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Abstract 
The range of optimal values in cost optimization models provides manage-
ment with options for decision making. However, it can be quite challenging 
to achieve feasible range of optimality in Geometric programming (Gp) mod-
els having negative degrees of difficulty. In this paper, we conduct sensitivity 
analysis on the optimal solution of Geometric programming problem with nega-
tive degree of difficulty. Using imprest data, we determine the optimal objec-
tive function, dual decision variables, primal decision variables; the range of 
values, the cost coefficient and RHS constraint must lie for the solution to stay 
optimal. From the analysis, we established that incremental sensitivity analy-
sis has the functional form ( )f x Qx c= + . 
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1. Introduction 

In every optimization problem, it will be of interest not only to obtain an optimal 
solution of the problem but also to find how stable that optimal solution would 
be in the different coefficients of the problem [1]. But in geometric programming 
literature, a negative degree of difficulty problem is said not to have a solution, 
see [2] [3] and [4]. Nevertheless, the work done by [5] shows that a negative de-
gree of difficulty geometric programming problem can be solved using the mod-
ified generalized inverse method. According to [6], sensitivity analysis was car-
ried out in a case where the degree of difficulty was zero (k = 0) by [7] and a fol-
low-up studies where the degree of difficulty was one (k = 1) was done by [6] [8] 
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[9]. But due to the peculiar nature of geometric programming with negative de-
grees of difficulty, no work was previously done on it. 

We carry out sensitivity analysis or post optimality test in geometric program-
ming on the cost coefficients of the objective function and the right-hand side 
(RHS) of the constraint equations to determine the effect of changes on the new 
optimal dual decision variables and the new optimal objective function. The range 
of values for the changes was determined; the new optimal objective function 
and the dual decision variables were also determined. Sensitivity analysis is the 
optimal dual decision variable for the problem. It is concerned with how small 
changes in the constraint or objective function affect the optimal objective value 
[10]. It should be noted that the standard form of geometric programming is 
that the right-hand side inequality must be bounded above by unity. So a change 
in the right-hand side constraint is similar to a change in the cost coefficient of 
the constraint equations after it has been transformed and the new right-hand 
side reduced to unity. The effect of the change on the right-hand side of the con-
straint equation was tested. 

We observed that [8] did a fundamental work on sensitivity analysis in geo-
metric programming for k > 0. The author stated and proved some important 
theories which were adopted by [9]. The authors [6] gave much meaning to the 
work of [8] by computing the values of important parameters in sensitivity anal-
ysis. They advanced their earlier work [9], while maintaining the basic theories 
and their fundamental work. In carrying out sensitivity analysis in this paper, we 
adopted the procedure described by [6] [8] [9] and [10]. We carried out incre-
mental sensitivity analysis where the cost coefficient is increased by a given per-
centage and the effect on the optimal objective function and optimal dual variables 
were determined. Our primary concern is on the cost coefficients of the objec-
tive function and the RHS constraint equations and their overall effect in the 
new optimal objective function, and to determine the range of values for such 
changes. 

2. Method 

Our interest is to determine the range of values the change in the cost coeffi-
cients and the right-hand side will lie. We have illustrated the methodology by 
modeling a real life data (monthly imprests) obtained from the Department of 
Maritime Management Technology as a negative degree of difficulty geometric 
programming problem, and its optimal solution was determined before the sen-
sitivity analysis carried out on it. We observed that [6] used incremental proce-
dure for sensitivity analysis which was based on the transformed dual decision 
variable given by 

( ) ( )0

1

n
j

i i j i
j

y b r b∗

=

= +∑                        (1) 

The n-dimensional vectors ( ) ( )0 , ; 1, ,j
ib b i n=   are constants; yi is the dual de-

cision variable and rj is a constant. For positive degree of difficulty problem, k > 0, 
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the optimal dual decision variables *
iy  are independent of the primal cost coef-

ficients, ci and the relationship among changes in the ci and yi are given by  

( ) ( ) ( ) ( )0 1

1 1 1

n n n
i

i i jl i i i
j i i

dy b J y b dc c− ∗

= = =

  =     
∑ ∑ ∑               (2) 

where 

( ) ( ) ( ){ }0

1

n
j

jl i i i
i

J y b b y∗ ∗

=

= ∑                     (3) 

where Jji is the Jacobian matrix and 

i i idv v y dc c∗ ∗= ∑                        (4) 

For a change in the primal coefficient, i idc c  we compute for the new solu-
tion as  

1v v dv∗= +                            (5) 

and the new dual variables becomes 
1
i i iy y ds∗= +                           (6) 

The range of value for ic  is  
1 1 1

i i i i ic y D c c y D∗ − ∗ −− < < +                     (7) 

where 

( ) ( ) ( )1

1 1

n n
j i

i jl i
j i

D b J y b− ∗

= =

  =    
∑ ∑                    (8) 

For constraint equations, we compute for the range of values as follows: 

( ) 1kg x ≤                            (9) 

Let the right-hand side be increased or decreased by R. Hence, we have 

( ) 1kg x R≤ ±  

Let 1 RR± = ∆  
We have 

( )k Rg x ≤ ∆  

Converting the constraint equation to standard form, we have 

( )1 1k
R

g x ≤
∆

                       (10) 

The new problem becomes:  

Minimize ( )f x                       (11) 

Subject to ( )1 1k
R

g x ≤
∆

                  (12) 

The effect of the change in the RHS on the cost coefficients of the constraint 
equation is then determined along side with its range of values. 

The range of values for R∆  is  
1 1

R i R R R i Rc y D c y D∗ − ∗ −− < ∆ < +                   (13) 
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Table 1. Expenditure on monthly imprest (September to November, 2016) by the Department 
of Maritime Management Technology, FUTO. 

S/No Items Sept. (Amount) Oct. (Amount) Nov. (Amount) 

1 Snacks 4000 - 3700 

2 FUTO Water - 7200 - 

3 Generator maintenance 10,200 - 11,500 

4 Amstel malt - 12,800 4800 

5 Stationeries 5800 - - 

 Total 20,000 20,000 20,000 

Source: Dept. of Maritime Management Technology, FUTO, 2016. 

3. Application of the Technique  

Table 1 represents the expenditure on monthly imprest from September to No-
vember, 2016 by the Department of Maritime Management Technology, Federal 
University of Technology Owerri. Our interest here is to minimize the cost of ex-
penditure on the imprest. In trying to do that, we let some arbitrary variables Xi 
to represent weights of various items the Department purchased during the period. 

Let X1 = snacks; X2 = FUTO water; X3 = generator maintenance; X4 = Amstel 
malt and X5 = stationeries. 

The total expenditure for the period is the sum of the individual monthly ex-
penditure on these variables ; 1, ,5iX i =  . These sums are written as: 

( ) ( ) ( )1i nU x U x U x= + +                   (14) 

where  

( )1 1 3 520000U x x x x=  

( )2 2 420000U x x x=  

( )3 1 3 420000U x x x x=  

0ix > ; 0jC >  and 3n =  
Putting the Ui(x) in an unconstrained geometric programming form, we have 

Minimize ( ) 1 3 5 2 4 1 3 420000 20000 20000f x x x x x x x x x= + +         (15) 

Reformulating Equation (15) to constrained geometric programming problem, 
we have 

Minimize ( ) 2 1 1 2 2 1 1 1
1 2 3 4 5 1 2 3 4 5 1 2 3 4 520000 20000 20000f x x x x x x x x x x x x x x x x− − − − − − −= + +  

(16) 

Subject to  
2 2 1 2 2 2
1 2 5 4 1 2 3 4 5 1x x x x x x x x x− − −+ ≤               (17) 

Equations (16) and (17) are constrained geometric programming problem with 
negative one degree of difficulty (K = −1) given as ( )1 1K n m= − + = − ; where 
K is the degree of difficulty, n is the number of terms and m is the number of va-
riables. Degree of difficulty is the measure of computational complexity of the 
problem. 

https://doi.org/10.4236/ajor.2020.101002


H. O. Amuji et al. 
 

 

DOI: 10.4236/ajor.2020.101002 17 American Journal of Operations Research 
 

Since the solution is not unique, we maximize the dual geometric program sub-
ject to linear constraint. 

( )
10 1

Maximize
kj

k k
y

N Nm
kj

kj
jk j kj

C
f y y

y == =

 
=   

 
∑∏∏                 (18) 

Subject to  

Ay B=                              (19) 

Forming the orthogonality and normality condition from the exponent matrix 
and writing it in the form of Equation (19), we have 

1 2 3 4 52 0y y y y y− − + − =   

1 2 3 4 52 2 2 2 0y y y y y− + + + − =  

1 2 3 4 52 0 2 0y y y y y− + + + =  

1 2 3 4 52 0y y y y y− + + + − =  

1 2 3 4 5 0y y y y y− − + + =  

1 2 3 4 50 0 1y y y y y+ + + + =  

( )
( )

( )
5 1

6 5 6 1

1

2

3

4

5

1 1 1 2 1 0
2 2 1 2 2 0

1 2 1 0 2 0
1 1 1 1 2 0

1 1 1 1 1 0
1 1 1 0 0 1y

A B

y
y
y
y
y

×
× ×

− − −   
    − −     
    −
  =   

− −     
    − −            

 

>> [ ]1, 1, 1,2, 1; ;1,1,1,0,0A = − − −  ; 

>> [ ]0;0;0;0;0;1B = ; 

( )*y Pinv A B= ∗  

*

0.4620
0.3662

00.1696
0.0530
0.0483

y

 
 
 
 = >
 
 
  

 

*y  are the optimal weights of the dual decision variables and they satisfy the or-
thogonality and normality conditions.  

From Equation (18), we correct for *y  and compute the optimal objective 
function as follows:  

( ) ( )

( )( )

* *

0.4620 0.3662 0.1696

0.0530 0.0483
0.1013

20000 20000 20000
0.4620 0.3662 0.1696

1 1 0.1013
0.0530 0.0483

58534

f y f x=

          = ∗ ∗                         
      ∗ ∗ ∗               

=
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The above is the global optimal objective function; that is, the optimal expendi-
ture for the period should be 58,534 instead of 60,000. The contribution of each 
primal decision variable to the objective function is: 

( )*

12.0770
0.7094

00.6900
22.798

ex
2

1 7

p

.85 8

ix w

 
 
 
  >
 
 
  

= =  

Allocation of New Values to the Items purchased 
Table 2 presents the summary of Optimal Allocation of Imprest from Septem-

ber to November 2016. In the table, Cin represents the initial allocation for each 
items; Cj represents the new average optimal allocation for each month and Cjn 
represents the final allocation for each items purchased. 

 
Table 2. Summary of optimal allocation of imprest from Sept. to Nov. 2016. 

 
Items September (N) October (N) November (N) 

S/N 
 

Cin Cjn Cin Cjn Cin Cjn 

1 Snacks 4000 3902.266 
  

3700 3609.60 

2 FUTO Water 
  

7200 7024.0226 
  

3 Gen. Maintenance 10,200 9950.778 
  

11,500 11,219.00 

4 Amstel Malt 
  

12,800 12,487.3074 4800 4682.73 

5 Stationery 5800 5658.286 
    

 
Total 20,000 19,511.33 20,000 19,511.33 20,000 19,511.33 

4. Application of the Technique to Sensitivity Analysis 
4.1. Change in the Cost Coefficients 

A 10% increase in the September imprest will result in some changes in the op-
timal dual decision variables and the optimal objective function. 

The optimal dual decision variable iy∗  as presented in Equation (1) is com-
puted as 

( ) ( )0

1

n
j

i i j i
j

y b r b∗

=

= +∑  

1

0.0000 1.0000
0.2505 0.2505
0.11601 0.11601
0.03625 0.03625
0.03304 0.03304

r

   
   
   
   +
   
   
      

; where 1 0.4620r =   

We chose any value in the column of b(j) and let it be r1 and we make use of 

the relationship 
( ) ( )2 2

2

1 1 0.3662
0.3662 0.2505; etc.

1 0.4620

ib r y b r

b

∗+ = ⇒ + =

= =
+
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( ) ( ) 2

11
11

nn
i j

ji j
ji

i i

bb b
J

y y
==

∗ ∗= =
∑∑

 

11
1 0.06275 0.01346 0.01314 0.001092 2.685753

0.4620 0.3662 0.1696 0.0530 0.0483
J = + + + + =  

Hence, if c1 = 20,000.00 is increased by 10%, making the total imprest for the 
month of September to be 22,000.00, we compute the changes in the dual deci-
sion variables as follows: 

( ) ( )1 11
5 5 11 1 1 1dy b J b dc c−=  

( )( )( )( )5 110.03304 1 1.0000 1 10 0.001230dy J= =  
( )( )( )( )4 110.03625 1 1.0000 1 10 0.00135dy J= =  

( )( )( )( )3 110.11601 1 1.0000 1 10 0.00432dy J= =  

( )( )( )( )2 110.2505 1 1.0000 1 10 0.00933dy J= =  

( )( )( )( )1 111.0000 1 1.0000 1 10 0.03723dy J= =  

The new dual decision variables are: 
1

i iy y dy∗= +  

1 0.4620 0.03723 0.49923y = + =  

2 0.3662 0.00933 0.37553y = + =  

3 0.1696 0.00432 0.17392y = + =  

4 0.0530 0.00135 0.05435y = + =  

5 0.0483 0.001230 0.04953y = + =  

1

0.49923
0.37553

00.17392
0.05435
0.04953

iy

 
 
 
 = >
 
 
  

 

The new optimal dual decision variables satisfies orthogonality and normality 
conditions, the non-negativity condition, and we can observe some variations in 
the corresponding values of the dual decision variables.  

The new optimal objective function is computed as follows: 

( ) ( )

( )( )

0.49923 0.37553 0.17392

0.05435 0.04953
0.10388

20000 20000 20000
0.49923 0.37553 0.17392

1 1 0.10388
0.05435 0.04953

Newf x∗           = ∗ ∗                         
      ∗ ∗ ∗               

 

( ) ( ) 96464Newf x∗ =  

From the above sensitivity analysis, we can see that a 10% increase on Sep-
tember imprest will lead to increase in the optimal objective function values from 
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58,534 to 96,464 and the optimal dual decision variables changes from 

*

0.4620
0.3662

00.1696
0.0530
0.0483

y

 
 
 
 = >
 
 
  

 to 1

0.4992
0.3755

00.1739
0.05435
0.04953

iy

 
 
 
 = >
 
 
  

 

Table 3 presents the percentage change in the cost coefficient; that is, the per-
centage change in the imprest allocation for the month and the corresponding 
new optimal objective functions associated with the change. 

The range of value for which the changes in September imprest lie is: 
1 1 1

i ic y D c c y D∗ − ∗ −− < < +   

1 2.685753D− =  
1 0.4620 2.685753 1.24iy D∗ − = ∗ =   

119998.76 20001.24c≤ ≤  

So, if the cost coefficient (c1), where c1 is the imprest for September, lies be-
tween 19,998.76 and 20,001.24, the optimal objective function will remain op-
timal, that is, will remain 58,534. 

In this study, we have established that incremental sensitivity analysis on the neg-
ative degrees of difficulty geometric programming problems can be represented as  

( )f x Qx c= +  

where ( )f x  is the new optimal objective function; Q is the slope of the linear 
function and c is the initial global optimal solution and x  is the percentage change 
in the cost coefficient; see Figure 1. If we determine the slope of the line, we can 
always get the new optimal objective function without calculating it afresh. Hence, 
we determined the slope of the line as, Q = 3793, and if September imprest is in-
creased by 15%, we have  

( ) 3793 i if x x c= +  

( ) 3793 15 58534 115429 nairaf x = × + =  
 

Table 3. Percentage Change in the Cost Coefficient/optimal objective function for K = −1. 

% change ( )f x New 

10 96,464 

9 91,733 

8 84,500 

5 75,165 

4 71,468 

2 64,727 

1 61,502 

0 58,534 

https://doi.org/10.4236/ajor.2020.101002


H. O. Amuji et al. 
 

 

DOI: 10.4236/ajor.2020.101002 21 American Journal of Operations Research 
 

 
Figure 1. Graph of incremental sensitivity analysis for negative one degree 
of difficulty. 

 

Therefore, we can predict the new optimal solution without starting the calcula-
tions afresh. 

4.2. Addition of Constraint Equation(s) 

If a constraint equation with a unit cost coefficient is added to the existing prob-
lem on impress, what happen to the optimal solution? 

Solution: 
Minimize ( ) 2 1 1 2 2 1 1 1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 520000 20000 20000f x x x x x x x x x x x x x x x x− − − − − − −= + +  
Subject to 2 2 1 2 2 2

1 2 4 5 1 2 3 4 5 1x x x x x x x x x− − −+ ≤  
Subject to 2 2 1 1

1 2 4 5 1x x x x− − − − ≤  
Forming orthogonality and normality conditions, we have 

1 2 3 4 5 62 2 0y y y y y y− − + − − =   

1 2 3 4 5 62 2 2 2 2 0y y y y y y− + + + − − =  

1 2 3 4 5 62 0 2 0 0y y y y y y− + + + + =  

1 2 3 4 5 62 0y y y y y y− + + + − − =  

1 2 3 4 5 6 0y y y y y y− − + + − =  

1 2 3 4 5 60 0 0 1y y y y y y+ + + + + =  

( ) ( ) ( )6 6 6 16 1

1

2

3

4

5

6

1 1 1 2 1 2 0
2 2 1 2 2 2 0

1 2 1 0 2 0 0
1 1 1 1 2 1 0

1 1 1 1 1 1 0
1 1 1 0 0 0 1A By

y
y
y
y
y
y

× ××

− − − −     
    − − −     
    −

=    
− − −     

    − − −
    

        

 

>> [ ]1, 1, 1,2, 1, 2; ;1,1,1,0,0,0A = − − − −  ; 

>> [ ]0;0;0;0;0;1B = ; 

( )* 0y Pinv A B= ∗ =  

and ( )* 0f x = . 
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Hence, we conclude that addition of constraint equations in this problem will 
lead to degenerate and infeasible optimal solution. 

5. Conclusions 

Since the expenditure of monthly imprest can vary from time to time depending 
on the Departmental needs, therefore, we advise as follows (see Table 2): 

1) The Department could spend N3902.266 instead of N4000 and N3609.60 
instead of N3700 respectively on snacks for the month of September and No-
vember, 2016. 

2) The Department could spend N7024.0226 instead of N7200 on FUTO water 
for the month of October, 2016. 

3) The Department could spend N9950.778 instead of N10,200 and N11,219.00 
instead of N11,500 respectively on generator maintenance for the month of Sep-
tember and November, 2016. 

4) The Department could spend N12,487.3074 instead of N12,800 and N4682.73 
instead of N4800 respectively on Amstel Malt for the month of October and No-
vember, 2016. 

5) The Department could spend N5658.286 instead of N5800 on stationery for 
the month of September, 2016, if she had applied our model. 

In addition, we conducted sensitivity analysis on the modeled problem, and 
observed that the incremental sensitivity analysis is of the form ( ) i if x Qx c= + . 
When there is 15% increase in the September allocation (expenditure), the op-
timal objective function will be ( ) 3793 15 58534 115429f x = × + = . Sensitivity 
analysis helps us to determine the boundary of adjustment of the cost coeffi-
cients so that the optimal objective function will not be violated. We found such 
point to be: 119998.76 20001.24c≤ ≤ . Moreover, these results can guide the De-
partment on how to allocate her scarce resources in particular and to the univer-
sity in general. 
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