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CEKANAVICIUS V.**

ON NEGATIVE BINOMIAL APPROXIMATION

PaccmarpuBaercs orpunaresbaas OHHOMUAIBHAS AMITPOKCIMAIILSI
CYMM HE3aBUCUMBIX Z-3HAYHBIX CIIyYaiHbIX BeauduH. C MOMOIIBIO
merona CrefiHa ycTaHABIMBAIOTCS TpaHunbl omubok. CBeprka oTpu-
aTeIbHOI0 OMHOMUAIILHOTO U IIyaCCOHOBCKOI'O pAacCIpeNesIeHUH UCIIOIb-
3yeTcs B KadecTBe TpexIapaMeTPUdecKoll allllPOKCUMAaIINN.

Kamouesbie cro6a u @pasvi: oTpunaTenbHOe GHHOMIAILHOE PACIIPE-
IIeJIeHre, OTPUIATEIbHOEe OMHOMUAIIBHOE Bo3MyIeHne, meton CreliHa,
paccTosIHIE IO BapUAIUL.

1. Introduction. It is well known that negative binomial (NB) distri-
bution and its generalizations arise naturally in many fields such as modelling
of crash-data, telecommunication networks, population genetics, epidemics
and various other related fields. Moreover, since it has a quite simple struc-
ture and depends on two parameters only, the NB distribution can be used
as approximation, see [6], [11], [12] and the references therein.

In this paper, we investigate NB approximation to the sum of random
variables via the Stein’s method. Our results deal with a sum of arbitrary
independent random variables taking values in Z, = {0,1,...} and having
three or four finite moments. We discuss the accuracy that can be achieved
by one-parameter and two-parameter NB approximations. Our results re-
semble the binomial approximation results to the Poisson binomial distribu-
tion (see [3, p.189] or [9]), where the approximation is exact when indicators
are identically distributed. Since we deal with NB approximation, the role
of indicators is played by geometric variables and our approximations are
also exact, as expected, when the geometric variables are also identically
distributed. Also, the convolution of NB and Poisson distributions is con-
sidered, as an example of three-parametric approximation. This approxima-
tion is treated as perturbation to the NB law and an appropriate Stein’s
perturbation technique is used.
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We now introduce necessary notation. Throughout, assume that
ity =0, if m <k, and

v (Mo, M) = 5 5™ My (k) — Ma{k)| = sup [V {4} — M {4

k=0

represents the total variation distance between two distributions M; and M,
on Z,. Here the supremum is taken over all Borel sets. For any bounded
function ¢ defined on Z,, we denote by Ag(j) = g(j + 1) — g(j) its first
forward difference, A*g = A(A*'g), and ||g|| = sup,-,]g(j)|. Also, Z(X)
denotes the distribution of X. We write X ~ Be(p) for Bernoulli variable
withP(X =1)=p=1-P(X =0).

For real r > 0 and 0 < p < 1, let Y ~ NB(r, p) denote the NB distribu-

tion with
k-1
P(Y = k) = <r+k >p’“qk, k=0,1,...,

where ¢ = 1 — p. Note that r is not necessarily an integer. The notation
X ~ Ge(p) is equivalent to X ~ NB(1,p).

Throughout the paper, we assume that X;, X, ..., X,, are independent
random variables, concentrated on Z, and having finite second moment. For
1<i<n,let yy =EX;, 6? =DX,, pp = P(X; = k), W =X, X; and
Wi - W - Xi.

2. The Stein operator and its perturbation. First we recall the
main facts related to the NB distribution. Let Y ~ NB(r,p). For any
bounded function g on Z ., define the following Stein operator:

(9)(4) = q(r +)g(G +1) = jg(j)- (1)

It is easy to check that E («7g)(Y) = 0.
For any A C Z,, let g(-) = ga(-) be a solution of the following equation:

(/9)() =10 € 4) - NB(r,p)(4),  j € L. )
hen 1 1.75 1 1
. —e @
< (10 2) Al <, 3
ol <5 (1A <2). Iagl s —— < ®

where o = rq/p (see [6]).

The Stein method is based on the fact that the total variation distance
between the distribution of any nonnegative integer-valued variable X and
NB(r,p) can be replaced by estimates of |E («7g)(X)|. Indeed, if for some
€1 >0and ey >0,

B (7 9)(X)| < erllgll + e2[|Agll, (4)
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then
drv (L (X),NB(r, p)) < 2 <1 A 175) =y (5)
p ra/p/ T4
Therefore, the problem of obtaining the estimate of the error term in total
variation reduces to that of obtaining (4) with small €1, €5. We exemplify
this approach in the next two subsections.

The NB distribution has two parameters which can be utilized for
matching of two moments of the approximated distribution. The natural
next step is to discuss an approximation with more parameters. However,
we encounter a serious problem of obtaining estimates similar to (3). Brown
and Xia [7] proved very sharp bounds for solution of (2), when the Stein op-
erators are of the form (#7g)(j) = a;9(j+1) —b,;g(j). A partial success was
achieved for compound Poisson distribution, see [5]. Unfortunately, none
of the mentioned results can be applied in our case. Therefore, we use the
perturbation technique. Poisson perturbation was introduced by Barbour
and Xia in [4] and was later generalized in [1]. The essence of perturbation
technique can be summarized in the following way: if approximation has the
Stein operator <7 which is close to some other Stein’s operator with known
properties, then we can use these properties at the expense of additional
restrictive assumptions and larger constants.

The main result of [1] is formulated in very general terms, which we
reformulate for the case of NB distribution and total variation metric. In
the following, we assume that o is defined by (1) and g is any bounded
function defined on Z,. Let M be a measure of finite variation defined on
Z ., and let 7 be its Stein operator defined by

> (i) (k)M{k} = 0.

k=0
Moreover, let there exist operator U defined on a set of all bounded functions
with support Z_, such that

h=d +U,  |Ug| <éllAg|, &<rq (6)
Now, for any A C Z,, let g(-) = ga(-) be a solution of the following
equation:
(#19)(J) =1 € A) —M(4), jEZ,.
If a random variable X on Z, for some ¢ > 0, satisfies inequality
[E («19)(X)] < l|Agl], (7)

then .
dTv(f(X), M) <

rq—¢& (®)

It must be mentioned that there are some slight differences in our formulation
from the one given in Theorem 2.4 from [1]. We used assumption ||Ug|| <
£||Ag|| instead of a weaker one related to the exact operator norm of U.
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3. One-parametric approximation. Our first result deals with one-
parametric NB approximation of a sum of independent random variables.
Let Y ~ NB(r,p), where r and p are such that

n

=> w, g=1-p 9)

We have quite modest assumptions about the moments of X;. Moreover,
the approximation is flexible in a sense that one can choose different r and p
satisfying (9). For example, one can take r = n. However, ¥ matches
one moment of W only. Consequently, in general, one can expect results
comparable to Poisson approximation, but not to the normal one.

Theorem 3.1. Let EX? < oo (i = 1,2,...,n) and Y ~ NB(r,p),
where r and p satisfy (9). Then the following estimate holds:

1 n oo
dry(Z(W),NB(r, p)) E Z Z klppipir + qgkpir. — (k + 1)pipya]- (10)
i=1 k=1
Remark 3.1. (i) If X; ~ NB(r;,p), then by choosing r = r; + ry +
<+ 1, we get dpv(Z(W),NB(r,p)) = 0, as expected.

27‘1:1292 q
drv(Z (W), NB(r, <=+ =
(£ (W) (r.p)) Yicibi D

Though we can choose ¢ to be small, it is clear that (see [2, p. 3-4]) the
accuracy is worse than in Poisson approximation.
Proof of Theorem 3.1. Using (9), we obtain

E(g)(W) = E{rqg(W + 1) + ¢Wg(W + 1) — Wg(W)}

= f: {pui Eg(W +1)+qEX;g(W +1) — EXig(W)}

7

I
=

Il
M=

i=1 k=0 k=0
- Z kpi. E g(W; + k)}
k=0
= {pm (1 - ZI%’k)Eg(VVi +1)
i—1 k=1

+pui Y pEgW; +k+1)

k=1

+q> kpx BEgWi+k+1) = > kpiu. Eg(W; +k)}

k=1 k=1
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= Z {pﬂi Zpik(Eg(VVi +k+1)—Eg(W,+1))

i1 =1

+a> kpi(Eg(Wi + k + 1) — Eg(W; + 1))

=1
=S kpa (B g(Wi + k) — B g(W,; + 1))}
=2
n oo k

= > {ppipir + qkpir, — (k+ Dpigsa} > EAg(Wi + 5).
=1 k=1 s=1

(11)
Thus,

|E (7 g9)(W)| < [|Agll ZZMPMPM + gkpix — (k + 1)pi k11l

i=1 k=1

Applying (5), the proof follows.

We next compute the bound for the case when X; are independent
geometric Ge(p;) random variables and compare it with known bounds in
the literature.

Corollary 3.1. Let X; be independent Ge(p;) random variables, u; =
4/Dis ¢ =1 —p;, and v; = [q;/p;| + 1. Then,

e (2 ). NBrp) < =30 22 (12

where k(1) = w;[2(v; — Dvsg? ™ — 2(v; — 1)(2v; + 1)g¥* + 2v2¢V ' — 1] and
|z | denotes the integer part of x.

Proof. Using py = pig¥ and u; = q;/p;, we get

> klpuipi + qkpi — (k + Dpigsa| = Y kaflpg; + qgkpi — (k + 1)pigi

k=1 k=1

=S kgt — (k4 Ve i - p) = LB ), (13)

k=1 DPi

where the last equality follows from the fact that k — (k + 1)g; is positive for
k > u; and negative for k < u; and then splitting the sum with respect to v;
(since k is nonnegative integer). This proves the result.

Remark 3.2. (i) If ¢; <1/2, then

dry(Z(W),NB(r, p)) Z|p— %— prmnxi. (14)
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(ii) The order of the above result improves upon Theorem 2.2 in [11].
(iii) Roos [10, Theorem 1] proved for this case the following estimate:

drv(Z(W),NB(r,p)) 882191 mln{z pquz = } (15)
=1 1 1P:q;

It can be seen that the bound given in (12) is comparable and improves the
constant. Moreover, estimate in (12) takes into account the closeness of p;
and is exact, when p; = p.

(iv) It is not difficult to note that

k(1) = w(207p; gt + 2(uip; + 1)g" — 1) < By,

since v;p; < 1. Therefore, for 1/2 < g; < 1, a rougher version of (14) holds,
where D X; is replaced by 5D X;.

4. Two-parametric approximation. If the random variables have
three finite moments, we can utilize both the parameters of the NB law to
fit the mean and the variance of W. Recall that W = X; + Xo +--- + X,
and W, = W — X, where the X, are independent nonnegative integer-valued
random variables. Choose now

(EW)? _EW

_ _EW 1
pw-Ew’ PT Dw’ (16)

so that EW = rq/p and DW = rq/p*. Let

7 :=2 max dry(ZL(W,;), Z(W;+1)) = max Z P (W, -P(W; =k-1)|.

1<ig<n <ig<n

Theorem 4.1. Let EX? < oo, (i = 1,2,...,n) and let Y ~ NB(r,p)
with v and p defined by (16). If DW > EW, then the following estimate
holds:

T e X k—1
dr (Z(W),NB(r.p)) < — "3k (m) PP+ akpan— (k- 1)pisal.

rq i=1 k=1 2
(17)
Remark 4.1. Let 7, = min{1/2,1 — drv(Z(X;), £ (X;+ 1))} and

T = maxiign Ti- Then

\/5 1 n —-1/2
</ = =T ; 18
T 7T(ZL—I—JZ;TJ 7') (18)

see [8, Corollary 1.6].
(ii) The right-hand side of (17) is less than

3+q qg+1

=L (55 ) X - 1)+ LR B X~ )X -2+ i+ 0 .
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(iii) Note here that the bound given in Theorem 4.1 is not applicable
to the case of Bernoulli variables, since the choice p given in (16) is not less
than unity.

Observe also that (18) significantly improves the order of accuracy. In-
deed, let us assume that all p;;, are uniformly bounded from below by some
absolute positive constant and that the maximum lattice span for each X;
is unity. Then 7, > C' > 0, and the estimate (17) is of the order O(n~%/2).
The same order in weaker Kolmogorov metric can be obtained by the normal
approximation. In this case, the estimate (10) is of the trivial order O(1).

At first glance, it seems that two-parametric approximation is always
preferable to one-parametric approximation. It is easy to construct an ex-
ample showing that, as far as our results are concerned, this is not the
case. Let X; ~ Ge(1/3) for 1 < i < (n—1), a = Y72 ,(1/k*) and
P(X, = k) = 1/(ak*), k = 1,2,.... Then we cannot apply (17). Mean-
while, applying Theorem 3.1 with p = 1/3 and using (13), we easily obtain
drv(Z(W),NB(r,1/3)) = O(n™).

Corollary 4.1. Let X; be independent Ge(p;) random variables with
g <1/2,i=1,2,...,n. Then

)0 <2 (X0 -5) (S2)

j=1 k=1 Ik
n 1 2
X —— == (19)
>[5l G
Remark 4.2. When p; = p, the approximation is exact, as ex-
pected. Moreover, if " | ¢; > 1, then
i 4

dTv(g(W), NB(T,p)) < CW,

where C > 0. Note that the estimate has much better order than the ones
given in (14) and (15).

The rest of this section is devoted to the proofs.

Proof of Theorem 4.1. We have

EAg(W +1) = ZpijEAg(W-—Fj—i—l)

7=0
=Y (EAgWJrl +ZEA2 W+l)>

j=0 =1

oo J
EAg(W; +1)+ > py > EA*g(W; +1).

=0 =1
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Consequently,
EAg(W;+1)=EAg(W +1) — ZpUZEAZ Wi +1)
7=0

and

s—1

EAg(W; +s) =EAg(W, +1) + Z E A?g(W,; +m)

=EAg(W +1) Zp”ZEAQ (W; +1) +ZEA2 (W; +m). (20)
j=0 =1
Due to (16), we have

=1k

vgk

k{pp:pir. + gkpir — (k + 1)pi r41}

[ + q(of + ) = BX(Xi = 1)) = D (= poi) = 0. (21)

- Il
Il M: —
—

Therefore, substituting (20) into (11), we obtain

E(dg)(W) = i i {pripir + akpir — (k + 1)p; ps1}

i=1 k=1
k [eS)
xz[ S S EAY W+Z+ZEA2 W+m)|. (22)
s=1 j=0 =1

It is shown in [4] (see also [3, p. 517]) that |[EA2g(W; + m)| < 7|Ag|.
Therefore, the assertion of the theorem follows from (22) and (5).
Proof of Corollary 4.1. Note that

dov (Z(X)), Z(X, + 1)) = i _P(X, =k —1)]

1

2

1 - k—1

= 5 (P4 Y lnidt — i) = b
k=1

Thus, 7; = ¢;, 7 < 1/2. Similar to the proof of Corollary 3.1, we get

|ppipir + qkpix — (kK + 1)pi k| = af|pg; + gkp; — (k + 1)pigi|

qi
= gflk — (k + V| |pi — p| = pig! k—; Ipi — p|. (23)

K3
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Note that ¢;/p; < 1, since ¢; < 1/2 and hence the right-hand side of (17) is
less than

— Z ( + m) pi — plpid? (k - Z)

rqz 1 1
_qu‘pl P|< Xi(X; 1)(Xi—ﬂi)+HiEXi(Xi—Mi)>
=1
1
= I3 -l BXX, 1><Xi2>+2<2m>EXi<Xi1>+uia?)
=1
qQ; qz
= Di —p 2_) >— )
rq;‘ |< ( pi) v; P} Tq;|
4@ _ 37§ 1_1‘%
pEWZ‘pl p' j2 EW; . plopE

Collecting all estimates and using (18), the bound in (19) follows.

5. Negative binomial perturbation. For an improvement of the
accuracy of approximation, we need more than just two-parametric distri-
bution. However, we want to retain the NB law as the main part of ap-
proximation. Of course, there are many choices for such approximations.
In this section, we consider the convolution of NB and generalized Poisson
distribution Pois(A), where A is real. Note that Pois(0) is degenerate at zero.
More precisely, let NB(N, p) «Pois(\) be (signed) measure with the following
generating function:

(1 _pqz>NeXP{>\(2— 1} = eXP{(NZ—F)\)(Z— 1)

+]Z<Z>2(z— 1)2+g <Z)3(2— 1)3+~~}.

Let us denote M (k) = NB(NV, p) * Pois(A\){k} and write the generating

function
oo

<1 —pqz>NeXp{A<Z 1)} =) M(k)z".

k=0

Taking derivative with respect to z, we obtain

Nq°°

> M(k)z +)\ZM z _ZkM

— 9%

Consequently,

Z M(k)(NgzF + 22" — Agz"™ — k2" + kq2") =0
k=0
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and M(k)(Ng+ X+ kq) —AgM(k—1)— (k+1)M(k+1) =0.
Therefore, the corresponding Stein’s operator is

() (k) = q(N + Zp + k)g(k +1) — kg(k) — A\gAg(k +1). (24)

Comparing (24) with (1) and (6), we see that r = N+ Ap/q, € = |A|q and the
sufficient condition for (8) to hold is [A|¢ < rq¢ =p(Ng/p+ X)) =p> i pi.

Further, we discuss the choice of parameters. We can write the following
formal expression for the generating function of W =" | X; as

T r
EzW:exp{Pl(z—l)—i-22(2—1)2—#5(2—1)34---}.
Here I'; is j-th factorial cumulant of W. We can choose real N, p, and A
to match the first three factorial cumulants of W and NB(N, p) % Pois(A).
Consequently, the first three moments will be matched as well. It is obvious
that I'; can be expressed through moments of X;. However, for our purposes
it is more convenient to use factorial moments. Therefore, for i = 1,2,...,n,
let
Vo, :EXl(X,L—].), V3, :EXZ(Xl—l)(Xl— ),

Using the relations between factorial cumulants and factorial moments, given

by Ty = 3300, iy To = 3000 (Vai — 7)), Ts = 3001, (Vi — Bpivas + 2, we see
that the parameters IV, p and A\ must satisfy the following equations:

A= (25)

q
p
() = e ) (26)

p i=1
q 3 1 n
N(p) =3 Z(V&‘ — 3piva; + 2417). (27)
i=1

We want N > 0 and 0 < p < 1, which imposes additional assumptions on
the X;. For example, (26) requires DW > E W, since vy; — i = 07 — p;.
Let

oo

F=sup » [PW;=k—2)—2P(W;=k—1)+P(W; =k)|.

1<i<n

Theorem 5.1. Let EX} < 0o, i = 1,2,...,n, and assume that (25)—
(27) can be solved for N >0 and p € (0,1). If [Ng < pX." | wi, then

< m T
ij:1 K — I\lg

dry (L (W), NB(N, p) * Pois()\))
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Z Z lppipir + qkpir — (k + 1)p; g1 |
i k(k—1 k(E—1)(k—2
><<V22—|—/-cp,f+ (2 )+ B ();< )>. (28)

Remark 51. (i) Let 7, = min{1/2,1 — drv(Z(X,), Z(X; + 1))},
T = maxi<ign Tiy and V = Z?:l Ti- Then

2 16
<d4l1n—=" )<=, 2
T < </\(V—4T*)+)<V (29)

using [3, equation (4.10)].
(ii) The right-hand side of (28) is less than

~ n

; Z{pu2v e 3t
n i V21 i 121 i
ijzl Ky = ’)"q i=1 2 & 2
244q 1+g¢ q
+ (14 @)pivai + qu} +TM1 V3 + 5 V4¢+2V3¢}-

Distributions satisfying (25)—(27) have large probability mass at zero.
This condition is natural for the so-called aggregate claim distribution for the
individual model in insurance mathematics. More precisely, it is assumed
that X; = &mn;, where & and 7; are independent, & ~ Be(a;) and 7; is
a positive random variable. One can give the following interpretation: &;
reflects the possibility of occurrence of claim with the small probability «;
and 7; denotes the distribution of the claim amount. Note that, if #; is
integer-valued random variable, then Theorem 5.1 can easily be applied,
since v = a;Eni(n; — 1)---(n; — k + 1). Note also that Theorem 5.1
cannot be applied to the Poisson binomial distribution (i.e., to the case
P(n;=1) =1), where DW < EW.

As in previous sections, we reformulate Theorem 5.1 for the sum of
geometric random variables so that X; ~ Ge(p;), 1 <4 < n. In this case,

n ) 3 2 n ) 2
222?1(%/@)2, N<q> :Z<%> . A= Z_N< )
p Xii(a/pi) p — \p; —~ p;
It is easy to check that A > 0
Remark 52. Note that the bound obtained in Theorem 5.1 has

more flexibility due to the parameter A as compared to the one in Theo-
rem 4.1.

Corollary 5.1. Let X; be independent Ge(p;) random variables, q; <
1/2 (i=1,2,...,n) and 31, ¢ > 3. Then

drv(Z(W),NB(N, p) * Pois()\))

<56<j§i:1qj —2>1<§n:;;<1_ q+qj>>1i§n:

G
= P D —|pi  pl\pi/)
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Remark 53. (i) Note that if p; = p, then the approximation is
exact, as expected. Moreover, if ¢; < 1/2 and Y"1, ¢; > 4, then, for some
positive constant C,

no 3
droy(.Z(W),NB(N, p) * Pois(\)) < cz,filq2
(Zj:l q;)
(ii) The above bound is an improvement over the better bound obtained
for NB approximation in Remark 4.2.
Proof of Theorem 5.1. First note that Ng + A\p = >0, .
Also, from (25)—(27) and (21), we get
Ag =Y k{pupir + ¢kpix — (k + 1)pigs1}- (30)
i=1 k=1
Proceeding now exactly as in the proof of (11), and using (30), we obtain

E (a1g9)(W) = {ppripix + qkpi, — (k + 1)p; 41}

I

@
I
—
ES
Il
=

hE

EAg(W;+s) —AgEAg(W +1)

w

|
e L

3

{pripir + gkpir, — (K + 1)p; 41}
1

@
I
-
S
Il

)=

x » (EAg(W; +s) —EAg(W +1)). (31)

w
Il
—

For s =1,2,..., we can write Newton’s expansion in the form

gw+s)=glw+1)+ (s —1)Agw+1) + Sz_:(s —1-DA%g(w+1). (32)

=1
Using (32), we obtain
EAg(W; +3s) = EAg(W; + 1)+ (s — 1) EA%g(W; + 1) + Ry,
EAg(W +1) = EAg(W; + 1) + p; EA%g(W; 4+ 1) 4 Ry,
EA%g(W; +1) = EA*g(W + 1) — Ry,

where
s—2
RM‘ = Z(S —1- m) EAgg(WZ + m),
m=1
RQz = Z Z EAS (Wl‘i‘m),
7=0 m=1
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Applying the above results to (31) gives us
EAg(W,+s) —EAg(W +1)
=(s—1— ) EA?g(W +1) — (s — 1 — ;) Rs; + Ry — Ry;.
It follows easily from (21) and (30)

n oo k
ZZ{Puipiqukpm k+1pzk+1}2 s—1—p;)=0.
=1 = S:1

Consequently,
|E (249)(W)| < lppipix + qkpix — (k + 1)pi g4
i=1 k=1
k

x Y [(s = 1+ pi)|Rai| + |Rus| + |Rail)- (33)

=

It is known that |E A3g(W;+s)|
_ s—1)(s—2
Rul < Flag) =2,

Putting the last estimates into (33), the proof follows.
Proof of Corollary 5.1. In the previous section, we proved
that 7, = ¢;, and 7* < 1/2. Therefore, it follows from (29) that

N<8(éqi—2)

From the definition of A, p, and N given in (25)—(27), we have

IEEH () 1520

< T||Agl|, see [3, equation (4.12)]. Therefore,

~ Va; ~
| Rai| < 7| Agll 72 | Rsi| < 7| Agllp:.

-1

i—1 Pi i—1 Pi T \Pi
Therefore,
- ~a g a;
p m—Aq:p( —/\>=p (1—+>
; ; Y4 p Zz_; Di p y2

Applying (23) and performing some standard calculations, we get

Z \ppipir + qkpir — (k + 1)ps i |

- k(k—1) k(k—1)(k —2)
5 Wi + 6 )

= |Pi—P|<(2+ﬂz)EX(Xi _,u’i)+%EXi(Xi - 1)(Xi — )

><<V22i+k:,uf+

1 7 @\’
SEX(X - (G- 20— ) = Il (%

The proof of Corollary 5.1 follows by using the last three expressions.
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