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Abstract 
We consider a linear-quadratical optimal control problem of a system go-
verned by parabolic equation with distributed in right-hand side control and 
control and state constraints. We construct a mesh approximation of this 
problem using different two-level approximations of the state equation, ADI 
and fractional steps approximations in time among others. Iterative solution 
methods are investigated for all constructed approximations of the optimal 
control problem. Their implementation can be carried out in parallel manner. 
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1. Introduction 

Optimal control of time-dependent production processes plays an important 
role in many real world applications. State constraints in optimal control of sys-
tems governed by partial differential equations have to be often included in the 
mathematical models. For instance, in continuous casting process a need to pre-
vent the cracks in a slab and the solidification at a wrong place leads to the 
bounds on the temperature variable. Similar demands arise in the processes of 
crystal growth and cooling of glass melts (see articles [1] [2] [3] [4] [5] and bib-
liography therein). The introduction of pointwise state constraints yields adjoint 
variables and multipliers which only admit low regularity complicating both 
theoretical analysis and the constructing appropriate numerical methods.  
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There are few results in the area of numerical solution methods for the con-
strained parabolic optimal control problems. One of the approaches to overcome 
the difficulty connected with low regularity of the solutions is using Lavrentiev 
regularization. This approach has been used in [6] [7]. In [8] [9] [10] [11] a pri-
ori error estimates for space-time discretizations of linear-quadratic parabolic 
optimal control problems have been obtained for problems.  

The implementations of the iterative methods for parabolic optimal control 
problems include the solution of the parabolic equation and corresponding ad-
joint parabolic equation at each iteration and this is the most time consuming 
part of the algorithms if applying the implicit (backward Euler) approximation 
of parabolic state equation. On the other hand, easily implementable explicit 
(forward Euler) approximation of a parabolic equation with a constant step in 
time requests extremely restrictive constraint for this step. Using explicit ap-
proximations of the parabolic equations with special series of non-uniform time 
steps allows partially avoid this deficiency. Such kind approximation is 
well-known for the differential equations [12] and they demonstrate the advan-
tage in time of calculations in relation to the implicit schemes. Similar approxi-
mation have been used for the continuous casting problem [13] and recently ap-
plied to a parabolic state constrained problem [14]. One more approach to con-
struct effective algorithm for parabolic optimal control problem is to use para-
real approximation of the state equation [15] [16]. 

In this article we continue the investigations of [14] [16] [17] [18] [19] [20] on 
the iterative solution methods for the constrained saddle point problems with 
applications to optimal control problems. In the cited papers parabolic optimal 
control problems have been solved by using either backward or forward Euler 
approximating schemes for the state equation. 

The main purpose of this article is to generalize these results for the case when 
any two-level scheme is used for the approximation of the parabolic state equa-
tion, including different splitting (locally one-dimensional) schemes. 

To simplify the exposition we restrict ourselves to consider a problem in unit 
square with distributed control and observation, and to use finite difference 
schemes to approximate the state equation, while the most of the results can be 
extended for the case of lowest order finite element method, for a control in 
Neumann boundary condition, for final observation etc. 

2. Formulation and Approximations of the Problem 

Consider homogeneous Dirichlet initial-boundary value problem 

= in ; = 0 on = (0, ]; ( ,0) = 0T
y y u Q y T y x
t

∂
− ∆ Σ ∂Ω×

∂
          (1) 

in the cylinder = (0, ]TQ TΩ× , 2= (0,1)Ω , with lateral surface = (0, ]TΣ ∂Ω× . 
We call ( , )y x t  and ( , )u x t  as state and control functions. It is well-known 
that for any 2 ( )Tu L Q∈  there exists a unique weak solution of problem (1) such 
that 1 1 2

0(0, ) = (0, ; ( )) (0, , ( ))y W T L T H H T L∞∈ Ω ∩ Ω , and the following  
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inequality takes place ([21] [22] [23]):  

1 2 20
( ) ( )( ))0

sup ( ) .
T TL Q L QHt T

yy t c u
tΩ

≤ ≤

∂
+ ≤

∂
|| || || || || ||               (2) 

Define objective function  

2 21 1( , ) = ( ( , ) ( , ))
2 2

T T

d
Q Q

J y u y x t y x t dxdt u dxdt− +∫ ∫  

with a given functions 2 ( )d Ty L Q∈ , and the sets of constraints for state and 
control:  

2 max

min max

= { ( ) :| ( , ) | . . ( , ) },
= { (0, ) : ( , ) . . ( , ) },

ad T T

ad T

U u L Q u x t u a e x t Q
Y y W T y y x t y a e x t Q

∈ ≤ ∈

∈ ≤ ≤ ∈
 

Above max > 0u  and min max<y y−∞ ≤ ≤ ∞ . We solve the following optimal 
control problem:  

( , )
min ( , ),

= {( , ) : state equation (1) is satisfied}.
y u K

ad ad

J y u

K y u Y U
∈

∈ ×
         (3) 

Problem (3) has a unique solution (cf., e.g. [14]).  
We construct the finite-difference approximations of problem (3) using a 

uniform in x and t mesh x tω ω×  in TQ . 
Let xω  be the uniform mesh of the meshsize h  on Ω , =x xω ω∂ ∩∂Ω  be 

the set of the boundary nodes while 0 = \x x xω ω ω∂ . By 0
hV  we denote the space 

of mesh functions which are defined on xω  and vanish in the boundary nodes 

xω∂ , let 0dim =h xV N . The mesh on the time segment we denote by  
= { = , = 0,1, , ; = }t j t tt j j N N Tω τ τ . 

We will use the notations , ,...y u  for the mesh functions from 0
hV  and for 

the vectors of their nodal values as well. We also don’t distinguish the linear 
operators from 0

hV  to 0
hV  and corresponding them x xN N×  matrices acting 

on the vectors of nodal values of mesh functions from 0
hV . 

By = ( , ) xN
j jy y x t ∈R  we denote the values on a time level =j tt jτ ω∈  of a 

mesh function of x and t, and by x⋅|| || -euclidian norm in the space xNR . We 
use the following notations: = t xN N N , (.,.)  and ⋅|| ||  are the inner product 
and the norm in NR . Let xE  be x xN N×  unit matrix while E  be the unit 
matrix in N N×R . 

We denote by 0 0
1 : h hV VΛ →  the linear operator such that  

2 0
1 1 2 1 2 1 2( ) = (2 ( , ) ( , ) ( , ) for xy x h y x x y x h x y x h x x ω−Λ − + − − ∈  

and similarly for 2 ( ).y xΛ  Obviously, 1 2=Λ Λ + Λ  is the mesh Laplasian with 
homogeneous Dirichlet boundary conditions. Recall that we use the same 
notations for corresponding matrices. Matrices iΛ  are symmetric, commute 
and positive definite with spectrum in a segment 0 1[ , ]ξ ξ , where 1ξ  is of order 

2h− , while 0 > 0ξ  is bounded below by a constant which doesn’t depend on h . 
Let us introduce x xN N×  matrices U, D and R, where U is a symmetric and 

positive matrix, and approximate state problem (1) by two-level finite difference 
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scheme  

1
1 0= , = 1,2, , , = 0.j j

j j t

y y
U Dy Ru j N y

τ
−

−

−
+              (4) 

Below we give several examples of two-level finite difference scheme (4). 
1) Finite difference scheme with weights:  

1
1 0( (1 ) ) = , = 1,2, , , = 0j j

j j j t

y y
y y u j N yσ σ

τ
−

−

−
+ Λ + −         (5) 

with [0,1]σ ∈  can be written in the form (4) with = xU E στ+ Λ , =D Λ  and 
= xR E . Recall that (5) contains forward Euler ( = 0σ ), backward Euler ( = 1σ ) 

and Crank-Nicolson ( = 1/ 2σ ) schemes. 
Scheme (5) is unconditionally stable for 1/ 2σ ≥  and stable in the case 

0 < 1/ 2σ≤  if 1
max2( (1 2 ))τ ξ σ −≤ − , where max 1= 2ξ ξ  is the maximal  

eigenvalue of Λ . The stability estimate is:  

2 2

=1 =1
.

t tN N

j x j x
j j

y u≤∑ ∑|| || || ||                        (6) 

2) Two-level scheme with factorized preconditioner:  

1
1 2 1

0

( )( ) = ,

= 1,2, , , = 0.

j j
x x j j

t

y y
E E y u

j N y

στ στ
τ

−
−

−
+ Λ + Λ + Λ



             (7) 

Mesh scheme (7) is unconditionally stable for 0.5σ ≥  with stability estimate 
(6). 

3) Fractional steps scheme:  

1 1
1 1

2 1
2 2

1 2 0

0.5 = 0.5 ,

0.5 = 0.5 ,

= 0.5 0.5 , = 1,2, , , = 0.

j
j

j
j

j t

z y
z u

z y
z u

y z z j N y

τ

τ

−

−

−
+ Λ

−
+ Λ

+ 

               (8) 

System (8) can be written in form (4) with  

1 2 1 2= ( 2 )( 2 ), = 4 , = .x x xU E E D R Eτ τ τ τ+ Λ + Λ Λ + Λ Λ + Λ  

Scheme (8) is unconditionally stable with stability estimate (6).  
Let us further use notation 0:d t hy Vω →  for an 0

hV -approximation of the 
function dy . Define a mesh goal function and the sets of the constraints:  

2 2

=1 =1

1 1( , ) = ,
2 2

t tN N

h j dj x j x
j j

J y u y y uτ τ− +∑ ∑|| || || ||              (9) 

min max

= { :| | , },
= { : , , }.

h N j
ad i x t

h N
j x t

U u u u x t
Y y y y y x t

ω ω
ω ω

∈ ≤ ∀ ∈ ∀ ∈
∈ ≤ ≤ ∀ ∈ ∀ ∈

R
R

 

The mesh optimal control problem reads as follows:  

( , )
min ( , ),

= {( , ) : (4) is satisfied}.
h

hy u K
h h

h ad ad

J y u

K y u Y U
∈

∈ ×
             (10) 

Problem (10) has a unique solution because the set hK  is a convex compact 
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and the quadratical function ( , )hJ y u  is continuous and strictly convex on hK . 

3. Saddle Point Problem and Iterative Solution Method 

Let us rewrite problem (10) in a “vector-matrix” form. Let the matrices 
, N NL Q ×∈R  be defined by the equalities:  

11
1( ) = { for = 1, for = 2, , },

( ) = { for = 1, , }.

j j
j j t

j j t

y yyLy U j U Dy j N

Qu Ru j N
τ τ

−
−

−
+ 



 

Denote by ψ  and ϕ  the indicator functions of the sets 0
hY  and h

adU , 
respectively. We obtain the following algebraic form of mesh optimal control 
problem (10):  

2 2

=

1 1min{ ( , ) = ( ) ( )}.
2 2dLy u

I y u y y u y uψ ϕ− + + +|| || || ||          (11) 

Below we suppose that for a two-level finite difference scheme (4) the 
following assumption is valid:  

1const : .stab stabC L Q C−∃ ≤|| ||                    (12) 

The stability estimate (6) approve that for all cited above particular cases of 
(4) assumption (12) is true (with constant = 1stabC ).  

Remark 1 More well-known finite difference schemes can be written in form 
(4) and satisfy assumption (12): different kinds of ADI schemes proposed in 
[24], [25] and “sequential” variant of fractional steps scheme [26] [27] etc. Also a 
more general variant of scheme (8) (see [28]) with positive weights 1 2,α α , such 
that 1 2 = 1α α+  instead of = 1/ 2iα  as in (8) can be considered.  

We construct Lagrange function for problem (11):  

( , , ) = ( , ) ( ) ( ) ( , ).y u I y u y u Ly Quλ ψ ϕ λ+ + + −L  

A saddle point of this Lagrangian satisfies the following system:  

0 ( )
0 ( ) 0 ,

0 0 0

T
d

T

E L y y y
E Q u u

L Q

ψ
ϕ

λ

  ∂     
      − + ∂ ∋      

      −       

             (13) 

where ( )yψ∂  and ( )uϕ∂  are the subdifferentials of the corresponding 
functions. 

With the notations = ( , )Tz y u , = ( ,0,0)T
df y , ( ) = ( ) ( )z y uψ ϕΨ +  and  

( )
0

= , =
0
E

B L Q
E

 
− 

 
A  

(11) becomes a particular case of minimization problem  

=0

1min{ ( , ) ( , ) ( )},
2Bz

Az z f z z− +Ψ                  (14) 

while (13)-a particular case of saddle point problem  

( )
.

0 00

T z z fB
B η

∂Ψ      
+ ∋      

      

A                   (15) 
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We will use the following results from the article [17]:  
Proposition 1 Let  

matrix is symmetric and positive definite;m m×∈A R         (16) 

matrix has a full column rank;s mB ×∈R                (17) 

: is a convex,proper and lower semicontinuous function;mΨ →R R     (18) 

{ : = 0} intdom .mz Bz∈ ∩ Ψ ≠∅R                  (19) 

Then  
1) Problem (15) has a non-empty set of the solutions = {( , )}X z η , where z is 

unique solution of (14).  
2) Uzawa-type iterative method  

1 1

1 1

( ) ,
1 ( ) = 0, > 0

k k T k

k k k

z z B f

D Bz

η

η η ρ
ρ

+ +

+ +

+ ∂Ψ ∋ +

− +

A
                 (20) 

with a symmetric preconditioner D  satisfying the inequality  

1(1 )( , ) ( , ) , > 0,
2

T T sD B Bε ρ
η η η η η ε−+

∀ ∈A R            (21) 

converges for any initial guess 0η : * *( , ) ( , )k kz z Xη η→ ∈  for k →∞ .  
Theorem 1 Problem (13) has a solution ( , , )y u λ  with unique pair ( , )y u , 

which coincides with the solution of problem (11).  
Proof. Obviously, all assumptions (16)-(18) and (19) of proposition 1 are 

satisfied for problem (13). In particular, vector 0 0( , ) = (0,0)y u  satisfies 
assumption (19).  

Below we construct for problem (13) the easily implementable preconditioner 
D which is spectrally equivalent to 1 TB B−A  with constants independent on τ  
and h. As this preconditioner we take = TD LL . Then method (20) for problem 
(13) with this preconditioner reads as follows:  

1 1

1 1

1
1 1

( ) ,
( ) ,

= .

k k T k
d

k k T k

k k
T k k

y y y L
u u Q

LL Ly Qu

ψ λ
ϕ λ

λ λ
ρ

+ +

+ +

+
+ +

+ ∂ ∋ −
+ ∂ ∋

−
−

                  (22) 

Theorem 2 Method (22) converges for any initial guess 0λ  if  

2

20 < < .
1 stabC

ρ
+

                        (23) 

Proof. The matrix 1 TB B−A  is spectrally equivalent to = TD LL , namely,  
1 2(1 ) ,T T T

stabLL B B C LL− +A                     (24) 

where constant stabC  is defined in (12). In fact, by direct calculation we find 
1 =T T T TB B LL QQ LL− + ≥A . Further, since 1

stabL Q C− ≤|| || , then  
T T

stabQ L C− ≤P P . This inequality is equivalent to  
2 ,T T
stabQQ C LL≤                          (25) 
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whence the result. 
In virtue of inequality (24) the convergence condition (21) of proposition 1 is 

true for the parameter ρ  from (23). ∎ 
In the case of optimal control problem without state constraints we can 

estimate a rate of convergence for iterative method (22) and give an optimal 
iterative parameter ρ . Namely, the following statement holds:  

Theorem 3 Let = 0ψ∂ . Then there exists a unique solution ( , , )y u λ  of 
saddle point problem (13), and for theoretically optimal iterative parameter  

0
1=
stabC

ρ  the following estimate for the rate of convergence of method (22) is  

valid:  

1 1/21( ) (1 ) ( ) , = 0,1,T k T k

stab

L L k
C

λ λ λ λ+ − ≤ − − || || || ||          (26) 

Proof. The uniqueness of ( , )y u  is proved in theorem 1. The uniqueness of 
λ  in the case = 0ψ∂  follows from the equation =T

dy L yλ+ . 
Vector λ  is the solution of the equation  

1( ) = ,T T
dLL Q E Q Lyλ ϕ λ−+ + ∂                    (27) 

while iterative method (22) can be written in the form  
1

1( ) = .
k k

T T k T k
dLL LL Q E Q Lyλ λ

λ ϕ λ
ρ

+
−−

+ + + ∂            (28) 

It is well-known (cf., e.g. [29]) that the operator 1( )E ϕ −+ ∂  is co-coercive:  
1 1 1 1 2(( ) ( ) , ) ( ) ( )E E E Eϕ λ ϕ µ λ µ ϕ λ ϕ µ− − − −+ ∂ − + ∂ − ≥ + ∂ − + ∂|| ||  

Because of this and (25) the operator 1 1= ( ) ( ) ( )T TP E L Q E Q Lϕ− − −+ + ∂   
satisfies the following properties (strong monotonicity and Lipshitz-continuity):  

2( ( ) ( ), ) ,P Pλ µ λ µ λ µ− − ≥ −|| ||  

1/2( ( ) ( ), ) ( ( ) ( ), )stabP P C P Pλ µ η λ µ λ µ η− ≤ − − || ||  

The rest of the prove is quite standard (cf. [18]). Namely, with the notations 
=k T kLη λ , = TLη λ  and =k kz η η−  we have the equation  

1

( ) ( ) = 0.
k k

kz z P Pη η
ρ

+ −
+ −  

We multiply this equation by 12 kzρ +  and obtain the equality  
1 2 2 1 2 12 ( ( ) ( ), ) = 0,k k k k k kz z z z P P zρ η η+ + +− + − + −|| || || || || ||  

Due to the properties of P  the following estimate holds:  
1 1

2 2 1 2

2 ( ( ) ( ), ) = 2 ( ( ) ( ), ) 2 ( ( ) ( ), )

(2 )( ( ) ( ), ) .

k k k k k k k

k k k k
stab

P P z P P z P P z z
C P P z z z

ρ η η ρ η η ρ η η

ρ ρ η η

+ +

+

− − + − −

≥ − − − −|| ||
 

Substituting this estimate in the previous equality we get  
1 2 2 2(1 (2 )) ,k k

stabz C zρ ρ+ ≤ − −|| || || ||  
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whence 0kz →|| ||  if 2

20 < <
stabC

ρ  and rate of convergence (26) is true for 

optimal parameter 0 2

1=
stabC

ρ . ∎ 

Remark 2 Due to the equalities = T
dy y L λ− , 1=k T k

dy y L λ −− , we have the 
following estimate for the rate of convergence of ky :  

1/2 1 ( 1)/2 1

( 1)/2 0

1 1(1 ) (1 )

1= (1 ) ( ) = 1,2,

k k k

stab stab

k T

stab

y y y y y y
C C

L k
C

λ λ

− −

−

− ≤ − − ≤ − −

− − 

|| || || || || ||

|| ||
 

For the sequence of control vectors { }ku  the estimate is as follows:  
1 1 1 1

( 1)/2 0

= ( ) ( ) ( ) ( ) ( )
1(1 ) ( ) = 1,2,

k k T T k

T k T

stab

u u E E L L

L L k
C

ϕ λ ϕ λ λ λ

λ λ

− − − − −

− −

− + ∂ − + ∂ ≤ −

≤ − − 

|| || || || || || || ||

|| || || ||
 

Remark 3 For the state constrained problems there are no estimates for rate 
of convergence for iterative method (22). In this case instead of (27) we have the 
equation  

1( ) ( ) = ,T T
dL E L Q E Q Lyψ λ ϕ λ−+ ∂ + + ∂     

which operator is only co-coercive. The convergence of the iterative methods for 
such kind of equations have been investigated in [18]. 

On the other hand, numerous calculations show that in this general case the 
choice of the iterative parameter 0;ρ ρ  as in theorem 3 is practical and seems to 
be close to optimal one.  

When implementing method (22) one has to solve the inclusions with respect 
1ky +  and 1ku + , and a system of linear equations with matrix TLL . Concerning 

solving the inclusions we underline that the matrices and the operators in them 
have diagonal form, so, their solving reduces to easy pointwise projection. 

In turn, solving equation with the matrix TLL  is equivalent to solving direct 
(with L ) and adjoint (with TL ) parabolic mesh schemes. In the case of mesh 
schemes with factorized preconditioner (7) or fractional steps scheme (8) 
approximating state equation their solving reduces to solving set of non-coupled 
“one-dimensional” mesh problems-systems of linear algebraic equations with 
tridiagonal matrices constx iE τ+ Λ , = 1,2i . Obviously, these systems can be 
solved by a well-known direct method and parallel. 

4. Variants and Generalizations 

The effectiveness of the implementation of iterative method (22) is based on two 
main properties:  
• Preconditioner has factorized form = TD LL  and is spectrally equivalent to 

“main” matrix of the problem;  
• Equations with the matrices L  and TL  as in (7) and (8) can be easily 

implementable.  
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The first property is ensured by the inequality (12): 1
stabL Q C− ≤|| || . Just this 

inequality allows us to prove spectral equivalency of the matrix  
1 =T T TB B LL QQ− +A  and = TD LL  with the constants independent on mesh 

parameters τ  and h . In turn, this inequality is nothing but a stability estimate 
for a corresponding two-level approximation of a parabolic state equation. 
Numerous classes of stable two-level finite difference schemes for the parabolic 
equations can be found in [27].  

The second property-easy solution of the equations with matrices L , TL  in 
(7) and (8)-is the consequence of their “local one-dimensional” structure. This 
imposes several limitations to the domains, boundary conditions and using 
orthogonal meshes. Nevertheless, a lot of different mesh schemes with factorized 
preconditioner of the form (7), satisfying stability property (12) is known (cf., 
e.g. [24] [27] and the bibliography therein).  

The results of this paper can be extended to the parabolic optimal control 
problems with other state and control constraints, such as, for example, in [14] 
and [30]. 
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