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We show that pivoting property of graph states cannot be derived from the axioms of theZX-calculus,
and that pivoting does not imply local complementation of graph states. Therefore theZX-calculus
augmented with pivoting is strictly weaker than the calculus augmented with the Euler decomposition
of the Hadamard gate. We derive an angle-free version of theZX-calculus and show that it is complete
for real stabilizer quantum mechanics.

TheZX-calculus is a formal theory for reasoning about quantum computational systems [3]. It con-
sists of a graphical language based on the PauliZ andX observables, and a collection of axioms expressed
as graph rewrite rules. TheZX-calculus is expressive enough to represent any quantum circuit, and its
equations are complete for the stabilizer fragment of quantum mechanics [1]. Due to its graphical nature,
and its close relationship to theZ andX observables, theZX-calculus is particularly well adapted to the
study of graph states and measurement-based quantum computation [9, 7].

In addition to the two observables, theZX-calculus also contains an operator for the Hadamard map:
this is the map which exchanges theZ andX bases, and thus provides a duality principle for the graphical
language. In previous work [8] the authors showed that if theHadamard can be expressed in terms of
Z andX rotations—that is, as an Euler decomposition—then Van Den Nest’s theorem [14] about local
complementation of graph states follows, and vice versa. Furthermore, these results cannot be derived
from the original axioms, hence the theory “ZX-calculus + Euler” is strictly stronger than the plainZX-
calculus.

In this paper we find a theory intermediate between the two, albeit having a similar flavour. We
consider an operation on graph states calledpivotingand show that its defining property is equivalent to
the possibility to express (one of) the Pauli matrices in terms of the Hadamard. Since pivoting can be
done via local complementation, “ZX-calculus + Euler” is stronger than “ZX-calculus + Pivot”. However,
we will show that, once again, these equations cannot be derived from the plainZX-calculus.

The theory “ZX-calculus + Euler” is known to be complete for the stabiliserfragment of quantum
mechanics [1]: the stabiliser fragment corresponds to the sub-calculus where all angles are multiples of
π/2. We show that the intermediate calculus “ZX-calculus + Pivot” is complete for thereal stabiliser
fragment of quantum mechanics, and that this fragment admits an angle-free axiomatisation.

Real quantum mechanics is sufficient for quantum computing [2], in the sense that any unitary evo-
lution onn-qubits can be simulated (using a simple encoding) by a real unitary evolution acting onn+1
qubits. As a consequence, while not complete for (complex) quantum mechanics, the intermediate cal-
culus “ZX-calculus + Pivot” might be useful and simpler than the the whole “ZX-calculus + Euler” for
proving properties of quantum systems, for example via rewriting.

Remark. There is some variation about which axioms comprise theZX-calculus. In [8] we considered
fewer axioms than we do here; whereas in some later work, notably [1], the Euler decomposition of the
Hadamard is included as an axiom.
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1 The Graphical Formalism

We recall the syntax, semantics, and basic properties of theZX-calculus. For a full exposition, see [3].

Definition 1.1. An open graphis a triple(G, I ,O) consisting of a finite undirected graphG= (V,E) and
distinguished subsetsI ,O⊆V of degree one vertices, called theinputsandoutputs, respectively. The set
of verticesI ∪O is called theboundaryof G, andV \(I ∪O) is theinterior of G. An open graph is called
emptyif its interior is empty; it is calledprime if it is connected and its interior is a singleton.

We view the inputs and outputs as finite ordinals, and writeγ : n→ m for a graph withn inputs and
m outputs. Open graphs form a self-dual compact category: composition is achieved by identifying the
inputs of one graph with the outputs or another and erasing the resulting vertices; the tensor product is
simple juxtaposition of graphs. The unit and counit maps aregenerated from the unique empty graphs
d : 0→ 2 ande : 2→ 0. Note that, due to general results [10, 15, 6], a pair of graphs can be deformed
from one to other if and only if they are equal by the axioms of compact categories.

The terms of theZX-calculus are certain open graphs we calldiagrams.

Definition 1.2. A diagramis an arrow of the free categoryD generated by the following prime graphs:

Zn
m(α) = α

· · ·

· · ·
Xn

m(α) = α
· · ·

· · ·
H =

wheren andm are the number of inputs and outputs respectively, andα ∈ [0,2π) is an angle called
phase. If α = 0 it will be omitted from the diagram.

We define the semantics of diagrams via an interpretation functorJ·K : D →FdHilb wp, whereFdHilb wp

is the category of complex Hilbert spaces and linear maps under the equivalence relationf ≡ g iff there
existsθ such thatf = eiθ g. A diagram f : n → m output defines a linear mapJ f K : C⊗2n → C

⊗2m as
follows:

JZn
m(α)K =

{

|0〉n 7→ |0〉m

|1〉n 7→ eiα |1〉m

JXn
m(β )K =

{

|+〉n 7→ |+〉m

|−〉n 7→ eiβ |−〉m

JHK = 1√
2

(

1 1
1 −1

)

.

The mapJ·K extends in the evident way to a monoidal functor. We can now see where the nameZX-
calculus calculus comes from: theZ vertices are defined in terms of theZ basis ofC2 while the X
vertices are defined in terms of theX basis.

The interpretation ofD contains a universal set of quantum gates. Note thatZ1
1(α) andX1

1 (α) are the
rotations around theX andZ axes, and in particular whenα = π they yield the PauliX andZ matrices.
The∧Z is defined by:

∧Z =
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α

β

· · ·

· · ·

= α+β

· · ·

· · ·

α

· · ·

· · ·

= α

· · ·

· · ·

=

(S1) (S2) (S3)

· · ·

π

α
=

· · ·
π

−α

π · · ·
α = · · ·

· · ·
α

=

· · ·

α

(π) (C) (H1)

α

β

· · ·

· · ·

=

α

β

· · ·

· · ·

= =

(Hpf) (Bi) (H2)

Figure 1: Equations for theZX-calculus

In order to obtain theZX-calculus we quotient the free categoryD by the equations shown in Figure 1;
the quotient category we denote byD.

The equations of Fig 1 are sound with respect to the interpretation functorJ·K introduced above.

Proposition 1.3. There exists a canonical functorJ·K∼ : D→ FdHilb wp making the following diagram
commute:

D ✲✲ D

FdHilb wp

J·K∼
❄

J·K
✲

In the rest of this paper we won’t make any distinction between D andD, nor between the interpretation
functors. Indeed, we will abuse notation and refer to both asJ·K.
Remark. Note that in the presence of the equations (S1)-(S3), which we refer to collectively as the
“spider rule”, we could have made other choices for the generators of theX andZ families of vertices.
For example, the prime graphs

δ = ε = pα = α
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are used in the formulation that emphasises the fact that each family forms a Frobenius algebra. From
that perspective the spider rule is effectively a normal-form theorem; see [4] for details.

Proposition 1.4. The following are direct consequences of the axioms.

• Any connected diagram containing only Z or only X vertices isequivalent to a prime graph.

• Any diagram without any H is equivalent to a simple bipartitegraph.

• Any diagram is equivalent to (a) a diagram with no Z vertices;and (b) a diagram with no X
vertices.

• Any equation which holds between two graphs, also holds withZ and X exchanged.

Remark. Note that although Figure 1 seems to favour one colour over the other, by the last point of
Proposition 1.4 we know that all the rules apply with the colours reversed.

Euler decomposition ofH. The following axiom is not part of the definition of theZX-calculus

=

π/2

π/2

π/2

(EU)

In [8] we proved that the Euler decomposition cannot be derived from the axioms of theZX-calculus;
however, in that paper we considered slightly weaker axioms. It is straight-forward to give a counter-
model for theZX-calculus of today.

Lemma 1.5. The Euler decomposition of H cannot be derived by the rules ofthe ZX calculus.

Proof. We define an alternative interpretation functorJ·K0 : D → FdHilb wp by

JHK0 = JHK
JZn

m(α)K0 = JZn
m(0)K

JXn
m(β )K0 = JXn

m(0)K .

It’s easy to verify that all the equations of Figure 1 still hold underJ·K0 but (EU) fails.

2 Graph states and Local complementation

Definition 2.1. Let G= (V,E) be an undirected graph. Then thegraph state|G〉 is defined by

|G〉=
(

∏
uv∈E

∧Zuv

)

⊗

v∈V

|+〉

Given a graphG we can directly write down the diagramDG such thatJDGK = |G〉 as follows: (1)
for eachv∈V we add aZ vertex, connected to an output; (2) for each edgeuv∈ E we add anH vertex,
connected to thoseZ vertices corresponding to the verticesu andv.
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Example 2.2. Consider the case whenG is just a triangle:

G= DG =

Proposition 2.3. Let G= (V,E) be a graph with v∈V and define

Kv =

(

∏
u∈N(v)

Zu

)

Xv .

Then Kv |G〉= |G〉.

Proof. We apply anX(π) to the output corresponding tov and aZ(π) on all the outputs of the neighbours
of v:

· · ·
π

π

π

v

=
· · ·

π

π

π

π

v

= · · ·
π

π
π

π

v

=

· · ·

v

Definition 2.4. SupposeG = (V,E) is a graph withv ∈ V. Let E1 = E ∩ (N(v)×N(v)) and E2 =
(N(v)×N(v))\E1. Then the local complementation ofG atv is defined by

G∗v= (V,(E \E1)∪E2) .

Equivalently, ifu,u′ are neighbours ofv thenuu′ is an edge ofG∗v if and only if it is not an edge ofG;
otherwise the two graphs are the same.

For graph states local complementation can also be expressed in terms of a product of single qubit
operations:
Proposition 2.5([14]). Let G be a graph with vertex v; define

Mv =

(

∏
u∈N(v)

Z(−π/2)u

)

·X(π/2)v

Then|G∗v〉= Mv |G〉.
Note thatM2

v = Kv hence local complementation is involutive on graph states.
Example 2.6. Here we consider the local complementation of the triangle by its top vertex:

=

−π
2 −π

2

π
2

Theorem 2.7([8]). Proposition 2.5 is equivalent to Equation(EU) in the ZX-calculus, hence it cannot
be proven in theZX-calculus.
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3 Pivoting

Pivoting, also known as edge-local complementation, is a local transformation of graphs. Given a graph
G with an edgeuv, G∧ uv, the graph obtained by pivoting according touv, consists in exchanging the
two verticesu andv and in complementing the tripartite subgraph formed by (i) the common neighbours
of u andv; (ii) the exclusive neighbours ofu; and (iii ) the exclusive neighbours ofv (see Figure 2).

v v

A BA

D

B

D

CC

PSfrag replacements

u u

Figure 2: Pivoting onuv. C= N(u)∩N(v), A= N(u)\C, B= N(v)\C, andD is the rest of the vertices.
Pivoting onuv exchanges verticesu andv, and for any(x,y) ∈ (A×B)∪ (B×C)∪ (A×C), the edgexy
is deleted ifxy was an edge, and added otherwise.

Pivoting is a combination of local complementations,G∧uv= G∗u∗v∗u (Notice thatG∗u∗v∗u=
G∗v∗u∗v) and can be performed on graph states by applying Hadamard onverticesu andv andZ on
their common neighbours:

Proposition 3.1(Pivoting Property[13, 12]).

|G∧uv〉= Hu,vZN(u)∩N(v) |G〉

Pivoting of graph states have several applications in quantum information processing. In particular
the universality of the triangular grid as a resource of measurement-based quantum computing has been
proved using pivoting [12]; pivoting can also be used to compute the minimal distance of linear codes
[5].

In the rest of this section, we prove that an additional axiom, strictly weaker that the Euler decompo-
sition of H, needs to be added to theZX-calculus to prove the pivoting property. However, whenu andv
have no common neighbours, the pivoting property can be proved in the plainZX-calculus:

Lemma 3.2. For any graph G= (V,E) and any u,v∈V which have no common neighbour,|G∧uv〉=
Hu,v |G〉 can be derived in theZX-calculus.

Proof. The proof is based on the generalised bialgebra law [8]:

=

Assume for the moment that there is no edge between the neighbours ofu and the neighbours ofv. In
that case applyingH on bothu andv permutesu andv and creates a complete bipartite graph between
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the neighbours ofu and this ofv. For instance, ifu andv both have two neighbours:

vu

=

u v

=

u v

=

vu

The first equation is via rule (H1) while the second follows from the generalised bialgebra. The final
equation uses rule (H1) again to remove all the red vertices,followed by the spider rule, and some
rearrangement of the graph. Now suppose that in fact there were some edges between the neighbours of
u and those ofv. The procedure above will add an additional edge, and then both may be removed since

= by (HpF).

As a consequence, pivoting of triangle-free graphs or bipartite (or 2-colourable) graphs can be derived
in theZX-calculus. Notice that the pivoting preserves bipartiteness (but not triangle freeness), so one can
prove a series of pivotings on bipartite graphs in theZX-calculus.

In the following we prove that the pivoting of arbitrary graph can be derived in theZX-calculus
augmented with a new rule forπ-rotations:

Theorem 3.3. Pivoting of arbitrary graph can be proved in theZX-calculus augmented with the follow-
ing axiom:

π = (HL)

This new axiom is called theH-loop axiom as it can be rewritten asπ = .

Proof. We illustrate the proof on the particular case where theu andv have two common neighbours:

π

π

vu

=

vu

=

vu

=

u v

=

u v

The left-most diagram corresponds to a graph state on whichH is applied on two verticesu andv and
Z (greenπ-rotation) on their two common neighbours. The second diagram is obtained using the (HL)
axiom. This transformation splits each common neighbour ofu andv in such a way that Lemma 3.2 can
be applied, leading to the third diagram. The application ofthe spider rule (fourth diagram) and the Hopf
law (fifth diagram) completes the proof for this particular graph.

The general case is similar. First, theπ-rotations on the common neighbours are removed using
the (HL) axiom, which splits the common neighbours. Then, inthe absence of common neighbours
Lemma 3.2 is used. Finally spiders and the Hopf Law complete the proof.
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In the following, we show that one can derive pivoting if and only if Equation (HL) holds:

Lemma 3.4. In the ZX-calculus, the pivoting property for the triangle implies that theπ-rotation is
equivalent to a “H-loop”, i.e.

π
= ⇒ π =

Proof. = = = =

π
=

π
=

π
= π

Lemma 3.5. π = cannot be derived from the rules of theZX-calculus.

Proof. We consider the interpretation functorJ.K0 introduced in Lemma 1.5, which preserves all the
axioms of theZX-calculus, but for which we have:

1
2

(

1 0
0 −1

)

= J K0 6= J π K0 =

(

1 0
0 1

)

Like the Euler decomposition ofH (Equation (EU)), Equation (HL) cannot be derived from the
rules of theZX-calculus. The completeness for the stabilisers of theZX-calculus augmented with Euler
decomposition ofH guarantees that equation (HL) can be derived from the Euler decomposition ofH.
Indeed,

=
π/2

π/2

π/2

=
π π/2

=
π π/2

= π .

In the following, we prove that Equation (HL) is actually strictly weaker than the Euler decomposi-
tion in the sense that the Euler decomposition cannot be derived from Equation (HL) in theZX-calculus.

Lemma 3.6. The Euler decomposition of H cannot be derived in theZX-calculus augmented with the

axiom π = .
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Proof. We consider the following functorJ.K♭ which maps diagrams to diagrams:

s {♭

=

s {♭

=

r z♭
=

r z♭
=

s {♭

=

s {♭

=

s
α

{♭

=

s
α

{♭

=

Notice that the axioms of theZX-calculus are satisfied. Indeed, for diagrams withoutH, the functorJ.K♭
consists in doubling the picture and trivialising the rotations. Regarding the axioms which involveH, we
have s {♭

= = =

s {♭

and

s {♭

= = =
r z♭

for instance, the other ones are satisfied similarly.
The H-loop axiom is satisfied as well:

u
v

}
~

♭

= = = =

s
π

{♭

,

but the Euler decomposition is not:

u
wwwwwv

π/2

π/2

π/2

}
�����~

♭

= and

s {♭

= .

The combination of Lemmas 3.5 and 3.6 proves that “ZX-calculus + H-loop” is indeed an intermedi-
ate theory between theZX-calculus and “ZX-calculus + Euler”.

4 Angle-free calculus for Real Stabilizers

Backens [1] considered a syntactic restriction on the termsof theZX-calculus: by demanding that all the
phases occurring in a term are multiples ofπ

2 , the resultingZX-calculus terms are in exact correspondence
with stabilizer states. Furthermore, the theory ofZX-calculus + Euler is sufficient to decide the equality
for these states. In other words, the theory is complete for stabilizer quantum mechanics.
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We will now consider a stronger syntactic restriction, namely that all phases must be either 0 orπ.
Semantically this yields the real-valued fragment of stabilizer quantum mechanics. We will also modify
the axiom scheme by dropping the axioms (π) and (C) and replacing them with

· · ·
= · · ·

· · ·

π
= · · ·

π π

(C1) (C2)

Note that these equations are both derivable in the fullZX-calculus. The resulting system we call the
weakZX-calculus.
Lemma 4.1. The following equations are derivable in the weakZX-calculus:

π
=

π π

π
π =

π
π

Proof. For the first equation we have

π
=

π

=

π

= π

π
=

π π

by spider, (B), (C2), and spider. Making use of this equation, in both its original and colour-switched
form, we have:

π
π =

π

π

=

π

π π =

π
π

π
= π π

π

π =
π
π

where the scalar factor was dropped at the last step.

However, in the presence of Equation (HL) there is no need forthe angleπ at all. We can now define
the “angle-freeZX-calculus” by replacing all theπ vertices with loops:

π 7→ and π 7→

and replacing axiom (C2) with (L):

· · ·
=

· · ·
(L)

Evidently, the resulting calculus is strictly stronger than the weakZX-calculus and weaker than the
restrictedZX-calculus + Euler considered by Backens.

We will show that the angle-freeZX-calculus is complete for real-valued stabilizers.
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4.1 Real stabilizer quantum mechanics

Recall that the Clifford operations are the normalisers of the Pauli operators, i.e.Cn= {U |∀g∈Pn,UgU† ∈
Pn} wherePn is the Pauli group onn qubits. Thereal Cliffords—i.e. those satisfyingU =U—form a
subgroup ofCn generated by{Z,H,∧Z}. We callreal stabilizer quantum mechanicsany quantum evo-
lution that can be described by real Clifford operations,|0〉 initialisations, and|0〉 projections. Notice
that the image of the angle-freeZX-calculus under the functorJ·K coincides with real stabiliser quantum
mechanics. We now show the completeness of the angle-freeZX-calculus for real stabiliser quantum
mechanics, i.e. for any two diagramsD1 andD2, if JD1K = JD2K thenD1 = D2 can be proved in the
calculus.

We follow the proof of the completeness of theZX-calculus together with the Euler decomposition
for (complex) stabiliser quantum mechanics [1]. Due to the Choi-Jamoilkowski isomorphism it suffices
to consider input-free diagrams (since any input can be turned into an output). A diagram with no input
is called adiagram state.

Definition 4.2. A diagram is called aGS-RLC diagramif it consists of a graph state with arbitrary single
real Clifford operator applied on each output.

Lemma 4.3. Any angle-free diagram state is equal to some GS-RLC diagramwithin the angle-freeZX-
calculus.

Proof Sketch.The proof is by induction. Intuitively, every red dot can be turned into a green dot usingH;
the spider rule is used to merge green dots connected by a wire; parallelH-edges are removed using the
Hopf law. If there is a green dot which is not connected to an output, then either this dot is disconnected
from the rest of the diagram and can be ignored, or the dot can be removed by pivoting with one of its
neighbours as shown:

= = = = =

That is, the bottom dot is removed by pivoting along one of itsincident edges.

Definition 4.4. A reducedGS-RLC diagram, is a GS-RLC diagram such that

(1) every vertex Clifford operator is one of, , or

(2) two adjacent vertices must not both have vertex operators that include anH.

Lemma 4.5. Any angle-free diagram state is equal to a reduced GS-RLC diagram.

Proof Sketch.Any real local Clifford is a combination ofH, X andZ. Notice that using Proposition 2.3,
everyX can be transformed inZs on its neighbours. As a consequence the vertex Clifford operators are
eitherI , Z, H or HZ. Moreover, if two adjacent vertices have a vertex operator which include anH, then
one can do a pivoting which is consuming theHs, transforms the graph and producesZ on the common
neighbours.

Suppose that a pair of GS-RLC diagrams describe states with the same number of qubits, that is, they
have the same set of outout vertices. Such a pair is calledsimplifiedif there is no pair of qubitsu andv
which are adjacent in at least one diagram and such thatH is applied onu but notv in the first diagram,
and onv but notu in the second diagram.

Lemma 4.6. Any pair of angle-free diagrams of reduced GS-LRC diagrams can be simplified.
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Proof Sketch.If there exists a pairu, v which are adjacent in the first diagram such thatH is applied on
u and not onv, then one can apply a pivoting onu,v in this graph. This pivoting consumes theH on u
and add anH on v. This transformation does not introduce nor removeH on the other vertices, so this
transformation can be applied inductively to any pair of vertices which do not satisfies the conditions of
simplified pairs of GS-RLC.

Theorem 4.7. Given two reduced GS-RLC diagrams D1 and D2 which form a simplified pair,JD1K =
JD2K if and only if D1 and D2 are identical.

Proof. SinceD1 andD2 are reduced GS-RLC diagrams, there exist two graphsG1 = (V,E1) andG2 =
(V,E2), and four subsetsA1,A2,B1,B2 ⊆V such thatJDiK=HAi ZBi |Gi〉, whereHA =

⊗

u∈AHu. Diagrams
D1 andD2 are identical iffA1=A2, B1 =B2 andG1 =G2. First we show thatA1 =A2. Notice thatJD1K=
JD2K iff HAZB1 |G1〉 = ZB2 |G2〉 whereA= A1∆A2 is the symmetric difference ofA1 andA2. By contra-
diction, for anyu∈ A1∆A2, |G1〉 is a fix point ofXuZNG1(u)

, soZB1 |G1〉 is an eigenvector ofXuZNG1(u)
.

Moreover, sinceD1 is in a reduced form there is noH applied on qubits adjacent tou, soHAZB1 |G1〉 is an
eigenvector ofZuZNG1(u)

. IndeedHAZB1 |G1〉 = HAZB1XuZNG1(u)
|G1〉 = ±ZuZNG1(u)

HAZB1 |G1〉. Regard-
ing the second state,ZB2 |G2〉 is an eigenvector ofXuZNG2(u)

. The two operatorXuZNG2(u)
andZuZNG1(u)

are anti commuting so they cannot have a common non-zero eigenvector, as a consequenceA1 = A2.
ThusJD1K = JD2K implies ZB1 |G1〉 = ZB2 |G2〉. Moreover, it has been proved (Lemma 3 in [12]) that
ZB1 |G1〉= ZB2 |G2〉 impliesB1 = B2 andG1 = G2. As a consequence the two diagrams are identical.

5 Conclusion and Perspectives

We have introduced a new calculus, intermediate between theZX-calculus and theZX-calculus aug-
mented with the Euler decomposition ofH. As the introduction of the Euler decomposition was driven
by local complementation, the new axiom we consider, namelythe H-loop, is driven by another graph
transformation, namely pivoting. We prove the H-loop axiomcannot be derived in the plainZX-calculus,
and is strictly weaker than the Euler decomposition ofH. When restricted to 0- andπ-rotations this new
calculus is complete for real stabiliser quantum mechanics. Moreover this restricted language admits
a simple equivalent angle-free calculus. We believe this angle-free calculus will be the cornerstone for
an axiomatisation of real quantum mechanics. Real quantum mechanics is known to be universal for
quantum computing, moreover the restriction to the real field provides some useful simplifications in
terms of diagrammatic quantum mechanics (for example, the objectA and its dualA∗ have the same in-
terpretation). Another example is that, when restricted toreal numbers, the unbiased bases are perfectly
captured by the complementary observablesX andZ of the ZX-calculus, whereas the axiomatisation of
the third (complex) mutually unbiased base for qubit, albeit possible (see [11]) is less intuitive. On the
other hand applications which require complex numbers likelocal tomography cannot be captured by
this intermediate language, and require additional axioms(e.g. Euler decomposition ofH).
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