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Equivariant L?-Euler characteristics
of G-C'W-complexes

Jang Hyun Jo

Abstract. We show that if X is a cocompact G-CW-complex such that each isotropy
subgroup Gy is L(?-good over an arbitrary commutative ring k, then X satisfies some fixed-point
formula which is an L(?)-analogue of Brown’s formula in 1982. Using this result we present a fixed
point formula for a cocompact proper G-CW-complex which relates the equivariant L(2)-Euler
characteristic of a fixed point CW-complex X and the Euler characteristic of X/G. As corollaries,
we prove Atiyah’s theorem in 1976, Akita’s formula in 1999 and a result of Chatterji-Mislin in
2009. We also show that if X is a free G-CW-complex such that Cy(X) is chain homotopy
equivalent to a chain complex of finitely generated projective Zm1 (X )-modules of finite length and
X satisfies some fixed-point formula over Q or C which is an L(?)-analogue of Brown’s formula, then
x(X/G)=x(? (X). As an application, we prove that the weak Bass conjecture holds for any finitely
presented group G satisfying the following condition: for any finitely dominated CW-complex Y
with 71 (Y)=G, Y satisfies some fixed-point formula over Q or C which is an L(2)-analogue of
Brown’s formula.

1. Introduction

Let G be a discrete group and X a G-CW-complex. Then for each s€@G, a fixed
point set X* is a Cg(s)-CW-complex, where Cg(s) is the centralizer of s in G.

In 1999, Akita presented a formula expressing the Euler characteristic of the
orbit space of a proper cocompact G-CW-complex in terms of equivariant Euler
characteristics [1, Theorem 1]. More precisely, he asserted that if X is a cocompact
proper G-CW-complex, then

X/G Z XCc(b )7

[s]eF(G)

Key words and phrases: Euler characteristic, Hattori-Stallings rank, weak Bass conjecture.
2010 Mathematics Subject Classification: 18G99, 20J05, 55N99.



156 Jang Hyun Jo

where F(G) is a set of representatives for the conjugacy classes of G of finite order.
If G is finite, this result implies the following well-known result [1] and [13]:

X(X/G)= Z X(X?)
|G| seG
When G is virtually torsion-free and X is a proper cocompact G-CW -complex such
that X* is nonempty and Q-acyclic for every s€G of finite order, the result also
implies the following, which is a special case of Brown’s formula [1], [6] and [7]:

D (-D)idimgHi(G,Q) = > Xcas(

@ [s]eF (&)

On the other hand, Brown conjectured the following formula for a group of
type F P over Q under suitable finiteness conditions for a group G, and gave some
partial affirmative answers in many cases, including groups with cocompact EG [6]:

e(Cg(s)) if s has finite order,

0 if s has infinite order,

For each s€ G, E(G,Q)(s)= {

where E(G,Q):=HSgg(Ps) is the complete equivariant Euler characteristic of G
which is the Hattori-Stallings rank of an alternating sum of finitely generated pro-
jective QG-modules, and e(Cg(s)) is the Euler characteristic of Cg(s) in the sense
of [3] or [9] (see Section 2 for more details). In order to give a positive answer to
his conjecture, Brown considered more general situation as in [6, Theorem 3.1].

In 2000, Chatterji and Mislin [8] conjectured that if G is a group of type F'P
over C such that the centralizer of every element of finite order in G has finite
L2-Betti numbers, then

E(G,C)(s)=x® (Cal(s))
for every s€(G. This amounts to putting Brown’s formula within the framework
of L?-homology. They gave a class of groups which satisfy their conjecture. Thus
we may naturally ask the following questions which are L?-analogues of [6, Theo-
rem 3.1] (Theorem 7 and Proposition 4 explain the reason why we call these ques-
tions L2-analogues of [6, Theorem 3.1]).

Question 1. Let k be an arbitrary commutative ring and X a G-CW-complex
of type F'P over k such that X((i);(s)(X %) is defined for each element s of finite order
in G. What kind of G-CW-complexes X do satisfy the following equation?

) (X*) if s has finite ord
For each s€G, FEq(X,k)(s)= {XCG(S)( ) if s has finite order,

0 if s has infinite order,

where Eqg (X, k) is the complete equivariant Euler characteristic of X.
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Question 2. Let k be an arbitrary commutative ring and X a G-CW-complex
of type FP over k such that x(?(X*®) is defined for each element s of finite order
in G. What kind of G-CW-complexes X do satisfy the following equation?

For each s€G, Eq(X,k)(s)= x'¥(X?) if s has finite order,
0 if s has infinite order,

where Eg (X, k) is the complete equivariant Euler characteristic of X.

In Theorem 10, we show that if X is a cocompact G-CW-complex such that
each isotropy subgroup G, is L(*)-good over an arbitrary commutative ring k, then
X satisfies the equation in Question 1. Using this result we present, in Theorem 11,
a fixed point formula for a cocompact proper G-C'W-complex which relates the
equivariant L(?)-Euler characteristic of a fixed point C'W-complex X* and the Euler
characteristic of X/G. As corollaries, we prove Akita’s formula in Corollary 13,
a result of Chatterji-Mislin in Corollary 14 and Atiyah’s theorem in Corollary 12.

We also show in Theorem 15 that if X is a free G-CW-complex such that
C.(X) is chain homotopy equivalent to complex of finitely generated projective
Zm1(Y)-modules of finite length and X satisfies the equation over Q or C in Ques-
tion 2, then y(X/G)=x®(X). As an application, we prove that the weak Bass
conjecture holds for any finitely presented group G satisfying the following condi-
tions: for any finitely dominated CW-complex Y with 7;(Y)=G, Y satisfies the
equation over Q or C in Question 2.

2. Preliminaries

Throughout this paper, let G be an arbitrary discrete group and ZG its group
ring. We denote by k an arbitrary commutative ring and by R an arbitrary ring.
All CW-complexes we consider are connected admissible ones [6] and [7]. For a
CW-complex X, X will denote the universal covering of X.

In this section, we introduce terminologies and notations, and review many
well known facts about various topics, which we will use throughout the paper. For
more details, we recommend each reference.

1. ([6]) A chain complex of R-modules P=(F;) is said to be of finite type if each
P; is finitely generated projective. If, in addition, P;=0 for sufficiently large i, then
P=(F;) is said to be finite. A chain complex of R-modules C is said to be of type
FP,, or FP over R if there is a weak equivalence f:P—C, i.e., fu:H.(P)— H,(C)
is an isomorphism, with P finite type or finite, respectively. For a G-CW-complex
X, and (G, X) or X is said to be of type F P, or FP over k if C.(X, k) is of type
F P, or FP over kG, respectively, where C (X, k) is a the cellular chain complex of
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kG-modules. In case X is a point, Ci(X, k) is k, with trivial G-action, concentrated
in dimension 0. Thus a point with G-action is of type F' Py or FP over k if and
only if k is a kG-module of type F' P, or F'P over k if and only if £ admits a finitely
type or finite projective resolution, in which case we say that G is of type F Py
or F'P over k, respectively. A group G is said to be of type VFP over k if some
subgroup of finite index is of type F'P over k.

2. ([5], [6] and [7]) A group G is said to be of finite homological type if
(1) vedG<oo and (i) for every ZG-module M which is finitely generated as an
abelian group, H;(G, M) is finitely generated for all ¢. The groups of type VFP
over Z are examples of groups of finite homological type. For a torsion-free group
G of finite homological type, the Euler characteristic x(G) is defined by x(G):=
> (=1)'rkz(H;(G)). For a group G of finite homological type, the Euler character-
istic x(G) is defined by x(G):=x(G")/|G:G’|, where G’ is a torsion-free subgroup
of finite index. For an admissible G-CW-complex such that (i) every G, is of finite
homological type and (i4) X has finitely many cells mod G, i.e., X is cocompact, the
equivariant Euler characteristic of X is defined by xa(X):=>",c(—1)"™x(G,),
where £ is a set of representatives for the cells of X mod G.

3. ([12]) For a G-space X, its p-th L?-Betti number is defined by

b(X) = dimy () (Hy (X, N(G))),

where HS(X,N(G)) is the homology of the N(G)-chain complex N(G)®zq
C3"%(X). The L*-Euler characteristic of a G-space X is defined by x®)(X):=
szo(fl)pb,(,Q)(X) provided that h(2)(X)::Zp20 bf) (X)<oo. A G-space X is
called L*-finite if h(?)(X)<oo. Thus the condition of being L?-finite ensures that
x?(X)<oo. For any discrete group G its p-th L?-Betti number by béQ)(G)::
b,(,Q)(EG), where EG is the classifying space for free G-action. The L?-Euler charac-
teristic of G is defined by x(?)(G):=x? (EG) provided that h? (G):=h?)(EG) <.

4. (4], [6] and [7]) Let F be a finitely generated free R-module, and a: F—F
an endomorphism. The Hattori-Stallings rank of « is defined by HSr(a)=>" @y,
where [o;;] is the matrix of « relative to a basis of F, and @;€T(R)=R/[R, R].
The Hattori-Stallings rank of F' is defined by HSg(F):=HSg(1r). For a finitely
generated projective R-module and a:P— P an endomorphism, define HSp(«):=
HSg(iar), where i:P—F, m:F— P, and mi=1p. The Hattori-Stallings rank of P
is defined by HSp(P):=HSg(1p). For a group ring kG and a finitely generated
projective kG-module P, it can be seen that HSka(P)=>_ g HSka(P)(s)-[s]€
@[G] k, where [G] is a set of representatives for the conjugacy classes of elements
of G. For a G-CW-complex X of type FP, the complete Euler characteristic
Ec(X, k) is defined by Eq(X,k):=) " (—1)'"HSkg(P;), where P, is a finite chain
complex of projective kG-modules weak equivalent to C (X, k). Then Eq¢(X, k) is
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a finite linear combination of the conjugacy classes [s] of elements of G. Denote
by E¢(X,k)(s) the coeflicient of the conjugacy class [s] of an element s€G. The
equivariant Euler characteristic of X over k is defined by eq(X, k):=FEq(X, k)(1).
For a group G of type F'P over k, the complete Euler characteristic E(G, k) is defined
by E(G,k):=Eg(point, k)=>"""_ (—1)"HSk(P;), where 0— P, —P,_1—...— Py—
k—0 is a finite projective resolution of k£ over kG. For a group G of type FP
over k, define e(G, k) by E(G,k)(1), which is the same as the Euler characteristic
of G in the sense of [3] or [9]. If k is the integer ring Z, then we will suppress
k from the notations above. The weak Bass conjecture (for ZG) predicts that
Z[S]E[G] HS7z¢(P)(s)=HSzg(P)(1). It is known that it suffices to consider only
finitely presented groups in the weak Bass conjecture, and the weak Bass conjecture
holds for a finitely presented group G if and only if @ (Y)=x(Y) for any finitely
dominated CW-complex Y with m(Y)=G.

3. Main results

Definition 3. For a G-CW-complex X, define the equivariant L?-Fuler char-
acteristic Xg)(X) of X by Xg)(X):zzaeg(—l)dim"x(2)(Ga) if it is defined, where
£ is a set of representatives for the cells of X mod G.

Proposition 4. Let X be a G-CW -complex such that G, is amenable for each
oc€&, where £ is a set of representatives for the cells of X mod G. If Xg)(X) and
xP(X) are defined, then X(G%) (X)=x?(X)<o0.

Proof. Note that for any amenable group H, b§,2) (H)=0 for all p>1 and thereby
X(z)(H):ﬁ, where |—}” is defined to be zero if H is infinite [12, Theorems 6.54
and 6.73]. Since G, is amenable for any c€€&, it follows from the Generalized
Euler-Poincare formula [12, Theorem 6.80 (1)] that

2 imo imo
X&' (X) =3 ()X (Go) = Y (-1
oce& oef
Lemma 5. (Cf. [12, Exercise 6.20]) Let X be a contractible G-CW -complex
with x?)(X)<oo. If each isotropy subgroup G, is finite or satisfies b,(,Q)(GU):O for
p=>0, then X (X)=x®(G).

|Go|

Proof. Note that EG x X is a model for EG. From [12, Theorem 6.54] it follows
that bz(,Q)(X):bl(,z)(G) for p>0. Hence Y@ (X)=x®(@). O

Let X be a finite dimensional virtually free G-CW-complex. Suppose that a
G-CW-complex X is of finite homological type in the sense of [6], i.e., X satisfies
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that H;(X/G") is finitely generated for each subgroup G’ of finite index which acts
freely on X. Then a homologically defined equivariant Euler characteristic Y (X)
is defined by X (X):=x(X/G")/|G:G’|, where x(X/G'):=>",(—1)rkz(H;(X/G")).
Brown denote this by x¢(X) in [6]. It is known that this is well-defined, i.e., it is
independent of the choice of G’ [6].

Lemma 6. Let X be a finite dimensional virtually free G-CW -complex of finite
homological type. Then X (X)=xa(X).

Proof. Let G’ be a subgroup of finite index which acts freely on X. Since
G’ acts freely on X, it is known that HS (X)~H,(X/G'), where HE' (X) is the
equivariant homology of X [7, Proposition VIL.7.8]. Thus we see that x(X/G')=
Xo (X)), where Xar(X):=3",(—1)irkz(HE (X)). Since G’ acts freely on X, it is
known that x¢/ (X)=Xa¢(X), [7, Proposition I1X.7.3 (¢)]. Thus we conclude from
[7, Proposition IX.7.3 (b")] that

Xa(X)=x(X/G)/|G: G| =xe(X)/IG: G| =xc(X). O

In [6, Remark 2.5], Brown mentioned that if X is a finite dimensional virtually
free G-C'W-complex of finite homological type and G has a subgroup of finite index
which satisfies the weak Bass conjecture, then Y (X)=eg(X). Using Lemma 6, we
have the following result.

Theorem 7. Let X be a finite dimensional virtually free G-CW -complez of
type F' Py, over Z. If G has a subgroup of finite index which satisfies the weak Bass
conjecture, then xa(X)=eq(X).

Proof. Let G’ be a subgroup of finite index in G which satisfies the weak Bass
conjecture. We may assume that G’ acts freely on X. Then it follows from the
argument of the proof of [6, Proposition 2.4] that (G', X) is of type FP over Z and
H;(X/G") is finitely generated for all . Note from [7, IX.(1.1)] and [7, IX.(4.3)]
that

X(X/G’)—Z(— )tz (Hi(X/G')) =Y (=1) rka(Ci(X/G"))

i

—Z ) tkz (Ci(X) @z Z) =Y _(~1)'e(Ci(X)) =Y Ea(X)(t)

i

Since the weak Bass conjecture holds for G', it follows that Z[t ey Bz (P)(t)=
0 and so x(X/G")=eq/(X). Hence by Lemma 6 and [7, Propos1t10n IX.4.1], we see
that

Xa(X) =Xa(X) =x(X/G")/|G: | =ec(X)/|G: G| =eq(X). O



Equivariant L2-Euler characteristics of G-C'W-complexes 161

Definition 8. A group G is said to be L -good over k if the following are
satisfied:

(a) Up to conjugacy G has only finitely many elements of finite order.
(b) For each s€G of finite order, C(s) is of type F'P over k.

(2) . . .
x'¥(Cqs(s)) if s has finite order,
(c) E(G,k)(s)= . o

0 if s has infinite order.

Ezample 9. Note that if a group H is of type F'P over Q or C, then x (H)=
e(H)<oo (cf. [8, Lemma 2.1]). Thus every good group over Q or C in the sense of
[6] is L(®)-good over Q or C. It is known from [8, Theorems 4.2 and 4.4] and [10] that
there are many groups satisfying the condition (¢) over C in Definition 8. Note also
that if a group G admits a cocompact EG which is the classifying space for proper
G-action, then G has only finitely many elements of finite order up to conjugacy
(cf. [11]). Thus if a group G admits a cocompact EG, then G is L(*)-good over C.

Theorem 10. Let X be a cocompact G-CW -complex such that each isotropy
subgroup G is L'®)-good over k. Then the following hold:

(a) Up to conjugacy G has only finitely many elements of finite order which
have fized points in X.
(b) For each s€G of finite order, C(s)-CW -complex X* is of type FP over k.

X (X®)if s has finite order,

For each seG, Eq(X,k
(c) (X, k)(s)= { 0 if s has infinite order,

Proof. Tt can be proved by the same argument of the proof of [6, Theorem 3.1].
O

Theorem 11. Let X be a cocompact proper G-CW -complex. Then

X(X/G)= Z ch(s) Z XCG(S)

s|eF(G)

Proof. Since X is cocompact and proper, it follows that each C;(X,Q) is a
finitely generated projective QG-module (cf. [1, Lemma 6]) and

H,(G,C.(X,Q) > HY(X,Q) = H.(X/G,Q)

(cf. [1] and [7, Exercise VIL.7.2]). It is well-known that dimg(Q®qgP)=
s or any nitely generate projective -module

sejc) HSa(P f finitel d jecti QG-module P

(cf. [7, IX.4.(4.3)]). Note that every finite group is L(*-good over Q. Thus it
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follows from Theorem 10 that

X(X/G) =) (~1)'dimg H(G, C.(X,Q)) = > _(~1)'dimg (Q=ge Ci(X, Q))

i>0 i>0
=Y (=)' > HSo(Ci(X,Q))(s)= Y Ea(X,Q)(s)
i>0 s€[G] s€[G]
- Z XCG S) Z XCG(S 0
s€[G] [s]leF(G)

Using Theorem 11 we have the following corollary, which is well-known as
Atiyah’s theorem [2] and [4].

Corollary 12. For a finite CW-complex Y, x(Y)=x® (Y).

Proof. Since Y is a free 7 (Y)-CW-complex, the result follows immediately
from Theorem 11. O

The following corollary is the formula of Atika appeared in [1, Theorem 1].
Corollary 13. Let X be a cocompact proper G-CW -complex. Then

XX/G)= > Xcaw!

[s]eF(G)

Proof. Note that for any finite group H, x? (H)=x(H). Thus it is clear that if
Y is a cocompact proper G-complex, then Xg) (Y)=x¢(Y). Hence the result follows
from Theorem 11. O

Using Theorem 11 we have the following corollary, which also follows from [8,
Corollary 4.5].

Corollary 14. Let G be a group which admits a cocompact G-CW -model for

EG. Then
XP@) =3 xPCas)= Y xP(Cals)).
[s]€[G] [s]€F(G)

Proof. Since G admits a cocompact G-CW-model for EG, it follows that
x?(G) is defined. Let X be a cocompact G-CW model for EG. From Lemma 5
it follows that ¥ (X)=x®(G). Let s€G be an element of finite order. Since
X is a cocompact G-CW model for EG, it follows that X° is a contractible
Cg(s)-CW-complex. Put H=Cg(s). Since H, is a subgroup of G, it is finite
for every c€X?®. Thus X* is a contractible proper Cg(s)-CW-complex. Hence
X(Q)(XS):Xgé(S)(XS):X(2)(CG(S)) by Lemmas 4 and 5. The required result now
follows from Theorem 11. O
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Theorem 15. Let X be a free G-CW -complex and k a commutative ring which
is Q or C. If Cu(X) is chain homotopy equivalent to a chain complex of finitely
generated projective ZG-modules of finite length, then

X(X/G)= > Ea(X, k)
[s]€[G]
Moreover, if X satisfies the equation over Q or C in Question 2, then
X(X/G)=xP(X).

Proof. Let @, be a chain complex of finitely generated projective ZG-modules
of finite length which is chain homotopy equivalent to C,(X). Define P,:=Q.®Q.
Since G acts freely on X, it follows that C.(X/G)=C.(X)®zcZ. Thus we have

X(X/G)=> (~1)'dimgH;(X/G,Q) =Y (—1)'dimgH;(C.(X)®2¢Q)
>0 >0
=Y " (-1)dimgH;(Q.®z¢Q) = > _(~1)'dimg H;(P. ©gc Q)

i>0 >0

Z( )dlmQ(P ®QGQ Z Z HS i, Q

i>0 i>0 [s]€[G]

= Y Ea(X,Q)(s)

[s]€[G]

Moreover, if X satisfies the equation over Q in Question 2. Note that y(*)(X) is
defined. Since G acts freely on X, we have
X(xX/G)= Y xXP(x)=x®(x).
[s]€F(G)

By the same argument in the above, we conclude that the result also holds for the
case of k=C. O

Corollary 16. Let Y be a finitely dominated CW -complex with m(Y)=G. If
Y satisfies the equation over Q or C in Question 2, then x(Y)=x? (Y)

Proof. From the well-known result of Wall ([7, Remark after Proposition
VIIL.6.4]) it follows that C,(Y) is chain homotopy equivalent to a chain complex
of finitely generated projective Zm1 (Y )-modules of finite length. Hence the result
follows immediately from Theorem 15. [

Corollary 17. Let G be a finitely presented group. Suppose that for any finitely
dominated CW -complex Y with m1(Y)=G, Y satisfies the equation over Q or C in
Question 2. Then the weak Bass conjecture holds for G.

Proof. This follows from [4, Lemma 8.1] and Corollary 16. O
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