Pivoting makes thezx -calculus complete for real stabilizers

Ross Duncan Simon Perdrix
University of Strathclyde CNRS, LORIA UMR 7503, CARTE Project-Team
Glasgow, UK Nancy, France
ross.duncan@strath.ac.uk simon.perdrix@loria.fr

We show that pivoting property of graph states cannot beeeéifrom the axioms of thex-calculus,
and that pivoting does not imply local complementation @fpir states. Therefore tlze-calculus
augmented with pivoting is strictly weaker than the calsidugmented with the Euler decomposition
of the Hadamard gate. We derive an angle-free version afthealculus and show that it is complete
for real stabilizer guantum mechanics.

Thezx-calculus is a formal theory for reasoning about quantumptational systems [3]. It con-
sists of a graphical language based on the RaatidX observables, and a collection of axioms expressed
as graph rewrite rules. Thex-calculus is expressive enough to represent any quantwmitciand its
equations are complete for the stabilizer fragment of quramhechanics [1]. Due to its graphical nature,
and its close relationship to tizeand X observables, thex-calculus is particularly well adapted to the
study of graph states and measurement-based quantum ctiopu®, 7].

In addition to the two observables, thg-calculus also contains an operator for the Hadamard map:
this is the map which exchanges thandX bases, and thus provides a duality principle for the gragbhic
language. In previous work][8] the authors showed that ifHlagdamard can be expressed in terms of
Z and X rotations—that is, as an Euler decomposition—then Van Dest’sltheorem[[14] about local
complementation of graph states follows, and vice versathErmore, these results cannot be derived
from the original axioms, hence the theox*calculus + Euler” is strictly stronger than the plair-
calculus.

In this paper we find a theory intermediate between the twaeiahaving a similar flavour. We
consider an operation on graph states cgtiedting and show that its defining property is equivalent to
the possibility to express (one of) the Pauli matrices im&epf the Hadamard. Since pivoting can be
done via local complementatiorzX-calculus + Euler” is stronger thazX-calculus + Pivot”. However,
we will show that, once again, these equations cannot beedefiom the plairzx-calculus.

The theory Zx-calculus + Euler” is known to be complete for the stabilifsagment of quantum
mechanics[[1]: the stabiliser fragment corresponds toubecslculus where all angles are multiples of
/2. We show that the intermediate calculus<*calculus + Pivot” is complete for theeal stabiliser
fragment of quantum mechanics, and that this fragment admitingle-free axiomatisation.

Real quantum mechanics is sufficient for guantum compuhgr the sense that any unitary evo-
lution onn-qubits can be simulated (using a simple encoding) by a rEtdny evolution acting om—+ 1
qubits. As a consequence, while not complete for (compleghtym mechanics, the intermediate cal-
culus “zx-calculus + Pivot” might be useful and simpler than the thebelizx-calculus + Euler” for
proving properties of quantum systems, for example viaitagr

Remark. There is some variation about which axioms comprisezthealculus. In[[8] we considered
fewer axioms than we do here; whereas in some later workbhyof&], the Euler decomposition of the
Hadamard is included as an axiom.
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1 The Graphical Formalism

We recall the syntax, semantics, and basic properties abthealculus. For a full exposition, se€ [3].

Definition 1.1. An open graphis a triple(G,1,0) consisting of a finite undirected grag= (V,E) and
distinguished subsetsO C V of degree one vertices, called timputsandoutputs respectively. The set
of verticesl UQ is called theboundaryof G, andV \ (1 UO) is theinterior of G. An open graph is called
emptyif its interior is empty; it is callegrimeif it is connected and its interior is a singleton.

We view the inputs and outputs as finite ordinals, and write — m for a graph withn inputs and
m outputs. Open graphs form a self-dual compact categoryposition is achieved by identifying the
inputs of one graph with the outputs or another and erasiegdsulting vertices; the tensor product is
simple juxtaposition of graphs. The unit and counit mapsgamerated from the unique empty graphs
d:0— 2 ande: 2 — 0. Note that, due to general results|[10] [15, 6], a pair of lggagan be deformed
from one to other if and only if they are equal by the axiomsarhipact categories.

The terms of thex-calculus are certain open graphs we didigrams

Definition 1.2. A diagramis an arrow of the free category generated by the following prime graphs:

zg<a>=>:c:r:( x,%(a):x H:Jf

wheren andm are the number of inputs and outputs respectively, are [0,2m) is an angle called
phase If a = 0 it will be omitted from the diagram.

We define the semantics of diagrams via an interpretatioctéufi | : 2 — FdHilb v, whereFdHilb
is the category of complex Hilbert spaces and linear mapsutiet equivalence relatioh= g iff there
exists8 such thatf = €9g. A diagramf : n — moutput defines a linear mg] : C¥2" — C®2M as
follows:

v 107 0"
izl ={ [ 2 B

pa@1={ [t 2 e

-5

The map[-] extends in the evident way to a monoidal functor. We can nawsgere the namex-
calculus calculus comes from: tifevertices are defined in terms of t@ebasis of C? while the X
vertices are defined in terms of thebasis.

The interpretation o7 contains a universal set of quantum gates. Notezhat) andX{(a) are the
rotations around th& andZ axes, and in particular whem = rrthey yield the PaulK andZ matrices.

The AZ is defined by:
N = (%—D—Jf
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Figure 1: Equations for thex-calculus

In order to obtain thex-calculus we quotient the free categamby the equations shown in Figure 1;
the quotient category we denote By

The equations of Figl1 are sound with respect to the intexpioet functor|-] introduced above.
Proposition 1.3. There exists a canonical funct@i].. : D — FdHilb, making the following diagram
commute:

9 D

% [~

FdHilb wp

In the rest of this paper we won't make any distinction betwg@eandD, nor between the interpretation
functors. Indeed, we will abuse notation and refer to botfJas

Remark. Note that in the presence of the equations (S1)-(S3), whiehrefer to collectively as the
“spider rule”, we could have made other choices for the genes of theX andZ families of vertices.
For example, the prime graphs
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are used in the formulation that emphasises the fact th&t faadily forms a Frobenius algebra. From
that perspective the spider rule is effectively a normataftheorem; see [4] for details.

Proposition 1.4. The following are direct consequences of the axioms.
e Any connected diagram containing only Z or only X verticesgsivalent to a prime graph.
e Any diagram without any H is equivalent to a simple bipartjtaph.

e Any diagram is equivalent to (a) a diagram with no Z verticasd (b) a diagram with no X
vertices.

e Any equation which holds between two graphs, also holdsZvihd X exchanged.

Remark. Note that although Figurel 1 seems to favour one colour ovepther, by the last point of
Propositio_ 1.4 we know that all the rules apply with the coforeversed.

Euler decomposition ofH. The following axiom is not part of the definition of ttzex-calculus
@2
% = (EV)

In [8] we proved that the Euler decomposition cannot be eéerifrom the axioms of thex-calculus;
however, in that paper we considered slightly weaker axiolhs straight-forward to give a counter-
model for thezx-calculus of today.

Lemma 1.5. The Euler decomposition of H cannot be derived by the rulélseoZ X calculus.
Proof. We define an alternative interpretation funcfdg : 2 — FdHilb v, by

[H]o = [H]
[Z3(a)]o = [Zn(0)]
[Xa(B)]o = [Xn(0)] -

It's easy to verify that all the equations of Figlide 1 stilldhander[-]o but (EU) fails. O

2 Graph states and Local complementation

Definition 2.1. Let G = (V,E) be an undirected graph. Then tip@ph stateG) is defined by

IG) = ( I_IE/\ZUV> ®’+>
uve veVv

Given a graphG we can directly write down the diagraBy such thatf]Dg] = |G) as follows: (1)
for eachv € V we add &Z vertex, connected to an output; (2) for each edge E we add arH vertex,
connected to those vertices corresponding to the vertiagandv.
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Example 2.2. Consider the case whéhis just a triangle:

A ;ﬁi

Proposition 2.3. Let G= (V,E) be a graph with \e V and define

KV — ( I_l Zu) X\/.
ueN(v)

Proof. We apply anX () to the output corresponding tand aZ( ) on all the outputs of the neighbours
of v:

Then K |G) = |G).

U
Definition 2.4. SupposeG = (V,E) is a graph withv e V. Let E; = EN(N(v) x N(v)) and E; =
(N(v) x N(v)) \ E1. Then the local complementation Gfatv is defined by
Gxv= (V,(E\El)UEz).

Equivalently, ifu, U’ are neighbours of thenuu is an edge ofs x v if and only if it is not an edge 06;
otherwise the two graphs are the same.

For graph states local complementation can also be exgr@sserms of a product of single qubit
operations:
Proposition 2.5([14]). Let G be a graph with vertex v; define

ueN(v)
Then|G*Vv) = M, |G).

Note thatM?Z = K, hence local complementation is involutive on graph states.
Example 2.6. Here we consider the local complementation of the trianglgsxtop vertex:

A A

Theorem 2.7([8]). Proposition 2.5 is equivalent to Equatid&U) in the zx-calculus, hence it cannot
be proven in thex-calculus.
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3 Pivoting

Pivoting, also known as edge-local complementation, isalltvansformation of graphs. Given a graph
G with an edgeuv, G A uy, the graph obtained by pivoting accordingug consists in exchanging the
two verticesu andv and in complementing the tripartite subgraph formedipthe common neighbours
of uandy; (ii) the exclusive neighbours aof and {ii) the exclusive neighbours #f(see Figurél2).

Figure 2: Pivoting oruv. C = N(u)NN(v), A= N(u) \C, B=N(v) \C, andD is the rest of the vertices.
Pivoting onuv exchanges verticasandyv, and for any(x,y) € (Ax B)U (B xC)U (Ax C), the edgexy
is deleted ifxy was an edge, and added otherwise.

Pivoting is a combination of local complementatioB®s) uv= Gx*uxVvxu (Notice thatG« uxvsu =
GxVvxuxV) and can be performed on graph states by applying Hadamardrticesu andv andZ on
their common neighbours:

Proposition 3.1(Pivoting Property{13,[12]).
IGAUY) = HuvZnwnnw |G)

Pivoting of graph states have several applications in guarhformation processing. In particular
the universality of the triangular grid as a resource of meament-based quantum computing has been
proved using pivoting [12]; pivoting can also be used to catepghe minimal distance of linear codes
[5].

In the rest of this section, we prove that an additional axistmctly weaker that the Euler decompo-
sition of H, needs to be added to th&-calculus to prove the pivoting property. However, whesndv
have no common neighbours, the pivoting property can beggrovthe plairzx-calculus:

Lemma 3.2. For any graph G= (V,E) and any yv € V which have no common neighbo| A uv) =
Huv|G) can be derived in thex-calculus.

Proof. The proof is based on the generalised bialgebrallaw [8]:

Assume for the moment that there is no edge between the meighbfu and the neighbours of In
that case applyingd on bothu andv permutesu andv and creates a complete bipartite graph between
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the neighbours afi and this ofv. For instance, ifi andv both have two neighbours:

WY ED

The first equation is via rule (H1) while the second followsnfr the generalised bialgebra. The final
equation uses rule (H1) again to remove all the red vertifidgwed by the spider rule, and some
rearrangement of the graph. Now suppose that in fact there ssne edges between the neighbours of
u and those of.. The procedure above will add an additional edge, and thémrbay be removed since

{{gp =-0 o by (HpF). O

As a consequence, pivoting of triangle-free graphs or bitpdor 2-colourable) graphs can be derived
in the zx-calculus. Notice that the pivoting preserves bipartigsngut not triangle freeness), so one can
prove a series of pivotings on bipartite graphs inzikecalculus.

In the following we prove that the pivoting of arbitrary grapan be derived in theéx-calculus
augmented with a new rule far-rotations:

Theorem 3.3. Pivoting of arbitrary graph can be proved in thlrx-calculus augmented with the follow-

ing axiom:
®- "

This new axiom is called thE-loop axiom as it can be rewritten @ = X} .

Proof. We illustrate the proof on the particular case whereuh@dv have two common neighbours:

AEER

The left-most diagram corresponds to a graph state on whichapplied on two vertices andv and
Z (greenrrrotation) on their two common neighbours. The second diagis obtained using the (HL)
axiom. This transformation splits each common neighbowrarfidv in such a way that Lemnia 3.2 can
be applied, leading to the third diagram. The applicatiothefspider rule (fourth diagram) and the Hopf
law (fifth diagram) completes the proof for this particulaaph.

The general case is similar. First, therotations on the common neighbours are removed using
the [HI) axiom, which splits the common neighbours. Thenth@ absence of common neighbours
Lemmd 3.2 is used. Finally spiders and the Hopf Law completgtoof. O
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In the following, we show that one can derive pivoting if amdyoif Equation [HI) holds:

Lemma 3.4. In the zx-calculus, the pivoting property for the triangle implidsat the r-rotation is

o

Lemma 3.5. @ = X} cannot be derived from the rules of thg-calculus.

Proof. We consider the interpretation functpio introduced in Lemma_1l5, which preserves all the
axioms of thezx-calculus, but for which we have:

169 - 0w - @ - (3

O

Like the Euler decomposition dfi (Equation [EU)), Equatior_(HL) cannot be derived from the
rules of thezx-calculus. The completeness for the stabilisers ofzthecalculus augmented with Euler
decomposition o guarantees that equatidn_(HL) can be derived from the E@eomposition oH.

C okrtse

In the following, we prove that Equatioh (HL) is actuallyistty weaker than the Euler decomposi-
tion in the sense that the Euler decomposition cannot beatefiom Equation(HL) in thex-calculus.

Lemma 3.6. The Euler decomposition of H cannot be derived in ziecalculus augmented with the

axiom @® :>@]_
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Proof. We consider the following functdr.]” which maps diagrams to diagrams:

[ - [ - X

Hi Ll - 4

S N
ol - o -

Notice that the axioms of thex-calculus are satisfied. Indeed, for diagrams withéuthe functor].]’
consists in doubling the picture and trivialising the rimlas. Regarding the axioms which involiA we

]-5 |- o [5]-25- 410

for instance, the other ones are satisfied similarly.
The H-loop axiom is satisfied as well:

(6] -C8 -1l

but the Euler decomposition is not:

b

b

O

The combination of Lemmas 3.5 and|3.6 proves that-talculus + H-loop” is indeed an intermedi-
ate theory between trex-calculus and Zx-calculus + Euler”.

4 Angle-free calculus for Real Stabilizers

Backens|[1] considered a syntactic restriction on the terftise zx-calculus: by demanding that all the
phases occurring in a term are multiplesiothe resultingzx-calculus terms are in exact correspondence
with stabilizer states. Furthermore, the theoryggfcalculus + Euler is sufficient to decide the equality
for these states. In other words, the theory is completetétnilzer quantum mechanics.
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We will now consider a stronger syntactic restriction, ngntleat all phases must be either O wr
Semantically this yields the real-valued fragment of dizdni quantum mechanics. We will also modify
the axiom scheme by dropping the axiom$ &4nd (C) and replacing them with

PR . -0

(C1) (C2)

Note that these equations are both derivable in thezixdtalculus. The resulting system we call the
weakzx-calculus.
Lemma 4.1. The following equations are derivable in the weakcalculus:

T

Proof. For the first equation we have

T

by spider, (B), (C2), and spider. Making use of this equatiarboth its original and colour-switched
form, we have:

DA

where the scalar factor was dropped at the last step. O

However, in the presence of Equatidn (HL) there is no neethfoanglerr at all. We can now define
the “angle-freezx-calculus” by replacing all ther vertices with loops:

@ — X} and ¢ — ><>1
and replacing axiom (C2) with (L):
Tovs

Evidently, the resulting calculus is strictly strongerritthe weakzx-calculus and weaker than the
restrictedzx-calculus + Euler considered by Backens.
We will show that the angle-freex-calculus is complete for real-valued stabilizers.
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4.1 Real stabilizer guantum mechanics

Recall that the Clifford operations are the normaliserfiefauli operators, i.€, = {U|vge P,,UgU" ¢
P.} whereP, is the Pauli group om qubits. Thereal Cliffords—i.e. those satisfying = U—form a
subgroup ofC, generated by{Z,H,AZ}. We callreal stabilizer quantum mechaniesly quantum evo-
lution that can be described by real Clifford operatioj®,initialisations, and0) projections. Notice
that the image of the angle-fre-calculus under the functdr] coincides with real stabiliser quantum
mechanics. We now show the completeness of the anglezitemalculus for real stabiliser quantum
mechanics, i.e. for any two diagrarbg and D, if [D;] = [D2] thenD; = D, can be proved in the
calculus.

We follow the proof of the completeness of ther-calculus together with the Euler decomposition
for (complex) stabiliser quantum mechanics [1]. Due to theicJamoilkowski isomorphism it suffices
to consider input-free diagrams (since any input can beetimto an output). A diagram with no input
is called adiagram state

Definition 4.2. A diagram is called &S-RLC diagranif it consists of a graph state with arbitrary single
real Clifford operator applied on each output.

Lemma 4.3. Any angle-free diagram state is equal to some GS-RLC diagvdhin the angle-freezx-
calculus.

Proof Sketch.The proof is by induction. Intuitively, every red dot can beted into a green dot usirkdy;
the spider rule is used to merge green dots connected by apairalelH-edges are removed using the
Hopf law. If there is a green dot which is not connected to aputthen either this dot is disconnected
from the rest of the diagram and can be ignored, or the dot earerinoved by pivoting with one of its
neighbours as shown:

That is, the bottom dot is removed by pivoting along one ointsdent edges. O

Definition 4.4. A reducedGS-RLC diagram, is a GS-RLC diagram such that
(1) every vertex Clifford operator is one Ff@] , % or

(2) two adjacent vertices must not both have vertex operatatsriblude arH.
Lemma 4.5. Any angle-free diagram state is equal to a reduced GS-RL@rala.

Proof Sketch.Any real local Clifford is a combination dfi, X andZ. Notice that using Propositidn 2.3,
everyX can be transformed iBs on its neighbours. As a consequence the vertex Cliffordabpes are
eitherl, Z, H or HZ. Moreover, if two adjacent vertices have a vertex operatuckinclude arH, then
one can do a pivoting which is consuming tie, transforms the graph and produ@esn the common
neighbours. O

Suppose that a pair of GS-RLC diagrams describe stateshetsetme number of qubits, that is, they
have the same set of outout vertices. Such a pair is cailedlifiedif there is no pair of qubitsi andv
which are adjacent in at least one diagram and suchHhatapplied oru but notv in the first diagram,
and onv but notu in the second diagram.

Lemma 4.6. Any pair of angle-free diagrams of reduced GS-LRC diagraamshe simplified.



R. Duncan & S. Perdrix 61

Proof Sketch.If there exists a paiu, v which are adjacent in the first diagram such tHas applied on

u and not onv, then one can apply a pivoting anv in this graph. This pivoting consumes theon u
and add arH onv. This transformation does not introduce nor remblven the other vertices, so this
transformation can be applied inductively to any pair otigces which do not satisfies the conditions of
simplified pairs of GS-RLC. O

Theorem 4.7. Given two reduced GS-RLC diagramg 8nd D, which form a simplified paifD;] =
[D] if and only if Dy and D, are identical.

Proof. SinceD; andD;, are reduced GS-RLC diagrams, there exist two graphs- (V,E;) andG; =
(V,Ep), and four subset&;, Ay, B1,B, CV such thafDi] = Ha Zg, |Gi), whereHa = @ s Hu. Diagrams
D; andD; are identical iffA; = Az, B; = B, andG; = Gy. First we show tha#\; = A;. Notice that]D;] =
[D2] iff HaZg, |G1) = Zg, |G2) whereA = AjAA; is the symmetric difference &%, andA,. By contra-
diction, for anyu € AjAA,, |Gy) is a fix point oquZNGl(u), soZg, |Gy) is an eigenvector o)KuZNGl(u).
Moreover, sincé; is in a reduced form there is i applied on qubits adjacent tp soHaZg, |G1) is an
eigenvector OZUZNGl(u)- |nd86dH/_\ZBl |G;|_> = H/—\ZleuzNGl(u) |G1> = :l:ZUZNc;l(u) HAZBl |G;|_> Regard-
ing the second stat&g, |G,) is an eigenvector OXuZNGZ<u)- The two operatob(uZNGZ<u) and ZUZNGl(u)
are anti commuting so they cannot have a common non-zeronveEg®r, as a consequenég = Ay.
Thus[D1] = [D2] implies Zg, |G1) = Zg, |G2). Moreover, it has been proved (Lemma 3(inl[12]) that
Zg, |G1) = Zg, |Gy) impliesB; = By andG; = Gy. As a consequence the two diagrams are identical.

5 Conclusion and Perspectives

We have introduced a new calculus, intermediate betweerzxbealculus and thex-calculus aug-
mented with the Euler decomposition ldf As the introduction of the Euler decomposition was driven
by local complementation, the new axiom we consider, nartieyH-loop, is driven by another graph
transformation, namely pivoting. We prove the H-loop axicemnot be derived in the plaix-calculus,
and is strictly weaker than the Euler decompositiotdofVhen restricted to 0- and-rotations this new
calculus is complete for real stabiliser quantum mechanMsreover this restricted language admits
a simple equivalent angle-free calculus. We believe thigeafree calculus will be the cornerstone for
an axiomatisation of real quantum mechanics. Real quantechamics is known to be universal for
guantum computing, moreover the restriction to the reafl figbvides some useful simplifications in
terms of diagrammatic quantum mechanics (for example, bjecbA and its dualA* have the same in-
terpretation). Another example is that, when restrictecetd numbers, the unbiased bases are perfectly
captured by the complementary observat{esndZ of the zx-calculus, whereas the axiomatisation of
the third (complex) mutually unbiased base for qubit, dlpessible (see [11]) is less intuitive. On the
other hand applications which require complex numberslbkal tomography cannot be captured by
this intermediate language, and require additional axi@rs Euler decomposition &f).
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