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Abstract 
This paper proposes a vector-borne plant disease model with discontinuous 
treatment strategies. Constructing Lyapunov function and applying 
non-smooth theory to analyze discontinuous differential equations, the basic 
reproductive number 0R  is proved, which determines whether the plant dis-
ease will be extinct or not. If 0 1R < , the existence and global stability of dis-
ease-free equilibrium is established; If 0 1R > , there exists a unique endemic 
equilibrium which is globally stable. The numerical simulations are provided 
to verify our theoretical results, which indicate that after infective individuals 
reach some level, strengthening treatment measures is proved to be beneficial 
in controlling disease transmission. 
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1. Introduction 

The plants play an important role in our lives, as most of our daily food, clothing 
and building materials come from plants. With the change of environment, there 
are outbreaks of plant diseases, which seriously affect the health of plants and 
people’s life, such as huanglongbing [1], Blackleg [2]. We know that plant dis-
eases have been responsible for the death and suffering of millions of people and 
countless animals [3]. Controlling the outbreak and spread of plant diseases has 
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become the common goal of scientists. Available control measures include bio-
logical, cultural, and chemical methods [4]. Chemical control is a quite effective 
method, but the residues of chemical drugs have a direct negative impact on en-
vironment and thus are not encouraged. To effectively control plant disease and 
to reduce the harm to environment, it is crucial to understand disease transmis-
sion dynamics. 

The prevention and control of plant infectious diseases is of vital importance 
in agricultural production [5]. To work with the plant disease, we first under-
stand how they spread. There are many ways that plant viruses interact with 
the vectors; this transmission works in the following way. The vectors con-
sume sap from an infected host through their stylet. When the infected vector 
contacts a healthy plant, some virus particles leave the vector and invade the 
plant [6]. So the vector-borne is a very important part of the transmission of 
plant diseases. 

Treatment plays a very important role to control the spread of diseases. In re-
cent years, many researchers [7] [8] [9] [10] have studied some mathematical 
models incorporating treatment. For example, in [11], Wang and Ruan studied 
an epidemic model, and provide the limited resources for the treatment of pa-
tients. In [12], Wang proposed constant treatment, which simulates a limited 
capacity for treatment. In practice, when the number of infectives is large, the 
constant treatment is suitable for hypothesis of model. Recently, discontinuous 
treatment strategies are proposed by [13] [14]. The results show that disconti-
nuous treatment strategies would be accord with real condition. Applying this 
discontinuous treatment strategy makes the mathematical model a discontinuous 
system. At the same time, some non-smooth analysis techniques [15] are used 
for this system. 

In [16], Shi and Zhao presented a vector-borne plant disease model, but they 
do not studied treatment to the infected plant host. Treating infected plant is a 
quite effective method which to control the outbreak of the plant disease. Al-
though continuous treatment is an effective method, the outbreak of the plant 
disease is periodic, and continuing treatment can be a huge waste of resources. 
In order to be realistic, we built a vector-borne plant disease model with discon-
tinuous treatment. 

The paper is organized as follows. In the next section, we will construct the 
model and introduce the rational assumptions for model. In Section 3, positivity 
of the solution for the model will be clearly discussed. We obtain the existence of 
possible equilibria, the basic reproductive number, and the stability of equilibria 
in Section 4. In Section 5 and Section 6, we summarize our main results and 
main results are numerically simulated. 

2. Model and Preliminaries 

To construct the model, the following assumptions are being made by Shi et al. 
in [16]. 
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(A1) The total of the insect vector population is divided into X and Y, which 
denotes the densities of the susceptible vector and infective vector at time t, re-
spectively. The total of the plant host population is divided into S, I, and R, 
which represents the numbers of the susceptible, infective, and recovered host 
plant population at time t, respectively. At the same time, we assume that the 
number of plants in one area is fixed. The total number of plants K S I R= + +  
is a positive constant. In fact, when a plant has died, it would be replaced by a 
new plant to keep the total number of plants. Further, we assume that those new 
plants are susceptible, i.e., we chose the birth rate of susceptible plant host as 
( ),f S I K dIµ= + . 
(A2) The susceptible plants can be infected not only by the infected insect 

vectors but also by the infected plants. 
(A3) A susceptible vector can be infected only by an infected plant host, and 

after it is infected, it will hold the virus for the rest of its life. Further, there is no 
vertical infection being considered. 

(A4) The replenishment rate of insect vectors is a positive constant, and all of 
the new born vectors are susceptible. 

According to the principle of the compartmental model, consider the follow-
ing model with discontinuous treatment:  

( ) ( )
( ) ( ) ( )

( )
1

1

, ,
,

,
,

.

P s

P s

S f S I S Y I S
I Y I S d I h I
R I h I R
X IX mX
Y IX mY

µ β β
β β µ γ
γ µ

β
β

 = − − +


= + − + + −
 = + −
 = Λ − −

= −











            (2.1) 

Here the dimensionless variables and parameters (with parameter values) are 
given in Table 1. 

The function ( ) ( )h I I Iϕ=  represents the treatment rate. ( )Iϕ  satisfies 
the following assumptions. Obviously, the treatment rate should be nondecreasing as 
the number of infectious individuals is increasing. The following assumption 
will be needed throughout the paper. 

(H1) [ ) [ ): 0, 0,ϕ ∞ → ∞  is nondecreasing and has at most a finite number of 
jump discontinuities in every compact interval. No loss of generality, we always 
assume that ϕ  is continuous at 0I = , otherwise we define ( )0ϕ  to be 

( )0ϕ + . Here ( )0ϕ +  denotes the right limit of ( )Iϕ  as 0I +→ . 
By adding the fourth and fifth equations of system (2.1), we get  

N mN= Λ −                         (2.2) 

where N X Y= + . From Equation (2.2), we easily get 
m

N Λ
→  as .∞→t  

Note that S I R K+ + = . Since the variable R and X does not appear in the 

first two equations of model (2.1), meanwhile, let’s substitute X for Y
m
Λ − 

 
 in  

the fifth equation. We only need to study the first two equations and the fifth  
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Table 1. Dimensionless variables and parameters (with illustrative parameter values) in 
system (2.1).  

Parameter Description Default value 

S number of the susceptible plant hosts - 

I number of the infected plant hosts - 

R number of the recovered plant hosts - 

K sum of the total plant hosts 50 - 1000 

X density of the susceptible insect vectors .. 

Y density of the infected insect vectors  -  

N sum of the total insect vectors density 50 - 100 

β1 infection ratio between infected hosts and susceptible vectors 0.01 - 0.02 

βP biting rate of an infected vector on the susceptible host plants 0.01 - 0.02 

βS infection incidence between infected and susceptible hosts 0.01 - 0.02 

γ the conversion rate of infected hosts to recovered hosts 0 - 0.4 

μ natural death rate of plant hosts 0 - 0.1 

Λ birth or immigration of insect vectors 5 

m natural death rate of insect vectors 0 - 0.5 

d disease-induced mortality of infected hosts 0.1 

 
equation of model (2.1), thereby lowering the order of the system to be studied, 
i.e.  

( ) ( )
( ) ( )

( )1
1

,

,

.

P s

P s

S K S Y I S dI

I Y I S I h I
IY I m Y

m

µ β β

β β ω

β
β

 = − − + +

 = + − −

 Λ

= − +







             

 (2.3) 

where dω µ γ= + + . Obviously,  

( ) 3, , : 0 ,0S I Y R S I K Y
m+
Λ Ω = ∈ ≤ + ≤ ≤ ≤ 

            
 (2.4) 

is the positively invariant set for system (2.3). 
According to the definition of solutions for differential equations with discon-

tinuous right-hand sides in [15] [17], ( ) ( ) ( )( ), ,S t I t Y t  is called a solution with 
initial condition  

( ) ( ) ( )( ) ( )0 0 0 0 0 00 , 0 , 0 , , , , , 0S I Y S I Y S I Y= ≥            (2.5) 

of model (2.3) on [ )0, ,0T T< ≤ ∞ , if it is absolutely continuous on any com-
pact subinterval of [ )0,T , and almost everywhere on [ )0,T  (abbreviated to a.e. 
on [ )0,T ) satisfies the following differential inclusion:  

( ) ( )
( ) ( )

( )1
1

,

,

.

P s

P s

S K S Y I S dI

I Y I S I co h I

IY I m Y
m

µ β β

β β ω

β
β

 = − − + +

 ∈ + − −   
 Λ

= − +








              (2.6) 
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where ( ) ( ) ( )0 , 0co h I h I h I= − +       . Here, ( )0h I −  and ( )0h I +  denote 
the left limit and the right limit of the function ( )h I  at I, respectively. 

From (H1), it is clear that the set map  

( ) ( ) ( )

( ) ( ) ( )1
1

, , ,

,

P s

P s

S I Y K S Y I S dI

IY I S I co h I I m Y
m

µ β β

β
β β ω β


− − + +


Λ + − − − +    



       

 (2.7) 

is an upper semi-continuous set-valued map with non-empty compact convex 
values. By the measurable selection theorem [15], if ( ) ( ) ( )( ), ,S t I t Y t  is a so-
lution of model (2.3) on [ )0,T , then there is a measurable function 
( ) ( )( )m t co h I t ∈    such that  

( ) ( )
( ) ( ) [ )

( )1
1

,

, . . on 0, .

.

P s

P s

S K S Y I S dI

I Y I S I m t a e T
IY I m Y

m

µ β β

β β ω

β
β

 = − − + +

 ∈ + − −

 Λ

= − +







           (2.8) 

3. Positivity 

In this section, we will prove the positive of the solution to the initial condition 
of the model (2.3) with positive initial value. First, we will prove the following 
theorem. 

Theorem 3.1. Suppose that assumption (H1) holds and let ( ) ( ) ( )( ), ,S t I t Y t  
be the solution with initial condition (2.5) of model (2.3) on [ )0,T . Then 

( ) ( ) ( )( ), ,S t I t Y t  is nonnegative on [ )0,T . 
Proof: By the definition of a solution of (2.3) in the sense of Filippov, 
( ) ( ) ( )( ), ,S t I t Y t  must be a solution to differential inclusion (2.6). From the 

first equation of (2.6), we have  

( )( ) ( ) ( )( )( )
( ) ( )( )( )( )

0 0 0

0

exp d d

exp d 0

t u
P s

t
P s

S k dI u Y I u

Y I

µ µ β ρ β ρ ρ

µ β ρ β ρ ρ

 + + + +  

⋅ − + + >

∫ ∫

∫
    

 (3.1) 

for all ( )0,t T∈ . 
Based on the previous hypothesis of (H1), we have ( )0 0co h =    and ( )h I  

is continuous at 0I = . Combining the continuity of ϕ  at 0I = , it may be 
concluded that there exists a positive constant δ  such that ( )Iϕ  is conti-
nuous as I δ< . On this account, when I δ<  the differential inclusion (2.6) 
becomes the following system of differential equations: 

( ) ( )( )

( )1
1

,

.

P sI Y I S I I

IY I m Y
m

β β ω ϕ

β
β

 = + − +

 Λ

= − +






               (3.2) 

We divide this into four cases to discuss the positivity of the solutions for 
(2.6). 

1) 0 0 0I Y= = . 
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From (3.2), we see that ( ) ( ) 0I t Y t= =  for all [ )0,t T∈ . 
2) 0 00, 0I Y> = . 

By the continuity of ( )I t  at 0t =  and 1 0

0

d 0
d t

IY
t m

β

=

Λ
= > , we conclude 

( ) 0I t >  and ( ) 0Y t >  for all ( )0,t T∈ . If it is not true, then we can set  

( ) ( ){ } ( )1 inf : 0 or 0 0, .t t I t Y t T= = = ∈              (3.3) 

If ( )1 0I t = , then from ( )( )d
d
I I I
t

ω ϕ≥ − +  for 10 t t≤ ≤ , we have 

( ) ( )( )( )1 0 1exp 0I t I I tω ϕ≥ − + > . This is a contradiction.  

If ( )1 0I t = , then there is a θ  such that 1 0t θ− >  and ( )0 I t δ< <  on 
[ )1,t tθ− . Therefore, the second equation of (3.2) implies  

( )1
d
d
Y I m Y
t

β≥ − +                      (3.4) 

We have 

( ) ( ) ( )( )( )1

1
1 1 1exp d 0

t

t
Y t Y t I m

θ
θ β ξ ξ

−
≥ − − + >∫           (3.5) 

This is also a contradiction. Hence, ( )I t  and ( )Y t  are positive for all 
( )0,t T∈ . The same conclusion can be reached for the following two cases. 

3) 0 00, 0I Y= > . 
4) 0 00, 0I Y> > . This completes the proof. 

4. The Equilibria and Their Stability 

In this section, we will discuss the existence of equilibria of system (2.3). First, 
we prove the existence of endemic equilibrium. 

Let ( ) ( ) ( )( ) ( )* * *, , , ,S t I t Y t S I Y=  is a constant solution of (2.3), where 

( )* * *, ,S I Y  satisfies the following system:  

( ) ( )
( ) ( )

( )

* * * * *

* * * * *

*
* *1

1

0 ,

0 ,

0 .

P s

P s

K S Y I S dI

Y I S I co h I

I I m Y
m

µ β β

β β ω

β
β

 = − − + +

  ∈ + − −  
 Λ = − +


             (4.1) 

Since ( )0 0h = , there always exists a disease-free equilibrium 0P  of the 
model (2.3), where ( )0 ,0,0P K= . Next, we consider that the existence of an en-
demic equilibrium of the model (2.3). 

It follows from the first and third equations of (4.1), we conclude that  

( )
**

* * 1
* * *

1

, .
P s

IdI KS Y
Y I m I m

βµ
µ β β β

Λ+
= =

+ + +
           

 (4.2) 

Substituting (4.2) into the second inclusion of (4.1), we have the follows  

( ) ( ) ( )
*2 *

* *1 1 1
*2 *

2 2 2

0 , 0A I B I C co I I I
A I B I C

ω ϕ ϕ ϕ
+ +  − ∈ = − +    + +      

 (4.3) 
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where  

1 1 sA mdβ β=  

2
1 1 1 ,p s sB d m d mKβ β β µ β β= Λ + +  

( )2
1 1 ,p sC K mµ β β β= Λ +  

2 1 ,sA mβ β=  

2
2 1 1 ,p sB m mµ β β β β= + Λ +  

2
2 .C mµ=  

Denote  

( )
*2 *

* 1 1 1
*2 *

2 2 2

A I B I Cg I
A I B I C

ω
+ +

= −
+ +

                 (4.4) 

and let  

( )
( )( )

2
1

0 2 0
p sK m

R
m

β β β

ω ϕ

Λ +
=

+
                   (4.5) 

We next claim that 0R  is the basic reproductive number for the model (2.3) 
which will determine the existence of an endemic equilibrium. 

Theorem 4.1. Suppose that assumption (H1) holds. If 0 1R ≤ , then there only 
exists a disease-free equilibrium ( )0 ,0,0P K . If 0 1R > , then there exists a 
unique positive endemic equilibrium ( )* * * *, ,P S E I  except 0P . 

Proof: By 0 1R ≤ , we get ( ) ( )0 0g ϕ≤ . Since ( )g I  is nonincreasing on I 
and ( )Iϕ  is nondecreasing on I. For this reason, the inclusion (4.3) is only va-
lid at 0I = . Hence, the model (2.3) has a unique disease-free equilibrium as 
long as 0 1R ≤ . 

From (4.4), we have the following  
2 0AI BI C+ + =                       (4.6) 

where  

( )1 0,sA m mdβ β ω= − <  

2 2
1 1 1 1 ,p s s p sB d m d mK m mβ β β µ β β ω µβ ωβ β ω β= Λ + + − −Λ −  

( ) ( )2 2
0 1 0 .C m R mµω µ ϕ= − +  

If 0 1R ≥ , then 0C > , and the Equation (4.6) has a unique positive root I, 
where  

1
2

2, 4 .
2

BI B AC
A

− + ∆
= ∆ = −                   (4.7) 

If 0 1R > , then ( ) ( )0 0 0g ϕ> ≥ . Meanwhile, the inequality 1I I≥ , it implies 
( ) 0g I ≤ . Therefore, the set  

( ) ( ){ }: 0 , 0I g I I IϕΓ = ≥ + >                 (4.8) 

is bounded and non-empty. We can write  
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( ) ( ){ }* sup : 0 , 0I I g I I Iϕ= ≥ + >  

It follows easily that  

( ) ( )* * *
00 and 0 .g I I I Iϕ≥ + < ≤                (4.9) 

We claim ( ) ( ) ( )* * *0 , 0g I I Iϕ ϕ ∈ − +  . Assumption, contrary to our claim, 
that  

( ) ( ) ( )
*

* *

0
0 lim

I I
g I I Iϕ ϕ

→ +
> + =  

From (H1), there exists a 0δ >  such that  

( ) ( ) ( )* * * 0 .g I I Iδ ϕ δ ϕ δ+ > + = + +              (4.10) 

This contradicts the definition of *I . Thus, we have  

( ) ( ) ( )* * *0 , 0g I I Iϕ ϕ ∈ − +  . That is to say, *I  is a positive solution of the 
inclusion (4.3). We proceed to show that *I  is the only one positive solution of 
the inclusion (4.3). If the inclusion (4.3) has another positive solution **I , then 
there must exist two numbers  

( ) ( )* * ** **and ,I Iη ϕ η ϕ   ∈ ∈                   (4.11) 

which satisfy  
*2 *

*1 1 1
*2 *

2 2 2

A I B I C
A I B I C

ω η
+ +

− =
+ +                  

 (4.12) 

and  
**2 *

**1 1 1
**2 **

2 2 2

A I B I C
A I B I C

ω η
+ +

− =
+ +                 

 (4.13) 

Subtracting (4.13) from (4.12) gives  

( )( ) ( )( ) ( )( )
( )( )

* ** * ** *2 **2 * **
1 2 2 1 1 2 2 1 1 2 2 1

*2 * **2 **
2 2 2 2 2 2

* **

A B A B I I I I A C A C I I B C B C I I

A I B I C A I B I C

η η

− − + − − + − −

+ + + +

= −

 

(4.14) 

which implies  
* **

* ** 0
I I
η η−

<
−

                       (4.15) 

This is a contradiction. Hence, *I  is the unique positive solution of the in-
clusion (4.3). Combining it with (4.2), we conclude that the ( )* * *, ,S I Y  is the 
unique endemic equilibrium of (2.3). The proof is completed. 

Next, we prove the global stability of the disease-free equilibrium and the en-
demic equilibrium. We do this in several steps. We first investigate the local 
properties of the equilibria of system (2.3). 

Theorem 4.2. Assume (H1) holds. The disease-free equilibrium 0P  is locally 
asymptotically stable if 0 1R < , and is unstable if 0 1R > . 

Proof: We analyze the stability of the disease-free equilibrium by investigating 
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the eigenvalues of the Jacobian matrix of model (2.3) at 0P . The matrix is 

( )
( )

( )0

1

0 0

0

s p

s p

K d K
J P K K

m
m

µ β β
β ω ϕ β

β

 
 − − − −
 

= − − 
 Λ −
 

            (4.16) 

Thus, the characteristic equation at the disease-free equilibrium 0P  is  

( )
( )

( )0

1

0 0

0

s p

s p

K d K
J P K K

m
m

µ λ β β
β ω ϕ λ β

β
λ

− − − − −
= − − −

Λ
− −

         (4.17) 

It is easy to see that one of the roots with respect to λ  of (4.14) is 

1 0λ µ= − < . the other two roots are determined by the following characteristic 
equation of ( )0J P :  

( )( ) ( )( ) 12 0 0 0.p
s s

K
K m K

m
β β

λ λ ω ϕ β ω ϕ β
Λ

+ + − + + − − =
   

 (4.18) 

From (4.18) and Routh-Hurwitz criteria [18], it is easily seen that both the real 
parts of 2λ  and of 3λ  are negative when 0 1R < . When 0 1R > , one of 2λ  
and 3λ  is a number with a positive real part. Thus the disease-free equilibrium 
is locally asymptotically stable if 0 1R <  and unstable if 0 1R > . 

We have shown that there exists a positive endemic equilibrium if and only if 

0 1R >  in Theorem 4.1. Here, we will establish its local stability. 
Theorem 4.3. Suppose that assumption (H1) holds. If 0 1R > , the endemic 

equilibrium *P  of the system (2.3) is locally asymptotically stable. 
Proof: The Jacobian matrix of (2.3) at the endemic equilibrium 

( )* * * *, ,P S I Y=  is  

( )
( )

( ) ( )

* * * *

* * * * * * * *

*1
10

p s s p

p s s p

Y I S K d S

J P Y I S I I I S

Y m
m

µ β β β β

β β β ω ϕ ϕ β

β
β

 
− − − − − − 
 
 ′= + − − −
 

Λ − − 
 

 (4.19) 

Replacing * *
p sY Iµ β β− − − , ( )* *

sS Iβ ω ϕ− −  by *K dIµ + , * * *
pS Y Iβ , 

respectively. So we have 

( )

( )

( )

* * *

* *
* * * * * *

*

*1
10

s p

p
p s p

K dI S K d S

S Y
J P Y I I I S

I

Y m
m

µ β β

β
β β ϕ β

β
β

 + − − − 
 
 ′= + − − 
 Λ − − 
 

      (4.20) 

The characteristic equation of ( )*J P  is  
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3 2
1 2 3 0a a aλ λ λ+ + + =                    (4.21) 

where  

( )
* *

* * *
1 * ,pS Y

a m I I K dI
I

β
ϕ µ′= + + − −  

( )( )

( ) ( ) ( )

* * * * *1
2 1

* *
* * * *

* ,

p s s p

p

a Y I S K d S Y
m

S Y
K dI I I m K dI

I

β
β β β β β

β
µ ϕ µ

Λ = + − − − 
 

 
′− + + − +  

 

 

( ) ( ) ( )

( ) ( )( ) ( )

* *
* * * * * * *1

3 1*

* * * * * *1
1 .

p
p p s

p s s p

S Y
a m K dI I I S Y I Y

mI

m Y I S K d S Y K dI
m

β β
µ ϕ β β β β

β
β β β β β µ

  Λ ′= + − − − + −       
Λ − + − − + − + 

 

 

Since ϕ  is nondecreasing, ( )* 0Iϕ′ ≥ . This implies 1 2 30, 0, 0a a a> > > . 
Then  

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2 3

* *
* * * * * *

*

* *
* * * * * *1

1 *

* *
* * * * * * *1

1*

* *

p
p s s

p
p

p
p p s

p s

a a a

S Y
m I I K dI Y I S K d

I

S Y
S Y K dI I I m K dI

m I

S Y
m K dI I I S Y I Y

mI

m Y I

β
ϕ µ β β β

ββ
β β µ ϕ µ

β β
µ ϕ β β β β

β β β

−
 

′ = + + − − + − 
   

 Λ  ′− − − + + − +         
   Λ ′− + − − − + −         

− + −( )( ) ( )* * * *1
1s pS K d S Y K dI

m
β

β β µ
Λ  − + − +  

  

 

( ) ( ) ( ) ( )

( )( )

* *
* * * * *

*

* * * 0

p

p s s

S Y
K dI K dI I I m K dI

I

m Y I S K d

β
µ µ ϕ µ

β β β

  
′> + + + + +      

− + − >

 

Hence, all of the Routh-Hurwitz criteria are satisfied. Thus it follows that the 
endemic equilibrium *P  of (2.3), which exists if 0 1R > , is always locally 
asymptotically stable. The proof is completed. 

Next, we will prove global stability of the disease-free equilibrium and en-
demic equilibrium of (2.3). We need to use the LaSalle-type invariance prin-
ciple for the differential inclusion (Theorem 3 in [19]) to prove their global 
stability. 

Let x S K= − . We obtain the following system analogous to (2.5)  

( ) ( )
( ) ( ) ( )

( )1
1

,

,

.

p s s p

p s s p

x Y I x K d I KY

I Y I x K I KY co h I

IY I m Y
m

µ β β β β

β β β ω β

β
β

 = − + + − − −

 ∈ + + − + −   
 Λ

= − +








       (4.22) 

https://doi.org/10.4236/am.2018.95036


H. M. Lv et al. 
 

 

DOI: 10.4236/am.2018.95036 506 Applied Mathematics 
 

Set  

( )1 , , pK
V x I Y x I Y

m
β

= + +                   (4.23) 

and  

( )
( ) ( )

( ) ( ) ( )

( )1
1

, ,

p s s p

P s s p

Y I x K d I KY

x I Y Y I x K I KY co h I

I I m Y
m

µ β β β β

β β β ω β

β
β

 
− + + − − − 

 
 = + + − + −    

Λ − + 
 

G  

For any ( ) ( )T
1 2 3, , , ,v v v G x I Y= ∈v , there exists an ( ) ( )t co h Iη ∈     such 

that  

( ) ( )
( ) ( ) ( )

( )1
1

p s s p

p s s p

Y I x K d I KY

Y I x K I KY I I

I I m Y
m

µ β β β β

β β β ω β η

β
β

 
 − + + − − −
 
 = + + − + −
 

Λ − + 
 

v         (4.24) 

Hence, 

( )

( ) ( )
( ) ( ) ( )

( )

( )

( )

1

1
1

1 1
2

1 1
2

, ,

1,1,

p s s p

p
p s s p

p p

p p

V x I Y

Y I x K d I KY
K

Y I x K I KY I I
m

I I m Y
m

K K IY
x dI I I

mm

K K IY
x I I

mm

µ β β β β
β

β β β ω β η

β
β

β β β β
µ ω η

β β β β
µ ω η

∇ ⋅

 
 − + + − − −
  
 = + + − + − 
  

Λ − + 
 

Λ Λ 
= − + − + − − 

 
Λ Λ 

< − − + − − 
 

v

    (4.25) 

When 0 1R ≤ , the nondecreasing of ϕ  implies  

 
( ) ( )1 1

2 20 0p pK K
I

m m
β β β β

ω ϕ ω η
Λ Λ

+ − ≥ + − ≥           (4.26) 

It shows that 1V  is a Lyapunov function of (4.23). 
Furthermore, when 0 1R < , we have  

( ) ( ) ( ){ }
( ){ }

1

3
1, , : , , 0, , ,

0,0, : 0

V x I Y V x I Y x I Y

Y Y

= ∈ ∇ ⋅ = ∈

= ≥

v v G

      

 (4.27) 

When 0I = , we have 
d
d
Y mY
t
= − , which implies ( )lim 0t Y t→∞ = . For any 

0l > , we set  

( ) ( ){ }3
1 1, , : , ,lV x I Y V x I Y l∈ ∇ ≤ 

             
 (4.28) 

Hence, the largest weakly invariant subset of 
1 1

l
V V  is the singleton 
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( ){ }0,0,0M = . 
When 0I = , we have  

( ){ } ( ) ( ) ( ){ }1
0,0, : 0 0, , : 0 , 0V Y Y I Y t Iη ϕ= ≥ = >        (4.29) 

From the first equation of (4.23) and x = 0, it may be concluded that 0I = . 
Therefore, we see that the largest weakly invariant subset of 

1 1
l

V V  is also the 
singleton ( ){ }0,0,0M = . By the LaSalle-type invariance principle, the equili-
brium ( )0,0,0  of (4.23) is globally asymptotically stable as 0 1R ≤ . Summariz-
ing the above analysis, we obtain the following theorem. 

Next, we demonstrate the global stability of the endemic equilibrium *P  of 
(2.3). So, we have the following theorem.  

Theorem 4.4. Suppose that assumption (H1) holds. If 0 1R ≤ , the disease-free 
equilibrium 0P  of the system (2.3) is globally asymptotically stable. 

Proof: Let  

( ) * * * * *
* * *, , ln ln lnS I YV S I Y S S S I I I Y Y Y

S I Y
     = − − + − − + − −     
     

 (4.30) 

Write  

( ) ( )* *d co Iη ω ϕ = − ∈    

and  

( )
( ) ( )

( ) ( )

( )1
1

, ,
P s

P s

K S Y I S dI

S I Y Y I S I co h I

I I m Y
m

µ β β

β β ω

β
β

 
 − − + +
 
 = + − −    

Λ − + 
 

H

         

 (4.31) 

For any ( ) ( )T
1 2 3, , , ,v v v S I Y= ∈v H , there exists an ( ) ( )t co h Iη ∈     such 

that  

( ) ( )
( ) ( )

( )1
1

P s

P s

K S Y I S dI
Y I S I I I

I I m Y
m

µ β β
β β ω η

β
β

 
 − − + +
 

= + − − 
 Λ − +
 

v               (4.32) 

Hence  

( )
( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

( )( ) ( )( )

*

1
1

*
*1 1

1 1

*
* *1

1

, , 1,1,1

1

P s

P s

K S Y I S dI
YV S I Y Y I S I I I
Y

I I m Y
m

I IYK S dI I I I I m Y I m Y
m mY

I YI I I m Y Y
m Y

µ β β
β β ω η

β
β

β β
µ ω η β β

β
η η β

 
 − − + +
  

∇ ⋅ = − + − −  
  Λ − +

 
Λ Λ

= − + − − + − + − + +

 Λ
= − + − + + − 

 

v

 (4.33) 

https://doi.org/10.4236/am.2018.95036


H. M. Lv et al. 
 

 

DOI: 10.4236/am.2018.95036 508 Applied Mathematics 
 

The monotonicity of ϕ  implies ( )* 0Iη η− ≤ . Thus ( ), , 0V S I Y∇ ⋅ ≤v . 
This shows that V is a Lyapunov function of (2.24). Define  

( ) ( ) ( )

( ){ } ( ) ( )

3
1

* * * * *
* *

, , : , , = 0, , ,

, , , , : = ,

V S I Y V S I Y S I Y

I YS I Y S I Y t
I Y

η η

= ∈ ∇ ⋅ ∈

 = = 
 

v v H




       (4.34) 

If *S S= , then the first equation of (2.6) implies * *,I I Y Y= = . Consequent-
ly, for any 0l > , the largest weakly invariant subset of l

V V  of (2.6) is the 
singleton overline ( ){ }* * *, ,S I Y . Here  

( ) ( ){ }* * * 3, , : , ,lV S S I I Y Y V S I Y l= − − − ∈ ≤  

Therefore, *P  is globally asymptotically stable if 0 1R > . This completes the 
proof. 

5. Numerical Simulation 

To make our analysis more intuitive, some numerical simulations of solutions of 
the model (2.6) is provided which to illustrate the influence of insect vector and 
discontinuous treatment on the spread of plant disease. We apparent a treatment 
function satisfying (H1) as follows:  

( ) 1 0

2 0

, ,
, ,

c I I I
h I

c I I I
≤

=  >                      
 (5.1) 

where 1 20 c c≤ < . The treatment function ( )h I  is applied at the following case: 
when the infective individuals I attain some threshold 0I , the treatment rate 
should be strengthened to control the spread of the plant disease. 

To better illustrate the effects of non-continuous healing on the spread of 
plant disease, the following parameters are derived from [16]. Let 1 0.0025β = , 

0.0025pβ = , 0.0001sβ = , 0.1µ = , 0.4γ = , 1000K = , 1 0c = , 5Λ = , 
0.3m = , 0.1d = , then we easily calculate 0 0.3578 1R = <  by using (4.5). Fig-

ure 1 shows that the infective individuals I and the infective insect vectors Y 
tend to 0, and it means that the disease goes to extinction. In addition, we find 
that the peak values of the infective is affected by the different values of 2c . 
Figure 1 shows that larger values of 2c  can reduce the peak values of the infec-
tive. Therefore, we can increase the treatment rate to prevent the spread of dis-
ease after the number infective individuals reaching some high level. From Fig-
ure 1, the infective individuals reach some level and strengthening the treatment 
rate is also effective for disease control, even though we do not take any treat-
ment measures at the initial time of the diseases outbreak. 

If we fixed all parameter values as follows: 1 0.01β = , 0.02pβ = , 0.01sβ = , 
0.1µ = , 0.4γ = , 1000K = , 5Λ = , 0.3m = , 0.1d =  one could easily see 

that 0 16.8889 1R = > , by using (4.5). Figure 2 shows that the endemic equili-
brium is globally asymptotically stable. By (4.5), it’s obvious find that the basic 
reproductive number 0R  is independent of 2c , and the different values of 2c  
can affect the stability level of the infective. That is to say, larger values of  
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Figure 1. Stability of disease-free equilibrium. The parameters are fixed as follows: 1 0.0025β = , 0.0025pβ = , 0.0001sβ = , 

0.1µ = , 0.4γ = , 1000K = , 1 0c = , 5Λ = , 0.3m = , 0.1d = , and the initial values are ( ) ( )0 0 0, , 700,15,10S I Y = .The time 

series charts for ( ) ( ) ( ), ,S t I t Y t  and the phase diagram are given in (a), (b), (c), and (d), respectively.  

 

2c  can impact level of the infective. It implies that the strengthening of the 
treatment rate can effectively control the spread of plant disease after the num-
ber of infective individuals has increased to some high level.  

6. Discussion 

As for the plant infectious disease model, our main object is to investigate the 
effect of the insect vector and discontinuous treatment function on the dynamics 
of spreading the plant disease. We calculated the basic reproduction number 0R , 
which is derived under some reasonable assumptions on the discontinuous 
treatment function. It is an important threshold parameter which plays an im-
portant role in determining the global dynamics of the model (2.6) and whether 
it persists or dies out of the disease. When 0 1R ≤ , the disease-free equilibrium 
is globally stable, which means that the disease always dies out, and when 0 1R > , 
the plant disease will be permanent which means that after some period of time 
the plant disease will become endemic and it is global stable. 

In this paper, we studied the existence, local stability and global stability of the 
disease-free equilibrium and endemic equilibrium of the system (2.3) in detail. 
By building a suitable Lyapunov function, and the Jacobian matrix method,  
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Figure 2. Stability of endemic equilibrium. The parameters are fixed as follows: 1 0.01β = , 0.02pβ = , 0.01sβ = , 0.1µ = , 

0.4γ = , 1000K = , 5Λ = , 0.3m = , 0.1d = . The time series charts for S(t), I(t), Y(t) and the phase diagram are given in (a), 
(b), (c), and (d), respectively. 
 

employing Routh-Hurwitz criteria and LaSalle-type invariance principle, the 
main results as shown in Theorems 4.2, 4.3 and 4.4 have been derived. Our main 
results indicate that if 0 1R < , then the disease-free equilibrium is globally 
asymptotically stable, if 0 1R > , the unique endemic equilibrium is globally 
asymptotically stable of the system (2.3). From above results, it is easy to find 
that the basic reproduction number 0R  plays an important role in determining 
the persistence or dying out of the disease. 
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