2 − λ)Pλ,Nf(x)

=

∫

(tD2
x − λ)e2πi(x−y)·u

N
∑

j=0

(4π2t|u|2 − λ)−j−1aj(x, y)f(y)dydu

=

∫

e2πi(x−y)·u(tD2
x − 4πituk∇k + 4π2|u|2 − λ)

N
∑

j=0

(4π2t|u|2 − λ)−j−1aj(x, y)f(y)dydu

= f(x) +

∫

e2πi(x−y)·u[(tD2
x − 4πituk∇k)(4π2t|u|2 − λ)−N−1aN (x, y)]f(y)dydu.

Inserting this back into our expression for e−tD2

gives, for a suitable curve γ in
C surrounding the real axis, the approximate heat kernel

pN
t (x, y) =

−1

2πi

∫

γ

e−λ

∫

e2πi(x−y)·u
N

∑

j=0

(−t)j(4π2t|u|2 − λ)−1

×[(D2
x − 4πiuk∇k)(4π2t|u|2 − λ)−1]ja0(x, y)dudλ

=
−t−n/2

2πi

∫

γ

e−λ

∫

e2πi(x−y)·u/
√

t
N

∑

j=0

(−t)j(4π2|u|2 − λ)−1

×[(D2
x − 4πit−1/2uk∇k)(4π2|u|2 − λ)−1]ja0(x, y)dudλ.

The error term pt − pN
t has trace class norm which is decreasing faster than O(tN/4),

(not sharp) for N large and t→ 0. Expand

[(D2
x − 4πit−1/2uk∇k)(4π2|u|2 − λ)−1]ja0 =

∑

l,J,p

(4π2|u|2 − λ)−luJ t−p/2aj,l,J,p(x, y).
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In this expansion, we note that p ≤ j. Inserting this into our expression for pN
t (x, y),

changing the order of integration, and performing the contour integral gives

pN
t (x, y) =

∫

e−4π2|u|2e2πi(x−y)·u/
√

t
N

∑

j=0

∑

l,J,p

(−1)juJ tj−p/2−n/2

l!
aj,l,J,p(x, y)du

=

N
∑

j=0

∑

l,J,p

[(
∂

2πi∂x
)Je−|x−y|2/4t](4π)−n/2 (−1)jtj+|J|/2−p/2−n/2

l!
aj,l,J,p(x, y).

Let τE denote an involution of E, preserving the fibers. We wish to study integrals
of τEpt over submanifolds of M ×M , but in general τEpt is a section of π∗

1E ⊗ π∗
2E

∗.
Hence we must first fix a section q ∈ Γ(Hom(π∗

1E ⊗ π∗
2E

∗,
∧· T ∗(M × M))) and

consider instead integrals of q(τEp
N
t ). Let W be a smooth submanifold of M ×M

intersecting δ transversely, in a submanifold S. Then Gaussian decay gives

limt→0

∫

W

q(τEpt) = limt→0

∫

W

q(τEp
N
t ) = limt→0

∫

Nǫ(S)

q(τEp
N
t ),

for any tubular neighborhood Nǫ(S) of S in W . In a neighborhood V of (b, b) ∈ S,
pick a local orthonormal frame {ej}j for the normal bundle NS of S in W . Given a
coordinate map X for V , we obtain coordinates for the tubular neighborhood of V
via the map

(v, s) → expX(v)(s
jej).

The Gaussian e−|x−y|2/4t can be written e−d(y,x)2/4t, since the exponential map pre-
serves radial distances. Observe that

d(π1(expX(v)(s
jej)), π2(expX(v)(s

jej)))
2 = 2|ΠW (sjej)|2 +O(|s|4),

where we recall that ΠW denotes the projection of the normal bundle of S in W
onto the normal bundle of δ. This follows from the fact that the result is true in
Euclidean space and the exponential map distorts distances by at most O(|s|2). Let
φ(b, s) denote the O(|s|4) correction term. More generally, we can write (x − y) =
21/2ΠW (s) + φ2(b, s), with φ2(b, s) ∈ O(|s|2), and dVW = dVS ∧ (1 + φ3(b, s))ds,

with φ3(b, s) ∈ O(|s|), Write ( ∂
2πi∂x )Je−|x−y|2/4t = wJ (x − y, t)e−|x−y|2/4t, for some

polynomial wJ =
∑

2b−|A|=|J|wJ,A,b(x − y)At−b. Then we wish to compute

limt→0

Z
V ×Bǫ(0)

NX
j=0

X
l,J,p

wJ (21/2ΠW (s) + φ2(b, s), t)e
−(2|ΠW s|2+φ(b,s))/4t

×

(−1)jtj+|J|/2−p/2−n/2

(4π)n/2l!
〈q(τEaj,l,J,p(b, s)), dVW 〉dVS(1 + φ3(s, b))ds

= limt→0

Z
V ×B

t−1/2ǫ
(0)

NX
j=0

X
l,J,p

wJ (21/2ΠW (s) + t
−1/2

φ2(b, t
1/2

s), 1)e−(2|ΠW s|2+φ(b,t
1/2

s)/4t)

×

(−1)jtj−p/2−n/2+c/2

(4π)n/2l!
〈q(τEaj,l,J,p(b, t

1/2
s)), dVW 〉dVS(1 + φ3(b, t

1/2
s))ds,

where c denotes the codimension of S in W .
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In this paper, we have only treated the case where c = n. In this case, recalling
that p ≤ j, the preceding vanishes unless j = p = |J | = 0 = l and then reduces to

∫

V ×Rn

e−2|ΠW s|2 1

(4π)n/2
〈q(τE), dVW 〉dVSds =

∫

V

〈q(τE), dVW 〉
det1/2(2Π∗

W ΠW (b))
dVS .

We record this as a proposition.

Proposition 8.1. Let E be a Dirac bundle over a smooth compact Riemannian
manifold Mn. Let W be a smooth n + p dimensional submanifold of M ×M which
intersects δ transversely. Let q ∈ Γ(Hom(π∗

1E ⊗ π∗
2E

∗,
∧· T ∗(M ×M))). Let τE be

an automorphism of E which is an involution. Then

limt→0

∫

W

q(τEpt) =

∫

W∩δ

〈q(τE), dVW 〉
det1/2(2Π∗

W ΠW (b))
dVW∩δ . (8.2)

Example 1. As an example, suppose that E is
∧·
T ∗M , and identify E∗ with

differential forms via the Hodge star operator. Let q = q1 be the identity map with
respect to these identifications. Then if E =

∧· T ∗M and if {ωj}j is an oriented
orthonormal basis of T ∗

b M , q(Id)(b, b) =
∑

J π
∗
1ω

J ∧ π∗
2 ∗ ωJ . Suppose that τE =

(−1)deg. Then

q(τE) =
∑

J

(−1)|J|π∗
1ω

J ∧ π∗
2 ∗ ωJ = (π∗

1ω
1 − π∗

2ω
1) ∧ · · · ∧ (π∗

1ω
n − π∗

2ω
n).

Let ν denote the volume form of the fiber of normal bundle to δ, determined by the
metric. Then

q(τE) = 2n/2ν.

Suppose, as in the classical Lefschetz theorem that W is the graph of f , where f
has only isolated nondegenerate fixed points. Then if (b, b) ∈ W ∩ δ, T(b,b)W can be
identified with the graph of dfb. Let {vj}j be an oriented orthonormal eigenbasis for
df∗

b dfb, with df∗
b dfbvj = λjvj . Then {(1 +λj)

−1/2(dfbvj , vj)}j is an orthonormal basis
of T(b,b)W . Hence 〈q(τE), dVW 〉 can be computed by evaluating 2n/2ν on this basis,
yielding

〈q(τE), dVW 〉 = det(I − dfb)
∏

j

(1 + λj)
−1/2.

On the other hand, we compute

〈2Π∗
W ΠW (1 + λj)

−1/2(dfbvj , vj), (1 + λk)−1/2(dfbvk, vk)〉
= (1 + λj)

−1/2(1 + λk)−1/2〈vj − dfbvj , vk − dfbvk〉
= (1 + λj)

−1/2(1 + λk)−1/2〈(I − df∗
b )(I − dfb)vj , vk〉.

So det1/2(2Π∗
W ΠW ) = |det(I − dfb)|

∏

j(1 + λj)
−1/2. Combining these gives the ex-

pected

〈q(τE), dVW 〉
det1/2(2Π∗

W ΠW (b))
= sign det(I − dfb), (8.3)
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and we see that 〈q(τE),dVW 〉
det1/2(2Π∗

W ΠW (b))
encodes the usual Lefschetz data.

Example 2. Let E and τE be as in the preceding example, but choose q2 ∈
Γ(Hom(π∗

1E ⊗ π∗
2E

∗,
∧·
T ∗(M ×M))) to be z ∧ q1, for some p−form z. Choose W

to be an n + p dimensional submanifold of M ×M intersecting δ transversely in a
submanifold S. On S, the metric gives us an orthogonal factorization dVW = νS∧dVS .
Then

〈q2(τE), dVW 〉
det1/2(2Π∗

W ΠW (b))
=

〈z ∧ 2n/2ν, νS ∧ dVS〉
det1/2(2Π∗

W ΠW (b))
=

〈z, dVS〉〈2n/2ν, νS〉
det1/2(2Π∗

W ΠW (b))
.

We have seen in the previous example that

(2n/2ν, νS)

det1/2(2Π∗
W ΠW (b))

= ±1.

Hence

〈q2(τE), dVW 〉
det1/2(2Π∗

W ΠW )
dVS = ±z|S,

where the sign is constant on connected components of S.

Example 3. In treating the fixed point theorem for the Dolbeault complex on
(0, q) forms, q(τE) = 2n/2ν is replaced by q(τE) = 2m/2ν2, where ν2 is defined in 3.2
and m denotes the complex dimension of M . Let’s consider the more general choice
of q = z ∧ 2m/2ν2, z a closed (p, p) form, arising when we consider currents of greater
dimension than M . Then in the notation of section 3.1, with S = W ∩ δ,

〈q(τE), dVW 〉
det1/2(2Π∗

W ΠW (b))
dVS =

〈z ∧ 2m/2ν2, ν
W
S ∧ dVS〉

det1/2(2Π∗
W ΠW (b))

dVS .

Suppose W is given locally as the projection onto the two M factors of the graph of
a function

F : M ×B →M,

where B ⊂ π1(S) denotes a small ball. Thus locally W has the form {(z, F (z, t)) :
z ∈ U ⊂ M, t ∈ B}. By making a change of variables in U × B if necessary, we can
assume that at a given fixed point (s, s) ∈ S, F (s, 0) = s, (dF, I)T0B = Ts,sS, and

(dF(s,0)u, u) ⊥ (dF(s,0)v, v) for u ∈ TsU and v ∈ T0B. (8.4)

Let f(x) = F (x, 0). Choose again a basis {vj}j for TsM which is eigen for df∗
s dfs:

df∗
s dfsvj = λjvj . Then the tangent space to W at (s, s) has orthonormal basis

{(1 + λj)
−1/2(dfvj , vj)}j union an orthonormal basis {ua}a for T(s,s)S. With these

notations, det1/2(2Π∗
W ΠW ) is now the same as det1/2(2Π∗

Γf
ΠΓf

), where Γf denotes
the graph of f . In particular,

det1/2(2Π∗
W ΠW ) = |det(I − df)|

∏

j

(1 + λj)
−1/2.

To proceed further, we need to decompose according to Hodge type

νW
S = νW

S (0, n) ∧ νW
S (n, 0),
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and

2m/2ν2 = 2m/2ν2(0, n) ∧ ν2(n, 0).

Then we have

〈z ∧ 2m/2ν2, ν
W
S ∧ dVS〉

det1/2(2Π∗
W ΠW )

=
〈2m/2ν2(0, n), νW

S (0, n)〉〈z ∧ ν2(n, 0), νW
S (n, 0) ∧ dVS〉

|det(I − df)|∏j(1 + λj)−1/2
.

Computing as in Example 1, we find

〈2m/2ν2(0, n), νW
S (0, n)〉

|det(I − df)|∏j(1 + λj)−1/2
=

∏

j(1 + λj)
1/2

detC(I − df)
.

This reduces us to computingX
a

〈zp,a,0,p−a ∧ ν2(n, 0), νW

S
(n, 0) ∧ dVS〉

= (−i)p

nY
j=1

(1 + λj)
−1/2
X

a

zp,a,0,p−a ∧ ν2(n, 0)((dfv1, v1), · · · , (dfvn, vn), u1, ū1, · · · , up, ūp),

where we have ordered our eigenbases so that the vj , j ≤ n and ua , a ≤ p are type
(1, 0). The orthogonality conditions (8.4) on (dF, I) imply that dπ1(Ts,sS) must be
contained in the −1 eigenspace of dfs. Hence we may assume that we have chosen our
basis so that uj = 1√

2
(vj , vj). Hence the preceding reduces to

∑

a

〈zp,a,0,p−a ∧ ν2(n, 0), νW
S (n, 0) ∧ dVS〉

= ip
n

∏

j=p+1

(1 + λj)
−1/2

∑

a

zp,a,0,p−a(u1, ū1, · · · , up, ūp)

= 2p/2
n

∏

j=p+1

(1 + λj)
−1/2〈

∑

a

zp,a,0,p−a, dVS〉.

Combining these expressions and recalling the notation z0 =
∑

a zp,a,0,p−a gives

〈z ∧ 2m/2ν2, ν
W
S ∧ dVS〉

det1/2(2Π∗
W ΠW (b))

dVS =
2p〈z0, dVS〉dVS

detC(I − df)
= 2p 〈2m/2ν2, ν

W
S 〉

det1/2(2Π∗
W ΠW )

(z0)|S . (8.5)
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