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Abstract. We study the Dirichlet ϕ-energy integral with Sobolev boundary values.
The function ϕ has generalized Orlicz growth. Special cases include variable exponent
and double phase growths. We show that minimizers are regular at the boundary
provided a weak capacity fatness condition is satisfied. This condition is satisfies for
instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.
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1. Introduction

We study the Dirichlet energy integral in a bounded domain Ω ⊂ Rn with
Sobolev boundary values:

inf

ˆ
Ω

ϕ(x, |∇u|) dx

where the infimum is taken over all u ∈ W 1,ϕ(·)(Ω) with u − f ∈ W
1,ϕ(·)
0 (Ω).

The function ϕ has generalized Orlicz growth and satisfies conditions (A0),
(A1), (A1-n), (aInc) and (aDec) that have been previously used in [9,15,17,20].
Our results include as special cases the constant exponent case ϕ(x, t) = tp,
the variable exponent case ϕ(x, t) = tp(x) and the double phase case ϕ(x, t) =
tp + a(x)tq. Such problems have been recently studied e.g. in [1,3,5,7,8,12,14,
21, 25, 26]. For a detailed motivation of our context and additional references,
we refer to the introduction of [18].
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Our main result says that if the complement of Ω is locally fat at x0 ∈ ∂Ω
in the capacity sense, then the boundary point is regular, i.e at this point
the boundary value is attained not only in the Sobolev sense but point-wise.
The main theorem yields for example that every boundary point is regular in
Lipschitz domains and Hölder domains with appropriate exponent. To the best
of our knowledge, the result is new even in the Orlicz case, ϕ(x, t) = ϕ(t).

Theorem 1.1. Let Ω ⊂ Rn be bounded and x0 ∈ ∂Ω. Let ϕ ∈ Φ(Rn) be
strictly convex and satisfy (A0), (A1), (A1-n), (aInc) and (aDec). If there
exists c ∈ (0, 1) and R > 0 such that

Cϕ(·)(B(x0, r) \Ω, B(x0, 2r)) > cCϕ(·)(B(x0, r), B(x0, 2r)) for all 0 < r < R,

then x0 is a regular boundary point.

The proof of the main theorem is based on the properties of superminimizers
of the Dirichlet ϕ-energy integral. Following the proofs of our previous paper
[18], we show that superminimizers are locally bounded below, Corollary 3.4,
and satisfy the weak Harnack inequality, Theorem 4.3. Using the supremum-
estimates and the weak Harnack inequality, we show that every superminimizer
has a lower semicontinuous representative, and if additionally the supermini-
mizer is bounded then for lower semicontinuous representative every point is a
Lebesgue point, Theorem 4.4. Then we study continuity of superminimizers in
Theorem 5.2 and show that for every ε > 0

Cϕ(·)(B(x0, r) ∩ {|u− u(x0)| > ε}, B(x0, 2r))

Cϕ(·)(B(x0, r), B(x0, 2r))
→ 0

as r → 0+. The lower semicontinuity and the above capacity density condition
of continuity for superminimizers prove together with the pasting lemma the
main theorem, cf. page 22.

As can be seen, the steps in our proof correspond to the constant exponent
case. However, our minimizer is not homogeneous, so we cannot use techniques
based on scaling. Therefore, we have combined arguments, mainly from [4,23],
which are not crucially based on scaling, and in some cases modified them (e.g.
the test function in the proof of Lemma 5.1).

2. Preliminaries

By Ω ⊂ Rn we denote a bounded domain, i.e. an open and connected set. By
A b Ω we mean that A is compactly contained in Ω, i.e. there exists a compact
set K with A ⊂ K ⊂ Ω. The notation f . g means that there exists a constant
C > 0 such that f 6 Cg. The notation f ≈ g means that f . g . f . By
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c we denote a generic constant whose value may change between appearances.
A function f is almost increasing if there exists a constant L > 1 such that
f(s) 6 Lf(t) for all s 6 t (abbreviated L-almost increasing). Almost decreasing
is defined similarly.

Generalized Orlicz spaces Lϕ(·) have been studied since the 1940s. A major
synthesis of functional analysis in these spaces is given in the 1983 monograph
of Musielak [24], hence the alternative name Musielak–Orlicz spaces. Following
ideas by Maeda, Mizuta, Ohno and Shimomura (e.g. [22]) we have studied these
spaces from a point-of-view which emphasizes the possibility of choosing appro-
priately the Φ-function generating the norm in the space. In this perspective,
some classical concepts, like convexity, are too rigid. Hence we have arrived at
the following definition.

Definition 2.1. We say that ϕ : Ω× [0,∞)→ [0,∞] is a weak Φ-function, and
write ϕ ∈ Φw(Ω), if the following conditions hold
• For every t ∈ [0,∞) the function x 7→ ϕ(x, t) is measurable and for every
x ∈ Ω the function t 7→ ϕ(x, t) is non-decreasing and left-continuous.
• ϕ(x, 0) = lim

t→0+
ϕ(x, t) = 0 and lim

t→∞
ϕ(x, t) =∞ for every x ∈ Ω.

• The function t 7→ ϕ(x,t)
t

is L-almost increasing for t > 0 uniformly in Ω.
"Uniformly" means that L is independent of x.

If ϕ ∈ Φw(Ω) is additionally convex, then ϕ is a Φ-function, and we write
ϕ ∈ Φ(Ω).

Two functions ϕ and ψ are equivalent, ϕ ' ψ, if there exists L > 1 such
that ψ(x, t

L
) 6 ϕ(x, t) 6 ψ(x, Lt) for every x ∈ Ω and every t > 0. Equivalent

Φ-functions give rise to the same space with comparable norms.
We say that ϕ is doubling if there exists a constant L > 1 such that

ϕ(x, 2t) 6 Lϕ(x, t) for every x ∈ Ω and every t > 0. If ϕ is doubling with
constant L, then by iteration

ϕ(x, t) 6 L2
( t
s

)Q
ϕ(x, s) (1)

for every x ∈ Ω and every 0 < s < t, where Q = log2(L), e.g. [4, Lemma 3.3].
If ϕ is doubling, then (1) yields that ' implies ≈. On the other hand, ≈
always implies ' since the function t 7→ ϕ(x,t)

t
is almost increasing; hence '

and ≈ are equivalent in the doubling case. Note that doubling also yields that
ϕ(x, t+ s) . ϕ(x, t) + ϕ(x, s).

Assumptions. Let us write ϕ+
B(t) := supx∈B ϕ(x, t) and ϕ−B(t) := infx∈B ϕ(x, t);

and abbreviate ϕ± := ϕ±Ω. We state some assumptions for later reference.
(A0) There exists β ∈ (0, 1) such that ϕ+(β) 6 1 6 ϕ−(1).



4 Petteri Harjulehto and Peter Hästö

(A1) There exists β ∈ (0, 1) such that, for every ball B ⊂ Ω,

ϕ+
B(βt) 6 ϕ−B(t) when t ∈

[
1, (ϕ−B)−1( 1

|B|)
]
.

(A1-n) There exists β ∈ (0, 1) such that, for every ball B ⊂ Ω,

ϕ+
B(βt) 6 ϕ−B(t) when t ∈

[
1, 1

diamB

]
.

(aInc) There exist p > 1 and L > 1 such that t 7→ ϕ(x,t)
tp

is L-almost increasing
in (0,∞).

(aDec) There exist q > 1 and L > 1 such that t 7→ ϕ(x,t)
tq

is L-almost decreasing
in (0,∞).

We write (Inc) if the ratio is increasing rather than just almost increasing,
similarly for (Dec). All these assumptions are invariant under equivalence of
Φ-functions. Note that the optimal p and q correspond to the lower and upper
Matuszewska–Orlicz indexes, respectively.

Furthermore, (A0) and (aDec) imply that ϕ(x, 1) . β−qϕ(x, β) 6 β−q, so
this together with 1 6 ϕ−(1) yields that ϕ(x, 1) ≈ 1. By Lemma 2.6 of [18]
doubling is equivalent to (aDec). The conditions (A1) and (A1-n) can be used
also in cubes instead of balls, see Lemmas 2.10 and 2.11 in [18].

Example 2.2. Let us consider the assumptions in some important special cases,
namely variable exponent growth and double phase growth. The next table
contains a interpretation of the assumptions for four Φ-functions. Note that
in many cases the condition in the special case is a nearly optimal sufficient
condition: for instance, in the variable exponent case p ∈ C log implies (A1),
and no worse continuity modulus is sufficient, but there may be exponents
p 6∈ C log for which (A1) nevertheless holds. [2, 6, 20,27]

ϕ(x, t) (A0) (A1) (A1-n) (aInc) (aDec)
tp(x)a(x) a ≈ 1 p ∈ C log p ∈ C log p− > 1 p+ <∞
tp(x) log(e+ t) true p ∈ C log p ∈ C log p− > 1 p+ <∞
tp + a(x)tq a ∈ L∞ a ∈ C

n
p

(q−p) a ∈ Cq−p p > 1 q <∞
tp + a(x)tp log(e+ t) a ∈ L∞ a ∈ C log a ∈ C log p > 1 p <∞

Generalized Orlicz spaces. The generalized Orlicz and Orlicz–Sobolev spaces
have been studied with our assumptions in [9,15,17,20]. We recall some defini-
tions. We denote by L0(Ω) the set of measurable functions in Ω.

Definition 2.3. Let ϕ ∈ Φw(Ω) and define the modular %ϕ(·) for f ∈ L0(Ω) by

%ϕ(·)(f) :=

ˆ
Ω

ϕ(x, |f(x)|) dx.
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The generalized Orlicz space, also called Musielak–Orlicz space, is defined as
the set

Lϕ(·)(Ω) :=
{
f ∈ L0(Ω) : lim

λ→0+
%ϕ(·)(λf) = 0

}
equipped with the (Luxemburg) norm

‖f‖Lϕ(·)(Ω) := inf
{
λ > 0: %ϕ(·)

(f
λ

)
6 1
}
.

If the set is clear from the context we abbreviate ‖f‖Lϕ(·)(Ω) by ‖f‖ϕ(·).

Hölder’s inequality holds in generalized Orlicz spaces with a constant 2,
without restrictions on the Φw-function [10, Lemma 2.6.5]:ˆ

Ω

|f | |g| dx 6 2‖f‖ϕ(·)‖g‖ϕ∗(·).

Definition 2.4. A function u ∈ Lϕ(·)(Ω) belongs to the Orlicz–Sobolev space
W 1,ϕ(·)(Ω) if its weak partial derivatives ∂1u, . . . , ∂nu exist and belong to the
space Lϕ(·)(Ω).

To study boundary value problems, we need a concept of weak boundary
value spaces.

Definition 2.5. W 1,ϕ(·)
0 (Ω) is the closure of C∞0 (Ω) in W 1,ϕ(·)(Ω).

If ϕ ∈ Φw satisfies (A0) and (aInc) and Ω ⊂ Rn is bounded, then Lϕ(·)(Ω) ↪→
Lp(Ω), W 1,ϕ(·)(Ω) ↪→ W 1,p(Ω) and W 1,ϕ(·)

0 (Ω) ↪→ W 1,p
0 (Ω) [17, Lemmas 4.4, 6.2

and 6.9].
We need the following fact regarding Sobolev functions. The assumptions

are needed because smooth functions are not necessary dense in the Orlicz–
Sobolev space and in this case our definition for zero boundary values Orlicz–
Sobolev space is deficient.

Lemma 2.6 (Lemma 3.4, [18]). Let Ω ⊂ Rn. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1)
and (aDec). If v ∈ W 1,ϕ(·)(Ω) and spt v ⊂ Ω, then v ∈ W 1,ϕ(·)

0 (Ω).

Capacity and fine properties of functions. Fine properties of Sobolev func-
tions can be studied by different capacities. Here we use a relative capacity
defined as follows.

Definition 2.7. Let E b Ω. Then the relative Sobolev capacity of E is defined
by

Cϕ(·)(E,Ω) := inf
u∈Sϕ(·)(E,Ω)

ˆ
Ω

ϕ(x, |∇u|) dx,

where the infimum is taken over the set Sϕ(·)(E,Ω) of all functions u ∈ W 1,ϕ(·)
0 (Ω)

with u > 1 in an open set containing E.
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Standard arguments yield the following properties for the capacity (see,
e.g., [10, Chapter 10] and [25]). Properties (C1)–(C5) need only the assumption
ϕ ∈ Φw(Ω), for (C6) and (C7) we need to assume that (aDec) and (aInc) hold
(cf. [16]).
(C1) Cϕ(·)(∅,Ω) = 0.
(C2) If E1 ⊂ E2 b Ω, then Cϕ(·)(E1,Ω) 6 Cϕ(·)(E2,Ω).
(C3) If E b Ω, then

Cϕ(·)(E,Ω) = inf
E⊂U
U open

Cϕ(·)(U,Ω).

(C4) If E1, E2 b Ω, then

Cϕ(·)(E1 ∪ E2,Ω) + Cϕ(·)(E1 ∩ E2,Ω) 6 Cϕ(·)(E1,Ω) + Cϕ(·)(E2,Ω).

(C5) If K1 ⊃ K2 ⊃ · · · are compact sets in Ω, then

lim
i→∞

Cϕ(·)(Ki,Ω) = Cϕ(·)
(
∩∞i=1 Ki,Ω

)
.

(C6) For E1 ⊂ E2 ⊂ . . . compactly contained in Ω,

lim
i→∞

Cϕ(·)(Ei,Ω) = Cϕ(·)
(
∪∞i=1 Ei,Ω

)
.

(C7) For Ei b Ω,

Cϕ(·)
(
∪∞i=1 Ei,Ω

)
6

∞∑
i=1

Cϕ(·)(Ei,Ω).

We next estimate the capacity of a ball. Note that the upper and lower
bounds are comparable under assumption (A1-n).

Lemma 2.8. Let ϕ ∈ Φw(2B) be doubling. If B is a ball with a radius r, then

|B|ϕ−2B
(

1
r

)
. Cϕ(·)(B, 2B) . |B|ϕ+

2B

(
1
r

)
.

Proof. Let u ∈ W 1,ϕ(·)
0 (2B) be such that 0 6 u 6 1, u = 1 in B and |∇u| . 1

r
.

Then by doubling we obtain

Cϕ(·)(B, 2B) 6
ˆ

2B

ϕ(x, |∇u|) dx 6
ˆ

2B

ϕ+
2B( c

r
) dx . |B|ϕ+

2B(1
r
).

For the opposite inequality, we obtain by Lemma 4.3 of [20] and the defini-
tion of 1-capacity that

ˆ
2B

ϕ(x, |∇u|) dx >
ˆ

2B

ϕ−2B(|∇u|) dx = |2B|
 

2B

ϕ−2B(|∇u|) dx

> |2B|ϕ−2B
(

1

2

 
2B

|∇u| dx
)

> |2B|ϕ−2B
(
C1(B, 2B)

2 |2B|

)
.
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Since C1(B, 2B) ≈ rn−1 (e.g., Theorem 4.15, p. 175, [11]), we obtain by doubling
that

ˆ
2B

ϕ(x, |∇u|) dx > |2B|ϕ−2B
(c
r

)
& |B|ϕ−2B

(1

r

)
.

This concludes the proof.

A function f : Ω→ [−∞,∞] is ϕ(·)-quasicontinuous in D b Ω if for every
ε > 0 there is a set E such that Cϕ(·)(E,Ω) < ε and f |D\E is continuous. We
say that a claim holds ϕ(·)-quasieverywhere if it holds everywhere except in a
set of ϕ(·)-capacity zero.

Suppose that u can be approximated by continuous functions in W 1,ϕ(·)(D)
(cf. next lemma). Then a standard argument (e.g. [10, Theorem 11.1.3]) shows
that every u ∈ W 1,ϕ(·)(Ω) has a representative, which is quasicontinuous in
every D b Ω, provided that ϕ ∈ Φ(Ω) satisfies (aInc) and (aDec).

Lemma 2.9. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1) and (aDec). Let D b Ω be
open. Then for every u ∈ W 1,ϕ(·)(Ω), there exists a sequence of function from
C∞(D) ∩W 1,ϕ(·)(D) converging to u in W 1,ϕ(·)(D).

Proof. Since D b Ω is bounded, we may choose a bounded quasiconvex Ω′ such
that D ⊂ Ω′ ⊂ Ω. By Lemma 5.1 and Theorem 6.6 of [17], there exists a
sequence of function from C∞(Ω′) ∩W 1,ϕ(·)(Ω′) converging to u in W 1,ϕ(·)(Ω′).
Restricting the functions to D gives the claim. This concludes the proof.

If u ∈ W
1,ϕ(·)
0 (D) and D ⊂ Ω, then the zero extension of u belongs to

W 1,ϕ(·)(Ω) since u can be approximated by C∞0 (D)-functions. The next lemma
concerns the opposite implication.

Lemma 2.10. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc) and (aDec) and let
D b Ω be open. If u ∈ W 1,ϕ(·)(Ω) and u = 0 in Ω \ D, then u ∈ W 1,ϕ(·)

0 (D).
Moreover, if u is non-negative, then there exist non-negative ui ∈ W

1,ϕ(·)
0 (D)

with sptui b D, {ui 6= 0} ⊂ {u 6= 0} and ui → u in W 1,ϕ(·)(D).

Proof. Let Ω′ be an open set satisfying D ⊂ Ω′ b Ω. Let u∗ be the quasicontin-
uous representative of u in Ω′. Since u = 0 everywhere in Ω′ \D, we obtain that
u∗ is zero quasieverywhere in Ω′ \D. From now on we use this quasicontinuous
representative and denote it by u.

We show that u can be approximated by Sobolev functions with compact
support in D. If we can construct such a sequence for max{u, 0}, then we can
do it for min{u, 0}, as well. Combining these results proves the assertion for
u = max{u, 0} + min{u, 0}. We therefore assume that u is non-negative. A
short calculation show that min{u, k} → u in W 1,ϕ(·)(Ω) as k → ∞ and thus
we may assume that u is bounded.
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Let δ > 0 and let U be an open set such that u restricted to Ω′ \ U is
continuous and Cϕ(·)(U,Ω) < δ. Let E := {x ∈ Ω′ \ D : u(x) 6= 0}. By
assumption Cϕ(·)(E,Ω) = 0. Let ωδ ∈ Sϕ(·)(U ∪E) be such that 0 6 ωδ 6 1 and
%1,ϕ(·)(wδ) < δ. Then ωδ = 1 in an open set V containing U ∪E. For 0 < ε < 1
define uε(x) := max{u(x) − ε, 0}. Since the function u is zero at x ∈ ∂D \ V
and u restricted to Ω \ V is continuous, we find rx > 0 such that uε vanishes in
B(x, rx) \ V . If x ∈ ∂D ∩ V , then we choose rx such that B(x, rx) ⊂ V . Thus
the function (1− ωδ)uε vanishes in B(x, rx) ∪ V for each x ∈ ∂D, which yields
that it vanishes in a neighborhood of Ω′ \D. We have

‖u− (1− ωδ)uε‖1,ϕ(·) 6 ‖u− uε‖1,ϕ(·) + ‖ωδuε‖1,ϕ(·).

Since
‖u− uε‖1,ϕ(·) 6 ε‖χsptu‖ϕ(·) + ‖χ{0<u(x)6ε}∇u‖ϕ(·),

we see that this term goes to zero with ε. Since ϕ satisfies (aDec), we find that

%1,ϕ(·)(ωδu) 6 %ϕ(·)(ωδu) + c%ϕ(·)(|∇ωδ|u) + c%ϕ(·)(ωδ|∇u|)
. (supu+ 1)q%1,ϕ(·)(ωδ) + %ϕ(·)(ωδ|∇u|)
6 δ(supu+ 1)q + %ϕ(·)(ωδ|∇u|)

Since ωδ → 0 in Lϕ(·)(Ω), as δ → 0, we can choose a subsequence ωδ which tends
to 0 point-wise almost everywhere. Then %ϕ(·)(ωδ|∇u|) → 0 by the dominated
convergence theorem with ϕ(x, |∇u|) as a majorant. Therefore %1,ϕ(·)(ωδu)→ 0
and so also ‖ωδu‖1,ϕ(·) → 0 as δ → 0. Thus we see that (1 − ωδ)uε → u as
ε, δ → 0.

We have shown that u can be can approximated by functions in W 1,ϕ(·)(D)

with compact support in D. These functions are in W 1,ϕ(·)
0 (D) by Lemma 2.6,

and so the claim follows from the fact that W 1,ϕ(·)
0 (D) is closed. This concludes

the proof.

Lemma 2.11. Let Ω ⊂ Rn be bounded. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1) and
(aDec). If v ∈ W 1,ϕ(·)(Ω) is non-negative and u ∈ W 1,ϕ(·)

0 (Ω), then min{v, u} ∈
W

1,ϕ(·)
0 (Ω).

Proof. SinceW 1,ϕ(·)
0 (Ω) is a Banach space, by Lemma 2.6 we need only show that

min{v, u} can be approximated by W 1,ϕ(·)(Ω)-functions with compact supports
in Ω.

Let (wi) be a sequence of C∞0 (Ω)-functions converging to u in W 1,ϕ(·)(Ω)
and point-wise. We show that (min{v, wi}) converges to min{v, u} inW 1,ϕ(·)(Ω),
which gives the claim since spt(min{v, wi}) ⊂ spt(wi) ⊂ Ω.
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Let A := {v < u} and Ai := {v < wi}. Since wi → u point-wise, Ai → A.
We obtain for the gradients by the doubling of ϕ that

ˆ
Ω

ϕ (x, |∇min{v, u} − ∇min{v, wi}|) dx

=

ˆ
A∩Ai

ϕ (x, 0) dx+

ˆ
Ω\(A∪Ai)

ϕ (x, |∇u−∇wi|) dx

+

ˆ
A\Ai

ϕ (x, |∇v −∇wi|) dx+

ˆ
Ai\A

ϕ (x, |∇u−∇v|) dx

6
ˆ

Ω

ϕ (x, |∇u−∇wi|) dx+ c

ˆ
A\Ai

ϕ (x, |∇v −∇u|) dx

+ c

ˆ
A\Ai

ϕ (x, |∇u−∇wi|) dx+

ˆ
Ai\A

ϕ (x, |∇u−∇v|) dx→ 0

as i→∞, since |∇wi| → |∇u| in Lϕ(·)(Ω) and Ai → A. The calculation for the
functions is the same. This concludes the proof.

3. Local boundedness

Definition 3.1. Let ϕ ∈ Φw(Ω). A function u ∈ W 1,ϕ(·)
loc (Ω) is a local quasimin-

imizer of the ϕ(·)-energy in Ω if there exists a constant K > 1 such that
ˆ
{v 6=0}

ϕ(x, |∇u|) dx 6 K

ˆ
{v 6=0}

ϕ(x, |∇(u+ v)|) dx

for all v ∈ W 1,ϕ(·)(Ω) with spt v := {v 6= 0} ⊂ Ω.
If the inequality is assumed only for all non-negative or non-positive v, then

u is called a local quasisuperminimizer or local quasisubminimizer, respectively.

In this section we show that quasisubminimizers are locally bounded from
above and quasisuperminimizers are locally bounded from below. Our argu-
ments follow Section 4 of [18]. We use the following setup for the rest of
this section. Suppose that 0 ∈ Ω ⊂ Rn and 0 < R < R0 6 1

2
. We write

QR := Q(0, R) for the cube centered at 0 with side-length 2R,

AR := A(k,R) := QR ∩ {u > k} and u+ := max{u, 0}.

Once we have our results for cubes centered at 0, we can get the general result
by translation. Note that the Φ-function also has to be translated, since our
space is not translation-invariant as such.

The following result was established for quasiminimizers in [18]. In fact,
the proof presented in the reference needs only that u be a quasisubminimizer.
For completeness, the proof is included here.
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Lemma 3.2 (Caccioppoli inequality). Let ϕ ∈ Φw(Ω) be doubling. Let u be a
local quasisubminimizer in Ω. Then for all k ∈ R we haveˆ

A(k,r)

ϕ(x, |∇(u− k)+|) dx 6 C

ˆ
A(k,R)

ϕ

(
x,
u− k
R− r

)
dx, (2)

where C > 0 depends only on the doubling constant of ϕ and the quasiminimizing
constant of u.

Proof. Let r 6 t < s 6 R and k ∈ R. Let η ∈ C∞0 (Qs) be such that 0 6 η 6 1,
η = 1 in Qt, and |∇η| 6 2

s−t . Denote w := (u − k)+ and v := u − ηw. Note
that v 6 u, and v = u in Qs \ As. Since u is a local quasisubminimizer with
constant K and −ηw 6 0,ˆ

As

ϕ(x, |∇u|) dx 6 K

ˆ
As

ϕ(x, |∇v|) dx.

In As, w = u−k so that v = u(1−η)+ηk, and hence∇v = (1−η)∇u−(u−k)∇η.
From this follows that in As we have

|∇v| 6 (1− η)|∇u|+ |∇η|(u− k)+ 6 2 max
{

(1− η)|∇u|, |∇η|(u− k)+

}
.

By doubling (with constant L) and |∇η| 6 2
s−t , we get that

ϕ(x, |∇v|) 6 ϕ(x, 2(1− η)|∇u|) + ϕ(x, 4 (u−k)+
s−t )

6 Lϕ(x, (1− η)|∇u|) + L2ϕ(x, (u−k)+
s−t ).

Combining the above inequalities, we find thatˆ
As

ϕ(x, |∇u|) dx 6 LK

ˆ
As

ϕ(x, (1− η)|∇u|) dx+ L2K

ˆ
As

ϕ(x, (u−k)+
s−t ) dx.

Since t < s < R, it follows that At ⊂ As ⊂ AR, and so we obtainˆ
At

ϕ(x, |∇u|) dx 6 LK

ˆ
As

ϕ(x, (1−η)|∇u|) dx+L2K

ˆ
AR

ϕ(x, (u−k)+
s−t ) dx. (3)

On the right-hand side, we have ϕ(x, (1− η)|∇u|) = ϕ(x, 0) = 0 in Qt, and soˆ
As

ϕ(x, (1− η)|∇u|) dx =

ˆ
As\At

ϕ(x, (1− η)|∇u|) dx 6
ˆ
As\At

ϕ(x, |∇u|) dx.

Now we can use the hole-filling trick by adding LK
´
At
ϕ(x, |∇u|) dx to both

sides of (3), ending with LK + 1 of the integral on the left-hand side, and LK
on the right. After we divide with LK + 1, we haveˆ

At

ϕ(x, |∇u|) dx 6
LK

LK + 1

ˆ
As

ϕ(x, |∇u|) dx+
L2K

LK + 1

ˆ
AR

ϕ(x, (u−k)+
s−t ) dx.

The multiplier LK
LK+1

< 1, so the claim follows from telescoping lemma (cf.
Lemma 4.2, [18]) as usual. This concludes the proof.
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Proposition 3.3 (Lemma 4.11, [18]). Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc)
and (aDec). Suppose that u ∈ W 1,ϕ(·)

loc (Ω) satisfies the Caccioppoli inequality (2).
Then there exists R0 ∈ (0, 1) such that

ess sup
QR/2

u 6 k0 + 1 + cR−
q
αp

(ˆ
QR

ϕ(x, (u− k0)+) dx

) 1
p

for every k0 ∈ R when R ∈ (0, R0]. Here R0 is such that R0 6 c(n) and
%Lϕ(·)(Q3R0

)(∇u) 6 1, and the constant c depends only on the parameters in
assumptions and the dimension n.

Lemma 3.2 and Proposition 3.3 yield that quasisubminimizers are locally
bounded above. If u is quasisuperminimizer then −u is a quasisubminimizer.
We obtain the following corollary.

Corollary 3.4. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc) and (aDec). Then
1. quasisubminimizers are locally bounded from above, and
2. quasisuperminimizers are locally bounded from below.

The dependence on R in Proposition 3.3 is not good. It is possible to rec-
tify this situation and fix the homogeneity of the right hand side by a scaling
argument, cf. Theorem 5.7 in [18]. With exactly the same arguments, we obtain
the following results, previously proved for quasiminimizers, also for quasisub-
minimizers.

Theorem 3.5. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1-n) and (aDec). Suppose that
u ∈ W 1,ϕ(·)

loc (Ω) is a local quasisubminimizer which is locally bounded from above.
Then

ess sup
QR/2

u− k .

(  
QR

(u− k)q+ dx

) 1
q

+R

when R ∈ (0, R0] and k ∈ R. The implicit constant depends only on the param-
eters in assumptions, n, R0 and ess supQr u.

By standard arguments, the previous inequality can be “upgraded” to in-
clude any exponent on the right-hand side (cf. [18, Corollary 5.9]).

Corollary 3.6. Let ϕ ∈ Φw(Ω), u ∈ W
1,ϕ(·)
loc (Ω) and R0 > 0 be as in Theo-

rem 3.5. Then

ess sup
QR/2

u− k .

(  
QR

(u− k)q+ dx

) 1
q

+R,

for every R ∈ (0, R0], k ∈ R and q ∈ (0,∞). The implicit constant is indepen-
dent of R and depends on q and on the parameters listed in Theorem 3.5.

Note that these results do not require the assumptions (A1) and (aInc), but
instead rely on u being locally bounded. The latter can be concluded from the
former by Corollary 3.4.
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4. Lower semincontinuity of quasisuperminimizers

We denote
D(k, r) := {x ∈ Q(x0, r) : u(x) < k},

and start with some auxiliary estimates which were done in [18] for quasimin-
imizers. Again, the same proofs work, so we give only the first step, and refer
the reader to the reference for the others.

Lemma 4.1. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1-n) and (aDec). Let u ∈
W

1,ϕ(·)
loc (Ω) be a non-negative local quasisuperminimizer. Then there exist con-

stants γ0 ∈ (0, 1) and c > 1, depending only on the parameters in the assump-
tions, n and R0, such that if

|D(θ, R)| 6 γ0|QR|

for some θ > 0, then

ess inf
QR/2

u+ cR >
θ

2
.

Proof. We observe that −u is a quasisubminimizer bounded from above by 0.
Corollary 3.6 applied to −u, with k = −θ and q = 1, implies that

ess sup
QR/2

(−u) + θ 6 C

 
QR

(θ − u)+ dx+ CR.

Let γ0 := (2C)−1. Then

ess inf
QR/2

u+ CR > θ − C

|QR|

ˆ
D(θ,R)

(θ − u)+ dx

> θ − Cθ |D(θ, R)|
|QR|

> θ − Cθγ0 =
θ

2
.

This concludes the proof.

The following lemma is an improvement of the preceding one and the proof
is the same as that of Lemma 6.2 in [18].

Lemma 4.2. Let ϕ, u and R0 be as in the previous lemma. Then for every
κ ∈ (0, 1) there exists µ > 0 such that

|Dθ| 6 κ |QR| ⇒ ess inf
QR/2

u+ cR > µθ

for all R ∈ (0, R0] and all θ > 0.
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Once we have the implication from Lemma 4.2, standard arguments yields
the the following theorem, see for example Lemma 6.3 of [18] or Theorem 5.7
of [19] or pp. 239–240 in [13].

Theorem 4.3 (The weak Harnack inequality). Let ϕ ∈ Φw(Ω) satisfy (A0),
(A1-n), (aInc) and (aDec). Let u ∈ W

1,ϕ(·)
loc (Ω) be a nonnegative quasisuper-

minimizer in Ω. Then there exists an exponent h > 0 such that( 
Q(x0,R)

uh dx

)1/h

. ess inf
Q(x0,R/2)

u+R

for every R 6 c(n) with Q(x0, 3R) b Ω and
´
Q(x0,3R)

ϕ(x, |∇u|) dx 6 1. The
implicit constant depends only on the parameters in the assumptions and n.

As an application of the weak Harnack inequality, we get the following result
on lower semicontinuous representatives.

Theorem 4.4. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1-n), (aInc) and (aDec). Let u
be a local quasisuperminimizer which is bounded from below and set

u∗(x) := ess lim inf
y→x

u(y).

Then u∗ is lower semicontinuous and u = u∗ almost everywhere.
If u is additionally locally bounded, then every point is a Lebesgue point of

u∗.

Proof. Standard arguments show that for any u, the function u∗ is lower semi-
continuous, see for example p. 207 in [4].

Since u ∈ W
1,ϕ(·)
loc (Ω) ⊂ L1

loc(Ω) we obtain by the Lebesgue differentiation
theorem that the set

E :=

{
x0 ∈ Ω : |u(x0)| <∞ and lim

r→0

 
Q(x0,r)

|u(y)− u(x0)| dy = 0

}
differs from Ω only by a set of Lebesgue measure zero. Since x0 ∈ E is a
Lebesgue point, we obtain that

u∗(x0) = ess lim inf
y→x0

u(y) 6 lim
r→0

 
Q(x0,r)

|u(y)| dy = u(x0).

We complete the proof of u = u∗ a.e. by showing that u(x0) 6 u∗(x0) for all
x0 ∈ E.

Note that −u is a quasisubminimizer bounded from above. Thus Corol-
lary 3.6 with k = −u(x0) yields

ess sup
Q(x0,r/2)

(u(x0)− u) .
 
Q(x0,r)

(u(x0)− u)+ dx+ r 6
 
Q(x0,r)

|u(x0)− u| dx+ r,
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provided r is small enough. Therefore,

u(x0)− ess inf
Q(x0,r/2)

u = ess sup
Q(x0,r/2)

(u(x0)− u) .
 
Q(x0,r)

|u(x0)− u| dx+ r.

Since x0 is a Lebesgue point, the right hand side tends to zero as r → 0+. As
above, we see that limr→0+ ess infQ(x0,r/2) u 6 u∗(x0). Together, these gieve that
u(x0) 6 u∗(x0) and so u = u∗ a.e.

For the Lebesgue point property let x0 ∈ Ω. Since u∗ ∈ W 1,ϕ(·)
loc (Ω) we may

choose R1 so small that ˆ
Q(x0,3R1)

ϕ(x, |∇u∗|) dx 6 1.

Since u∗ is lower semicontinuous and locally bounded, for every ε > 0 there
exist R2 and m > ε such that u∗(x0) − ε < u∗ < m in B(x0, R2). Let R3

be so small that m |B(x0, R3)| 6 1. Denote v := u∗ − u∗(x0) + ε. Then v is
a quasisuperminimizer, ∇v = ∇u∗ and 0 < v < 2m. By Hölder’s inequality
we may assume that the exponent h in the weak Harnack inequality is less
than one. Thus the weak Harnack inequality (Theorem 4.3) yields for R <
min{R1, R2, R3} that

 
Q(x0,R)

|u∗(x)− u∗(x0)| dx

=

 
Q(x0,R)

|v(x)− v(x0)| dx 6 v(x0) +

 
Q(x0,R)

|v| dx

= ε+

 
Q(x0,R)

|v|1−h|v|h dx 6 ε+ (2m)1−h
 
Q(x0,R)

|v|h dx

6 ε+ Cm1−h ess inf
Q(x0,R/2)

vh + Cm1−hR

6 ε+ Cm1−hεh + Cm1−hR.

Letting R→ 0+ and ε→ 0+, we obtain that x0 is a Lebesgue point of u∗. This
concludes the proof.

The following lemma extends the class of permissible test functions.

Lemma 4.5. Let ϕ ∈ Φw(Ω) satisfy (aDec) and let u be a local quasisupermin-
imizer. Thenˆ

{v 6=0}
ϕ(x, |∇u|) dx 6 2qLK

ˆ
{v 6=0}

ϕ(x, |∇(u+ v)|) dx

for all v ∈ W 1,ϕ(·)(Ω) which can be approximated by a sequence of non-negative
vi ∈ W 1,ϕ(·)(Ω) with spt vi b Ω, {vi 6= 0} ⊂ {v 6= 0} and vi → v in W 1,ϕ(·)(Ω)
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Proof. We may assume the the right-hand side is finite since otherwise there is
nothing to prove. Let v and vi be as in the statement of the result. We use vi
as a test function:

ˆ
{vi 6=0}

ϕ(x, |∇u|) dx 6 K

ˆ
{vi 6=0}

ϕ(x, |∇(u+ vi)|) dx.

On the other hand, we have the trivial inequality
ˆ
{v 6=0}\{vi 6=0}

ϕ(x, |∇u|) dx 6 K

ˆ
{v 6=0}\{vi 6=0}

ϕ(x, |∇(u+ vi)|) dx.

since ∇vi = 0 almost everywhere in {v 6= 0} \ {vi 6= 0} ⊂ {vi = 0}. Since
{vi 6= 0} ⊂ {v 6= 0}, we obtain

ˆ
{v 6=0}

ϕ(x, |∇u|) dx 6
ˆ
{vi 6=0}

ϕ(x, |∇u|) dx+

ˆ
{v 6=0}\{vi 6=0}

ϕ(x, |∇u|) dx

6 K

ˆ
{v 6=0}

ϕ(x, |∇(u+ vi)|) dx

6 2qLK

ˆ
{v 6=0}

ϕ(x, |∇(u+ v)|) + ϕ(x, |∇(vi − v)|) dx

by adding the two previous inequalities and by using (aDec). The claim follows
from this as i→∞ since the second term goes to zero due to ‖vi − v‖ϕ(·) → 0.
This concludes the proof.

Even if one is interested in minimizers, sub- and superminimizers are often
useful tools owing to their greater flexibility. One example of this is the follow-
ing pasting result, which allows us to splice together two superminimizers. In
the special case D = Ω, the lemma yields that minimum of two quasisupermin-
imizers is a quasisuperminimizer. Naturally this yields the corresponding result
for the maximum of two quasisubminimizers. The proof of the next lemma is
based on Lemma 7.13 of [4].

Lemma 4.6 (Pasting lemma for quasisuperminimizers). Let ϕ ∈ Φw(Ω) satisfy
(A0), (A1), (aInc) and (aDec). Assume that D ⊂ Ω and that u1 and u2 are
K-quasisuperminimizers in D and Ω, respectively. Let

u :=

{
u2 in Ω \D
min{u1, u2} in D.

If u ∈ W 1,ϕ(·)
loc (Ω), then u is a 2qLK2-quasisuperminimizer.
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Proof. Let ξ ∈ W 1,ϕ(·)(Ω) be non-negative test function with spt ξ ⊂ Ω. Let
G := {ξ > 0} and v := u+ ξ. The claim is then that

ˆ
G

ϕ(x, |∇u|) dx 6 K2

ˆ
G

ϕ(x, |∇v|) dx.

Let Ω′ b Ω be an open set containing G. Let A := {u2 < v} and note that
(v− u2)+ = 0 in Ω \A. Since u2 is a quasisuperminimizer in Ω and A ⊂ G b Ω
we obtain thatˆ

A

ϕ(x, |∇u2|) dx 6 K

ˆ
A

ϕ(x, |∇(u2 + (v − u2)+|) dx = K

ˆ
A

ϕ(x, |∇v|) dx.

Let w := min{u2, v} and E := {w > u}. We observe that w > u can only
happen when u < u2 and ξ > 0, so we derive E = {x ∈ G∩D : u1(x) < u2(x)}.
Thus w > u = u1 in E and (w − u)+ = 0 in Ω \ E. Lemma 2.10 yields that
there exist non-negative ui ∈ W 1,ϕ(·)(D ∩ Ω′) with sptui b D ∩ Ω′, {ui 6= 0} ⊂
{(w − u)+ 6= 0} and ui → (w − u)+ in W 1,ϕ(·)(D ∩ Ω′), by assumptions (A0),
(A1), (aInc) and (aDec). Since u1 is a quasisuperminimizer in D we obtain by
Lemma 4.5 thatˆ

E

ϕ(x, |∇u1|) dx 6 2qLK

ˆ
E

ϕ(x, |∇(u1 + (w − u)+)|) dx

= 2qLK

ˆ
E

ϕ(x, |∇w|) dx

= 2qLK

ˆ
E\A

ϕ(x, |∇v|) dx+ 2qLK

ˆ
E∩A

ϕ(x, |∇u2|) dx.

If x ∈ G \ A, then u2(x) > v(x) > u(x) so we must have x ∈ D and
u1(x) < u2(x). This means that x ∈ E. Since A ⊂ G, we obtain G = E ∪ A.
We complete the proof by using the estimates above in a suitable order:

ˆ
G

ϕ(x, |∇u|) dx =

ˆ
A\E

ϕ(x, |∇u2|) dx+

ˆ
E

ϕ(x, |∇u1|) dx

6
ˆ
A\E

ϕ(x, |∇u2|) dx+K

ˆ
E∩A

ϕ(x, |∇u2|) dx+K

ˆ
E\A

ϕ(x, |∇v|) dx

6 K

ˆ
A

ϕ(x, |∇u2|) dx+K

ˆ
E\A

ϕ(x, |∇v|) dx

6 2qLK2

ˆ
A

ϕ(x, |∇v|) dx+K2

ˆ
E\A

ϕ(x, |∇v|) dx

= 2qLK2

ˆ
G

ϕ(x, |∇v|) dx.

This concludes the proof.
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5. Capacity density condition for superminimizers

In this section we continue our study of regularity properties of superminimizers.
Note that we have to make two restrictions at this point compared to earlier
sections: instead of quasisuperminimizers we consider superminimizers, and in
place of Φw(Ω) we have Φ(Ω).

Lemma 5.1. Let ϕ ∈ Φ(Ω) satisfy (aInc) and (aDec), and let α ∈ (0, p− 1]. If
u is a non-negative superminimizer, thenˆ

B

u−α−1ϕ(x, |∇u|) dx .
ˆ

2B

u−α−1ϕ
(
x, u

diamB

)
dx.

Proof. Let η ∈ C∞0 (2B) be a cut-off function: 0 6 η 6 1, η = 1 in B and
|∇η| . diam(B)−1. Let uk := ku+ 1 and vk := 1

kα
ηqu−αk , α > 0. Then

∇vk = qηq−1u
−α
k

kα
∇η − ηqu−α−1

k ∇u

and so
|∇(u+ vk)| 6 ηqu−α−1

k

quk|∇η|
kαη

+ (1− ηqu−α−1
k )|∇u|.

Testing with vk and using convexity and ηqu−α−1
k ∈ [0, 1], we find that

ˆ
2B

ϕ(x,∇u) dx 6
ˆ

2B

ηqu−α−1
k ϕ

(
x,
quk|∇η|
kαη

)
+ (1− ηqu−α−1

k )ϕ(x, |∇u|) dx.

We then move the last term on the right to the left:
ˆ

2B

ηqu−α−1
k ϕ(x, |∇u|) dx .

ˆ
2B

ηqu−α−1
k ϕ

(
x,

(u+ 1
k
)|∇η|
η

)
dx.

Next we multiply the equation by kα+1 and observe that η−qϕ(x, cη) is almost
decreasing in η. Since χB 6 η 6 χ2B, we obtain thatˆ

B

(u+ 1
k
)−α−1ϕ(x, |∇u|) dx .

ˆ
2B

(u+ 1
k
)−α−1ϕ

(
x, (u+ 1

k
)|∇η|

)
dx.

The left-hand side is increasing in k, and since 1 + α 6 p, the right-hand side
is almost decreasing in k. Furthermore,

(u+ 1
k
)−α−1ϕ

(
x, (u+ 1

k
)|∇η|

)
. (u+ 1)−α−1ϕ

(
x, (u+ 1)|∇η|

)
. ϕ(x, u+1

r
) ∈ L1,

since ϕ is doubling and |∇η| 6 c/r. Thus by monotone convergence (LHS) and
dominated convergence (RHS) we obtain, as k →∞, thatˆ
B

u−α−1ϕ(x, |∇u|) dx .
ˆ

2B

u−α−1ϕ
(
x, u|∇η|

)
dx .

ˆ
2B

u−α−1ϕ
(
x, u

diamB

)
dx.

This concludes the proof.



18 Petteri Harjulehto and Peter Hästö

Now we can show the fine continuity of the lower semicontinuous represen-
tative of a superminimizer.

Theorem 5.2. Let ϕ ∈ Φ(Rn) satisfy (A0), (A1), (A1-n), (aInc) and (aDec).
If u is a non-negative superminimizer, then for every ε > 0 and every x0 ∈ Ω

Cϕ(·)
(
B(x0, r) ∩ {|u∗ − u∗(x0)| > ε}, B(x0, 2r)

)
Cϕ(·)

(
B(x0, r), B(x0, 2r)

) → 0

as r → 0+. Here u∗ is the lower semicontinuous representative of u defined in
Theorem 4.4.

Proof. We may assume that ε ∈ (0, 1]. For simplicity we denote u∗ by u.
By Theorem 4.4, we know that u(x0) = lim infx→x0 u(x). Thus there exists
r0 > 0 such that B(x0, r0) ∩ {x ∈ Ω : u(x) < u(x0) − ε} = ∅. So let us study
E := {x ∈ Ω : u(x) > l} with l := u(x0) + ε. We assume that r ∈ (0, 1

4
r0) and

ε ∈ (0, 1
4
) and denote B := B(x0, r).

Let η ∈ C∞0 (2B) be such that 0 6 η 6 1, η = 1 in B and |∇η| . r−1.
Let m(r) := infB(x0,r)∩Ω min{u, l} and v := min{u, l} −m(4r). Then E ∩ B ⊂
{2
ε
vη > 1} and by Lemma 4.6 v is a non-negative superminimizer.
Since u is lower semicontinuous and η is continuous, the set {2

ε
vη > 1} is

open. Thus 2vη is suitable test function for the capacity and we obtain

Cϕ(·)(B ∩E, 2B) 6
ˆ

2B

ϕ(x, |∇(2
ε
vη)|) dx 6

ˆ
2B

ϕ(x, 4
ε
η|∇v|) + ϕ(x, 4

ε
v|∇η|) dx

since |∇(cvη)| 6 2 max{cη|∇v|, cv|∇η|}. Using η 6 1, doubling and v 6 2 we
find that

ϕ(x, 4
ε
η|∇v|) 6 ϕ(x, 4

ε
|∇v|) . ϕ(x, |∇v|) . v−α−1ϕ(x, |∇v|),

where the implicit constant depends on ε. Then it follows from Lemma 5.1 that
ˆ

2B

ϕ(x, 4
ε
η|∇v|) dx .

ˆ
2B

v−α−1ϕ(x, |∇v|) dx .
ˆ

4B

v−α−1ϕ(x, v
r
) dx.

By doubling, the definition of η and v 6 2, we have ϕ(x, 4
ε
v|∇η|) . ϕ(x, v

r
) 6

v−α−1ϕ(x, v
r
), where the implicit constant depends on ε.

Since v 6 2, it follows from (aInc) that ϕ(x, v
r
) . vpϕ+

4B(1
r
). These estimates

imply that

Cϕ(·)(B ∩ E, 2B) .
ˆ

4B

v−α−1ϕ(x, v
r
) dx . ϕ+

4B(1
r
)

ˆ
4B

vp−α−1 dx.
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We choose α ∈ (0, p− 1) so large that the exponent of v is less than or equal to
the exponent h in the weak Harnack inequality, Theorem 4.3. Then

Cϕ(·)(B ∩ E, 2B) 6 ϕ+
4B(1

r
)rn inf

2B
(v + r)p−α−1

= ϕ+
4B(1

r
)rn(m(2r)−m(4r) + r)p−α−1.

By Lemma 2.8, Cϕ(·)(B, 2B) & ϕ−2B(1
r
)rn and by (A1-n), ϕ+

4B(1
r
) . ϕ−2B(1

r
).

Since m(r) is bounded and decreasing, it has a limit at 0. Thus m(2r) −
m(4r) + r → 0 as r → 0, and so the result follows. This concludes the proof.

Remark 5.3. In the previous theorem, if u is a-Hölder continuous, thenm(2r)−
m(4r) + r . ra and we get a quantitative bound for the decay with a constant
depending on ε.

6. Regular boundary points

Definition 6.1. Let Ω ⊂ Rn be bounded and f ∈ W 1,ϕ(·)(Ω). We say that
u ∈ W 1,ϕ(·)(Ω) is a minimizer with boundary values f ∈ W 1,ϕ(·)(Ω) if u − f ∈
W

1,ϕ(·)
0 (Ω) and

ˆ
Ω

ϕ(x, |∇u|) dx 6
ˆ

Ω

ϕ(x, |∇(u+ v)|) dx

for all v ∈ W 1,ϕ(·)
0 (Ω).

We denote by H(f) the minimizer with boundary values f ∈ W 1,ϕ(·)(Ω). If
f : ∂Ω → R is Lipschitz on the boundary of Ω, then it can be, by McShane
extension, extend to Rn as a bounded Lipschitz function. The extension of f
can be used in the above definition as weak boundary value, u−f ∈ W 1,ϕ(·)

0 (Ω).
For g ∈ C(∂Ω) we define

Hg(x) := sup
f6g,f is Lipschitz

H(f)(x).

This definition is based on the fact continuous function can be approximated
by Lipschitz functions.

We have previously shown existence of minimizers with given Dirichlet
boundary values f ∈ W 1,ϕ(·)(Ω) in Theorem 7.3 of [17]. However, if f ∈ C(∂Ω),
the same conclusion can be reached under fewer assumptions on ϕ.

Theorem 6.2. Let Ω ⊂ Rn be bounded. Let ϕ ∈ Φ(Ω) satisfy (aInc) and
(aDec). Then for every f ∈ W 1,ϕ(·)(Ω)∩L∞(Ω), there exists a minimizer H(f).

If ϕ is strictly convex and satisfies (A0), the minimizer is unique, and if
(A1-n) holds, then it is continuous.
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Proof. Let M > 0 be such that |f | 6 M a.e. If uM is a cut-off of u at levels
−M and M , then

ˆ
Ω

ϕ(x, |∇uM |) dx 6
ˆ

Ω

ϕ(x, |∇u|) dx.

Thus we conclude that the possible minimizer satisfies |u| 6M .
Let ui ∈ W 1,ϕ(·)(Ω) be a sequence of functions with ui− f ∈ W 1,ϕ(·)

0 (Ω) and

inf
u

ˆ
Ω

ϕ(x, |∇u|) dx = lim
i→∞

ˆ
Ω

ϕ(x, |∇ui|) dx.

We assume without loss of generality that |ui| 6 M . Then %1,ϕ(·)(ui) is uni-
formly bounded, and so (ui) is a bounded sequence in W 1,ϕ(·)(Ω) [10, Corol-
lary 2.1.15]. By [16], W 1,ϕ(·)(Ω) is a reflexive Banach space, and so (ui) has
a weakly convergent subsequence. Since %ϕ(·) is weakly lower semicontinuous
[10, Theorem 2.2.8], the weak limit u satisfies

ˆ
Ω

ϕ(x, |∇u|) dx 6 lim
i→∞

ˆ
Ω

ϕ(x, |∇ui|) dx = inf
u

ˆ
Ω

ϕ(x, |∇u|) dx

and hence u is the minimizer.
When ϕ ∈ Φ is strictly convex and satisfies (A0), the possible minimizer is

unique by Theorem 7.5 of [17]. If ϕ ∈ Φ(Ω) satisfies (A0), (A1-n), (aInc) and
(aDec), a locally bounded minimizer is locally Hölder continuous by [18, Corol-
lary 1.5] (note that assumption (A1) is then not needed, cf. [18, Theorem 5.7].)
This concludes the proof.

Definition 6.3. Let Ω ⊂ Rn. We say that x ∈ ∂Ω is regular if

lim
y→x,y∈Ω

Hf (y) = f(x)

for all f ∈ C(∂Ω). A boundary point is irregular if it is not regular.

This means that the minimizer attains the boundary values not only in a
Sobolev sense but point-wise. The next lemma gives a comparison principle for
minimizers.

Lemma 6.4. Let Ω ⊂ Rn be bounded. Let ϕ ∈ Φ(Ω) be strictly convex and
satisfy (A0), (A1), (A1-n), (aInc) and (aDec). Let f, g ∈ W 1,ϕ(·)(Ω) ∩ L∞(Ω).
If f 6 g almost everywhere in Ω, then H(f) 6 H(g) everywhere in Ω.

Proof. It follows from Theorem 6.2 that H(f) and H(g) exist and are unique
and continuous.
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Let u := min{H(f), H(g)} and h := H(f) − f − (H(g) − g) ∈ W 1,ϕ(·)
0 (Ω).

Then

f +H(g)− g + min{g − f, h} = min{H(g), h+ f +H(g)− g} = u

so that u − f = H(g) − g + min{g − f, h}. Then u − f ∈ W
1,ϕ(·)
0 (Ω), since

H(g)− g ∈ W 1,ϕ(·)
0 (Ω) and by Lemma 2.11 min{g − f, h} ∈ W 1,ϕ(·)

0 (Ω).
Similarly we obtain for v := max{H(f), H(g)} that v− g ∈ W 1,ϕ(·)

0 (Ω). Let
A := {H(f) > H(g)}. Since H(g) is a minimizer

ˆ
Ω

ϕ(x, |∇H(g)|) dx 6
ˆ

Ω

ϕ(x, |∇v|) dx

=

ˆ
A

ϕ(x, |∇H(f)|) dx+

ˆ
Ω\A

ϕ(x, |∇H(g)|) dx,

and so ˆ
A

ϕ(x, |∇H(g)|) dx 6
ˆ
A

ϕ(x, |∇H(f)|) dx.

Thus we obtain that
ˆ

Ω

ϕ(x, |∇u|) dx =

ˆ
A

ϕ(x, |∇H(g)|) dx+

ˆ
Ω\A

ϕ(x, |∇H(f)|) dx

6
ˆ

Ω

ϕ(x, |∇H(f)|) dx

and hence u is a minimizer with Sobolev boundary values f . Since by Theo-
rem 6.2 the minimizer is unique, we obtain that H(f) = u = min{H(f), H(g)}
almost everywhere. This yields that H(f) 6 H(g) almost everywhere, and since
both are continuous this holds everywhere. This concludes the proof.

The previous lemma yields the following fact: If f, g ∈ C(∂Ω) and f 6 g,
then Hf 6 Hg. The proof follows the proof of Lemma 7.6 in [4]. The next proof
follows the outlines given in Lemma 2.132, p. 141, of [23]

Proposition 6.5. Let Ω ⊂ Rn be bounded. Let ϕ ∈ Φ(Ω) be strictly convex and
satisfy (A0), (A1), (A1-n), (aInc) and (aDec). If limy→x,y∈Ω H(f)(y) = f(x)
holds for every f ∈ C∞0 (Rn), then x is regular.

Proof. Let g ∈ C(∂Ω). We extend g, via Tietze’s theorem or Urysohn’s lemma,
to a function in C0(Rn). This extension is denoted again by g. For ε > 0, let
f ∈ C∞0 (Rn) be such that |f − g| < ε in Rn, see for example Theorem 4.1 in
[11]. By Lemma 6.4,

H(f)− ε = H(f − ε) 6 Hg 6 H(f + ε) = H(f) + ε.
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Then, for z ∈ ∂Ω,

g(z)− 2ε 6 f(z)− ε 6 lim inf
x→z,x∈Ω

Hg(x) 6 lim sup
x→z,x∈Ω

Hg(x) 6 f(z) + ε 6 g(z) + 2ε

and the claim follows as ε→ 0+. This concludes the proof.

Proof of Theorem 1.1. By Proposition 6.5, we may assume that f ∈ C∞0 (Rn) in
the definition of regular boundary points. LetH(f) be the continuous minimizer
with boundary values f given by Theorem 6.2. Choose k < f(x0). Then there
exists r > 0 such that f > k in B(x0, r) \ Ω. Let

u :=

{
min{H(f), k} in B(x0, r) ∩ Ω

k in B(x0, r) \ Ω.

Next we show that u is a Sobolev function. Since H(f) − f ∈ W 1,ϕ(·)
0 (Ω), the

function

g :=

{
H(f)− f in Ω

0 in Rn \ Ω

belongs to W 1,ϕ(·)(Rn). Hence also g+ f ∈ W 1,ϕ(·)(Rn) so that min{k, g+ f} ∈
W 1,ϕ(·)(Rn). This shows that u ∈ W 1,ϕ(·)(B(x0, r)), since u = min{k, g + f} in
B(x0, r).

Since u is a Sobolev function, the pasting lemma 4.6 yields that u is a su-
perminimizer in B(x0, r). By Theorem 4.4, u has a representative u∗ which is
lower semicontinuous. Suppose that u∗(x0) 6= k. Choose ε := 1

2
|k − u∗(x0)| in

Theorem 5.2 and note that B(x0, r) \ Ω ⊂ {|u∗ − u∗(x0)| > ε} since u∗ = k
in B(x0, r) \ Ω. By assumption, the boundary is such that Cϕ(B(x0, r) \
Ω, B(x0, 2r)) > cCϕ(B(x0, r), B(x0, 2r)) for all sufficiently small r. This contra-
dicts the conclusion of Theorem 5.2. Hence u∗(x0) = k.

Since u∗ is lower semicontinuous we obtain that

lim inf
x→x0,x∈Ω

H(f)(x) > lim inf
x→x0,x∈Ω

u∗(x) > u∗(x0) = k.

Since this holds for all k < f(x0), we obtain that lim infx→x0,x∈ΩH(f)(x) >
f(x0).

The previous result for −f yields that lim infx→x0,x∈Ω H(−f)(x) > −f(x0).
Since H(−f) = −H(f) we obtain that lim supx→x0,x∈Ω H(f)(x) 6 f(x0), so x0

is regular. This concludes the proof.
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