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THE GENERALIZED FRANCHETTA CONJECTURE FOR SOME HYPERKÄHLER
FOURFOLDS

ROBERT LATERVEER

ABSTRACT. We obtain a “generalized Franchetta conjecture” type of statement for the Hilbert
squares of low genus K3 surfaces, and for the Fano varieties of lines on certain cubic fourfolds.

1. INTRODUCTION

For a smooth projective variety X over C, let Ai(X) := CH i(X)Q denote the Chow groups
(i.e. the groups of codimension i algebraic cycles on X with Q–coefficients, modulo rational
equivalence).

The world of Chow groups is still shrouded in mystery, its map containing vast underdevel-
oped regions only partially sketched in by conjectures [7], [21], [22], [23], [30], [45], [31]. One
region on this map that holds particular interest is that of hyperkähler varieties (i.e. projective
irreducible holomorphic symplectic manifolds [2], [1]). Here, recent years have seen signifi-
cant progress in the understanding of Chow groups. Much of this progress centers around the
following conjecture:

Conjecture 1.1 (Beauville, Voisin [5], [42]). Let X be a hyperkähler variety. Let D∗(X) ⊂
A∗(X) denote the Q–subalgebra generated by divisors and Chern classes of X . Then the cycle
class maps induce injections

Di(X) ↪→ H2i(X,Q) ∀i .

(cf. [5], [42], [4], [8], [35], [10] for cases where conjecture 1.1 is satisfied.)
The “motivation” underlying conjecture 1.1 is that for a hyperkähler variety X , the Chow

ring A∗(X) is expected to have a bigrading A∗[∗](X), where the piece Ai[j](X) corresponds to the
graded GrjFA

i(X) for the conjectural Bloch–Beilinson filtration. In particular, it is expected that
the subring A∗[0](X) injects into cohomology, and that D∗(X) ⊂ A∗[0](X).

In addition to divisors and Chern classes, what other cycles should be in the subring A∗[0](X)
(assuming this subring exists) ? The following conjecture of Voisin provides more candidate
members:
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Conjecture 1.2 (Voisin [47]). Let X be a hyperkähler variety of dimension n = 2m. Let Z ⊂ X
be a codimension i subvariety swept out by i–dimensional constant cycle subvarieties. There
exists a subring A∗[0](X) ⊂ A∗(X) injecting into cohomology, and

Z ∈ Ai[0](X) .

A constant cycle subvariety is by definition a closed subvariety T ⊂ X such that the image of
the natural map A0(T ) → An(X) has dimension 1. In particular, conjecture 1.2 stipulates that
Lagrangian constant cycle subvarieties (i.e., constant cycle subvarieties of dimension m) should
lie in Am[0](X).

Another conjecture concerns more generally m–dimensional subvarieties Z ⊂ X that are
Lagrangian, i.e. such that

∪Z : H2,0(X) → Hm+2,m(X)

is the zero map. Since H∗,0(X) is generated by H2,0(X), we have that

∪Z : Hj,0(X) → Hm+j,m(X)

is the zero map for all j > 0. Since conjecturally, the piece Aj[j](X) is determined by Hj,0(X),
and the piece A2m

[j] (X) is determined by H2m,2m−j(X), we arrive at the following conjecture:

Conjecture 1.3. Let X be a hyperkähler variety of dimension 2m. Let Z ⊂ X be a codimension
m subvariety that is Lagrangian. Then the map

Aj[j](X)
·Z−→ Am+j(X)

·b−→ A2m(X) → A2m
[j] (X)

is zero for all j > 0 and all b ∈ Am−j(X). (Here, the last arrow is projection to the piece
A2m

[j] (X).)

The goal of this note is to provide some examples where conjecture 1.2 and 1.3 are satisfied,
by looking at Hilbert squares of K3 surfaces. Here, thanks to the Fourier decomposition of
Shen–Vial [38], the Chow groups of X split in a finite number of pieces A∗(∗)(X).1

The main result of this note is a “generalized Franchetta conjecture” type of statement for cer-
tain Hilbert squares X . The statement is that codimension 2 cycles that can be defined relatively
live in the subring A∗(0)(X):

Theorem (=theorem 3.1). Let S → B denote the universal family of K3 surfaces of genus
g ∈ {2, 3, 4, 5, 6, 8}. Let X = S [2] → B denote the universal family of Hilbert squares of genus
g K3 surfaces (so a fibre Xb is the Hilbert square of a genus g K3 surface). Let Γ ∈ A2(X ) be
a relative cycle. Then

Γ|Xb
∈ A2

(0)(Xb) ∀b ∈ B .

(Here A2
(0)() refers to the Fourier decomposition of Shen–Vial [38].)

1NB: we will use the notation A∗
(∗)() for the bigrading that is constructed unconditionally in [38] for certain

hyperkähler fourfolds. The notation A∗
[∗](), that occurs only in this introduction, refers to a conjectural bigrading

with the property that Ai
[j](X) is related to the graded GrjFA

i(X) for the conjectural Bloch–Beilinson filtration.
Hence, the (unconditionally existing) bigrading A∗

(∗)() is a candidate for the (only ideally existing) bigrading A∗
[∗]().
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A second result addresses conjecture 1.3:

Theorem (=theorem 3.2). Let X → B be as in theorem 3.1. Let Γ ⊂ X be a codimension 2
subvariety. Assume the restriction

Γb := Γ|Xb
∈ A2(Xb)

is Lagrangian (i.e., ∪Γb : H2,0(Xb)→ H4,2(Xb) is the zero map), for very general b ∈ B. Then

·Γb : A2
hom(Xb) → A4(Xb)

is the zero map, for all b ∈ B.

Section 4 presents some concrete applications of these results. Here is one of them:

Corollary (=corollary 4.1). Let S be a general K3 surface of genus 5, and let X = S[2] be
the Hilbert square. Let A ⊂ X be a general fibre of the Lagrangian fibration φ : X → P2 of
proposition 2.25. Let b ∈ A4(X) be a 0–cycle of the form

b = A · a+ p ∈ A4(X) ,

where a ∈ A2(X) and p is a sum of intersections of divisors and Chern classes of X . Then b is
rationally trivial if and only if b is of degree 0.

The proof of theorems 3.1 and 3.2 is based on Voisin’s method of “spread” of algebraic cycles
[43], [44], [45], [46], combined with results of Pavic–Shen–Yin on the generalized Franchetta
conjecture for K3 surfaces [33].

It would be interesting to extend theorem 3.1 to Hilbert squares of K3 surfaces of higher
genus, and also to other hyperkähler varieties.2 For starters, we prove this for Fano varieties of
cubic fourfolds containing two planes (theorem 5.1).

Conventions. In this article, the word variety will refer to a reduced irreducible scheme of finite
type over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote by Aj(X) the Chow
group of j–dimensional cycles on X with Q–coefficients; for X smooth of dimension n the
notations Aj(X) and An−j(X) are used interchangeably.

The notations Ajhom(X), AjAJ(X) will be used to indicate the subgroups of homologically
trivial, resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y , we will write Γf ∈
A∗(X × Y ) for the graph of f . The contravariant category of Chow motives (i.e., pure motives
with respect to rational equivalence as in [37], [31]) will be denotedMrat.

We will use Hj(X) to indicate singular cohomology Hj(X,Q).

2. PRELIMINARIES

2.1. The Fourier decomposition.

2Results of this kind can be found in [12], which was written after the present paper.
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Theorem 2.1 (Shen–Vial [38]). Let S be a K3 surface, and let X = S[2] be the Hilbert scheme
of length 2 subschemes of S. There is a decomposition

Ai(X) =
⊕
0≤j≤i
j even

Ai(j)(X) ,

with the following properties:
(i) A∗(∗)(X) is a bigraded ring;
(ii) Ai(j)(X) ⊂ Aihom(X) for j > 0.

Proof. This is essentially [38, Theorem 2], combined with the fact that there is a class L ∈
A2(X × X) lifting the Beauville–Bogomolov class and satisfying certain equalities, which is
[38, Part 2]. �

Theorem 2.2 (Shen–Vial [38]). Let Y ⊂ P5(C) be a smooth cubic fourfold, and let X = F (Y )
be the Fano variety of lines in Y . There is a decomposition

Ai(X) =
⊕
0≤j≤i
j even

Ai(j)(X) ,

with the following properties:
(i) Ai(j)(X) ⊂ Aihom(X) for j > 0;
(ii) if Y is very general, A∗(∗)(X) is a bigraded ring.

Proof. This follows again from [38, Theorem 2]. Point (ii) is [38, Theorem 3]. �

2.2. MCK decomposition.

Definition 2.3 (Murre [30]). Let X be a smooth projective variety of dimension n. We say that
X has a CK decomposition if there exists a decomposition of the diagonal

∆X = π0 + π1 + · · ·+ π2n in An(X ×X) ,

such that the πi are mutually orthogonal idempotents in An(X×X) and (πi)∗H
∗(X) = H i(X).

(NB: “CK decomposition” is shorthand for “Chow–Künneth decomposition”.)

Remark 2.4. The existence of a CK decomposition for any smooth projective variety is part of
Murre’s conjectures [30], [21], [22].

Definition 2.5 (Shen–Vial [38]). Let X be a smooth projective variety of dimension n. Let
∆sm
X ∈ A2n(X ×X ×X) be the class of the small diagonal

∆sm
X :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X .

An MCK decomposition is a CK decomposition {πXi } of X that is multiplicative, i.e. it satisfies

πXk ◦∆sm
X ◦ (πXi × πXj ) = 0 in A2n(X ×X ×X) for all i+ j 6= k .

(NB: “MCK decomposition” is shorthand for “multiplicative Chow–Künneth decomposition”.)
A weak MCK decomposition is a CK decomposition {πXi } of X that satisfies(

πXk ◦∆sm
X ◦ (πXi × πXj )

)
∗(a× b) = 0 for all a, b ∈ A∗(X) and for all i+ j 6= k .
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Remark 2.6. The small diagonal (seen as a correspondence from X × X to X) induces the
multiplication morphism

∆sm
X : h(X)⊗ h(X) → h(X) inMrat .

Suppose X has a CK decomposition

h(X) =
2n⊕
i=0

hi(X) inMrat .

By definition, this decomposition is multiplicative if for any i, j the composition

hi(X)⊗ hj(X) → h(X)⊗ h(X)
∆sm

X−−→ h(X) inMrat

factors through hi+j(X).
If X has a weak MCK decomposition, then setting

Ai(j)(X) := (πX2i−j)∗A
i(X) ,

one obtains a bigraded ring structure on the Chow ring: that is, the intersection product sends
Ai(j)(X)⊗ Ai′(j′)(X) to Ai+i

′

(j+j′)(X).
It is expected (but not proven !) that for any X with a weak MCK decomposition, one has

Ai(j)(X)
??
= 0 for j < 0 , Ai(0)(X) ∩ Aihom(X)

??
= 0 ;

this is related to Murre’s conjectures B and D, that have been formulated for any CK decompo-
sition [30].

The property of having an MCK decomposition is severely restrictive, and is closely related
to Beauville’s “(weak) splitting property” [5]. For more ample discussion, and examples of
varieties with an MCK decomposition, we refer to [38, Section 8], as well as [41], [39], [13].

Lemma 2.7. Let X,X ′ be birational hyperkähler varieties. Then X has an MCK decomposition
if and only if X ′ has one.

Proof. This is noted in [41, Introduction]; the idea is that Rieß’s result [34] implies that X and
X ′ have isomorphic Chow motives and the isomorphism is compatible with the multiplicative
structure. �

2.3. Relative MCK for S[m] and for Sm.

Theorem 2.8 (Vial [41]). Let S be a projective K3 surface, and let X = S[m] be the Hilbert
scheme of length m subschemes of S. Then X has a self–dual MCK decomposition {ΠX

i }. In
particular, A∗(X) = A∗(∗)(X) is a bigraded ring, where

Ai(X) =
i⊕

j=2i−2n

Ai(j)(X) ,

and Ai(j)(X) = 0 for j odd. In case m = 2, the bigrading A∗(∗)(X) coincides with the one given
by the Fourier decomposition of theorem 2.1.
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Proof. This is [41, Theorems 1 and 2]. The last statement is [38, Theorem 15.8], plus the fact
that for m = 2 the MCK decomposition of [41] coincides with the one of [38]. �

Notation 2.9. Let S → B be a family (i.e., a smooth projective morphism). For r ∈ N, we write
Sr/B for the relative r–fold fibre product

Sr/B := S ×B S ×B · · · ×B S
(r copies of S).

Proposition 2.10. Let S → B be a family of K3 surfaces. There exist relative correspondences

ΠS
m/B

j ∈ A2m(Sm/B × Sm/B) (j = 0, 2, 4, . . . , 4m) ,

such that for each b ∈ B, the restriction

Π
(Sb)m

j := ΠS
m/B

j |(Sb)2m ∈ A4((Sb)
m × (Sb)

m)

defines a self–dual MCK decomposition for (Sb)
m.

Proof. On any K3 surface Sb, there is the distinguished 0–cycle oSb
such that c2(Sb) = 24oSb

[4]. Let pi : Sm/B → S, i = 1, . . . ,m, denote the projections to the two factors. Let TS/B denote
the relative tangent bundle. The assignment

ΠS0 := (p1)∗
( 1

24
c2(TS/B)

)
A2(S ×B S) ,

ΠS4 := (p2)∗
( 1

24
c2(TS/B)

)
A2(S ×B S) ,

ΠS2 := ∆S − ΠS0 − ΠS4

defines (by restriction) an MCK decomposition for each fibre, i.e.

ΠSb
j := ΠSj |Sb×Sb

∈ A2(Sb × Sb) (j = 0, 2, 4)

is an MCK decomposition for any b ∈ B [38, Example 8.17].
Next, we consider the m–fold relative fibre product Sm/B. Let

pi,j : S2m/B → S2/B (1 ≤ i < j ≤ 2m)

denote projection to the i-th and j-th factor. We define

ΠS
m/B

j :=
∑

k1+k2+···+km=j

(p1,m+1)∗(ΠSk1) · (p2,m+2)∗(ΠSk2) · . . . · (pm,2m)∗(ΠSkm)

∈ A2m(S2m/B) , (j = 0, 2, 4, . . . , 4m) .

By construction, the restriction to each fibre induces an MCK decomposition (the “product MCK
decomposition”)

Π
(Sb)m

j := ΠS
m/B

j |(Sb)2m =
∑

k1+k2+···+km=j

ΠSb
k1
× ΠSb

k2
× · · · × ΠSb

km
∈ A2m((Sb)

2m) ,

(j = 0, 2, 4, . . . , 4m) .

�
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Remark 2.11. Let S → B be a family of K3 surfaces. Let X → B denote the relative Hilbert
scheme (i.e., the blow–up of S×B S along the relative diagonal, quotiented by the natural action
of the symmetric group on 2 elements S2). Since the above construction of the ΠS

2/B

j is S2–
invariant, it induces relative correspondences

ΠXj ∈ A4(X ×B X ) (j = 0, 2, 4, 6, 8) ,

with the property that the restrictions

ΠXb
j := ΠXj |Xb×Xb

∈ A4(Xb ×Xb)

form an MCK decomposition for Xb, for all b ∈ B (cf. [25, Proposition 2.16] for a detailed
proof).

Proposition 2.12. Let S → B be a family of K3 surfaces. There exist relative correspondences

Θ′1 , . . . , Θ′m ∈ A2m(Sm/B ×B S) , Ξ′1 , . . . , Ξ′m ∈ A2(S ×B Sm/B)

such that for each b ∈ B, the composition

A2m
(2)

(
(Sb)

m
) ((Θ′1|(Sb)

m+1 )∗,...,(Θ′m|(Sb)
m+1 )∗)

−−−−−−−−−−−−−−−−−−−→ A2(Sb)⊕ · · · ⊕ A2(Sb)

((Ξ′1+...+Ξ′m)|(Sb)
m+1 )∗

−−−−−−−−−−−−−−→ A2m
(
(Sb)

m
)

is the identity.

Proof. As before, let
pi,j : S2m/B → S2/B (1 ≤ i < j ≤ 2m)

denote projection to the i-th and j-th factor, and let

pi : Sm/B → S (1 ≤ i ≤ m)

denote projection to the i–th factor.
We now claim that for each b ∈ B, there is equality

(ΠS
m/B

4m−2)|(Sb)2m =
1

242m−2

(
tΓp1 ◦ ΠS2 ◦ Γp1 ◦

(
(p1,m+1)∗(∆S) ·

∏
2≤j≤2m

j 6=m+1

(pj)
∗c2(TS/B)

)
+ . . .+ tΓpm ◦ ΠS2 ◦ Γpm ◦

(
(pm,2m)∗(∆S) ·

∏
1≤j≤2m−1

j 6=m

(pj)
∗c2(TS/B)

))
|(Sb)2m

in A2m((Sb)
m × (Sb)

m) .

(1)

Indeed, using Lieberman’s lemma [14, 16.1.1], we find that

(tΓp1◦ΠS2 ◦ Γp1)|(Sb)2m =
(
(tΓp1,m+1)∗(Π

S
2 )
)
|(Sb)2m =

(
(p1,m+1)∗(ΠS2 )

)
|(Sb)2m ,

...

(tΓpm◦ΠS2 ◦ Γpm)|(Sb)2m =
(
(tΓpm,2m)∗(Π

S
2 )
)
|(Sb)2m =

(
(pm,2m)∗(ΠS2 )

)
|(Sb)2m .
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Let us now (by way of example) consider the first summand of the right-hand side of (1). For
brevity, let

P : (Sb)
3m → (Sb)

2m

denote the projection on the first m and last m factors. Writing out the definition of composition
of correspondences, we find that

1

242m−2

(
tΓp1 ◦ ΠS2 ◦ Γp1 ◦

(
(p1,m+1)∗(∆S) ·

∏
2≤j≤2m

j 6=m+1

(pj)
∗c2(TS/B)

))
|(Sb)2m =

1

242m−2

((
(p1,m+1)∗(ΠSb

2 )
)
◦
(
(p1,m+1)∗(∆Sb

) ·
∏

2≤j≤2m

j 6=m+1

(pj)
∗c2(TSb

)
))

=

P∗

((
(∆Sb

)(1,m+1) × oSb
× · · · × oSb

× Sb × · · · × Sb
)
·(

Sb × · · · × Sb × (ΠSb
2 )(m+1,2m+1) × Sb × · · · × Sb

))
=

P∗

((
(∆Sb

× Sb) · (Sb × ΠSb
2 )
)

(1,m+1,2m+1)
× oSb

× · · · × oSb
× Sb × · · · × Sb

)
=

ΠSb
2 × ΠSb

4 × · · · × ΠSb
4 in A2m

(
(Sb)

m × (Sb)
m
)
.

(Here, we use the notation (C)(i,j) to indicate that the cycle C lies in the ith and jth factor, and
likewise for (D)(i,j,k).)

Doing the same for the other summands in (1), one convinces oneself that both sides of (1) are
equal to the fibrewise product Chow–Künneth component

Π
(Sb)m

4m−2 = ΠSb
2 × ΠSb

4 × · · · × ΠSb
4 + · · ·+ ΠSb

4 × · · · × ΠSb
4 × ΠSb

2 ∈ A2m((Sb)
m × (Sb)

m) ,

thus proving the claim.
Let us now define

Θ′i :=
1

242m−2
Γpi ◦

(
(pi,m+i)

∗(∆S) ·
∏

j∈[1,2m]

j 6∈{i,m+i}

(pj)
∗c2(TS/B)

)
∈ A2m((Sm/B)×B S) ,

Ξ′i := tΓpi ◦ ΠS2 ∈ A2(S ×B (Sm/B)) ,

where 1 ≤ i ≤ m. It follows from equation (1) that there is equality(
(Ξ′1 ◦Θ′1 + · · ·+ Ξ′m ◦Θ′m)|(Sb)2m

)
∗ =

(
Π

(Sb)m

4m−2

)
∗ :

Ai(j)
(
(Sb)

m
)
→ Ai(j)

(
(Sb)

m
)
∀b ∈ B ∀(i, j) .

(2)

Taking (i, j) = (2m, 2), this proves the proposition. �

The following is a version of proposition 2.12 for the group A2
(2)((Sb)

m):

Proposition 2.13. Let S → B be a family of K3 surfaces. There exist relative correspondences

Θ1 , . . . , Θm ∈ A2m(S ×B (Sm/B)) , Ξ1 , . . . , Ξm ∈ A2((Sm/B)×B S)
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such that for each b ∈ B, the composition

A2
(2)

(
(Sb)

m
) ((Ξ1|(Sb)

m+1 )∗,...,(Ξm|(Sb)
m+1 )∗)

−−−−−−−−−−−−−−−−−−−→ A2(Sb)⊕ · · · ⊕ A2(Sb)

((Θ1+...+Θm)|(Sb)
m+1 )∗

−−−−−−−−−−−−−−→ A2
(
(Sb)

m
)

is the identity.

Proof. One may take

Θi := tΘ′i ∈ A2m(S ×B (Sm/B)) ,

Ξi := tΞ′i A2((Sm/B)×B S) (i = 1, . . . ,m) .

By construction, the product MCK decomposition {Π(Sb)m

i } satisfies

Π
(Sb)m

2 = t
(
Π

(Sb)m

4m−2

)
in A2m

(
(Sb)

m × (Sb)
m
)
.

Hence, the transpose of equation (2) gives the equality(
Π

(Sb)m

2

)
∗ =

(
t(Π

(Sb)m

4m−2)
)
∗ =

(
tΘ′1 ◦ tΞ′1 + . . .+ tΘ′m ◦ tΞ′m

)
∗ :

Ai(j)
(
(Sb)

m
)
→ Ai(j)

(
(Sb)

m
)
∀b ∈ B ∀(i, j) .

Taking (i, j) = (2, 2), this proves the proposition. �

2.4. Relative CK for Fano varieties.

Theorem 2.14 (Shen–Vial [38]). Let Y ⊂ P5(C) be a smooth cubic, and let X = F (Y ) be the
Fano variety of lines in X . The Fourier decomposition is induced by a CK decomposition {ΠX

i },
i.e. there is equality

Ai(j)(X) = (ΠX
2i−j)∗A

i(X) ∀i, j .
In particular, for very general Y , the {ΠX

i } are a weak MCK decomposition.

Proof. This is [38, Theorem 3.3]. The last statement follows from theorem 2.2(ii). �

Notation 2.15. Let
Y → B

denote the universal family of smooth cubic fourfolds Yb. Here B is a Zariski open in the param-
eter space PH0(P5,OP5(3)). Let

X := {(`, b) | ` ⊂ Zb} ⊂ G(1, 5)×B
be the corresponding family of Fano varieties of lines. (Here G(1, 5) denotes the Grassmannian
of lines in P5.) A fibre Xb of X → B is a Fano variety of lines on a cubic Yb.

Proposition 2.16. Let X → B be as in notation 2.15. There exist relative correspondences

ΠXi ∈ A4(X ×B X ) (i = 2, 6) ,

with the property that for each b ∈ B, one has(
(ΠX2 )|Xb×Xb

)
∗ = (ΠXb

2 )∗ : A2(Xb) → A2(Xb) ,(
(ΠX6 )|Xb×Xb

)
∗ = (ΠXb

6 )∗ : A4(Xb) → A4(Xb) .
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Here ΠXb
i is the Chow–Künneth decomposition of theorem 2.2(i).

Proof. The main point is that the Shen–Vial cycle L ∈ A2(Xb × Xb) furnishing the Fourier
decomposition [38] exists relatively: this is because by definition

L :=
1

3
(g2

1 +
3

2
g1g2 + g2

2 − c1 − c2)− I ∈ A2(Xb ×Xb)

[38, Equation (107)]. Here, g := −c1(E2) ∈ A1(Xb) and c := c2(E2) ∈ A2(Xb) (and E2

is the restriction of the rank 2 tautological bundle on the Grassmannian), and gi := (pi)
∗(g),

ci := (pi)
∗(c) (where pi : Xb ×Xb → Xb is projection on the ith factor), and I ⊂ Xb ×Xb is the

incidence correspondence. Since gi, ci and I obviously exist relatively, the same goes for L, i.e.
there exists a relative correspondence

L ∈ A2(X ×B X )

with the property that for any b ∈ B the restriction

L|Xb×Xb
∈ A2(Xb ×Xb)

is the Shen–Vial class L of [38]. This implies that the class ` ∈ A2(Xb) of [38] (mentioned in
theorem 2.17(ii) below) also exists relatively: it is defined as

` := (i∆)∗(L) ∈ A2(X ) ,

where i∆ : X → X ×B X denotes the embedding along the relative diagonal. (NB: this makes
sense because i∆ is a regular embedding.) Next, the classes `i := (pi)

∗(`) ∈ A2(Xb × Xb) of
[38] also exist relatively.

Armed with these facts, let us inspect the construction of the {ΠXb
i } in [38, Theorem 3.3].

As a first approach towards the construction of ΠXb
2 and ΠXb

6 , Shen–Vial define

pb :=
1

25
L · `2 ∈ A4(Xb ×Xb) .

Again, by the above remarks the cycle pb exists relatively (i.e. there is p ∈ A4(X ×B X ) which
restricts to pb on each fibre). We define ΠX6 := p ∈ A4(X ×B X ). This does the job, for it is
shown in [38, Proof of Theorem 3.3] that (pb)∗ acts as the identity on A4

(2)(Xb) and acts as 0 on
A4

(0)(Xb)⊕ A4
(4)(Xb).

We define ΠX2 as the transpose ΠX2 := tΠX6 . This does the job, for it is shown in loc. cit. that
(pb)

∗ acts as the identity on A2
(2)(Xb) and acts as 0 on A2

(0)(Xb). �

2.5. A result in the Chow ring of S[2].

Theorem 2.17 (Shen–Vial [38]). Let X = S[2] where S is a K3 surface. There exists a class
` ∈ A2

(0)(X) inducing an isomorphism

·` : A2
(2)(X)

∼=−→ A4
(2)(X) .

The inverse isomorphism is given by
1

25
L∗ : A4

(2)(X)
∼=−→ A2

(2)(X) ,
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where L ∈ A2(X ×X) is the Shen–Vial class lifting the Beauville–Bogomolov form.

Proof. This is [38, Theorems 2.2 and 2.4] (combined with the fact thatX satisfies the hypotheses
of loc. cit., which is [38, Part 2]. �

For later use, we remark that the Shen–Vial class L exists relatively:

Lemma 2.18. Let S → B be a family of K3 surfaces, and let X → B be the family of Hilbert
squares. There exists a class L ∈ A2(X ×B X ) such that for any b ∈ B, the restriction

Lb := L|Xb×Xb
∈ A2(Xb ×Xb)

is the Shen–Vial class of theorem 2.17.

Proof. For a given K3 surface S = Sb, let

Z
q−→ S

↓ p
X

denote the universal family of length 2 subschemes of S. Let

I := tZ ◦ Z ∈ A2(X ×X)

denote the incidence correspondence. Let δ ∈ A1(X) be the class supported on the exceptional
divisor as in [38, Section 10], and let δi := (pi)

∗(δ) ∈ A1(X × X), where pi : X × X → X is
projection on the ith factor. Let oS ∈ A2(S) denote the distinguished point [4], and let So :=
p∗q
∗(oS) ∈ A2(X).

By definition, the Shen–Vial class L is

L = I − 2(p1)∗(So)− 2(p2)∗(So)−
1

2
δ1δ2 ∈ A2(X ×X)

[38, Equation (92)].
The distinguished point oS equals 1

24
c2(TS) [4], hence it can be defined relatively. The uni-

versal family Z can also be defined relatively, hence the same holds for the incidence correspon-
dence I . This implies that the class L can be defined relatively, i.e. there exists a class L as
indicated. �

2.6. A result in the Chow ring of the Fano variety.

Theorem 2.19 (Shen–Vial [38]). Let Z ⊂ P5(C) be a smooth cubic fourfold, and let X be the
Fano variety of lines in Z. There is a distinguished class l ∈ A2

(0)(X) such that intersection
induces an isomorphism

·l : A2
(2)(X)

∼=−→ A4
(2)(X) .

The inverse isomorphism is given by
1

25
L∗ : A4

(2)(X)
∼=−→ A2

(2)(X) ,

where L ∈ A2(X ×X) is the Shen–Vial class lifting the Beauville–Bogomolov form.
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Proof. This follows from [38, Theorems 2.2 and 2.4] (combined with the fact that X satisfies the
hypotheses of loc. cit., which is [38, Part 3]. �

The following is a reformulation of theorem 2.19:

Proposition 2.20. Let Y ⊂ P5(C) be a smooth cubic fourfold, and let X be the Fano variety of
lines in Y . Let I ∈ A2(X ×X) be the incidence correspondence, and let g = −c1(E2) ∈ A1(X)
be the Plücker polarization. Then

·g2 : A2
(2)(X) −→ A4

(2)(X)

is an isomorphism. The inverse isomorphism is given by

−1

6
I∗ : A4

(2)(X) → A2
(2)(X) .

Proof. This is implicit in the arguments of [38]. For any a ∈ A4
hom(X), there is equality

` · L∗(a) = −25

6
g2 · I∗(a) in A4(X) .

(This follows from [38, Equations (107) and (108)], cf. the proof of [38, Proposition 19.4].) But
for a ∈ A4

(2)(X), we know (theorem 2.17(ii)) that ` · L∗(a) = 25a, and so for any a ∈ A4
(2)(X)

we get an equality

a = −1

6
g2 · I∗(a) in A4(X) .

Applying I∗ to this equality, we obtain an equality (for any a ∈ A4
(2)(X))

(3) I∗(a) = −1

6
I∗(g

2 · I∗(a)) in A2(X) .

But we know that
A2

(2)(X) = I∗A
4
hom(X) = I∗A

4
(2)(X) .

(Here, the first equality is [38, Proof of Proposition 21.10], and the second equality follows from
the fact that I∗A4

(4)(X) = 0 [38, Theorem 20.5].) Equation (3) thus becomes the statement that
for any b ∈ A2

(2)(X) there is equality

b = −1

6
I∗(g

2 · b) in A2(X) .

This proves the proposition. �

Corollary 2.21. Let Y ⊂ P5(C) be a smooth cubic fourfold, and let X be the Fano variety of
lines in Y . There exist correspondences P ∈ A3(X × Y ), Q ∈ A5(Y ×X) such that

(tP ◦ tQ)∗ = id: A2
(2)(X) → A2

(2)(X) ,

(Q ◦ P )∗ = id: A4
(2)(X) → A4

(2)(X) .
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Moreover, let Y → B and X → B denote the universal families as in notation 2.29. Then
there exist relative correspondences P ∈ A3(X ×B Y) and Q ∈ A5(Y ×B X ) with the above
property on each fibre: i.e., for each b ∈ B we have(

(tP ◦ tQ)|Xb×Xb

)
∗ = (ΠXb

2 )∗ : A2(Xb) → A2(Xb) ,(
(Q ◦ P)|Xb×Xb

)
∗ = (ΠXb

6 )∗ : A4(Xb) → A4(Xb) .

Proof. The correspondence P ∈ A3(X × Y ) is defined as the universal family of lines on Y .
Letting I ⊂ X ×X denote the incidence correspondence, we have

I = tP ◦ P in A2(X ×X)

[38, Lemma 17.2].
Proposition 2.20 states that the composition

A2
(2)(X)

·g2−→ A4
(2)(X)

− 1
6

(tP◦P )∗−−−−−−→ A2
(2)(X)

is the identity, in other words(
−1

6
tP ◦ P ◦ Γg2

)
∗ = id: A2

(2)(X) → A2
(2)(X) .

(Here Γg2 ∈ A6(X ×X) can be defined as 1
d
tΓτ ◦ Γτ , where τ : R → X denotes the inclusion

of a smooth complete intersection of class dg2). Defining

tQ := −1

6
P ◦ Γg2 ∈ A5(X × Y ) ,

we obtain the first equality of corollary 2.21.
For the second equality, it suffices to take the transpose of the first equality, since we know

that the CK decomposition of theorem 2.14 is self–dual.
As to the “moreover” part of the corollary: obviously both P and Γg2 exist relatively, and so

the same goes for Q. �

2.7. Spread.

Proposition 2.22 (Voisin [43]). Let M be a smooth projective variety of dimension r + 2, and
assume M has trivial Chow groups (i.e. A∗hom(M) = 0). Let L1, . . . , Lr be very ample line
bundles on M , and let

Y → B

be the universal family of smooth complete intersections

Yb = M ∩D1 ∩ · · · ∩Dr , Dj ∈ |Lj| .
Let R ∈ A2(Y ×B Y) be a relative correspondence such that

R|Yb×Yb = 0 ∈ H4(Yb × Yb) for very general b ∈ B .

Then there exists δ ∈ An(M ×M) such that

R|Yb×Yb = δ|Yb×Yb ∈ A2(Yb × Yb) ∀ b ∈ B .
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Proof. This follows from [43] (NB: as noted in loc. cit., the “Voisin standard conjecture” [43,
Conjecture 1.6] is satisfied for n = 2, so is not needed as extra assumption).

(Alternatively, one could give a quick proof of proposition 2.22 along the lines of [44, Propo-
sition 1.6], at least under the extra assumption that the surfaces Yb have non–zero primitive co-
homology, which is OK in all cases where we apply proposition 2.22 since we only consider K3
surfaces.) �

2.8. Families of K3 surfaces.

Notation 2.23. Let g ∈ {2, 3, 4, 5, 6, 8}. Let

Pg :=


P(13, 3) if g = 2 ,

Pg(C) if g = 3, 4, 5 ,

G(1, 4) if g = 6 ,

G(1, 5) if g = 8

(here P(13, 3) denotes a weighted projective space, and G(1,m) is the Grassmannian of lines in
Pm(C)). Consider the vector bundle Ug on Pg defined as

Ug :=



O(6) if g = 2 ,

O(4) if g = 3 ,

O(3)⊕O(2) if g = 4 ,

O(2)⊕3 if g = 5 ,

O(2)⊕O(1)⊕3 if g = 6 ,

O(1)⊕6 if g = 8

(here O(i) on a Grassmannian refers to the Plücker embedding).
Let Bg ⊂ PH0(Pg, Ug) denote the Zariski open parametrizing smooth sections, and let

Sg :=
{

(x, s) | s(x) = 0
}
⊂ Pg ×Bg

denote the universal family.

As shown by Mukai [29], a general K3 surface of genus g ∈ {2, 3, 4, 5, 6, 8} is isomorphic to
a fibre Sb of the family Sg → Bg.

Notation 2.24. Let Sg → Bg be as in notation 2.23. The family

S [2]
g → Bg

is defined as follows: take S ×B S and blow–up the relative diagonal, then take the quotient
for the action of the symmetric group exchanging the two factors. The fibre of S [2]

g → Bg is the
Hilbert square (Sb)

[2] of the K3 surface Sb.
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2.9. A Lagrangian fibration.

Proposition 2.25 (Mukai [28]). Let S be a general K3 surface of genus 5, and let X = S[2] be
the Hilbert scheme. There exists a Lagrangian fibration

φ : X → P2 .

Proof. The surface S can be defined as the intersection of three quadrics Q1, Q2, Q3 in P5(C).
Let N ∼= (P2)∨ be the net of quadrics spanned by Q1, Q2, Q3. Any length 2 subscheme ξ in S
determines a line `ξ in P5. Quadrics in N containing the line `ξ form a pencil Pξ ∼= P1 inside N .
Dually, this determines a point in P2, and so we obtain a morphism

φ : X → P2 ,

ξ 7→ (Pξ)
∨ .

(This fibration φ is also described in [36, Section 2.1] and [9].) �

Remark 2.26. Hassett–Tschinkel prove more generally that X = S[2] admits a Lagrangian
fibration, for S a generic K3 surface of degree 2m2 with m ≥ 2 [18, Proposition 7.1]. Gen-
eralizations to certain higher–dimensional Hilbert schemes S[r], r > 2 are given in [36] and
[20].

2.10. A relation of motives. Galkin–Shinder [15] have constructed a relation between a cubic
and its Fano variety of lines in the Grothendieck ring of varieties. The following is a version of
this relation on the level of Chow motives:

Theorem 2.27 ([24]). Let Y ⊂ Pn+1(C) be a smooth cubic, and let X = F (Y ) be the Fano
variety of lines in Y . There is an isomorphism of motives

Γ: h(X)(2)⊕
n⊕
i=0

h(Y )(i) ∼= h(Y [2]) inMrat .

Proof. This is [24, Theorem 5]. �

In particular, this implies the following:

Corollary 2.28. Let Y ⊂ P5(C) be a smooth cubic fourfold, and let X = F (Y ) be the Fano
variety of lines in Y . There exists a correspondence inducing an injection

Aihom(X) ↪→ Ai+2
hom(Y × Y )⊕

⊕
A3
hom(Y ) .

Moreover, this can be done relatively: letY → B be a family of smooth cubic fourfolds, and let
X → B be the family of associated Fano varieties. Then there exists a relative correspondence
Ψ1 ∈ A6

(
X ×B (Y ×B Y)

)
⊕
⊕

A∗(X ×B Y), inducing an injection

(Ψ1|b)∗ : Aihom(Xb) ↪→ Ai+2
hom(Yb × Yb)⊕

⊕
A3
hom(Yb) ∀ b ∈ B .

(Here Ψ1|b is shorthand for the restriction of Ψ1 to the fibre Xb × (Yb)
2 ∪
⋃

(Xb × Yb).)
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Proof. The first statement follows immediately from theorem 2.27, for it is readily seen that there
is a correspondence–induced injection

(4) Ai+2(Y [2]) ↪→ Ai+2(Y × Y )⊕
⊕

A∗(Y ) .

Restricting to A∗hom() (and remembering that Aihom(Y ) = 0 for i 6= 3) gives the first statement.
To prove the “moreover” part, we need to understand how the correspondence Γ of theorem

2.27 is constructed. The construction is based on the existence of a birational map (found by
Galkin–Shinder [15, Proof of Theorem 5.1])

φ : Y [2] 99K W ,

where W → Y denotes the P4–bundle whose fibre over y ∈ Y is the set of lines in P5 passing
through y. The indeterminacy locus τ : Z ↪→ Y [2] of φ is a P2–bundle p : Z → X , and it turns
out [48, Proposition 2.9] that the indeterminacy of φ is resolved by the blow–up with center Z.
The map from h(X)(2) to h(Y [2]) in theorem 3.1 is defined simply as

Γτ ◦ tΓp : h(X)(2) → h(Y [2]) inMrat .

This construction naturally extends to the family: inside Y [2] there is a codimension 2 locus
τ : Z ↪→ Y [2] (defined as those points x ∈ (Yb)

[2] for which the line Lx determined by x is
contained in Yb), and Z has the structure of a P2–bundle p : Z → X . One can thus define

Ψ := Γτ ◦ tΓp ∈ A6(X ×B Y [2]) .

The desired relative correspondence Ψ1 is defined as the composition Ψ1 = Ψ0 ◦ Ψ, where the
correspondence

Ψ0 ∈ A4
(
Y [2] ×B (Y ×B Y)

)
⊕
⊕

A∗(Y [2] ×B Y)

induces the fibrewise injection (4); this Ψ0 obviously exists relatively. �

2.11. Cubics containing two planes.

Notation 2.29. Let P1, P2 ⊂ P5(C) be two fixed disjoint planes, and consider smooth cubic
fourfolds Yb containing these two planes. Such cubics form a family

Y → B ,

where B ⊂ B̄ ⊂ PH0(P5,OP5(3)). Here B is Zariski open in B̄, and B̄ is the closed subset
parametrizing equations of the form

f1(u, v, w;x, y, z) + f2(u, v, w;x, y, z) = 0 ,

where f1, f2 are bihomogeneous of bidegree (1, 2) resp. (2, 1) in the variables [u, v, w] and
[x, y, z].

Let
X → B

be the universal family of Fano varieties of lines in cubic fourfolds containing two planes, i.e.

X :=
{

(`, b) | ` ⊂ Yb
}
⊂ Gr(1, 5)×B
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(here Gr(1, 5) is the Grassmannian of lines in P5). The fibre Xb (of X → B over b ∈ B) is the
Fano variety of lines in the cubic Yb.

Let
S → B

be the universal family of K3 surfaces in P2 × P2 defined by the bihomogeneous equations

f1(u, v, w;x, y, z) = f2(u, v, w;x, y, z) = 0 .

For later use, we record two lemmas that express a relation between the cubic Yb and the K3
surface Sb:

Lemma 2.30. Notation as in notation 2.29. There exist relative correspondences

Ψ2 ∈ A3(Y ×B S) , Ξ2 ∈ A3(S ×B Y) ,

with the property that(
(Ξ2 ◦Ψ2)|Yb×Yb

)
∗ = id: A3

hom(Yb) → A3
hom(Yb) ∀ b ∈ B .

Proof. The proof of the rationality of the cubics Yb (cf. for instance [16, Section 5], [17, Section
1.2]) can be done by showing that for any b ∈ B there exists a birational map

ρb : P2 × P2 99K Yb .

Taking coordinates [u, v, w], [x, y, z] for P2×P2, the indeterminacy locus of ρb is exactly the K3
surface Sb, and the blow–up Zb of P2 × P2 along Sb admits a morphism ρ̃b : Zb → Yb resolving
the indeterminacy of ρb. Let ib : Eb ↪→ Zb denote the exceptional divisor of the blow–up, and let
pb : Eb → Sb denote the induced morphism. The usual blow–up exact sequence implies that the
composition

A3
hom(Yb)

(ρ̃b)∗−−−→ A3
hom(Zb)

(ib)∗−−→ A3
hom(Eb)

(pb)∗−−−→ A2
hom(Sb)

is injective, and a left–inverse is given by

A2
hom(Sb)

(pb)∗−−−→ A2
hom(Eb)

(ib)∗−−→ A3
hom(Zb)

(ρ̃b)∗−−−→ A3
hom(Yb) .

This defines fibrewise correspondences between Yb and Sb. By looking at the blow–up of P2 ×
P2 ×B along S, one sees that these correspondences exist relatively, as desired. �

Lemma 2.31. Notation as in notation 2.29. There exists a relative correspondence

Ψ3 ∈ A6
(
(Y ×B Y)×B (S ×B S)

)
⊕ A∗

(
(Y ×B Y)×B S

)⊕2
,

with the property that

(Ψ3|b)∗ : A4
hom(Yb × Yb) → A2

hom(Sb × Sb)⊕ A2
hom(Sb)

⊕2

is injective for very general b ∈ B.

Proof. Lemma 2.30 implies that the map of Chow motives

(Ψ2,Ψ
′) : h(Yb) → h(Sb)(1)⊕

4⊕
i=0

L(i) inMrat
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admits a left–inverse (i.e. the left–hand side is a direct summand of the right–hand side). This
implies that there is an induced map

h(Yb × Yb) → h(Sb × Sb)(2)⊕
⊕
j

h(Sb)(j)⊕
⊕
k

L(k) inMrat

admitting a left–inverse. In particular, taking A4
hom() on both sides, we find there is an injection

A4
hom(Yb × Yb) ↪→ A2

hom(Sb × Sb)⊕
⊕

A2
hom(Sb)

which is induced by various combinations of Ψ2 and Ψ′. We have seen (lemma 2.30) that Ψ2

exists relatively. As for Ψ′, this is obtained by considering the “trivial” cycles hi ∈ Ai(Yb)
coming from a hyperplane section h ∈ A1(P5), plus choosing a basis for N2H4(Yb). The cycles
hi obviously exist relatively. Let B0 ⊂ B be the locus where dimN2H4(Yb) equals 3; this B0

is the intersection of a countable number of Zariski opens in B. The correspondence Ψ′ exists
as a relative correspondence over B0. It follows there exists a relative correspondence Ψ3 as
indicated. �

Remark 2.32. Let Yb be a smooth cubic fourfold containing two planes. We will say that Sb
is the related K3 surface. (We want to avoid the terminology “associated K3 surface”, which
already has a different meaning [16], [17].)

2.12. The generalized Franchetta conjecture for certain K3 surfaces.

Proposition 2.33. Let S → B be the family of K3 surfaces of notation 2.29. Let Γ ∈ A2(S) be
a relative cycle such that

Γ|Sb
= 0 in H4(Sb) ∀b ∈ B .

Then also
Γ|Sb

= 0 in A2(Sb) ∀b ∈ B .

Proof. Let P := P2 × P2, and let U → P be the rank 2 vector bundle

U := OP(1, 2)⊕OP(2, 1) .

Let
B̄ := PH0(P, U) , S̄ :=

{
(x, f) | f(x) = 0

}
⊂ P× B̄ .

Then B and S are Zariski opens in B̄ resp. S̄. There is a diagram

S̄ ν−→ P
↓ π
B̄

Let φb : Sb ↪→ S ↪→ S̄ and ib : Sb ↪→ P denote the inclusion morphisms. We claim that there
is equality

(5) Im
(
A2(S̄)

(φb)∗−−−→ A2(Sb)
)

= Im
(
A2(P)

(ib)∗−−→ A2(Sb)
)
.

This claim implies the proposition: indeed,

A2(P) = A2(P2 × P2) =
⊕
k+`=2

Ak(P2)⊗ A`(P2)
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is a 3–dimensional Q–vector space with generators h2 × P2, h× h, P2 × h2 (where h ∈ A1(P2)
is the class of a hyperplane section). Thus every element in A2(P) is a sum of intersections
of divisors. Since intersections of two divisors are a multiple of the distinguished class oSb

in
A2(Sb) [4], the claim (applied to any lifting Γ̄ of Γ to A2(S̄)) implies that

Γ|Sb
= (φb)

∗(Γ̄) = mb oSb
in A2(Sb)

for some mb ∈ Q, and the proposition is proven.
To prove the claim, we apply the argument of [33, Lemma 2.1] (where (5) is proven in a very

similar set–up). First, one observes that U → P is globally generated and so ν : S̄ → P is a
projective bundle; the fibre over a point x ∈ P is

PH0(P, U ⊗ Ix)
(where Ix denotes the ideal sheaf of x). The projective bundle formula gives an equality

(6) Ar(S̄) = ξr · ν∗A0(P) + ξr−1 · ν∗A1(P) + · · ·+ ν∗Ar(P) ,

where ξ ∈ A1(S̄) denotes the relative hyperplane class. In particular, if H ∈ A1(B̄) denotes the
hyperplane class, we can write

π∗(H) = a · ξ + ν∗(b) in A1(S̄)

for some a ∈ Q and b ∈ A1(P). The constant a must be non–zero, for otherwise

π∗(Hdim B̄) = ν∗(bdim B̄) in Adim B̄(S̄) ,

which is absurd (the right–hand side is 0 since dim B̄ > 4 = dimP, but the left–hand side is the
pullback of an effective 0–cycle and is non–zero).

It follows that one may write

ξ =
1

a

(
π∗(H)− ν∗(b)

)
in A1(S̄) .

Plugging this in equality (6) and taking r = 2, we find that

A2(S̄) =
(
π∗(H)− ν∗(b)

)2 · ν∗A0(P)⊕
(
π∗(H)− ν∗(b)

)
· ν∗A1(P)⊕ ν∗A2(P) .

The class π∗(H) vanishes when restricting to Sb, i.e. (φb)
∗π∗(H) = 0 in A2(Sb) for any b ∈ B,

and so

Im
(
A2(S̄)

(φb)∗−−−→A2(Sb)
)

= Im
((
ν∗(b2) · ν∗A0(P)⊕ ν∗(b) · ν∗A1(P)⊕ ν∗A2(P)

) (φb)∗−−−→A2(Sb)
)

= Im
(
ν∗A2(P)

(φb)∗−−−→ A2(Sb)
)

= Im
(
A2(P)

(ib)∗−−→ A2(Sb)
)
,

proving the claim. �

Remark 2.34. For any b ∈ B, let oSb
∈ A2(Sb) denote the distinguished 0–cycle of [4]. An

equivalent way of stating proposition 2.33 is as follows: given any relative cycle Γ ∈ A2(S), the
restriction

Γ|Sb
∈ A2(Sb)

is a multiple of oSb
in A2(Sb).
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This statement is very similar to the “generalized Franchetta conjecture” for K3 surfaces,
which was formulated by O’Grady [32, Section 5] and proven in certain cases by Pavic–Shen–
Yin [33].

3. MAIN RESULTS

This section proves the two main results of this note, theorems 3.1 and 3.2. The proofs are
based on the method of “spread” of cycles in nice families, as developed by Voisin [43], [44],
[45], [46].

The first main result is a “generalized Franchetta conjecture” type of statement for certain
Hilbert squares:

Theorem 3.1. Let g ∈ {2, 3, 4, 5, 6, 8}. Let X → B denote the universal family of Hilbert
squares of genus g K3 surfaces (notation 2.24). Let Γ ⊂ X be a codimension 2 subvariety. Then
the restriction Γ|Xb

∈ A2(Xb) is in A2
(0)(Xb) for all b ∈ B.

Proof. Let us fix an integer g ∈ {2, 3, 4, 5, 6, 8}, and write

S → B , X := S [2] → B

for the universal family of genus g K3 surfaces (i.e., the family Sg → Bg of subsection 2.8),
resp. the universal Hilbert square of a genus g K3 surface (as in notation 2.24).

One knows (remark 2.11) that the MCK decomposition {ΠXb
j } for the Xb of [38] exists rela-

tively, in particular there exists a relative correspondence ΠX2 ∈ A4(X ×B X ) such that

ΠX2 |Xb×Xb
= ΠXb

2 in A4(Xb ×Xb) ∀b ∈ B .

Let us now consider the relative cycle

Γ0 := (ΠX2 )∗(Γ) ∈ A2(X ) .

We know this is fibrewise homologically trivial:

(7) Γ0|Xb
= 0 in H4(Xb) ∀ b ∈ B .

(This is simply because ΠXb
2 ◦ ΠXb

4 = 0 in H8(Xb ×Xb).)
What we desire to prove (in order to establish the theorem) is that there is a fibrewise rational

equivalence

(8) Γ0|Xb

??
= 0 in A2(Xb) ∀ b ∈ B .

It is easier to move things to the family S ×B S. To this end, let

Ψ ∈ A4(X ×B (S ×B S))

be the relative correspondence defined by the standard diagram

X := S [2] ← S̃ ×B S
↓ ↓

S(2) := (S ×B S)/S2 ← S ×B S
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Let us consider the relative correspondence

Γ1 := (Ψ)∗(Γ0) ∈ A2(S ×B S) .

We recall from equality (7) that Γ0|Xb
is in A2

hom(Xb) = A2
AJ(Xb) for all b ∈ B. The restriction

Ψb := Ψ|Xb×(Sb)2 acts as

(Ψb)∗ : A2
AJ(Xb) → A2

AJ(S̃b × Sb) → A2
AJ(Sb × Sb) ,

where the first arrow is an injection and the second arrow is an isomorphism. Hence, in order to
prove (8) it will suffice to prove

(9) Γ1|Xb

??
= 0 in A2(Sb × Sb) ∀ b ∈ B .

But the family S → B enters into the set–up of proposition 2.22 (withM = Pg andLj as given
in subsection 2.8), and (7) implies that the cycle Γ1 ∈ A2(S ×B S) is fibrewise homologically
trivial:

Γ1|Sb×Sb
= 0 in H4(Sb × Sb) ∀b ∈ B .

Proposition 2.22 allows us to conclude that there exists δ ∈ A2(Pg × Pg) such that there is
fibrewise rational equivalence

(10) Γ1|Sb×Sb
= δ|Sb×Sb

in A2(Sb × Sb) ∀b ∈ B .

Let us decompose

δ = δ0 + δ1 + δ2 ∈ A2(Pg)⊗ A0(Pg)⊕ A1(Pg)⊗ A1(Pg)⊕ A0(Pg)⊗ A2(Pg) ,

where it is understood that δ0 is in the first summand, and δ1, δ2 are in the second resp. last
summand. (This decomposition is possible because Pg has trivial Chow groups, and so

A∗(Pg × Pg) = A∗(Pg)⊗ A∗(Pg) .)

As the restriction δ|Sb×Sb
is homologically trivial (for each b ∈ B), and the δj|Sb×Sb

land in
different summands of the Künneth decomposition of cohomology, we have

(11) δj|Sb×Sb
∈ A2

hom(Sb × Sb) ∀ b ∈ B , j = 0, 1, 2 .

From this, we may conclude that

δ1|Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B ,

thanks to Voisin’s proof of the Beauville–Voisin conjecture for (Sb)
m with m small [42, Propo-

sition 2.2].
As for the component δ0, let us take a relatively ample divisor h ∈ A1(S) (e.g., induced by an

ample divisor on Pg), and consider the relative cycle

δ00 := (p1)∗
(
((δ0 ×B)|S×BS) · (p2)∗(h2)

)
∈ A2(S) ,

where pi : S ×B S → S for i = 1, 2 denotes projection on the first resp. second factor. We have
that

δ0|Sb×Sb
= d · (p1)∗(δ00|Sb

) in A2(Sb × Sb) ∀b ∈ B ,
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for some non–zero integer d. We observe that (11) implies that the restriction δ00|Sb
is of degree

0 for all b ∈ B. But then, reasoning exactly as in [33], we must have that δ00|Sb
is rationally

trivial. (More in detail: by construction, one has

δ00|Sb
∈ Im

(
A2(Pg)→ A2(Sb)

)
.

However, it is known that
Im
(
A2(Pg)→ A2(Sb)

)
= Q[oSb

]

(where oSb
is the distinguished point of [4]); Pavic–Shen–Yin supply not one but two proofs for

this [33, Proposition 3.1].)
It follows that also

δ0|Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B .

The proof for δ2 is the same as for δ0. We conclude that

δ|Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B ,

and so (10) gives the desired equality (9). �

We now come to the second main result of this note:

Theorem 3.2. Let g ∈ {2, 3, 4, 5, 6, 8}. Let X → B denote the universal family of Hilbert
squares of genus g K3 surfaces (notation 2.24). Let Γ ⊂ X be a codimension 2 subvariety.
Assume the restriction

Γb := Γ|Xb
∈ A2(Xb)

is Lagrangian (i.e., ∪Γb : H2,0(Xb)→ H4,2(Xb) is the zero map), for very general b ∈ B. Then

·Γb : A2
hom(Xb) → A4(Xb)

is the zero map, for all b ∈ B.

Proof. Thanks to theorem 2.1, there is a splitting

A2
hom(Xb) = A2

(2)(Xb)⊕
(
A2

(0)(Xb) ∩ A2
hom(Xb)

)
,

where the second summand is conjecturally zero. It is known that the intersection product map

A2
(0)(Xb)⊗

(
A2

(0)(Xb) ∩ A2
hom(Xb)

)
→ A4(Xb)

is the zero map [38, Theorem 3]. Since Γb ∈ A2
(0)(Xb) by theorem 3.1, we are reduced to proving

that
·Γb : A2

(2)(Xb) → A4(Xb)

is the zero map.
Let us consider a resolution of singularities f : Γ̃ → Γ, and let τ : Γ̃ ↪→ X denote the compo-

sition of f with the inclusion morphism Γ ↪→ X . Let us consider the relative correspondence

Γ0 := L ◦ Γτ ◦ tΓτ ◦ ΠX2 ∈ A4(X ×B X ) ,

where ΠX2 and L are as in remark 2.11 resp. lemma 2.18.
By construction, for any b ∈ B, the restriction Γ0|Xb×Xb

acts on Chow groups as

Ai(Xb) −→ (ΠXb
2 )∗A

i(Xb)
·Γb−→ Ai+2(Xb)

(Lb)∗−−−→ Ai(Xb) .
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In particular, taking i = 2 and applying the fact that Γb ∈ A2
(0)(Xb) (theorem 3.1), we get an

action
(Γ0|Xb×Xb

)∗ : A2
(2)(Xb)

id−→ A2
(2)(Xb)

·Γb−→ A4
(2)(Xb)

(Lb)∗−−−→ A2
(2)(Xb) .

We know that the last arrow is an isomorphism (theorem 2.17). Also, ΠXb
2 acts as the identity on

A2
(2)(Xb). Thus, to prove theorem 3.2 we are reduced to proving that

(12)
(
(ΠX2 ◦ Γ0)|Xb×Xb

)
∗

??
= 0: A2

(2)(Xb) → A2
(2)(Xb) ∀b ∈ B .

The input we have at our disposition is that we know (from the coisotropic assumption) that

(13) (Γ0|Xb×Xb
)∗ = 0: H2,0(Xb) → H2,0(Xb) for very general b ∈ B .

We observe that (13), combined with the Lefschetz (1,1) theorem, implies the following: for
very general b ∈ B, there exist a curve Cb ⊂ Xb, a divisor Db and a cycle γb supported on
Cb ×Db ⊂ Xb ×Xb, such that

Γ0|Xb×Xb
− γb = 0 in H8(Xb ×Xb) .

Thanks to Voisin’s key result [43, Proposition 3.7] (cf. also [44, Proposition 4.25]), it is possible
to spread out these data. That is, there exist subvarieties C ⊂ X , D ⊂ X of codimension 3 resp.
1, and a cycle γ ∈ A4(X ×B X ) supported on C ×B D that does the job of the various γb, i.e.
such that (

Γ0 − γ
)
|Xb×Xb

= 0 in H8(Xb ×Xb) for very general b ∈ B .

In other words, the relative correspondence defined as

Γ1 := Γ0 − γ ∈ A4(X ×B X )

has the property that

(14) Γ1|Xb×Xb
= 0 in H8(Xb ×Xb) for very general b ∈ B .

It is more convenient to move to correspondences living in A2(S ×B S), where S → B is (as
before) the family of K3 surfaces of genus g. That is, first we consider the relative correspon-
dence

Γ2 := Ψ ◦ Γ1 ◦ tΨ ∈ A4
(
S2/B ×B S2/B

)
,

where Ψ ∈ A4(X ×B S2/B) is as in the proof of theorem 3.1. Next, we define relative correspon-
dences

Γi,j3 := Ξi ◦ Γ2 ◦Θj ∈ A2(S ×B S) (1 ≤ i, j ≤ 2) ,

where Ξi,Θj are as in proposition 2.13. The relative correspondence Γ1 being fibrewise homo-
logically trivial (equation (14)), the same holds for Γ2 and Γi,j3 :

Γi,j3 |Sb×Sb
= 0 in H4(Sb × Sb) for very general b ∈ B (1 ≤ i, j ≤ 2) .

We can now apply proposition 2.22 to the Γi,j3 (with M = Pg and Lr as given in subsection 2.8).
The conclusion is that there is a fibrewise rational equivalence

Γi,j3 |Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B (1 ≤ i, j ≤ 2) .
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In particular, this implies that

ΠS
2/B

2 ◦ Γ2 ◦ ΠS
2/B

2 =
∑

i,j∈{1,2}

Θi ◦ Γi,j3 ◦ Ξj ∈ A4
(
S2/B ×B S2/B

)
is fibrewise rationally trivial (the equality follows from proposition 2.13). Composing some
more, we find that also

tΨ ◦ ΠS
2/B

2 ◦ Γ2 ◦ ΠS
2/B

2 ◦Ψ ∈ A4(X ×B X )

is fibrewise rationally trivial. In view of the definition of Γ2 (plus the fact that (Ψb)
∗(Ψb)∗ is a

multiple of the identity on A2
hom(Xb)), this implies that(

ΠX2 ◦ Γ1 ◦ ΠX2 )|Xb×Xb

)
∗ = 0: A2

hom(Xb) → A2(Xb) ∀b ∈ B .

As A2
(2)(Xb) ⊂ A2

hom(Xb), this implies in particular that

A2
(2)(Xb)

id−→ A2
(2)(Xb)

(Γ1|Xb×Xb
)∗−−−−−−−→ A2(Xb)

(Π
Xb
2 )∗−−−−→ A2

(2)(Xb)

is the zero map, for all b ∈ B.
For general b ∈ B, the restriction of the cycle δ to the fibre Xb × Xb will be supported on

(curve)×(divisor), and so will act trivially on A2(Xb) for dimension reasons. That is, for general
b ∈ B we have equality

(Γ1|Xb×Xb
)∗ = (Γ0|Xb×Xb

)∗ : A2(Xb) → A2(Xb) .

The above thus implies that

A2
(2)(Xb)

(Γ0|Xb×Xb
)∗−−−−−−−→ A2(Xb)

(Π
Xb
2 )∗−−−−→ A2

(2)(Xb)

is the zero map, for general b ∈ B. That is, we have proven the desired statement (12) for general
b ∈ B.

To extend the statement to all b ∈ B, one notes that the construction of [43, Proposition 3.7]
(which was used above to globalize the various γb) can be done locally around a given b0 ∈ B.

�

Remark 3.3. Huybrechts ventures the following guess: “Any distinguished curve, i.e. a curve
that is naturally defined in all generic K3 surfaces of fixed degree, should be a constant cycle
curve” [19, Section 8.3 Footnote 5].

Similarly, in the set–up of theorem 3.1, could it be the case that for any codimension 2 subva-
riety Γ ⊂ X flat over B, the restriction Γ|Xb

is a constant cycle surface provided it is irreducible
? This would somehow “explain” that the restriction Γ|Xb

is in A2
(0)(Xb), in view of conjecture

1.2.

Remark 3.4. Here is a slightly different way of proving theorem 3.2: LetXb be the Hilbert square
of a very general K3 surface Sb of genus g ∈ {2, 3, 4, 5, 6, 8}. Let Γb ⊂ Xb be a subvariety of
codimension 2 that is Lagrangian. It follows from a result of Voisin [47, Proposition 4.2] that
there is a homological equivalence

(15) Γb =
∑
i

λiC
i
b in H4(Xb) ,
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where λi ∈ Q and Ci
b ⊂ Xb is a constant cycle surface.

Suppose we know in addition that Γb ∈ A2
(0)(Xb) is the restriction of a relative cycle Γ ∈

A2(X ) as in theorem 3.2). Then, one may “spread out” the fibrewise surfaces Ci
b and use the ar-

gument of theorem 3.1 (or alternatively, the more recent [12, Theorems 1.4 and 1.5]) to conclude
that there is a rational equivalence

(16) Γb =
∑
i

λiCi in A2(Xb) .

This clearly implies theorem 3.2.

4. SOME COROLLARIES

Corollary 4.1. Let S be a generalK3 surface of genus 5, and letX = S[2] be the Hilbert square.
Let A ⊂ X be a general fibre of the Lagrangian fibration φ : X → P2 of proposition 2.25. Let
b ∈ A4(X) be a 0–cycle of the form

b = A · a+ p ∈ A4(X) ,

where a ∈ A2(X) and p is a sum of intersections of divisors and Chern classes of X . Then b is
rationally trivial if and only if b is of degree 0.

Proof. The first thing to remark is that the Lagrangian surface A is in A2
(0)(X). This follows

from theorem 3.1, but it is far easier to note that a point p ∈ P2 is an intersection of two divisors,
and so A = φ−1(p) is an intersection of two divisors.

Next, one observes that the rational equivalence class of the surface A ⊂ X exists relatively
(this is because the Lagrangian fibration of proposition 2.25 exists relatively). Thus, one can
apply theorem 3.2 to conclude that

·A : A2
hom(X) → A4(X)

is the zero map. This implies that A · a is in A4
(0)(X), and so also b is in A4

(0)(X). Since
A4

(0)(X) ∼= Q, this proves the corollary. �

Corollary 4.2. Let g ∈ {2, 3, 4, 5, 6, 8}, and let S → B be the universal family of genus g K3
surfaces. Let C ⊂ S be a “relative curve” (i.e., a divisor flat over B), and let Cb ⊂ Sb denote
the restriction C|Sb

. Let X be the Hilbert scheme X = (Sb)
[2] for any b ∈ B, and let Y ⊂ X be

the Lagrangian surface (Cb)
(2). Then

Y ∈ A2
(0)(X) ,

·Y = 0: A2
hom(X) → A4(X) .

Proof. This is immediate from theorem 3.1. �

Remark 4.3. In the set–up of corollary 4.2, it may be expected that Cb ⊂ Sb is a constant cycle
curve (this is Huybrechts’ guess, cf. remark 3.3). This would imply that Y ⊂ X is a constant
cycle surface, which would nicely explain the behaviour of Y exhibited in corollary 4.2.
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Corollary 4.4. Let S ⊂ P3(C) be a smooth quartic, and let X = S[2] be the Hilbert scheme. Let
T ⊂ X be the surface of bitangents. Then

T ∈ A2
(0)(X) ,

·T = 0: A2
hom(X) → A4(X) .

Proof. The surface T ⊂ X exists relatively, and so this follows from theorem 3.1. �

Remark 4.5. When S ⊂ P3(C) is a generic quartic, there is Beauville’s anti–symplectic involu-
tion ι : X → X [1]. The fixed locus of ι is the surface of bitangents T [6, Example 3.5]. The first
part of corollary 4.4 thus follows from the more general statement that

A2(X)ι ⊂ A2
(0)(X) ,

which is proven in [25] (cf. also [12, Corollary 1.8]).
As for the second statement of corollary 4.4, it is perhaps possible to prove the stronger state-

ment that T ⊂ X is a constant cycle surface. (Since ι acts as minus the identity on A4
(2)(X) [25],

we know that
Im
(
A0(T )→ A4(X)

)
∩ A4

(2)(X) = 0 .

To prove T is a constant cycle surface, it only remains to prove that

Im
(
A0(T )→ A4(X)

)
∩ A4

(4)(X)
??
= 0 .

I don’t know how to do this.)

5. FANO VARIETIES OF CUBIC FOURFOLDS

In this final section, we prove a “generalized Franchetta conjecture” type of statement for the
Fano variety of lines on a cubic fourfold containing two planes. The argument is similar to that
of theorem 3.1.

Theorem 5.1. Let Y → B be the universal family of smooth cubic fourfolds containing two
disjoint planes, and let X → B be the family of associated Fano varieties of lines (cf. notation
2.29). Let Γ ⊂ X be a codimension 2 subvariety. The restriction Γ|Xb

∈ A2(Xb) is in A2
(0)(Xb)

for all b ∈ B.

Proof. Let us consider the relative correspondence

Γ0 := (ΠX2 )∗(Γ) ∈ A2(X ) ,

where ΠX2 is the relative CK projector as in proposition 2.16. We know that there is fibrewise
homological vanishing

(17) Γ0|Xb
= 0 in H4(Xb) ∀b ∈ B .

What we need to prove (in order to have Γ ∈ A2
(0)(Xb)) is that there is a fibrewise rational

equivalence

(18) Γ0|Xb

??
= 0 in A2(Xb) ∀b ∈ B .
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To obtain this, we move things to the universal family of (squares of) related K3 surfaces. That
is, we first consider the relative correspondence

Γ1 := (Ψ1)∗(Γ0) ∈ A4(Y ×B Y)⊕
⊕

A3(Y) ,

where Ψ1 ∈ A6(X ×B (Y ×B Y))⊕
⊕

A∗(X ×B Y) is as in corollary 2.28. Let us write

Γ1 = Γ0
1 + Γ1

1 + · · ·+ Γm1 ,

where Γ0
1 is in A4(Y ×B Y) and Γi1 is in A3(Y) for i = 1, . . . ,m.

Next, we consider the relative correspondence

Γ2 := (Ψ3)∗(Γ
0
1) +

m∑
i=1

(Ψ2)∗(Γ
i
1) ∈ A2(S ×B S)⊕

m+2⊕
j=1

A2(S) ,

where Ψ2 and Ψ3 are as in lemma 2.30 resp. lemma 2.31. Let us split this correspondence into
two parts, writing

Γ2 = Γ′2 + Γ′′2

with
Γ′2 ∈ A2(S ×B S) , Γ′′2 ∈

⊕
A2(S) .

Property (17) implies there is a fibrewise homological vanishing

(19) (Γ′2 + Γ′′2)|Sb×Sb
= 0 in H4(Sb × Sb)⊕

⊕
H4(Sb) ∀b ∈ B .

The family S → B fulfills the conditions of proposition 2.22 (with M = P2 × P2 and L1 =
OM(1, 2) and L2 = OM(2, 1)). Applying proposition 2.22 to Γ′2, we find that there exists δ ∈
A2(M ×M) such that

Γ′2|Sb×Sb
= δ|Sb×Sb

in A2(Sb × Sb) ∀b ∈ B .

Combined with (19), this implies in particular that

δ|Sb×Sb
∈ A2

hom(Sb × Sb) ∀b ∈ B .

But A∗(M ×M) = A∗(M)⊗A∗(M) is generated by divisors, and so the restriction δ|Sb×Sb
is in

the subring generated by divisors. It is known this subring injects into cohomology [42], and so

δ|Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B .

It follows that also

(20) Γ′2|Sb×Sb
= 0 in A2(Sb × Sb) ∀b ∈ B .

Next, let us consider the part Γ′′2. We have seen (equality (19)) that this cycle is fibrewise
homologically trivial:

Γ′′2|(Sb)⊕m+2 = 0 in
m+2⊕
j=1

H4(S) ∀b ∈ B .
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It follows from proposition 2.33 that there is a rational equivalence

(21) Γ′′2|(Sb)⊕m+2 = 0 in
m+2⊕
j=1

A2(S) ∀b ∈ B .

Combining (20) and (21), we find that

(22) Γ2|(Sb×Sb)∪(Sb)⊕m+2 = 0 in A2(Sb × Sb)⊕
m+2⊕
j=1

A2(Sb) .

Let us now get back to the Fano varieties Xb. We know that

(Ψ1) : A2
hom(Xb) → A4

hom(Yb × Yb)⊕
m⊕
i=1

A3
hom(Yb)

is injective (corollary 2.28). Likewise, we know that

(Ψ2)∗ : A3
hom(Yb) → A2(Sb) ,

(Ψ3)∗ : A4
hom(Yb × Yb) → A2(Sb × Sb)⊕ A2(Sb)

⊕2

are injective, at least for general b ∈ B (lemmas 2.30 and 2.31).
Looking at the definition of Γ2, the vanishing (22) thus implies that

Γ0|Xb
= 0 in A2(Xb) for very general b ∈ B .

In view of [45, Lemma 3.2], this implies that actually

Γ0|Xb
= 0 in A2(Xb) ∀ b ∈ B

as desired, proving equality (18) and hence theorem 5.1. �

Remark 5.2. One can also prove the analogue of theorem 3.2 for Fano varietiesXb as in theorem
5.1. The details will appear elsewhere.
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