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ABSTRACT

Description logics (DLs) are a family of logic-based knowledge representation formalisms with a number of computer
science applications. DLs are especially well-known to be valuable for obtaining logical foundations of web ontology
languages (e.g., W3C’s ontology language OWL). Paraconsistent (or inconsistency-tolerant) description logics (PDLs)
have been studied to cope with inconsistencies which may frequently occur in an open world. In this paper, a compari-
son and survey of PDLs is presented. It is shown that four existing paraconsistent semantics (i.e., four-valued semantics,
quasi-classical semantics, single-interpretation semantics and dual-interpretation semantics) for PDLs are essentially the
same semantics. To show this, two generalized and extended new semantics are introduced, and an equivalence between

them is proved.
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1. Introduction

Description logics (DLs) [2] are a family of logic-based
knowledge representation formalisms with a number of
computer science applications. DLs are especially well-
known to be valuable for obtaining logical foundations of
web ontology languages (e.g., W3C’s ontology language
OWL). Some useful DLs including a standard des-
cription logic ALC [3] have been studied by many
researchers. Paraconsistent (or inconsistency-tolerant)
description logics (PDLs) [4-13] have been studied to
cope with inconsistencies which may frequently occur in
an open world.

Some recent developments of PDLs may be briefly
summarized as follows. An inconsistency-tolerant four-
valued terminological logic was originally introduced by
Patel-Schneider [10], three inconsistency-tolerant con-
structive DLs, which are based on intuitionistic logic,
were studied by Odintsov and Wansing [8,9], some para-
consistent four-valued DLs including ALC4 were stu-
died by Ma et al. [4,5], some quasi-classical DLs were
developed and studied by Zhang et al. [12,13], a sequent
calculus for reasoning in four-valued DLs was introduced
by Straccia [11], and an application of four- valued DL to
information retrieval was studied by Meghini et al. [6,7].
A PDL called PALC has recently been proposed by

"This paper includes the results of the conference presentation [1].
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Kamide [14,15] based on the idea of Kaneiwa [16] for
his multiple-interpretation DL ALC" .

The logic ALC4 [4], which is based on four-valued
semantics, has a good translation into ALC [3], and
using this translation, the satisfiability problem for
ALC4 is shown to be decidable. But, ALC4 and its
variations have no classical negation (or complement).
As mentioned in [17], classical and paraconsistent ne-
gations are known to be both useful for some knowledge-
based systems. The quasi-classical DLs in [12,13], which
are based on quasi-classical semantics, have the classical
negation. But, translations of the quasi-classical DLs into
the corresponding standard DLs were not proposed.
PALC [14], which is based on dual-interpretation se-
mantics, has both the merits of ALC4 and the quasi-
classical DLs, i.e., it has the translation and the classical
negation. The semantics of PALC is taken over from
the dual-consequence Kripke-style semantics for Nel-
son’s paraconsistent four-valued logic N4 with strong
negation [18,19]. The constructive PDLs in [8] are based
on single-interpretation semantics, which can be seen as
a DL-version of the single-consequence Kripke-style
semantics for N4 [20].

The following natural question arises: What is the
relationship among the single-interpretation semantics of
the constructive PDLs, the dual-interpretation semantics
of PALC, the four-valued semantics of ALC4, and
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100 N. KAMIDE

the quasi-classical semantics of the quasi-classical DLs?
This paper gives an answer to this question: These
paraconsistent semantics are essentially the same seman-
tics in the sense that some fragments of these PDLs are
logically equivalent. More precisely, we show the
following. A new PDL, called QALC, is introduced
based on a generalized quasi-classical semantics. It can
be seen that the quasi-classical semantics and the four-
valued semantics are special cases of the QALC se-
mantics. An equivalence between QALC and (a sli-
ghtly modified version of) PALC is proved. A new
PDL, called SALC, is introduced based on a modified
single-interpretation semantics. An equivalence between
SALC and (a slightly modified version of) PALC is
proved. These results mean that the existing applications
and theoretical results (e.g., decidability, complexity,
embeddability and completeness) can be shared in these
paraconsistent semantics.

It is remarked that this paper does not give a “com-
prehensive” comparison, since the existing paraconsis-
tent semantics have some different constructors (or
logical connectives), i.e., it is difficult to compare the
whole parts of these existing semantics. But, this paper
gives an “essential” comparison with respect to the com-
mon part with the constructors ~ (paraconsistent nega-
tion), M (intersection), LI (union), VR (universal
concept quantification) and IR (existential concept
quantification). To obtain such a comparison with some
exact proofs, we need some small modifications of the
existing paraconsistent semantics. Since all the logics
discussed in this paper are defined as semantics, we will
occasionally identify the semantics with the logic deter-
mined by it.

The contents of this paper are then summarized as
follows.

In Section 2, the essential parts of the existing para-
consistent semantics (i.e., PALC -semantics, four-valued
semantics, quasi-classical semantics and single interpre-
tation semantics) are addressed.

In Section 3, two new semantics (i.e., the QALC -
semantics and the SALC -semantics) are introduced,
and the equivalence among the PALC -semantics, the
QALC -semantics and the SALC -semantics is proved.
It is observed that the essential parts of the four-valued
semantics and the quasi-classical semantics are special
cases of the QALC -semantics. It is also observed that
the SALC -semantics is regarded as a classical version
of the CALC® -semantics (single-interpretation seman-
tics) for a constructive description logic introduced by
Odintsov and Wansing.

In Section 4, some remarks on constructive PDLs and
temporal DLs.

In Section 5, this paper is concluded.

Copyright © 2013 SciRes.

2. Existing Paraconsistent Semantics
2.1. PALC Semantics

In the following, we present the logic PALC [14],
which has dual-interpretation semantics. The PALC -
concepts are constructed from atomic concepts, roles, ~
(paraconsistent negation), — (classical negation or com-
plement), M (intersection), LI (union), VR (univer-
sal concept quantification) and IR (existential concept
quantification). We use the letters A and A for ato-
mic concepts, the letter R for roles, and the letters C
and D for concepts.

Definition 2.1 Concepts C are defined by the fol-
lowing grammar:

C:=A|-C|~C|CMC|CUC|VRC|IRC
Definition 2.2 A paraconsistent interpretation PZ is
a structure <A”:’,~I+ I> where

1) A™ is a non-empty set,

2) 2" is an interpretation function which assigns to
every atomic concept A a set A’ cA™ and to
every role R a binary relation R? <A™ xA™”,

3) © s an interpretation function which assigns to
every atomic concept A aset A” <A™ and to every
role R abinary relation R* < A™ xA™ |

4)foranyrole R, RY =R? .

The interpretation functions are extended to concepts
by the following inductive definitions:

(~C) =C", (1)
(—=C)" =A\C", )
(cnp)" =c” np”, 3)
(Cub)" =c” up”, “)

(VR.C)I+ = {aeA”I|Vb[(a,b)e R" :>beC'+}}, 5)

(EIR.C)I+ :={aeAm|3b [(a,b)e R” abeC” ]} , (6)

(~C) =C7, (7)
(=C)" =a™\C", ()
(cnb) =c* uD”, )

(Cub)’ =c* nbd”, (10)

(VRC)" = {ae A™[3b[(ab)=R™ abec” ||, (1)
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N. KAMIDE 101

(3RC) = {a en|vb[(ab)eR™ =bec” J} (12)

An expression Z"FC (*e{+.—}) is defined as
C’ #@ . A paracqnsistent interpretation
PL={A™,%,7) is a model of a concept C (deno-
tedas PZFEC)if IT"FC (*e{+,—}). A concept C
is said to be satisfiable in PALC if there exists a
paraconsistent interpretation PZ such that PZ EC .

The interpretation functions 2 and 7 are in-
tended to represent “verification” (or “support of truth”)
and “falsification” (or “support of falsity”), respectively.
It is noted that PALC includes ALC [3] as a
subsystem since - in PALC includes -* in ALC.

Intuitively speaking, PALC is constructed based on
the following additional axiom schemes for ~ :

~~C < C, (1)
~—C¢>—~C, )
~(CMND)«>~ClL~D, 3)
~(CUD)<>~Cr~D, @)
~(VRC)«>3R.~C, Q)
~(3RC) <> VR.~C. (6)

It is noted that the interpretations for ~ and — in
PALC correspond to the axiom scheme ~ —C <> —~C,
which means that ~ and — are self duals with respect to
— and ~, respectively. We now give an intuitive
example for this axiom. Let A stand for the claim that
a ispoor, and let B stand for the claim that a is rich.
Intuitively, A 1is verified (falsified) iff B is falsified
(verified, respectively). Suppose now that —A is indeed
falsified. This should mean that it is verified that a is
poor or neither poor or rich. But this is the case iff B is
not verified, which means that A is not falsified.

For each concept C , we can take one of the following
cases:

1) C is verified, i.e., C* <A™,

2) C is falsified, i.e., CT <A™,

3) C is both verified and falsified,

4) C is neither verified nor falsified.

Thus, PALC may be regarded as a four-valued
logic.

In general, a semantic consequence relation ‘is called
paraconsistent with respect to a negation connective: if
there are formulas ¢ and B such that {a,~ajF S
does not hold. In the case of PALC , assume a

paraconsistent interpretation PZ = <API, z, .r> such

that AT cA™, AT A and not-(Bf gAm) for

Copyright © 2013 SciRes.

a pair of distince atomic concepts A and B . Then,
(AN~ A)I c B”" does not hold, and hence PALC
is paraconsistent with respect to:. It is remarked that
PALC is not paraconsistent with respect to — .

Next, we explain about some differences and simi-
larities between ALC" [16] and PALC . In

ALC", the set {-'i* |iewand*e{+,—}} of multiple

interpretation functions were used. These interpretation
functions include the following characteristic conditions
for negations:

1) for any atomic concept A, AR NAD =,
2) for any atomic concept A, AT c AT ,

3) for any atomic concept A, A% < A

4) (=C)" =AT\C™,

5) (=C)" =C% with i>0,

6) (~C)" =CT,

7) (=C)" =C",

8) (~C)" =C".

It is remarked that the condition 1 above means that
ALC" is not paraconsistent with respect to ~ . The
subsystem (or special case) ALC> (of ALC"), which
adopts two interpretation functions -** and -7, is si-
milar to PALC . The conditions for the constructors
MU, YR and 3R of ALC®> are almost the same as
those of PALC . The main differences are presented as
follows:

1) ALC? has the “non-paraconsistent” condition: for
any atomic concept A,

AT NAT =@,

but PALC has no this condition,
2) ALC? adopts the condition:

(-C)" =c”,
but PALC has no this condition and adopts the con-
dition:
(=C)" =A™ \C"
instead of it.

2.2. Four-Valued Semantics and Quasi-Classical
Semantics

Some four-valued semantics in [4] were based on SHZQ,
EL ++, DL-Lite, etc., and the quasi-classical semantics
in [13] was based on SHZQ. The four-valued
semantics in [4] has no classical negation, but has some
new inclusion constructors such as strong inclusion. In
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addition, the quasi-classical semantics in [13] has two
kinds of definitions called QC weak semantics and QC
strong semantics. The following explanation is based on
ALC and QC weak semantics. We use the common
language based on ~,M,Li, VR, 3R and/or —.

We cannot compare the existing paraconsistent seman-
tics (i.e., the four-valued semantics, the quasi-classical
semantics, the single-interpretation semantics and the
dual-interpretation semantics) themselves since the
underlying DLs are different. Moreover, the motivations
of introducing the existing semantics are completely
different. For example, in the quasi-classical semantics,
the main motivation is to satisfy three important in-
ference rules: modus ponens, modus tollens and disjunc-
tive syllogism. These inference rules are strongly depen-
dent on a specific inclusion constructor = and a speci-
fic QC entailment K, . Thus, our comparison without
C is regarded as not so comprehensive or essential in
the sense of the original motivation of the quasi-classical
semantics.

The following definition is a slight modification of the
definition of ALC4 [4].

Definition 2.3 (Four-valued semantics) A four-
valued interpretation 7 :=(A”,-") is defined using a
pair (P,N) of subsets of A® and the projection func-
tions proj* (P,N):=P and proj (P,N):=N. The inter-
pretations are then defined as follows:'

l)arole R isassigned to a relation R* < A" xA”,

2) for an atomic concept A, A’ ::<P,N> where
P,N c AI

=(N,P) if C* =(P,N),
4) (c nc,) =(RNP,N,UN,) if C=(R,N;)
for i=12,

5) (C,UC,) =(RUR,N,NN,) if C'=(R,N,)
for i=1,2,
6) (VRC)" :

- <{a e A”|vb[(a,b) < R” = b proj' (C7) ]},
{aea’|3b[(ab)eR” Abeproj (C’ )}}>
7) (3RC)" =
<{a e’|3b[ (ab)eR” abeproj* (¢7) ]},
{ac”|vb[(ab) < R” =b e proj (C” )}}>

In the four-valued semantics for ALC4 [4], different
kinds of implications were introduced:

1) C+> D (material inclusion)

2) Cc D (internal inclusion)

'In [4], the symbol — is used for the paraconsistent negation.

Copyright © 2013 SciRes.

3) C—> D (strong inclusion).
The interpretations of C— D, CcD and C—>D
are respectively presented as follows:

A"\ proj (€ ) < proj* (D7), Q)
proj* (C*) < proj” (D7), ®)
proj (C* ) < proj” (D” ) and
proj (D*) < proj (C*).

These implications provide flexible way to model
inconsistent ontologies.

The extension of four-valued semantics to the expres-
sive description logic SHZQ, and the extensions of
four-valued semantics to some tractable description
logics ££++ , Horn-DLs and DL-Lite family were
studied in [5].

Next, we discuss about quasi-classical description
logic. The following definition is a slight modification of
the definition of quasi-classical description logics [12,
13].

Definition 2.4 (Quasi-classical semantics) A quasi-
classical weak interpretation Z:=(A”,-) is defined
using a pair (+C,—C) of subsets of A” without using
projection functions. The interpretations are then defined
as follows:”

1) arole R is assigned to a pair R” = <+R R> of
binary relations +R,-R c A% x A% |

2) for an atomic concept A, A’ :=
+A,—Ag AT,

I-:(—c +C),

<AI \+C,A"\ C>,
c)Z =(+C,N+C,,-C,U-C,),
C,)" =(+C,U+C,,-C,N-C,),
VRC)":

)

<+ A - A) where

(
5 (c,n
6) (C,U
R
:<{aeAI|Vb[(a,b)e+R:>be+C]},
{aeAI|3b[(a,b)e—R/\be—C]}>,
8) (IRC)" =
<{aeAI|3b|:(a,b)e+R/\be+C]},

{a e AI|Vb [(a,b) e-R=be —CJ}>.

The quasi-classical semantics for QC ALC [12]
were extended to that of QC SHZQ [13] to handle
inconsistent ontologies. It composes two kinds of
semantics, i.e., QC weak semantics F, and QC strong

’In [12,13], the symbols — and: are used for the paraconsistent nega-
tion and the classical negation, respectively.
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semantics K . QC weak semantics inherits the
characteristics of four-valued semantics, and QC strong
semantics redefines the in- terpretation for disjunction
and conjunction of concepts to make the three important
inference rules (i.e., modus ponens, modus tollens and
disjunctive syllogism) hold.

Let K, be a QC entailment and — be a paracon-
sistent negation connective, which is represented as ~ in
the above definition. Then, the following hold:

1) {C(a),C C D} K, D(a) (modus ponense)
2) {-D(a),CC D}k, —C(a) (modus tollens)
3) {—|C(a),C C D} K, D(a) (disjunctive syllogism).

Two basic query entailment problems (i.e., instance
checking and subsumption checking) were also defined
and discussed in [13]. It was also shown that the two
basic inference problems can be reduced into the QC
consistency problem.

Finally in this subsection, it is remarked that the
pairing functions used in the four-valued and quasi-
classical semantics have been used in some algebraic
semantics for Nelson’s logics (see e.g., [21] and the
references therein). On the other hand, the semantics of
PALC is defined using two interpretation functions
2" and ¥ instead of the pairing functions. These
interpretation functions have been used in some Kripke-
type semantics for Nelson’s logics (see e.g., [22] and the
references therein). It will be shown in the next section
that the “horizontal” semantics using paring functions
and the “vertical” semantics using two kinds of inter-
pretation functions have thus essentially the same mean-
ing.

2.3. Single-Interpretation Semantics

Three constructive PDLs, which have single-interpre-
tation semantics, were introduced and studied by Odint-
sov and Wansing [8]:

1) CALC® : Constructive version of ALC . It is ob-
tained via a translation into first-order classical logic. A
tableau algorithm for CALC® was presented in [9].

2) CALCN : Tt is obtained via a translation into the
quantified N4. The role restrictions VR. and 3R. are
not dual.

3) CALC™! : It is obtained via an alternative
translation into the quantified N4. The role restrictions
VR. and 3R. are dual. The decidability of CALCN*
was obtained in [8] from a translation into Fischer
Servi’s intuitionistic modal logic.

We now give an overview of CALC® as follows.
CALC® has no classical negation connective —, but
has a paraconsistent negation connective ~ . Also it has
no classical implication (or classical inclusion), but has a
constructive implication (or constructive inclusion) <°.

Copyright © 2013 SciRes.

CALC® uses interpretations 7 = (AI <, ) where

1) A" isanon-empty set,

2) < (g AT x AT ) is a reflexive and transitive relation
of informational accessibility,

3) - is an interpretation function with some condi-
tions, e.g.,
a) it maps every atomic concept A to a subset of
AT,

b) it maps every negated atomic concept ~ A to a
subset of A”.

The interpretation function has the following condi-
tions:

1) for an atomic concept A, A’ A’

2) for an atomic concept A, (~ A)I c AT,

3) (cnDb)’ =c’nD?,
cuD) =Cc’UD’,

T
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i
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>
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>
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Ll
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1
—~
u><
<
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o
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>
<
m
@)
N
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I ..

{xeAI|VyVZ[(XSy/\(y’Z)e RI)zzeCI]}.

It is remarked that the order relation < needs some
more conditions. For the details, see [8,9].

3. New Paraconsistent Semantics
3.1. QALC Semantics

Similar notions and terminologies for PALC are also
used for the new logic QALC . The QALC -concepts
are the same as the PALC -concepts. The QALC
semantics is defined as a generalization and modification
of the quasi-classical weak semantics defined in Defi-
nition 2.4. Thus, we use the term “quasi-classical” in the
following definition.

Definition 3.1 A quasi-classical interpretation Q7
is a structure AQI,+,—,-I> where

1) A% isanon-empty set,
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104 N. KAMIDE

2) + (-) is a positive (negative, resp.) polarity
function which assigns to every atomic concept A a set
+Ac A¥ (-Ac AY resp.),

3) % is an interpretation function which assigns to
every atomic concept A a pair A’ :<+A,—A> of sets
+A-AcA¥ and to every role R a pair
R = <+ R,—R> of binary relations +R,—R < AY x A

4)foranyrole R, +R=-R.

The polarity functions are extended to concepts by the
following inductive definitions:

+(~C)=-C, (1
+(=C)=A%\+C, 2
+(CMD)=+CN+D, 3)
+(CUD)=+CU+D, )

+(VRC):={aeA¥ |vb[(a,b)e+R=be+C]}, (5)

+(3RC):={aeA¥[Ib[(a,b)e+RAbe+C]}, (6)

—-(~C)=+C, @)
—(=C)=AY\-C, ®)
-(CND):=-CU-D, ©)
~-(CuD)=-CN-D, (10)

~(VRC):={aeA¥[@b[(ab)e-RAbe-C]}, (11)
~(3RC):={acA¥|vb[(ab)e-R=be-CT}. (12)

The interpretation function is extended to concepts by:
C’:= <+C,—C) .

An expression ZFC is defined as +C# and
—C # J . A quasi-classical interpretation

o7 = <AQI,+,—, ~I> is a model of a concept C

(denoted as QT FC ) if ZTFC. A concept C is said
to be satisfiable in QALC if there exists a quasi-
classical interpretation Q7 suchthat Q7 FC .

We have the following propositions, which mean that
Definition 3.1 is essentially the same definitions as those
of the original quasi-classical [12,13] and four-valued
[4,5] semantics. See Definitions 2.4 and 2.3.

Proposition 3.2 Let -* be an interpretation function
on a quasi-classical interpretation Q7 :<AQI,+,—,-I>
Then, the following conditions hold:

(~C)" =(-C,+C), (1)

(—C)" = <AQI \+C, A% \—C> , 2)

Copyright © 2013 SciRes.

(cnD)" :=(+CN+D,~CU-D), 3)
(CuD)" :=(+CU+D,-CN-D), 4
(VRC)":

~(faca”|vb[(ab)e+R=be+C]},  (5)
{aeA¥b[(ab)e-Rabe-C]}),
(3RC)":
~({aca®[3b[(ab)e+RAbe+C]}, ©6)
{aca¥|wb[(ab)e-R=be-C]}).

Proposition 3.3 Let -* be an interpretation function
on a quasi-classical interpretation Q7 =(A¥ +,-,.~
Let + and - be now represented by P and N,
respectively. Also, P(C) and N(C) foraconcept C
be represented by P. and N., respectively. Define

proj’ (P,N})=P and proj (P,N)=N. Then, the
following conditions hold:
(~C) =(Ne. ), (1)
(CMD) =(P.NPy,Ne UNp), )
(CUD) =(R.UPLN.NNG),  (3)

(VRC) =
<{a e AY |Vb [(a,b) € proj" (RI ) = b e proj" (CI )]},

{a e A% |3b [(a,b) € proj (RI ) Ab e proj” (CZ )]}>’
4)
(EIR.C)Z =

<{a e A |Elb [(a,b) € proj* (RI)/\ b € proj* (CZ )]} ,

{a e A% | Vb [(a,b) € proj~ (RI ) = b eproj (CI )]}>
&)

Next, we show the equivalence between QALC and
PALC .

Theorem 3.4 (Equivalence between Q.ALC and
PALC) For any concept C, C is satisfiable in
QALC iff C issatisfiablein PALC.

Proof. ® (=): Suppose that QI:<AQI,+,—,~I> is
a quasi-classical interpretation. Then, it is sufficient to
construct a paraconsistent interpretation

PI:<API,-I+,-T> such that, for any concept C,

QTEC iff PIEC . We define a paraconsistent
interpretation PZ by:
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1) A™ =AY,

2) I s an interpretation function which assigns to
every atomic concept A aset A =+AcA¥ and to
everyrole R abinary relation R? =+R < A xAY |

3) X is an interpretation function which assigns to
every atomic concept A aset A” =—-AcA¥ and to
everyrole R abinary relation R” =-Rc AY xAY" |

Then, we have the fact: for any role R, R? =R? .

It is sufficient to show the following claim which
implies the required fact. For any concept C,

+Cc=Cc”, (1)
-c=C". )

By (simultaneous) induction on C. We show some
cases.

Case C=A (A is an atomic concept): For 1, we

have the following by the definition: +A= AT . For 2,
we have the following by the definition: —A=A" .

Case C=~D: For 1, we have: +(~D)=-D=D"
(by induction hypothesis for 2) =(~ D)r . For 2, we
have: —(~D)=+D=D" (by induction hypothesis for
1) =(~D)" .

Case C=-D:For 1, we have:
+(=D)=AY \+D =A™ \D” (by induction
hypothesis for 1) = (—|D)I+ . For 2, we have:
—(=D)=A%\-D=A™\D" (by induction
hypothesis for 2) = (—\D)Ii .

Case C=DTMME:Forl, wehave:
+(DNE)=+DN+E=D" NE” (by induction
hypothesis for 1) =(D E)r . For 2, we have:
-(DNE)=-DU-E=D" UE” (by induction
hypothesis for 2) =(DME)" .

Case C=VR.D:For 1, we have:
+(VR.D)

:{ae A |Vb[(a,b)e +R=b e+D]}

- {a €A™ |vb [(a,b) eR” =beD” }} (by induc-
tion hypothesis for 1)

=(VRD)" .

For 2, we have:
~(VRD)

:{aeAQI |EIb[(a,b)e—R/\be—D]},
:{ae Am|3b[(a,b)e R” AbeD” ]} (by induc-

tion hypothesis for 2),

Copyright © 2013 SciRes.

=(VRD)" .
® (<): Suppose that PZ = Am,~z+,~f> is a para-
consistent interpretation. Then, it is sufficient to con-
struct a quasi-classical interpretation Q7 = N —— >
such that, for any concept C, PIEC iff QT C.
We define a quasi-classical interpretation Q7 by:

1 A¥ =A",

2) + (-) is a positive (negative, resp.) polarity
function which assigns to every atomic concept A a set
+A=AT AP (-A=AT A7, resp)),

3) ¥ is an interpretation function which assigns to
every atomic concept A a pair A’ = <+A,—A> of sets
+A=A"" —A=AT =A™ and to every role R a pair
R =(+R,-R) of binary relations
+R=R” ,-R=R” cA™ xA™.

Then, we have the fact: forany role R, +R=-R.

It is sufficient to show the following claim which
implies the required fact. For any concept C,

c” =+C, (1)
c” =-C. )

Since this claim can be shown in the same way as in
the claim of the direction (=), the proof is omitted
here. i

3.2. SALC Semantics

We introduce a new logic SALC , which has a single-
interpretation function. The idea of this formulation is
inspired from the paraconsistent semantics for a con-
structive PDL proposed in [8]. These single-interpre-
tation semantics can also be adapted to Nelson’s para-
consistent logic (see [20]).

Similar notions and terminologies for PALC are
also used for SALC . The SALC -concepts are the
same as the PALC -concepts.

Definition 3.5 Let @ be the set of atomic concepts
and @~ be the set {~ A|[Ae®}. A single paraconsi-
stent interpretation SZ is a structure <ASI,-I> where

1) A% is a non-empty set,

2) -7 is an interpretation function which assigns to
every atomic (or negated atomic) concept Ae ®UD™ a
set AT c A*" and to every role R a binary relation
RT = AT x AT,

The interpretation function is extended to concepts by
the following inductive definitions:

(=C)" =A% \C7, M
(cnb) =c'nD', )
(cub)’ =c'uD', 3)

(VRC)" ={aeA”|vb[(ab)eR" =beC |}, (4)
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(3RC)" ={acAa”[I[(ab)eR" rbeC" ]}, (5)

(~~C) =C7, (6)

(~—C) =A% \(~C)", ™

(~(€nD)) =(~C)"U(~D)",  ®

(~(cub)) =(~C)'N(~D)". O
(~VRC) :

~laca”[b[(ab)eR" abe(~C) |} 1o

(~3RC)" :
~{aca”|vb[(ab)eR" = be(~C) || (v

An expression ZEC is defined as C* =@ . A
single paraconsistent interpretation SZ :=(A%,7) is a
model of a concept C (denotedas SZEC)if ZEC.
A concept C is said to be satisfiable in SALC if
there exists a single paraconsistent interpretation SZ
such that SZFC.

It is remarked that the logic CALC® in [8] has the
same interpretations for A (atomic concept), ~ A (ne-
gated atomic concept), M and U asin SALC. Since
CALCC is constructive, it has no classical negation, but
has constructive inclusion (constructive implication) <°
which is defined by:

(CgC D)Z:
:{xeAI|Vy[x§y:(yeCI:ye DI)]}.

Next, we show the equivalence between SALC and
PALC .

Theorem 3.6 (Equivalence between SALC and
PALC) For any concept C, C is satisfiable in
SALC iff C issatisfiablein PALC .

Proof. Let ® be the set of atomic concepts, ®~ be
the set {N A|Ae CD} ,and IT be the set of roles.

® (=): Suppose that SI=<ASZ,-I is a single
paraconsistent interpretation such that -~ has the do-
main ®U®~ UII . Then, it is sufficient to construct a
paraconsistent interpretation PZ =ZAPI,-I+,-IHZ such
that, for any concept C, STEC iff PTEC. We
define a paraconsistent interpretation PZ by:

1) A™ =A%,

2) 2" s an interpretation function which assigns to
every atomic concept Ae® a set AT = A" and to
every role R a binary relation R < AT xAS

3) X is an interpretation function which assigns to
every atomic concept Ae® a set A’ A and to
everyrole R abinary relation R* < A% xAS,

Copyright © 2013 SciRes.

4) for any role R, R =R =R’ ,
5) the following conditions hold:

AT = A7, (a)
AT =(~A). (b)
It is noted that - and -© have the domain

OUIT.
It is sufficient to show the following claim which
implies the required fact. For any concept C,

cr=c”, M
(~C) =C”. )
By (simultaneous) induction on C. We show some
cases.
Case C=A (A is an atomic concept): By the defi-
nition. )
Case C=~D: For 1, we have: (~ D)I =D" (by
induction hypothesis +for 2) = (N D)Z . For 2, we have:
(~r D);: D’ =D* (by induction hypothesis for 1)
= (N D) .
Case C=-D:For 1, we have:
(=D)" =A%\ D? =A™ \D”" (by induction
hypothesis for 1) = (—\D)T . For 2, we have:
(~—D)" =A% \(~D)" =A™ \D” (by induction

hypothesis for 2) = (ﬂD)r )

Case C=DTME:Forl,we have:
(DME) =D*NE’ =D* NE” (by induction
hypothesis for 1) = (D E)I . For 2, we have:
(~(DMNE)) =(~D) U(~E) =D"_UE” (by
induction hypothesis for 2) =(DT1 E)I .

Case C=VR.D:For 1, we have:

(VRD)"
~{aea”|vb[(ab)eR* =beD’ |}
_ {a €A™ |vb[ (ab) <R =beD” ]} (by induc-
tion hypothesis for 1)
~(VRD)" .

For 2, we have:
(~VRD)"

~{aca”[m[(ab)eR? abe(~D) ||,

- {a N |3b[(a,b) €R” AbeD” J} (by induc-
tion hypothesis for 2),

=(VRD)" .

® (<): Suppose that PZ :<APZ,-I+,-T> is a para-
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consistent interpretation such that - and -* have the

domain ®UII . Then, it is sufficient to construct a
single paraconsistent interpretation SZ = <ASI,~I > such

that, for any concept C, PZFC iff SIFC . We
define a single paraconsistent interpretation SZ by:

1) A =A"T,

2) - is an interpretation function which assigns to
every atomic (or negated atomic) concept Ae ®UD™ a
set AT =A™ and to every role R a binary relation

R? =R” =R? cA™ xA™",
3) the following conditions hold:
AT = AT, (a)
(~A) =AT. (b)

It is noted that -* has the domain ®U®™~ UTT .
It is sufficient to show the following claim which
implies the required fact. For any concept C,

ct =c?, (1)

c’ =(~C)". ©)

Since this claim can be shown in the same way as in
the claim of the direction (=), the proof is omitted
here. o

4. Remarks
4.1. Constructive Semantics

As mentioned before, three constructive PDLs: CALCC,
CALC™ and CALCM' were introduced and studied
in [8,9]. By our comparison results of the present paper,
we can consider to present the four-valued semantics, the
quasi-classical semantics and the dual-interpretation
semantics for these constructive PDLs. The notions of
constructiveness and paraconsistency are known to be
important for logical systems. From the point of view of
the truth and falsehood in a logic, the principle of
explosion (an~a—> ) and the excluded middle
(av~a) are the duals of each other. Paraconsistent
logics are logics without the principle of explosion, and
paracomplete logics are the logics without the excluded
middle. Constructive logics are classified as a para-
complete logic. The logics with both the paraconsistency
and the paracompleteness are called paranormal (or non-
alethic) logics.

Since the precise definitions of the original semantics
for CALC™ and CALCN are rather complex, we
now present only an outline of the (slightly modified
versions of the) semantics of CALC™ and CALCM.

A constructive interpretation CZ is a structure
<W,S, A%, D,(-,-)I where

1) A“ isanon-empty set,

2) (W,<) isa poset,

Copyright © 2013 SciRes.

3) D is a domain function from W to 28
(written ad D,, for D(w)) such that

a)forany weW , D, isnon-empty,

b) forany w,veW ,if w<v,then D,cD,.

For each teW , we interpret an atomic concept A
and a negated atomic concept ~A as (A,t)z <D, and
(~ A,t)I c Dy, respectively. Examples of the interpreta-
tions of the composite concepts are presented as follows:
Foreach teW,

(CrnDb,t)" =(C,t) N(D,t)", (1)

(~(CcnD),t) =(~Cit) U(~Dt)", ()
(ccopit)

~{xeD|vsew [t<saxe(C.s) = xe(Dys) ]|

3)
(~(c< D)t) =(Cy N(~Dt) . @

The interpretations of VR. and 3JR. are rather
complex, and hence omitted here. Such interpretations of
VR. and 3dR. imply the differences between the
CALC™N -semantics and the CALCN -semantics.

4.2. Temporal Semantics

It is remarked that the temporal next-time operator X
in the temporal description logic XALC [23] is similar
to the paraconsistent negation connective ~ in PALC .
As mentioned, the connective ~ in PALC is from
the paraconsistent negation connective in Nelson’s para-
consistent logic N4 [19,20]. The next-time operator X
in XALC is from Prior’s tomorrow tense logic [24].

In the following, we explain XALC and the simila-
rities between X in XALC and ~ in PALC.

Similar notions and terminologies for ALC are also
used for XALC . The symbol @ is used to represent
the set of natural numbers. The XALC -concepts are
constructed from the ALC -concepts by adding X
(next-time operator). An expression X"C is inductively
definedby X°C:=C and X"'C:=XX"C.

Definition 4.1 XALC - concepts C are defined by
the following grammar:

C:=A|-C|XC|CNnC|CUC|VRC|3RC

Definition 4.2 A temporal interpretation 7Z is a
structure <A”,{-Ii}. > where
lew

1) A™ isanon-empty set,

2) each (iew) is an interpretation function
which assigns to every atomic concept A a set
AIf cA™ and to every role R a binary relation

RT c A" x AT,
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3)foranyrole R andany i,jew, R” =R’ .
The interpretation function is extended to concepts by
the following inductive definitions:

(xcy" =c™", (1)
(<€) =A™\C, @
(cnp)" =c”np”, 3)
(cup)” =c” up”, @)

(VRC)" = {a eA”|wb[(ab)eR” =bec” || )

(EIR.C)II ::{aeAU|Elb [(a,b) eR” AbeC” J} . (6)

For any icw, an expression Z'EC is defined as
C* #@. A temporal interpretation

1T = <AU’{.Ii } > is a model of a concept C

(denoted as 7ZEC) if Z°EC. A concept C is said
to be satisfiable in XALC if there exists a temporal
interpretation 7Z suchthat 77 FC.

The interpretation functions -* " are intended to repre-
sent “verification at a time point i .

Intuitively speaking, X.ALC is constructed based on
the following additional axiom schemes for X :

X(C#D)«> XC#XD where #e{L,N} (2)

X (#RC) <> #RXC where #e{v,3}.  (3)

It is noted that X in XALC and ~ in PALC
are based on some similar axiom schemes. While ~ is
regarded as a de Morgan type negation connective, X
is regarded as a kind of “twisted” de Morgan type
connective. By this similarity, we can prove a theorem
for embedding XALC into ALC . Such an embedding
theorem is similar to a theorem for embedding PALC
into ALC . Thus, in an abstract sense, XALC and
PALC can be viewed as the same kind of embeddable
logics. Indeed, the same embedding-based method can be
applied to these logics uniformly.

5. Conclusions

In this paper, a comparison of paraconsistent description
logics was addressed. New paraconsistent description
logics QALC and SALC were introduced, and the
equivalence among QALC, SALC and PALC were
proved. The QALC -semantics is regarded as a gene-
ralization of both the four-valued semantics [4,5] and the
quasi-classical semantics [12,13]. The SALC -seman-
tics is regarded as a small modification of the single-

Copyright © 2013 SciRes.

interpretation semantics [8,9]. The PALC -semantics
[14], also called dual-interpretation semantics, was taken
over from the dual-consequence Kripke-style semantics
for Nelson’s paraconsistent logic N4 [18,19].

Finally, some recent developments on paraconsistent
logics based on N4 are addressed. In [25], proof theory
of N4 and its variations were presented. In [26],
completeness and cut-elimination theorems were proved
for some trilattice logics which are regarded as genera-
lizations of N4. In [27], a paraconsistent linear-time
temporal logic was introduced extending the well-known
linear-time temporal logic (LTL). In [28], a para-
consistent computation-tree logic was introduced extend-
ing the well-known computation-tree logic (CTL). In
[29], a constructive temporal paraconsistent logic was
introduced combining N4 and a constructive version of
LTL.
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