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ABSTRACT 

We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. 
It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the 
U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 super-
symmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS 
matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua. 
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1. Introduction 

The BFSS matrix theory is conjectured to describe infi-
nite momentum frame (IMF) limit of M-theory in [2] and 
many evidences were found. However, because of the 
limit, SO(1,10) symmetry is not manifest in these models; 
it includes only time and nine matrices corresponding to 
nine spatial coordinates. As a result, it is very difficult to 
derive full dynamics of M-theory. For example, we do 
not know the manner to describe longitudinal momentum 
transfer of D0-branes. Therefore, we need a covariant 
matrix model for M-theory that possesses manifest SO 
(1,10) symmetry. 

Recently, structures of 3-algebras [3-5] were found in 
the effective actions of the multiple M2-branes [6-14]1 
and 3-algebras have been intensively studied [15-31]. 
One can expect that structures of 3-algebras play more 
fundamental roles in M-theory2 than the accidental struc-
tures in the effective descriptions. 

The BFSS matrix theory and the IIB matrix model [35] 
can be obtained by the matrix regularization of the Pois-
son brackets of the light-cone membrane theory [36] and 
of Green-Schwarz string theory in Schild gauge [35], 
respectively. Because the regularization replaces a two- 
dimensional integral over a world volume by a trace 
over matrices, the BFSS matrix theory and the IIB ma-
trix model are one-dimensional and zero-dimensional 
field theories, respectively. On the other hand, the bos-
onic part of the membrane action has a structures of a 

3-algebra. That is, it can be written in the 3-algebra 
manifest form as 
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where ,,  denotes Nambu-Poisson bracket [15,16]. 
Therefore, a bosonic covariant 3-algebra model for M- 
theory was proposed in [1]. 

In this paper, we examine a natural supersymmetric 
extension of the bosonic covariant model in [1]3,  
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LX  and the Majorana fermions The bosons   are 

spanned by the elements of the Lorentzian Lie 3-algebra 
associated with the U(N) Lie algebra. This action defines 
a zero-dimensional field theory and possesses manifest 
SO(1,10) symmetry. By expanding fields around appro-
priate vacua, we derive the BFSS matrix theory and the 
IIB matrix model in a large N limit. 

2. A Supersymmetric Extension 

We examine a following model, 
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1ABJM theory can also be rewritten in a 3-algebra manifest form [14].
2A formulation of M-theory by a cubic matrix action was proposed by 
Smolin [32-34]. 

    
3This extension was originally proposed in Appendix of [1]. 
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 U N ,  1 1U   
sformed. 

s invarian

where LX  with  are vectors and 0,1, ,10L     
are Majorana spinors of SO(1,10). This action defines a 
zero-dimensional field theory and possesses manifest SO 
(1,10) symmetry. There is no coupling constant. 

MX  and  are spanned by the elements of the Lor-
entzian Lie 3-algebra associated with the U(N) Lie alge- 
bra,  
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where  The algebra is defined by  
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where  and l
21, 2, , N, 1a b   f f h  is to- 

tally anti-symmetrized.  is a Lie bracket of the 
U(N) Lie algebra. The metric of the elements is defined 
by 
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By using these relations, the action is rewritten as 
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where =M M i
iX X T  and . There is no ghost 

in the theory, because 
= i

iT 
1

MX  1

2N

= ,

 or  does not appear in 
the action4. 

Let us summarize symmetry of the action. First, gauge 
symmetry is the -dimensional translation and U(N) 
symmetry associated with the Lorentzian Lie 3-algebra 
[10]. 

Second, there are two kinds of shift symmetry. First 
one is the eleven-dimensional translation symmetry ge- 
nerated by  

M MX 

 M

                 (6) 

Where 

and the other fields are 

X U N  1M U 

1 1= ,

,  and the other fields 
are not transformed. Second one is a part of supersym-
metry, so called the kinematical supersymmetry, gener-
ated by  

                    (7) 

where 
not tran

Third, the action i t under another part of su-
persymmetry transformation, so called the dynamical su- 
persymmetry transformation,  
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variation (9) and ( . of the action (5) under (8), 10)
tion is We should note that the above super transforma

slightly different with a 3-algebra manifest super trans-
formation, which is a straightforward analogue to that of 
the BLG theory for multiple M2-branes;  

M MX i
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If we decompose this transformation, (8), (9) and (10) 
are the same, but (11) is different. In the analogue case, 

0 0.   There is no such symmetry5 because  
0S0  . 

 Lorentzian case, the action does possess super-In the
symmetry because 2 0   cancels 0S . However, 

2 0   is inconsistent with the 3-algebra symmetry. As a 
result, the supersymmetry algebra does not close, al-
though it closes in a MX  sector as one can see below. 

The commutators among the supersymmetry transfor-
mations act on MX  as 

 1 2 2
M M

1 1 2X i '           

 1 1 1 1 0M' ' X      

 2 2 2 2 , , ,M a b M i
ab i

' ' X T T X T          

where 



2 2
L N

ab LN a bi ' X X     . 
 change a basis of the su rsymmetry transforma-

 
1 2 1

2 2 1 ,i

If we pe
tions as 

  

                      (13) 

up to the gauge transformation, we obtain 
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5This fact was originally shown in [39]. 4Ghost-free Lorentzian 3-algebra theories were studied in [37,38]. 
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where   is a translation. 
These 64 supersymmetry transformations are summa-

  1 2,rised as       and (14) implies the = 2  su- 
Mpersymmetry algebra in elev nsions in the en dime X  

sector, 

  .M MX X                 (15) 

Because energy effective descript f M- 
theory is given by the = 1

 the low ion o
  eleven-dimensional

pergrav
 su-

2ity, the   supersymmetry in this sector is 
1necessarily broken into the   supersymmetry, 

that the spontaneously. In the next section, we will show 
m

 limi

ong th

odel reduces to the BFSS matrix theory and the IIB 
matrix model in a large N t if appropriate vacua are 
chosen. 

Because the commutators am e supersymmetry 
transformations of MX  result in the eleven-dimensional 
translation (6), eigen values of  MX U N  should be 
interpreted as eleven-dimensional space-time6. In the 
next section, when FSS matrix theory and 
th

 we derive the B
e IIB matrix model,    1, ,9iX i U N   and 
 0, ,9i  X i U   are identified with matrices in 

the BFSS matrix theory and trix model 
respectively. Therefore, our interpretation is consistent 
with the space-time interpretation in these models. 

eory and IIB Matrix 
Model from Covariant 3-Algebra Model 
for M-Theory 

The covariant 3-algebra model for M-theory posse

N
the IIB ma

3. BFSS Matrix Th

sses a 
izable 

as 
ba e 
IIB e large N limit. 

large moduli that includes simultaneously diagonal
configurations. By treating appropriate configurations 

ckgrounds, we derive the BFSS matrix theory and th
 matrix model in th

We consider backgrounds  
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N ) represent N points 
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ector. By using SO(1,10) eleven-dimensional c

try, we can
loss of generality. 

o
 cho ckground w ut 

nstant v
ose (3) asymme s a ba itho

g  will be identified with a coupling 
constant. g   corresponds to 0 = 0MX , which leads 

to SO(1,10) symmetric vacua. 
We assume all the backgrounds (1), (2), (3) and (4) as 

independent vacua and fix them in the large N limit [40]. 
Thus, we do not i tegrate 0n MX , 0  or the diagonal 
elements of a  he fieldand we expand t s around the 
backgrounds as,  
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where we impose a

   

 chirality condition  
10 = .      

Under these conditions, the first term of the action (5) 
is rewritten as  
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As a result, the total action is independent of 10x  as 
follows, 

 

2

2

1 1
= ,

4

2 4

, , ,
2 2

i
i

S tr p a p a
g

g g
p a x

   

 


    

      

   
2 21 1

, ,i i jp a x x x     

        

   

where , , ,9i j d

(9) 

  . In the large N limit, this ac
equivalent to  

tion is 

 

 1
, ,ii

D x   

2 22
2

1 1 1 1
= d ,

4 2 4

2 2

d i i j

i

S tr F D x x x
g  



       

    




where 

 

  is redefined to 
1 
g

. This fact is proved  

perturbatively and non-perturbatively in the large N limit 
as in the case of the large N reduced model [41-44]. 

Under the conditions (1)-(6), the super transforma- 
tions (8) and (10) reduces to  

6This kind of mechanism and interpretation was originally found in 
[35]. 
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a i     

=x iI I    

 i j iji = , , ,
2

p a p a x x
g               

eover, (9) and (11) reduces 
to 

0
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= 0

= 0,

MX


                 (10) 

because t (5) reduces to the action (9) and 

 

by which (9) is invariant. Mor

he action 

0 = 0S . This is consistent with the fact that 0
MX  and 

0  are fixed. 
Therefore, if we choose the b ounds with = 1d , 

we obtain the BFSS matrix theo
ackgr

ry in the large N limit,  
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If we choose those with = 0d , we obtain the IIB 
matrix model in the large N limit, 
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We also obtain matrix string theory [45-47] when
= 2d  and 

2

2

1 1
= , .


     (12) 

 

5 4AdS CFT  [48] when = 4d . 

n 

In this paper, we have studied a natural supe
extension of the bosonic covariant 3-algebra mode
M
symm he a ion i d 6
metry transformations, alt ersy metry al-

the eleven-dim
s of the U(N)

4. Conclusion and Discussio

rsymmetric 
l for 

-theory proposed in [1]. It possesses manifest SO(1,10) 
etry. T ct s invariant un er 4 supersym-

hough the sup m
gebra does not close. In this model, 
sional space-time is given by eigen value

en- 
 

part of the bosonic fields MX . From this action, by 
choosing appropriate vacua, we have derived the BFSS 
matrix theory and the IIB matrix model in a large N 
limit. 

In order to obtain a covariant 3-algebra model for 
M-theory by means of a matrix regularization of a super- 
membrane action, the action must be written only with 
the Nambu brackets. Then, t ction must be invariant 
under constant shifts of the fermions, that is under the 
kinematical supersymmetry transformations. The number 
of them

he a

 is 32 because the Majorana fermions possess 32 
components for covariance. Thus, the total number of the 
dynamical and kinematical supersymmetries exceeds the 
number of the 1  supersymmetries. Therefore, 
there does not exist a 1  supersymmetric covariant 

3-algebra model for M-theory that is obtained by a ma-
trix regularization of a supermembrane action. As a result, 
there are two possibilities for 3-algebra models for M- 
theory. One is a covariant 3-algebra model for M-theory 
that possesses more than 32 supersymmetries as in this 
paper. Another is 1a   supersymmetric 3-algebra 
model for M-theory th btained by a matrix regu-
larization of a non-covariant supermembrane action7. 
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