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ABSTRACT 

Description logics (DLs) are a family of logic-based knowledge representation formalisms with a number of computer 
science applications. DLs are especially well-known to be valuable for obtaining logical foundations of web ontology 
languages (e.g., W3C’s ontology language OWL). Paraconsistent (or inconsistency-tolerant) description logics (PDLs) 
have been studied to cope with inconsistencies which may frequently occur in an open world. In this paper, a compari-
son and survey of PDLs is presented. It is shown that four existing paraconsistent semantics (i.e., four-valued semantics, 
quasi-classical semantics, single-interpretation semantics and dual-interpretation semantics) for PDLs are essentially the 
same semantics. To show this, two generalized and extended new semantics are introduced, and an equivalence between 
them is proved. 
 
Keywords: Paraconsistent Description Logic; Paraconsistent Semantics; Four-Valued Semantics; Quasi-Classical  

Semantics; Single-Interpretation Semantics; Dual-Interpretation Semantics 

1. Introduction 

Description logics (DLs) [2] are a family of logic-based 
knowledge representation formalisms with a number of 
computer science applications. DLs are especially well- 
known to be valuable for obtaining logical foundations of 
web ontology languages (e.g., W3C’s ontology language 
OWL). Some useful DLs including a standard des- 
cription logic  [3] have been studied by many 
researchers. Paraconsistent (or inconsistency-tolerant) 
description logics (PDLs) [4-13] have been studied to 
cope with inconsistencies which may frequently occur in 
an open world. 



Some recent developments of PDLs may be briefly 
summarized as follows. An inconsistency-tolerant four- 
valued terminological logic was originally introduced by 
Patel-Schneider [10], three inconsistency-tolerant con- 
structive DLs, which are based on intuitionistic logic, 
were studied by Odintsov and Wansing [8,9], some para- 
consistent four-valued DLs including  were stu- 
died by Ma et al. [4,5], some quasi-classical DLs were 
developed and studied by Zhang et al. [12,13], a sequent 
calculus for reasoning in four-valued DLs was introduced 
by Straccia [11], and an application of four- valued DL to 
information retrieval was studied by Meghini et al. [6,7]. 
A PDL called  has recently been proposed by 

Kamide [14,15] based on the idea of Kaneiwa [16] for 
his multiple-interpretation DL . 

4



n






The logic  [4], which is based on four-valued 
semantics, has a good translation into   [3], and 
using this translation, the satisfiability problem for 

 is shown to be decidable. But,  and its 
variations have no classical negation (or complement). 
As mentioned in [17], classical and paraconsistent ne- 
gations are known to be both useful for some knowledge- 
based systems. The quasi-classical DLs in [12,13], which 
are based on quasi-classical semantics, have the classical 
negation. But, translations of the quasi-classical DLs into 
the corresponding standard DLs were not proposed. 

 [14], which is based on dual-interpretation se- 
mantics, has both the merits of  and the quasi- 
classical DLs, i.e., it has the translation and the classical 
negation. The semantics of  is taken over from 
the dual-consequence Kripke-style semantics for Nel- 
son’s paraconsistent four-valued logic N4 with strong 
negation [18,19]. The constructive PDLs in [8] are based 
on single-interpretation semantics, which can be seen as 
a DL-version of the single-consequence Kripke-style 
semantics for N4 [20]. 

4
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4

The following natural question arises: What is the 
relationship among the single-interpretation semantics of 
the constructive PDLs, the dual-interpretation semantics  

*This paper includes the results of the conference presentation [1]. of , the four-valued semantics of , and  4
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the quasi-classical semantics of the quasi-classical DLs? 
This paper gives an answer to this question: These 
paraconsistent semantics are essentially the same seman- 
tics in the sense that some fragments of these PDLs are 
logically equivalent. More precisely, we show the 
following. A new PDL, called  , is introduced 
based on a generalized quasi-classical semantics. It can 
be seen that the quasi-classical semantics and the four- 
valued semantics are special cases of the   se- 
mantics. An equivalence between   and (a sli- 
ghtly modified version of)  is proved. A new 
PDL, called , is introduced based on a modified 
single-interpretation semantics. An equivalence between 

 and (a slightly modified version of)  is 
proved. These results mean that the existing applications 
and theoretical results (e.g., decidability, complexity, 
embeddability and completeness) can be shared in these 
paraconsistent semantics. 





R









It is remarked that this paper does not give a “com- 
prehensive” comparison, since the existing paraconsis- 
tent semantics have some different constructors (or 
logical connectives), i.e., it is difficult to compare the 
whole parts of these existing semantics. But, this paper 
gives an “essential” comparison with respect to the com- 
mon part with the constructors  (paraconsistent nega- 
tion),  (intersection),  (union),  (universal 
concept quantification) and 

 R
  (existential concept 

quantification). To obtain such a comparison with some 
exact proofs, we need some small modifications of the 
existing paraconsistent semantics. Since all the logics 
discussed in this paper are defined as semantics, we will 
occasionally identify the semantics with the logic deter- 
mined by it. 

The contents of this paper are then summarized as 
follows. 

In Section 2, the essential parts of the existing para- 
consistent semantics (i.e., -semantics, four-valued 
semantics, quasi-classical semantics and single interpre- 
tation semantics) are addressed. 





In Section 3, two new semantics (i.e., the  - 
semantics and the  -semantics) are introduced, 
and the equivalence among the -semantics, the 

-semantics and the -semantics is proved. 
It is observed that the essential parts of the four-valued 
semantics and the quasi-classical semantics are special 
cases of the -semantics. It is also observed that 
the -semantics is regarded as a classical version 
of the -semantics (single-interpretation seman- 
tics) for a constructive description logic introduced by  










C



Odintsov and Wansing. 
In Section 4, some remarks on constructive PDLs and 

temporal DLs. 
In Section 5, this paper is concluded. 

2. Existing Paraconsistent Semantics 

2.1.  Semantics 

In the following, we present the logic  [14], 
which has dual-interpretation semantics. The  - 
concepts are constructed from atomic concepts, roles, ~ 
(paraconsistent negation), 




  (classical negation or com- 
plement),  (intersection),  (union),  (univer- 
sal concept quantification) and  (existential concept 
quantification). We use the letters 

  R
R

A  and iA  for ato- 
mic concepts, the letter  for roles, and the letters  
and  for concepts. 

R C
D

Definition 2.1 Concepts  are defined by the fol- 
lowing grammar:  

C

::  |  |  |  |  | .  | .C A C C C C C C R C R C       

Definition 2.2 A paraconsistent interpretation  is  

a structure , ,
 

      where  

1)   is a non-empty set, 
2) 


  is an interpretation function which assigns to 

every atomic concept A  a set A

   and to 

every role R  a binary rela tion R

     , 

3) 


  is an interpretation function which assigns to 
every atomic concept A  a set A


  

  
 and to every 

role  a binary relation R R
  

R
, 

4) for any role , R R
 
  .  

The interpretation functions are extended to concepts 
by the following inductive definitions:  

  :C C
 
   ,                (1) 

  :C
 

    C



,            (2) 

  :C D C D
 
  ∩ ,          (3) 

  :C D C D
 
   ∪ ,          (4) 

    . :  ,
I IR C a b a b R b C
  I         

 , (5) 

    . :  ,R C a b a b R b C
          
    , (6) 

  :C C
 
   ,                (7) 

  :C
 

    C



,              (8) 

  :C D C D
 
  ∪ ,           (9) 

  :C D C D
 
  ∩ ,           (10) 

    . :  ,PIR C a b a b R b C
          
   , (11) 
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    . :  ,R C a b a b R b C
         
    .(12) 

An expression  C    ,    is defined as 
. A paraconsistent interpretation  C


 

: , ,
 

     
C 

 is a model of a concept  (deno- 
ted as ) if  

C
C    ,  






. A concept  
is said to be satisfiable in  if there exists a 
paraconsistent interpretation  such that .  

C

C
The interpretation functions   and 


  are in- 

tended to represent “verification” (or “support of truth”) 
and “falsification” (or “support of falsity”), respectively. 
It is noted that  includes  [3] as a 
subsystem since 





  in   includes    in . 

Intuitively speaking,  is constructed based on 
the following additional axiom schemes for :  




C C ,                  (1) 

C  C









,                (2) 

 C D C D   ,             (3) 

 C D C D   ,             (4) 

 . .R C R C   ,              (5) 

 . .R C R C  .              (6) 

It is noted that the interpretations for ~ and   in 
 correspond to the axiom scheme , 

which means that ~ and  are self duals with respect to 
 and ~, respectively. We now give an intuitive 

example for this axiom. Let 





C  C


A  stand for the claim that 
 is poor, and let  stand for the claim that  is rich. 

Intuitively, 
a B a

A  is verified (falsified) iff  is falsified 
(verified, respectively). Suppose now that 

B
A  is indeed 

falsified. This should mean that it is verified that  is 
poor or neither poor or rich. But this is the case iff  is 
not verified, which means that 

a
B

A  is not falsified. 
For each concept , we can take one of the following 

cases:  
C

1)  is verified, i.e., C C

   ,  

2)  is falsified, i.e., C C

   ,  

3)  is both verified and falsified,  C
4)  is neither verified nor falsified.  C
Thus,  may be regarded as a four-valued 

logic. 


In general, a semantic consequence relation ‘is called 
paraconsistent with respect to a negation connective: if  
there are formulas   and   such that  ,     
does not hold. In the case of , assume a  

paraconsistent interpretation , ,
 

       such 

that A

   , A


    and not- 

a pair of distince atomic concepts A  and . Then, B
 A A B

 
  



 does not hold, and hence  
is paraconsistent with respect to:. It is remarked that 

 is not paraconsistent with respect to 



 . 
Next, we explain about some differences and simi- 

larities between  [16] and . In  n
 

n
 ,  the set   and ,i i I

B

    for  

     of multiple  

interpretation functions were used. These interpretation 
functions include the following characteristic conditions 
for negations:  

1) for any atomic concept A , , 0 0A A
 

  ∩

2) for any atomic concept A , 1i iA A
 
   , 

3) for any atomic concept A , 1i iA A
 
   , 

4)   0 0:C C
 

     , 

5)   1:i iC C
 

    with , 0i 

6)   :i iC C
 
   , 

7)   1:i iC C
 

   , 

8)   :i iC C
 
   .  

It is remarked that the condition 1 above means that 

  is not paraconsistent with respect to  . The 
subsystem (or special case)  (of ), which 
adopts two interpretation functions 

n
2
 n


  and  , is si- 

milar to . The conditions for the constructors 
, , R   and R  of  are almost the same as 

those of . The main differences are presented as 
follows:  

2




1)  has the “non-paraconsistent” condition: for 
any atomic concept 

2
A ,  

A A
 

  ∩ , 

but  has no this condition, 
22)  adopts the condition:  

  :C C
 

   ,  

but  has no this condition and adopts the con- 
dition:  



  :C C
 

       

instead of it.  

2.2. Four-Valued Semantics and Quasi-Classical 
Semantics 

Some four-valued semantics in [4] were based on , 
  , DL-Lite, etc., and the quasi-classical semantics 

in [13] was based on  . The four-valued 
semantics in [4] has no classical negation, but has some 
new inclusion constructors such as strong inclusion. In 

Copyright © 2013 SciRes.                                                                                  IJIS 



N. KAMIDE 102 

addition, the quasi-classical semantics in [13] has two  
kinds of definitions called QC weak semantics and QC 
strong semantics. The following explanation is based on 

 and QC weak semantics. We use the common 
language based on , 


, ,   R ,  and/or R  . 
We cannot compare the existing paraconsistent seman- 

tics (i.e., the four-valued semantics, the quasi-classical 
semantics, the single-interpretation semantics and the 
dual-interpretation semantics) themselves since the 
underlying DLs are different. Moreover, the motivations 
of introducing the existing semantics are completely 
different. For example, in the quasi-classical semantics, 
the main motivation is to satisfy three important in- 
ference rules: modus ponens, modus tollens and disjunc- 
tive syllogism. These inference rules are strongly depen- 
dent on a specific inclusion constructor  and a speci- 
fic QC entailment . Thus, our comparison witho t 
  is regarded as not so comprehensive or essential in 
the sense of the original motivation of the quasi-classical 
semantics. 


 Q u



The following definition is a slight modification of the 
definition of  [4]. 4

Definition 2.3 (Four-valued semantics) A four- 
valued interpretation : ,     is defined using a 
pair ,P N  of subsets of   and the projection func- 
tions proj , :P N P   and proj , :P N N  . The inter- 
pretations are then defined as follows:1 

1) a role  is assigned to a relation R R      , 
2) for an atomic concept A , : ,A P N  where 
,P N   , 

3)   : ,C N 
P  if ,C P N , 

4)  1 2 1 2 1 2: ,C C P P N N
∩ ∪  if ,i iC P N i  

for , 1, 2i 

5)  1 2 1 2 1 2: ,C C P P N N
∪ ∩  if ,i iC P N i  

for , 1, 2i 

6)  

    
    

. :

 , proj

 , proj

R C

a b a b R b C

a b a b R b C







       

      



 

  

,

,

  

7)  

    
    

. :

 , proj

 , proj

R C

a b a b R b C

a b a b R b C





 

      

     



 

 

,

.





  

In the four-valued semantics for  [4], different 
kinds of implications were introduced:  

4

1)  (material inclusion) C D
2)  (internal inclusion) C D

3)  (strong inclusion).  C D
The interpretations of ,  and  

are respectively presented as follows:  
C D C D C D

  proj proj ,C    D            (1) 

   proj proj ,C  D               (2) 

   
   

proj proj and

proj proj .

C D

D C

 

 





 

 
             (3) 

 These implications provide flexible way to model 
inconsistent ontologies. 

The extension of four-valued semantics to the expres- 
sive description logic , and the extensions of 
four-valued semantics to some tractable description 
logics 



  , Horn-DLs and DL-Lite family were 
studied in [5]. 

Next, we discuss about quasi-classical description 
logic. The following definition is a slight modification of 
the definition of quasi-classical description logics [12, 
13]. 

Definition 2.4 (Quasi-classical semantics) A quasi- 
classical weak interpretation : ,      is defined 
using a pair ,C C   of subsets of   without using 
projection functions. The interpretations are then defined 
as follows:2 

1) a role  is assigned to a pair R ,R R   R  of 
binary relations ,R R      , 

2) for an atomic concept A , : ,A A A    where 
,A A    , 

3)   : ,C C C   
, 

4)   : ,C C C         , 

5)  1 2 1 2 1 2: ,C C C C C C    
∩ ∪ , 

6)  1 2 1 2 1 2: ,C C C C C C    
∪ ∩ , 

7)  
  
  

. :

, ,

, ,

R C

a b a b R b C

a b a b R b C



       

      







 

8)  
  
  

. :

, ,

, .

R C

a b a b R b C

a b a b R b C

 

      

      







  

The quasi-classical semantics for QC  [12] 
were extended to that of QC  [13] to handle 
inconsistent ontologies. It composes two kinds of 
semantics, i.e., QC weak semantics  and QC strong 




w

2In [12,13], the symbols   and: are used for the paraconsistent nega-
tion and the classical negation, respectively. 1In [4], the symbol  is used for the paraconsistent negation. 
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semantics s

  ,C

 

. QC weak semantics inherits the 
characteristics of four-valued semantics, and QC strong 
semantics redefines the in- terpretation for disjunction 
and conjunction of concepts to make the three important 
inference rules (i.e., modus ponens, modus tollens and 
disjunctive syllogism) hold. 

Let Q  be a QC entailment and  be a paracon- 
sistent negation connective, which is represented as ~ in 
the above definition. Then, the following hold:  

 

1)  (modus ponense)   QC a D D a 

2)   QC D C a  ,D a

  ,C a

q



(disjunctiv

uery entailment problems (i.e., instance 
ch

section, it is remarked that the 
pa

 (modus tollens) 

3) e syllogism).  

Two basic 

   QC D D a    

ecking and subsumption checking) were also defined 
and discussed in [13]. It was also shown that the two 
basic inference problems can be reduced into the QC  
consistency problem. 

Finally in this sub
iring functions used in the four-valued and quasi- 

classical semantics have been used in some algebraic 
semantics for Nelson’s logics (see e.g., [21] and the 
references therein). On the other hand, the semantics of 
  is defined using two interpretation functions 


  and 


  instead of the pairing functions. These 

rpretati functions have been used in some Kripke- 
type semantics for Nelson’s logics (see e.g., [22] and the 
references therein). It will be shown in the next section 
that the “horizontal” semantics using paring functions 
and the “vertical” semantics using two kinds of inter- 
pretation functions have thus essentially the same mean- 
ing. 

2.3. S

inte on 

r

N4.

ingle-Interpretation Semantics 

ngle-interpre- 

ctive version of  It is ob- 

Three constructive PDLs, which have si
tation semantics, were introduced and studied by Odint- 
sov and Wansing [8]:  

1) C : Constru  .
assicatained via a t anslation into first-order cl l logic. A 

tableau algorithm for C  was presented in [9]. 
2) N4 : It is obtained via a translation into the 

quantified  The role restrictions .R  and .R  are 
not dual. 

3)  N4
o

ed 

d
translation int  t

: It is obtained via an alternative 

 as follows. 

he quantified N4. The role restrictions 
.R  and .R  are dual. The decidability of N4d  

obtain in [8] from a translation into  
Servi’s intuitionistic modal logic.  

We now give an overview of 

was  Fischer

C
 connecC  has no classical negation tive   , but 

raconsistent negation connective  . Also it has 
no classical implication (or classical inclusion), but has a 
constructive implication (or constructive inclusion) c . 

C  uses interpretations  : , ,   

has a pa  

   where  
1)   is a non-empty set, 
2)        is a reflexive and transitive relation 

of info essibility, 
3) 

rmational acc
  is an interpretation function with some condi- 

tio
s every atomic concept

ns, e.g.,  
a) it map  A  to a subset of 

 , 
) it mb aps every negated atomic concept A  to a 

subset of  .  
The inter retatp ion function has the following condi- 

tio
an atomic concept 

ns:  
1) for A , A    , 
2) for an atomic concept A ,  A    , 

3)   :C D C D  ∩ , 

4)   :C D C D  ∪ , 

 
  

:

 

cC D

x y x y y C y D

 

        



 
, 5) 



6)  
   

. :

   ,

R C

x y z x y y z R z C

 

         



 
, 



7)     . :  ,R C x y x y R y C        
   , 

8)   :C C   , 

9)     :C D C D
   

∪  , 

 10)       :C D C D
  

∩  , 

11)     :cC D C D 
  ∩  , 

12)     . :  ,R C x y x y R y C            , 

13)  
   

. :

   ,

R C

x y z x y y z R z C

 

         



 


. 



It is remarked that the order relation  needs som
more conditions. For the details, see [8,9]. 

ar notion ogies for  are also 
r the n . The -concepts 

ralization a
eak se  Defi-

 e 

3. New Paraconsistent Semantics 

3.1.   Semantics 

Simil s and terminol
used fo ew logic 

 

s. The
nd mo



gene
are the same as the  -concept    
semantics is defined as a dification 
of the quasi-classical w mantics defined in  
nition 2.4. Thus, we use the term “quasi-classical” in the 
following definition. 

Definition 3.1 A quasi-classical interpretation   
is a structure , , ,     where  

1)   is a non-empty set, 

Copyright © 2013 SciRes.                                                                                  IJIS 



N. KAMIDE 104 

2)      is a pos e (negativitiv e, resp.) polarity 
function  atomic concept which assigns to every A  a set  

A A  , resp.), 
3) 

    ( 
  is an interpretation function which as gns to si

every m concept  ato ic A  a pair ,A A A    of sets 
,A A   and to every role R  a pair  

,R R R    of bina  relations   , 
e R , R R   .  
functions are extende e 

ry  ,R R  
4) for any rol
The polarity d to concepts by th

fo e finitions:





llowing inductiv de   

  :C C   ,             (1) 

  :C      C ,           (2) 

  :C D C   ∩ D ,         (3) 

  :C D C D   ∪ ,         (4) 

    b C  , (5) . :  ,R C a b a b R      


    . :  ,R C a b a b R b C       
 

             





, (6) 

  :C C   ,   (7) 

  :C     C ,           (8) 

  :C D C D   ∪ ,          (9) 

  :C D C D   ∩ ,         (10) 

    . :  ,R C a b a b R b C , (11)         


    . :  ,R C a b a b R b C         
 . (12) 

The interpretation function is extended to concepts by:  

: ,C C C   . 

An expression  is defined as  and 
. A quasi-classical interpretation  

C  C  
C  

: , , ,       is a model of a concep

C 

 t   

(denoted as  said 
to be 

ing pro
ally finitions as those 

of

C

) if C  . A concept  is
   if there exists a quasi- 

C

. 
satisfiable in

classical interpretation   that C   
We have the follow positions, which mean that 

Definition 3.1 is essenti  the same de

 such

 the original quasi-classical [12,13] and four-valued 
[4,5] semantics. See Definitions 2.4 and 2.3. 

Proposition 3.2 Let   be an interpretation function 
on a quasi-classical interpretation , , ,      . 
Then, the following conditions hold:  

  : ,C C C   
,            (1) 

  : ,C C C ,       (2) 

  : ,C D C D C D     
∩ ∪ ,      (3) 

  : ,C D C D C D     
∪ ∩ ,        (4) 

 
  
  

. :

, ,

, ,

R C

a b a b R b C

a b a b R b C



       

      







    (5) 

 
  
  

. :

, ,

, .

R C

a b a b R b C

a b a b R b C



       

      







     (6) 

Proposition 3.3 Let   be an interpretation function 
on a quasi-classical interpretation , , ,      . 
Let   and   be n  represented by P and N, 
respectively. Also, 

ow
 P C  and N C  

be r esented by CP  and CN , respectively. Define 
  for a concept C

epr  
proj ,P N P   and proj .N   Then, th  
following conditions d:  

 

,P N e
 hol

:C N 
        (1) ,C CP ,       

  : ,D C DN N∪ ,     (2) CC D P P 
∩

  : ,C D C DC D P P N N 
∪ ∩ ,     (3) 

 

      
      

. :

, proj proj

|  , proj proj ,

R C

a b a b R b C

a b a b R b C

 

 

 

,      

      



  

  

 

(4) 

 

      
      

. :

, proj proj ,

|  , proj proj .

R C

a b a b R b C

a b a b R b C

 

 

 

      

      



  

  

 

(5) 

Next, we show the equivalence between  and 

For any concept ,  is in 

Proo


 . 

Theorem 3.4 (Equivalence between   and 
) 


satisfiable 


C C

  iff C  is satisfiable in  .  
f.     : Suppose that , , ,       is 
-class al interpretation. Then, it is 


a quasi sufficient to 
co  p racon ation  

ic
nstruct a a sistent interpret

, ,
 

       such that, for any concept C ,  

C 
interpretation 

 iff enC . We define a paraconsist t 
by:  
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1) : 
2) 



   , 
  is an terpretat in ion function which assigns to  

ic concept every atom A  a set A A

      and to 

ev rolery e R  a binary relation R R

       , 

3) 


  is an interpretation fun igns to 
every atom  concept 

ction which ass
ic A  a set A A


      and 

ev
to 

ery  R  a binary relation R R

    role    .  

Then, we have the fact: for any R role R , R
 
  . 

It is sufficient to show the h follo
im pt ,  

wing claim whic
plies the required fact. For any conce C

C C


   ,                (1) 

C C


   .                (2) 
n C . We show some By (simultaneous) induction o

cases. 
Case C A  ( A  is an atomic concept): For 1, we 

have the following by the definition: A A


   . For 2, 
we have low g by the definition: the fol in A A


   . 

Case C D : For 1, we have:  DD D


       

(by induction hypothesis for 2)   D


. For 2, we
ha

 
ve: D D


    D   (by ind r uction hypothesis fo

1)  D


  
. 

Case  have:  


 C D  : For 1, we

D D D


        

hypothesis for 1)  D 

  (by 


induction  


. For 2, we have:  

 D D D


       (by induction     

hypothesis for 2)  D


  
. 

Case C D

  D

E 
  

: For 1, we have:  

D E E D E  
   ∩ ∩

 D E

 (by induction  

hypothesis for 1) 


  
. Fo

E D E
 

 

r 2, we have:  

 D E D    

 D E

∪ ∪  (by induction  

hypothesis for 2) 


  
. 

Case .C R D 
 .R D   

: For 1, we have:  

   ,a b a b R b     
  D

   ,a b a b R b D
      

    (by induc- 

tion hypothesis for 1) 

 .R D 


. 

For 2, we ha :  ve
  .R D 

   ,a b a b R b       
 , D

   ,a b a b R b D
        

  

 .R D


  
. 

    : Suppose that , ,
 

       is a para- 
, it is sufficient to con- 

quasi-classical interpretation 
consistent interpretation. Then
struct a , , ,       
such t, for any conce ff C  . 
We define a quasi-classical interpretation   by:  

1) :

 tha pt  i C , C 

    , 
2)      is a positive ne resp.) p

function which assigns to every atomic co t 
( gative, olarity 

ncep A  a set 
A A


      ( A A


     , resp.), 

3)   is a  interpretation function which assigns to 
every atomic concept 

n
A  a pair 

 (by induc- 

tion hypothesis for 2), 

,A A A   f sets  o
, A A

 
A A      every rol and to e  a pair  R

,R RR     of binary relations  
,R R R R

 
         . 

or any role R , R R   . 
ent to show the follo

 

It is suffici wing claim which 
implies the required fact. For any concept ,  

Then, we have the f fact: 

C

C C

  ,                 (1) 

C C




  .                 (2) 

Since this claim can be show
the claim of the direction 
here.                  

retation idea of this formulation is 
ed from stent semantics for a con- 

 [8]. T

ts. 

n in the same way as in 
) , the proof is omitted 
                  □ 

(
     

3.2.   Semantics 

We introduce a new logic  , which has a single- 
interp function. The 
inspir  the paraconsi
structive PDL proposed in hese single-interpre- 
tation semantics can also be adapted to Nelson’s para- 
consistent logic (see [20]). 

Similar notions and terminologies for   are 
also used for  . The  -concepts are the 
same as the  -concep

Definition 3.5 Let   be the set of atom cepts 
and 

ic con
  be the set   . A

tation ucture 
A A  single paraconsi- 

stent interpre   is a str ,    where  
1)   is a non-em y set, 
2) 

pt
  is an interpr tion which assigns to 

every atomic (or negated atomic) concep
etation func

t A ∪  a 
set A    and to every role R  a binary relation 
R     .  

The interpretation function is extended by 
the f nductive definitions: 

to concepts 
ollowing i  

  :C C    ,           (1) 

  :

  

I ID ,C D C 
∩           (2) 

  : I IC D C D 
∪ ,           (3) 

    . :  ,R C a b a b R b C       
    , (4) 
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    . :  ,R C a b a b R     
   b C    ,  (5) 

  :C C   ,            

C

  (6) 

  :
I SIC    

 ,          (7) 

   :C D C     D 
∪ ,    (8) 

     :C D C   D 
,     (9) ∩

 

    
. :

 ,

R C

a b a b R b C



     



 




,  (10) 

 

    
. :

 ,

R C

a b a b R b C



      



 



 

An expression  is defined as 

.  (11) 

C  C   . A 
single paraconsistent tation interpre : ,   
model of a concept noted as ) if 
A concept   
th

t in has th
et

 is a 
C  (de

is said to be
e para

C 
satisfiable in 

e

C

C  . 
  if 

ion 
C

ere exists a singl consistent interpr   
such that C  .  

It is remarked tha the logic   [8] e 
same interpr ations for A (atomic concept), 

tat

  
A  

on

(
nce

onstr , it has , but 

ne- 
gated atomic concept),   and   as in  . Si  

C  is c uctive  no cla
uctive im

ssical negati
has constructive inclusion (constr plication) c  
which is defined by:  


  

:c D

x y x y y C y D



        



  
. 

C

Next, we show the equivalence between  and 

Theorem 3.6 (Equivalence between  and 
) For any concept ,  

Proo be the set of atomic concepts, 




 . 


is satisfiable in 


C C

  iff C  is satisfiable in  .  
f. Let     be 

the set  A A , and   be the set of 
 : Suppose that 

roles. 
   ,    is a single 

 interpretation suc  
 

h thatparaconsistent   has the do- 
m

rp n 
ain   ∪ ∪ . Then, it is sufficient to construct a 

paracon retatiosistent inte , ,
 

       such 
th  iff at, f y concept C , C  . We 
define a paraconsistent interpretation  by:  

1) 
2) 




or an



C  
 

:   , 

  is an interpretation funct gns to 
every atomic concept 

ion which assi
A  a set A


    and to 

every role R  a binary relation R

     , 

3) 


  is an i gns to 
ev

nterpretation function which assi
ery mic concept ato A  a set A


    and to 

every role R  a binary relation R

     , 

4) for an ole R , R R
 

Ry r    

he 
, 

5) t following conditions hold:  

A A

  ,         (a)         

 A A

   .         (b)     

It is noted that 


  and 


  have the domain 
 ∪ . 

It is sufficient to show the foll
implies the required fact. For any con

owing claim which 
cept C ,  

C C


                (1) , 

 C C


   .             (2) 

By (simultaneous) induction on C . W  show soe me 
cases. 

Case C A  ( A  is an atomic co
nition. 

ncept): By the defi- 

Case C D : For 1, we have: D D 
    (by 

inductio sis for 2)n hypothe   D 


. For 2, we have: 
  DD D


     (by induction hypothesis for 1) 

 D


  
. 

C DCase   : For 1, we have:  

 D D D      (by induction  


   

 D



hypothesis for 1) 


  
. Fo

   D D  
 

 D

r 2, we have:  

n  D    (by inductio

hypothesis for 2) 


  



  
. 

Case C D E 
  D E

: For 1, we have:  
D E D E

 
      ∩ ∩

 D E



 (by induction  

hypothesis for 1)  
. Fo

  D E
 

r 2, we have:  
   D E   

D E
 

  ∪ ∪


 (by  
induction hypothesis for 2)  D E  

. 
Case .C R D  : For 1, we have:  

 .R D 
 

   ,a b a b R b D       
    

   ,a b a b R b D
       

   (by induc- 

tion hypothesis for 1) 



 .R D


  
. 

For 2, we have:  

 .R D 
 

     ,a b a b R b D       
   , 

   ,a b a b R b D
        

    (by induc- 

tion hypothesis for 2), 

 .R D


  
. 

: Suppose that , ,


  


 is para-        a 
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consistent interpretation such that 


  and 


  have the 
domain hen, it is suffic ent to construct a 

single parac tation 

 ∪ . T i

onsistent interpre ,   such 

define a single paraconsistent interpretation  y:  
1) : 

2) 

 

 



that, for oncept ,  iff . We 



C any c



 C  C
 b

, 
  is an interpretation functio ns to 

every atomic (or negated atom ept 
n

ic) conc
 whi ssigch a

A ∪   a 
set A     and to every role R  a bi  relation 
R R R

 
    

nary
     , 
3) t g he followin conditions hold:  

A A


  ,       (a) 

 
         

A A


   .               (b) 

It is noted that   has the domain    . ∪ ∪
It is sufficient to show

quire
 the f
r any 

C

ollowing claim which 
concept C ,  implies the re d fact. Fo

C
  ,                (1) 

 
C C  .               (2) 

Since this claim can be shown in the sa e wm

 and
present 

ma

ay 

d

d se

as in 
the claim e dire
here.      

4. Remarks 

w uce  

ue  

 of th
        

ction 
    

N4d  
ison

 
    

ics 

ere i
 

, the proof is omitted 
              □    

ntrod
results of the 

r-val

4.1. Constructive Semant

As mentioned before, three constructive PDLs: C , 
N4  and 

in [8,9]. By our

 compar

 studied
paper, 

ntics, the
retation

we can consider to present the fou
quasi-classical semantics and the dual-interp  
semantics for these constructive PDLs. The notions of 
constructiveness and paraconsistency are known to be 
important for logical systems. From the point of view of 
the truth and falsehood in a logic, the principle of 
explosion       and the excluded middle 
    are the duals of each other. Paraconsistent 
logics are logics without the principle of explosion, and 
paracomplete logics are the logics without the excluded 
middle. Constructive logics are classified as a para- 
com he logics with both the paraconsistency 
and the paracompleteness are called paranormal (or non- 
alethic) logics. 

Since the precise definitions of the original semantics 
for N4  and N4d  are rather complex, we 
now present only an outline of the (slightly modified 
versions of the) semantics of N4  and N4d . 

A constructi

plete logic. T

ve interpretation   is a structure 
 , , , , ,W D      where  

1)  a non-empty set, 
2)  ,W   is a poset, 

3) D  is a domain fun om W

  is 

2  ction fr  to 
(written ad wD  for  D w ) such that  

na) for a y w W , wD  is non-empty, 
or ab) f ny ,w v W , if w  v , then .  
 each 

w vD D
For t W , we interpret A   an a pt tomic conce

and a negated atomic concept ~A as  , tA t D  
 ,


 and

tA t D 
, respe y. Examples octivel

 con
f the interpreta-

ed as follo
 

ws: tio
Fo

ns of the co ite cepts are presentmpos
r each t W ,  

    , : , ,C D t C t D t  
∩    (1) 

      , : , ,C D t C t D t   

,     

 
∪ ,   (2) 

 
    

, :

 , ,

cC 

t

D t

x D s W t s x C s x D s         
(3) 



 
, 

      , : , ,cC D t C t D t  
  

∩ .    (4) 

The interpretations of  and  are rather 
complex, and hence om . Such retations

.R
itted here

.R
 interp  of 

.R  and .R  imply the fferen between 
antics and the ntic

4.

 di


ces 
-sema

the 
N4 -sem N4d s. 

2. Temporal Semantics 

It is remarked that the temporal next-time operator X  
 t poral description logic    [23] is similar 

onsistent negation   in 
in the em
to the parac con

e 
n


nective 
  in 
ective in

 . 
from 

ra- 
As mentioned, the connectiv
the paraconsistent negation co


 Ne


lson

 is 
’s pan

consistent logic N4 [19,20]. The next-time operator X  
in   is from Prior’s tomorr e logic [24]. 

In the following, we explain   and the - 
rities between 

ow tens
simila

X  in   and   i  . 
Similar notions and terminologies for   are also 

used for  . The symbol 

n 

  is used to represe t 
the natural numbers. The  -concepts ar

n
 set o e 

co
f 

nstructed from the  -co by adding ncepts X  
(next-time operator). A ssion nn expre X C  is inductiv
de

ely 
fined by 0 :X C C  and 1 :n nX C XX 
Definiti  - concepts C  are defined by 

the following grammar:  
::  |  |  |   | .  | .  C A C XC C C C R C R C

C . 
on 4.1 

 |C     

Definitio tempor l a 


n 4.2 A a  interpretation  is  

st



ructure  ,
i 

   where  
i

 

1)   is a non-empty set, 
2) each 

i

   i   is an interpretation n 
hich assigns to every atomic concept 

functio
w A  a set 

i

A    ry role R
i

 


and to  a binary relation  eve  
R     , 
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3) f ny role R  and any ,i j  , 
i j

R R  . or a
The interp ction is extended to concepts by 

the following inductive definitions:  

  1

:
i i

XC C


               (1) 

retation fun

  ,

  :
i i

C  
   C         (2) 

  :
i i i

C D C 

  ,

D  ,         (3) ∩

  :
i

C D C D  i i ∪ ,         (4) 

   . :  ,
i i i

R C a b a b R b C           , (5) 

   . :  ,
i i i

R C a b a b R b C          

For any

 . (6) 

 i 
. A tem

, an expression is define
poral interpretation 

i C   
 

d as 
i

C  

 : ,
i

i 
     is a model of a concept   

(de  conce
to r  exi
interpret .  

The interpretation 

C

noted as C ) if . A pt C  is said 
 be satisfiable in   if the e sts a temporal 

ation   such that C 

  0 C 

i

functions   are intende to r
e point i “. 

d epre- 
sent “verification at a tim

speakin
al

Intuitively g,  is constructed based on 
the following addition  schemes for 

  
 axiom X :  

X C X     C ,           (1) 

  #  # X C D XC XD  where    # ,    (2) 

 # . # .X R C R XC  where  # ,   .     (3) 

It is noted that X  in 
are based on some lar Whi
regarded as a de M an ty nec

  
axio

pe 

and   in   
 simi

org
m schem    is 
negation e, 

es. 
con

le
tiv X  

is regarded as a  of  d o
connective. By this si i prove a the
fo

ly. 

 introduced, and the
 and  were
garde gene- 

regarde small 

ntics [8,9]. The -sem
d dual

 as genera- 
liz

ics: A Comparison,” Proceedings of th th Interna- 
onal Conference on Knowledg ntelligent 

Information and Engineering Systems e Notes in 
Artificial Intell 9-608. 

on- 

kind
m

 
larity, we can 

 

“twisted” rgan type 
orem 

e M

 anr embedding   into . Such  embeddi  
theorem is similar to a theorem for embedding   
into  . Thus, in an abstract sense,   a  
  can be viewed as the same kind of embeddable 
logics. Indeed, the same embedding-based method can be 
applied to these logics uniform

5. Conclusions 

In this paper, a comparison of paraconsistent description 
logics was addressed. New paraconsistent description 
logics   and   were

ng

nd

 
 equivalence among 

proved. The 
 , 

-sem


antics is re

d as a 

ralization of both the four-valued semantics [4,5] and the 
quasi-classical semantics [12,13]. The  -seman- 
tics is d as a modification of the single- 

interpretation sema   antics 
[14], also calle -interpretation semantics, was taken 
over from the dual-consequence Kripke-style semantics 
for Nelson’s paraconsistent logic N4 [18,1

Finally, some recent developments on paraconsistent 
logics based on N4 are addressed. In oof theory 
of N4 and its variations were presented. In [26], 
completeness and cut-elimination theorems were proved 
for some trilattice logics which are regarded



9]. 

[25], pr

e 15
e-Based and I

, Lectur
, pp. 59

ations of N4. In [27], a paraconsistent linear-time 
temporal logic was introduced extending the well-known 
linear-time temporal logic (LTL). In [28], a para- 
consistent computation-tree logic was introduced extend- 
ing the well-known computation-tree logic (CTL). In 
[29], a constructive temporal paraconsistent logic was 
introduced combining N4 and a constructive version of 
LTL. 
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