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DIMENSION, COMPARISON, AND ALMOST FINITENESS
DAVID KERR

ABSTRACT. We develop a dynamical version of some of the theory surrounding the
Toms—Winter conjecture for simple separable nuclear C*-algebras and study its con-
nections to the C*-algebra side via the crossed product. We introduce an analogue
of hyperfiniteness for free actions of amenable groups on compact spaces and show
that it plays the role of Z-stability in the Toms-Winter conjecture in its relation to
dynamical comparison, and also that it implies Z-stability of the crossed product.
This property, which we call almost finiteness, generalizes Matui’s notion of the same
name from the zero-dimensional setting. We also introduce a notion of tower dimen-
sion as a partial analogue of nuclear dimension and study its relation to dynamical
comparison and almost finiteness, as well as to the dynamical asymptotic dimension
and amenability dimension of Guentner, Willett, and Yu.

1. INTRODUCTION

Two of the cornerstones of the theory of von Neumann algebras with separable
predual are the following theorems due to Murray—von Neumann [31] and Connes [5],
respectively:

(i) there is a unique hyperfinite II; factor,

(ii) injectivity is equivalent to hyperfiniteness.
Injectivity is a form of amenability that gives operator-algebraic expression to the
idea of having an invariant mean, while hyperfiniteness means that the algebra can be
expressed as the weak operator closure of an increasing sequence of finite-dimensional
*-subalgebras (or, equivalently, that one has local *-ultrastrong approximation by such
*-subalgebras [12]). The basic prototype for the relation between an invariant-mean-
type property and finite or finite-dimensional approximation is the equivalence between
amenability and the Fglner property for discrete groups, and indeed Connes’s proof of
(i) draws part of its inspiration from the Day—Namioka proof of this equivalence.

In the theory of measured equivalence relations on standard probability spaces one
has the following analogous pair of results, the first of which is a theorem of Dye [§] and
the second of which is the Connes-Feldmann—Weiss theorem [6] (here p.m.p. stands
for probability-measure-preserving):

(iii) there is a unique hyperfinite ergodic p.m.p. equivalence relation,
(iv) amenability is equivalent to hyperfiniteness.
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Again amenability is defined as the existence of a suitable type of invariant mean,
while hyperfiniteness means that the relation is equal a.e. to an increasing union of
subrelations with finite classes. Thus among both II; factors and p.m.p. equivalence
relations there is a unique amenable object and it can be characterized via a finite or
finite-dimensional approximation property. The two settings are furthermore linked in
a direct technical way by the equivalence of the following three conditions for a free
p-m.p. action of a countably infinite group:

(v) the orbit equivalence relation of the action is hyperfinite,
(vi) the crossed product is isomorphic to the unique hyperfinite II; factor,
(vii) the group is amenable.

The implication (vii)=(v) was established by Ornstein and Weiss as a consequence of
their Rokhlin-type tower theorem [33], 34] and can also be deduced from the Connes—
Feldman—Weiss theorem. The implication (vii)=-(vi) was established by Connes as an
application of his result that injectivity implies hyperfiniteness and can also be derived
in a more elementary way using the Ornstein—Weiss tower theorem (it is interesting to
note however that one needs the full force of Connes’s theorem in order to show that
the group von Neumann algebra of an amenable group is hyperfinite).

In the type III case there is a similarly definitive theory, with the isomorphism
classes being much more abundant but still classifiable in a nice way. For the present
discussion however we will leave this aside, since our focus will be on amenable type 11
phenomena in the topological-dynamical and C*-algebraic realms, where the unique-
ness in (i) and (iii) already gets replaced by a vast array of possible behaviour for
which a complete classification is likely hopeless without the addition of further regu-
larity hypotheses. In fact our principal aim has been to clarify what kind of regularity
properties on the dynamical side match up, at least through analogy and one-way im-
plications, with the key regularity properties of finite nuclear dimension, Z-stability,
and strict comparison that have helped set the stage for the dramatic advances made
over the last few years in the classification program for simple separable nuclear (i.e.,
amenable) C*-algebras. In the process we will try to reimagine the equivalence of (v)
and (vi) in the context of actions on compact metrizable spaces by introducing an
analogue of hyperfiniteness and relating it to the Z-stability of the crossed product.

For C*-algebras, the strictest and simplest technical analogue of a hyperfinite von
Neumann algebra would be an AF algebra, which similarly means that the algebra can
be expressed as the closure of an increasing union of finite-dimensional *-subalgebras
(or, equivalently, that one has local approximation by such *-subalgebras), but with
the weak operator topology replaced by the norm topology. In the 1970s, separable AF
algebras were shown to be classified by their ordered K-theory (Elliott) as well as by
related combinatorial objects called Bratteli diagrams (Bratteli). This reinforced the
affinity with von-Neumann-algebraic hyperfiniteness by revealing a parallel structural
tractability, however different the nature of the invariants.
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What is remarkable is that the classification of AF algebras ended up being only the
beginning of a much more ambitious program that was launched in the 1980s by Elliott,
who realized that C*-inductive limits of more general types of building blocks could
be classified by ordered K-theory paired with traces and suggested that a similar clas-
sification might hold for even larger classes of (or perhaps even all) separable nuclear
C*-algebras. The Elliott program has experienced many successes and several surpris-
ing twists over the last twenty-five years through the efforts of many researchers and
has recently culminated, in the simple unital UCT case, with a definitive classification
which merely assumes the abstract regularity hypothesis of finite nuclear dimension
(this result combines theorems of Gong-Lin-Niu [15], Elliott—-Gong-Lin-Niu [10], and
White-Winter—Tikuisis [48], while also incorporating the earlier Kirchberg—Phillips
classification on the purely infinite side |23} [36]). The UCT (universal coefficient the-
orem) is a homological condition relating K-theory and K K-theory which is possibly
redundant and is automatic for crossed products of actions of countable amenable
groups on compact metrizable spaces by a result of Tu [51].

That classifiability of simple separable unital C*-algebras in the UCT class now
boils down to the simple question of whether the nuclear dimension is finite belies the
critical role that several other regularity properties have played and continue to play in
classification theory. The most important among these are Z-stability (i.e., tensorial
absorption of the Jiang—Su algebra Z), strict comparison, and tracial rank conditions.
Strict comparison is a C*-algebraic version of the property that the comparability of
projections in a type II von Neumann algebra is determined on traces and applies
more generally to positive elements in a C*-algebra with respect to the relation of
Cuntz subequivalence. The notion of tracial rank, which has its roots in work of
Gong [9] and Popa [38] and was formalized and applied by Lin in his seminal work of
the 1990s as a way to circumvent inductive limit hypotheses in the stably finite case
[26], 27, 28], continues to do much of the technical legwork in classification. The simple
unital projectionless C*-algebra Z was introduced in the 1990s by Jiang and Su, who
observed the parallel between its tensorial behaviour and that of the hyperfinite II;
factor R [20)].

Winter’s approach to classification, which was developed in the 2000s and has greatly
impacted the course of the subject [57], made novel use of the operation of tensoring
with Z, rendering greater urgency to the problem of recognizing when a C*-algebra is
Z-stable and strengthening the analogy with R through the latter’s use in Connes’s
classification work, which served as an inspiration. Winter was also the first to realize
the significance of dimensional invariants based on nuclearity-type finite-dimensional
approximation, among which nuclear dimension has become the most eminent, and
the connection between such invariants and Z-stability has become a centerpiece of his
program. In fact, it is a conjecture of Toms and Winter that for infinite-dimensional
simple separable unital nuclear C*-algebras the following three conditions are equiva-
lent:
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(i) finite nuclear dimension,
(ii) Z-stability,
(iii) strict comparison.

The implications (i)=-(ii) and (ii)=-(iii) are theorems of Winter [56] and Rgrdam [39],
respectively. Matui and Sato proved (iii)=-(ii) when the set of extremal tracial states is
finite and nonempty [30], and this was later generalized to the case where the extreme
traces form a nonempty compact set with finite covering dimension [24] 42} [50]. The
implication (ii)=-(i) was first established by Sato, White, and Winter in the case of
a unique tracial state [43] and then more generally by Bosa, Brown, Sato, Tikuisis,
White, and Winter when the extreme tracial states form a nonempty compact set
[2]. Thus the Toms—Winter conjecture has been fully confirmed in the case that the
extreme tracial states form a nonempty compact set with finite covering dimension,
and in particular when there is a unique tracial state.

The goal of these notes is to promote the development of a dynamical version of
this theory surrounding the Toms—Winter conjecture, including connections to the C*-
algebra side via the crossed product. This program requires first of all identifying the
appropriate analogues of nuclear dimension, strict comparison, and Z-stability. There
is a natural dynamical version of strict comparison which has appeared in lectures of
Winter and has been studied by Buck in the case G = Z [3] (see also [14] for an earlier
application of this concept to minimal transformations of the Cantor set). In parallel
with [55], we simply refer to it as comparison, and also define the useful higher-order
notions of m-comparison for integers m > 0, with comparison representing the case
m = 0 (Definition B:2)). There are also by now several analogues of nuclear dimension,
including the dynamic asymptotic dimension and amenability dimension of Guentner,
Willett, and Yu [17], and we will introduce here another, called tower dimension, whose
connections to nuclear dimension and dynamical comparison are particularly stark, as
shown in Sections [0 and [7l Although dynamic asymptotic dimension, amenability
dimension, and tower dimension do not coincide in general, there are inequalities
relating them in the finite-dimensional case, and they are all equal when the space is
zero-dimensional (see Section ).

What has been missing is a dynamical substitute for Z-stability. We introduce here
a notion of almost finiteness for group actions on compact metrizable spaces that will
play the role of Z-stability in the Toms—Winter conjecture and of hyperfiniteness in
the p.m.p. setting. We have adopted the terminology from Matui’s almost finiteness
for groupoids, seeing that in the case of free actions on zero-dimensional compact
metrizable spaces our definition reduces to Matui’s (Section[I0). As a comparison with
the measure-theoretic framework, we recall that, for a free p.m.p. action G ~ (X, p)
of a countable amenable group, we can express the property of hyperfiniteness, in
accordance with the original proof of Ornstein and Weiss, by saying that for every
€ > 0 there are measurable sets Vi,...,V, € X and finite sets Sy,...,5, € G with
prescribed approximate invariance (in the Fglner sense) such that
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(i) the sets sV; for i =1,...,n and s € S; are pairwise disjoint, and

(i) p(X\ L, SiVi) <e.
The pair (V;,S;) we refer to as a tower, the set V; as the base of the tower, the set S;
as the shape of the tower, and the sets sV; for s € S; as the levels of the tower. In the
definition of almost finiteness, the sets V; are replaced by open sets and the smallness
of the remainder in (ii) is expressed topologically in terms of comparison with a portion
of the tower levels. Note in particular that almost finiteness implies that the acting
group is amenable because of the Fglner requirement on the shapes of the towers.
In Theorem [12.4] we prove that, for actions of countably infinite groups on compact
metrizable spaces, almost finiteness implies that the crossed product is Z-stable. As we
discuss at the end of Section [I2] this can be used to give new examples of classifiable
crossed products for which dynamical techniques connected to nuclear dimension (such
as in [I7] or Section [@]) are inapplicable due to finite-dimensionality requirements on
the space. What is particularly novel from the classification perspective is that many
of these examples can exhibit both infinite asymptotic dimension in the group and
positive topological entropy in the dynamics.

It is important to point out that almost finiteness is not an analogue of Z-stability by
itself, but rather of the conjunction of Z-stability and nuclearity. In view of classifica-
tion theory, this combination (or its conjectural Toms—Winter equivalent, finite nuclear
dimension) could be argued to be the true topological analogue of hyperfiniteness, as
opposed to just nuclearity, which is the direct technical translation of hyperfiniteness
into the realm of C*-algebras and as such is an essentially measure-theoretic property.
The interpretation of almost finiteness as a combination of Z-stability and nuclear-
ity is illustrated at a technical level in the proof of Theorem [12.4, which relies on a
criterion for Z-stability that is special to the nuclear setting, due to Hirshberg and
Orovitz (Theorem [I2.1]). The general characterization of Z-stability from which the
Hirshberg—Orovitz result is derived (Proposition 2.3 of [55]) involves an additional
approximate centrality requirement that does not seem to translate into dynamical
terms, and in particular does not seem to be amenable to the kind of tiling techniques
that are integral to the proof of Theorem [12.41

Consider now the following triad of properties for a free minimal action G ~ X of
a countably infinite amenable group on a compact metrizable space:

(i) finite tower dimension,

(ii) almost finiteness,

(iii) comparison.
In Theorem [0.2] we establish the implication (ii)=>(iii), as well as the converse (iii)=(ii)
in the case that the set Eg(X) of ergodic G-invariant Borel probability measures
is finite. This precisely parallels the results of Rgrdam [39] and Matui-Sato [30]
mentioned above. Moreover, the argument for (iii)=-(ii), like that of Matui and Sato,
relies on an appeal to measure-theoretic structure, which in our case is the Ornstein—
Weiss tower theorem. In our proof of (iii)=-(ii) it is enough that the action have
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m-comparison for some m > 0, which is important as we also prove in Theorem [7.2]
that if the covering dimension dim(.X) is finite then (i) implies m-comparison for some
m > 0, and hence comparison in the case that Eg(X) is finite. Thus if Eq(X) and
dim(X) are both finite then we have (i)=-(ii)<>(iii), which we record as Theorem

In [29] Matui showed that his property of almost finiteness for groupoids has several
nice consequences for the homology of the groupoid and its relation to both the topo-
logical full group and the K-theory of the reduced groupoid C*-algebra. In particular,
if the groupoid is furthermore assumed to be principal (which amounts to freeness
in the case of actions) then the first homology group is canonically isomorphic to
the quotient of the topological full group by the subgroup generated by the elements
of finite order. Matui observes in Lemma 6.3 of [29] that the groupoids associated
to free actions of Z¢ on zero-dimensional compact metrizable spaces are almost fi-
nite. By combining the work of Szabd, Wu, and Zacharias in [47] with Theorems
and Theorem we deduce that this also holds for free minimal actions G ~ X
of finitely generated nilpotent groups on zero-dimensional compact metrizable spaces
with Eg(X) finite (Remark [10.3]).

While our results suggest that almost finiteness and comparison are full-fledged
dynamical analogues of their Toms—Winter counterparts, tower dimension and its rel-
atives unfortunately fall short on this account, despite their utility in establishing
finite nuclear dimension for crossed products of large classes of actions. The problem
is that tower dimension, dynamical asymptotic dimension, and amenability dimension
are too much affected by the dimensionality of the acting group and too little affected
by the dimensionality of the space and its interaction with the dynamics (as captured
by an invariant like mean dimension). On the side of the space, if we drop the as-
sumption of finite-dimensionality then the implication (i)=-(ii) fails, even for G = Z
(Example [2.5]). One can attempt to rectify this by imposing a small diameter con-
dition on the tower levels in the definition of tower dimension (we call the resulting
invariant the fine tower dimension) but one would not gain anything in the effort to
relate dimensional invariants to almost finiteness and comparison since finite fine tower
dimension already implies that dim(X) is finite. Even more serious is the structural
restriction imposed from the side of the group: the tower dimension, dynamical as-
ymptotic dimension, and amenability dimension are always infinite whenever G has
infinite asymptotic dimension, which occurs frequently in the amenable case, an ex-
ample being the Grigorchuk group. In contrast, a generic free minimal action of any
countably infinite amenable group on the Cantor set is almost finite [4]. Given that
tower dimension seems as close as we can come in dynamics to being able to formally
mimic the definition of nuclear dimension, and that it connects naturally to dynamical
m-~comparison and nuclear dimension in one direction of logical implication, we will
perhaps have to be content with the prospect that the Toms—Winter conjecture cannot
be fully analogized within the coordinatized framework of group actions. On the other
hand, it is conceivable that the tower dimension of a free minimal action G ~ X is
always finite when G is amenable and has finite asymptotic dimension and X has finite
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covering dimension. This is indeed what happens if we furthermore assume G to be
finitely generated and nilpotent (see Example [£.9]).

One more curious fact worth mentioning here is the possibility, suggested by the work
of Elliott and Niu [I1], that for free minimal actions the small boundary property (or,
alternatively, zero mean dimension) is equivalent to Z-stability of the crossed product.
Elliott and Niu showed that for free minimal Z-actions the small boundary property
(which is equivalent to zero mean dimension in this case) implies Z-stability. The small
boundary property and mean dimension are formally very different from either nuclear
dimension or Z-stability and are more akin to slow dimension growth in inductive limit
C*-algebras, as demonstrated by the proof in [I1], which employs arguments from an
article of Toms on the equivalence of slow dimension growth and Z-stability for unital
simple ASH algebras [49)].

We begin in Section [2 by laying down some basic notation and terminology used
throughout the paper. In Section [l we define (dynamical) comparison, and also more
generally m-comparison. Section Ml introduces tower dimension and Section [5] estab-
lishes inequalities relating it to dynamical asymptotic dimension and amenability di-
mension. In Section [6l we show how to derive an upper bound for the nuclear dimension
of the crossed product of a free action of an amenable group in terms of the tower
dimension of the action and the covering dimension of the space. In Section [7] we prove
that if the acting group is amenable and the tower dimension and covering dimension
are both finite, with values d and ¢, then the action has ((¢+1)(d+1) —1)-comparison.
In Section [§ we introduce almost finiteness and in Section [ we establish Theorem
relating it to comparison. In Section [I0] we prove that, for free actions on the Cantor
set, almost finiteness is equivalent to having clopen tower decompositions of the space
with almost invariant shapes, so that it reduces to Matui’s notion of almost finiteness
in this setting. The behaviour of almost finiteness under extensions is investigated in
Section [I1l In Section [[2] we show that almost finiteness implies Z-stability and use it
to give new examples of classifiable crossed products. Finally, in Section [I3] we prove
that, for free minimal actions of an amenable group on the Cantor set, almost finite-
ness implies that the clopen type semigroup is almost unperforated, that this almost
unperforation in turn implies comparison, and that all three of these properties are
equivalent when the set Eg(X) of ergodic G-invariant Borel probability measures is
finite.

Acknowledgements. The author was partially supported by NSF grant DMS-1500593.
He thanks George Elliott, Xin Ma, and the referee for comments and corrections, and
Gabor Szabé and Jianchao Wu for helpful discussions.

2. GENERAL NOTATION AND TERMINOLOGY

Throughout the paper G is a countable discrete group.
For a compact Hausdorff space X, we write C'(X) for the unital C*-algebra of
continuous complex-valued functions on X. For an open set V' C X we denote by



8 DAVID KERR

Co(V') the C*-algebra of continuous complex-valued functions on V' which vanish at
infinity, which can be naturally viewed as a sub-C*-algebra of C'(X). We write M (X)
for the convex set of all regular Borel probability measures on X, which is compact as
a subset of the dual C'(X)* equipped with the weak* topology. We denote the indicator
function of a set A C X by 14. The covering dimension of X is written dim(X).

Actions on compact Hausdorff spaces are always assumed to be continuous. Let
G ~ X be such an action. The image of a point x € X under a group element s
is expressed as sx. For A C X, s € G, and K C G we write sA = {sz : x € A}
and KA ={sx:s e K, x € A}. We write Mg(X) for the convex set of G-invariant
regular Borel probability measures on X, which is a weak® compact subset of M (X).
We write Eg(X) for the set of extreme points of Mg(X), which are precisely the
ergodic measures in Mg (X).

The chromatic number of a family € of subsets of a given set is defined as the least
d € N such that there is a partition of € into d subcollections each of which is disjoint.

For any of the various notions of dimension which will appear, we will add a su-
perscript +1 to denote the value of the dimension plus one, so that dim™(X) =
dim(X) +1, for example. This “denormalization” serves to streamline many formulas.

3. COMPARISON AND m-COMPARISON

Throughout G ~ X is an action on a compact metrizable space.

Definition 3.1. Let m € N. Let A, B C X. We write A <,,, B if for every closed set
C C A there exist a finite collection U of open subsets of X which cover C', an sy € G
for each U € U, and a partition U = Uy U - - - LIU,, such that for each ¢ = 0,...,m the

images syU for U € U; are pairwise disjoint subsets of B. When m = 0 we also write
A=< B.

Note that the relation < is transitive, as is straightforward to check.

Definition 3.2. Let m € N. The action G ~ X is said to have m-comparison if
A <,, B for all nonempty open sets A, B C X satisfying u(A) < p(B) for every
i€ Mg(X). When m = 0 we will also simply say that the action has comparison.

The condition of nonemptiness on A and B above is included so as to cover the
situation when Mg(X) is empty and can otherwise be dropped, as for example when
(G is amenable.

The following lemma will be used repeatedly throughout the paper and will be
needed here to verify Proposition [3.41

Lemma 3.3. Let X be a compact metrizable space with compatible metric d and let
Q be a weak* closed subset of M(X). Let A be a closed subset of X and B an open
subset of X such that p(A) < u(B) for all u € Q. Then there exists an n > 0 such
that the sets

B_.={zeX:dz,X\B)>n}
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Ay ={r e X :d(z,A) <n}
satisfy p(Ay) +n < u(B-) for all p € Q.

Proof. Suppose that the conclusion does not hold. Then for every n € N we can find
a i, € € such that the sets

B,={r€ X :d(z, X\ B)>1/n},
A, ={r e X :d(z,A) <1/n}

satisfy i, (A,)+1/n > p,(B,). By the compactness of € there is a subsequence {,, }
of {u,} which weak* converges to some p € ). For a fixed 7 € N we have, for every
k=7,

1 1
k n

and since A, is closed and B, is open the portmanteau theorem ([2I], Theorem 17.20)
then yields
((An;) > limsup g, (An,) > Iminf p,, (By;) > p(By,;).
k—o0 k—o0

Note that B is equal to the increasing union of the sets B,,; for j € N, while A is equal
to the decreasing intersection of the sets A, for j € N. Thus

p(A) = lim p(Ay;) 2 lim p(By,) = p(B),
j—oo j—oo
contradicting our hypothesis. 0

In practice, we will use the following characterization as our effective definition of
m~comparison, usually without saying so.

Proposition 3.4. Let m € N. The action G ~ X has m-comparison if and only
if A <, B for every closed set A C X and nonempty open set B C X satisfying
w(A) < u(B) for all p € Mg(X).

Proof. For the nontrivial direction, suppose that the action has m-comparison. Let A
be a closed subset of X and B a nonempty open subset of X such that p(A) < u(B)
for all p € Mg(X). Fixing a compatible metric d on X, by Lemma there is an
n > 0 such that the open set A’ = {z € X : d(z, A) < n} satisfies u(A’") < u(B) for all
€ Mg(X). Then A’ <, B by m-comparison, and so A <, B, as desired. O

The remainder of the section is aimed at showing that if X is zero-dimensional then
we can express comparison using clopen sets and clopen partitions, as asserted by
Proposition [3.6.

Proposition 3.5. Suppose that X is zero-dimensional. Let m € N, and let A and B
be clopen subsets of X. Then A <,, B if and only if there exist a clopen partition P of
A, an sy € G for every U € P, and a partition P = Py U --- U P, such that for each
1=20,...,m the images syU for U € P; are pairwise disjoint subsets of B.
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Proof. For the nontrivial direction, suppose that A <,,, B. Then there exist jo, ..., jm €
N, open sets U; ; for 0 <7 <m and 1 < j < j; which cover A, and s, ; € G such that
for each i = 0,...,m the images s, ;U; ; for j = 1,..., j; are pairwise disjoint subsets
of B. By the normality of X we can then find, for all ¢, j, a closed set C; ; C U; ; such
that the sets C;; for all 4, j still cover A. By compactness and zero-dimensionality,
for given 7, j we can produce finitely many clopen sets contained in U; ; which cover
C;,j, and so we may assume that Cj ; is clopen by replacing it with the union of these
clopen sets. We now recursively define, with respect to the lexicographic order on the
pairs i, 7,

A= ((A \ |;|1 |i|Ak,l) N Cz-,j) \ (Ci1U---UC; ).

k=01=1
These sets form a clopen partition of A and for each ¢ = 0,..., m the images s; jA; ;
for j =1,...,j; are pairwise disjoint subsets of B, as desired. O

Proposition 3.6. Suppose that X is zero-dimensional. Let m € N. Then the action
G ~ X has m-comparison if and only if for all nonempty clopen sets A, B C X
satisfying p(A) < p(B) for every p € Mg(X) there exist a clopen partition P of A,
an sy € G for every U € P, and a partition P = Py U --- U P, such that for each
0=1,...,m the images syU for U € P; are pairwise disjoint subsets of B.

Proof. The forward direction is immediate from Proposition Suppose conversely
that the action satisfies the condition in the proposition statement involving clopen sets
and let us establish m-comparison. Let A be a closed subset of X and B a nonempty
open subset of X satisfying p(A) < p(B) for all u € Mg(X). By Lemma there
exists an 1 > 0 such that the sets

B_.={re X :d(z,X\ B) > n},

Ay ={re X :d(z,A) <n}
satisfy p(Ay) < p(B-) for all u € Q. By an argument as in the proof of Proposition 3.5]
we can find clopen sets A’, B C X such that A C A’ C A, and B_. C B’ C B, in
which case p(A") < p(Ay) < p(B-) < p(B') for all u € Q. It follows by our hypothesis
that there exist a clopen partition P of A’, an sy for every U € P, and a partition
P = PoU- - -LUP,, such that for each i = 0, ..., m the images sy U for U € P; are pairwise

disjoint subsets of B’. Since A C A’ and B’ C B, we conclude (by Proposition [34))
that the action has m-comparison. 0J

4. TOWER DIMENSION
Throughout G ~ X is a free action on a compact Hausdorft space.

Definition 4.1. A tower is a pair (V,S) consisting of a subset V' of X and a finite
subset S of GG such that the sets sV for s € S are pairwise disjoint. The set V' is the
base of the tower, the set S is the shape of the tower, and the sets sV for s € S are the
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levels of the tower. We say that the tower (V,.S) is open if V' is open, clopen if V is
clopen, and measurable if V' is measurable. A collection of towers {(V, S;)}ier is said
to cover X if |J,., S;V; = X.

Definition 4.2. Let E be a finite subset of G. A collection of towers {(V},S;)}ier
covering X is E-Lebesgue if for every x € X there are an i € I and a t € S; such that
z € tV; and Et C S;.

iel

Definition 4.3. The tower dimension dimy,, (X, G) of the action G ~ X is the least
integer d > 0 with the property that for every finite set £ C G there is an E-Lebesgue
collection of open towers {(V;,S;)}ier covering X such that the family {S;V;};e; has
chromatic number at most d + 1. If no such d exists we set dimy, (X, G) = occ.

In the above definition one may assume, whenever convenient, that for each i the
identity element e is contained in S; (i.e., the base V; is actually a level of the tower),
for one can choose a t € S; (assuming that S; is nonempty, as we may) and replace S;
by S;t~! and V; by tV;.

Note that if GG is not locally finite then the tower dimension must be at least 1, for
if £/ is a symmetric finite subset of G and {(V},S;)}ics is an E-Lebesgue collection
of towers for which the sets S;V; partition X then for each ¢ with V; # ) the set S;
contains (F)S; where (E) is the subgroup of G generated by E.

Remark 4.4. When X is zero-dimensional we can equivalently restrict to clopen
towers in Definition [4.3] since we can use normality to slightly shrink the base of
each of the open towers (V;,T;) to a closed set without destroying the fact that the
collection of towers covers X, and then use compactness and zero-dimensionality to
slightly enlarge each of these closed bases to a clopen base which is contained in the
corresponding original base.

Example 4.5. Let Z ~ X be a minimal action on the Cantor set. This is given by
(n,z) — T™z for some transformation 7" and is automatically free. We can decompose
X into clopen towers by the following standard procedure. Take a nonempty clopen
set V' C X, and consider the first return map which assigns to each x € V the
smallest n, € N for which T"*x € V| which is well defined by minimality. This map is

continuous by the clopenness of V' and so there is a clopen partition {Vi, ..., Vi} of V
and integers 1 < ny; < ny < --- < ng such that for each 7 the set of all points in V' with
return time n; is equal to V;. Setting S; = {0,...,n; — 1}, we thus have a collection

of clopen towers {(V;,S;)}%_; such that the sets S;V; are pairwise disjoint, and since
the union |_|f:1 S;V; is closed and T-invariant it must be equal to X by minimality.
The only problem is that this collection will not satisfy the Lebesgue condition in
the definition of tower dimension. To remedy this, we produce a second collection of
towers by taking the image of the original one under some power of T', and make sure
that the the numbers n; are sufficiently large. More precisely, let E be a finite subset
of Z and choose an N > 2max,cp |n|. Since the action is free, by shrinking V' we
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can force ny; to be much larger than N, which will imply that the collection of towers
{(V;, S) Yo, u{(T=NV;, S;+ N) }e_ is E-Lebesgue, as is easily verified. Thus the tower
dimension of the action is at most 1, and hence equal to 1 by the observation following
Definition

The following is verified by taking the inverse images under the extension map
Y — X of all of towers at play in the definition of tower dimension.

Proposition 4.6. Let G ~ Y be a free action on a compact Hausdorff space which
1s an extension of G ~ X, meaning that there is G-equivariant continuous surjection
Y — X. Then

dimtow(}/, G) S dimtow (X, G)

Example 4.7. It was shown in [I3] that there are free minimal Z-actions on compact
metrizable spaces such that the crossed product C'(X) x Z fails to be Z-stable. By
Proposition the examples given there have tower dimension at most 1 since they
factor onto an odometer, which has tower dimension 1 by Example (note that 1
is always a lower bound for the tower dimension of free Z-actions by the observation
following Definition [.3]).

We recall that the asymptotic dimension asdim(G) of the group G [16] can be
expressed as the least integer d > 0 such that for every finite set £ C G there exists a
family {U, };er of subsets of G of multiplicity at most d+1 with the following properties:

(i) there exists a finite set F' C G such that for every i € I there is a t € G with
U; C F't, and
(ii) for each t € G there is an i € I for which £t C U; (Lebesgue condition).

If no such d exists then asdim(G) is declared to be infinite. It is readily seen that the
asymptotic dimension is zero if and only if the group is locally finite. The asymptotic
dimension of Z™ for m € N is equal to m, while the asymptotic dimension of the free
group F,, for m € N is equal to 1. An example of a finitely generated amenable group
with infinite asymptotic dimension is the Grigorchuk group [44]. See [I] for a general
reference on the subject.

The following inequality is a refinement of the observation in the second paragraph
following Definition [£.3] which can be rephrased as saying that dimg.y (X, G) is nonzero
whenever asdim(G) is nonzero.

Proposition 4.8. dim,y (X, G) > asdim(G).

Proof. We may assume that dimg., (X, G) is finite. Let E be a finite subset of G.
Setting d = dimyey (X, G), we can then find an E-Lebesgue collection of open towers
{(Vi, S;) }ier covering X such that the family {S;V;};c; has chromatic number at most
d+ 1. Pick an x € X. For every i € I set L; = {s € G : sx € V;}. Then the family
Uie 1St : t € L;} of subsets of G is readily seen to satisfy the conditions in the above
formulation of asymptotic dimension with respect to the set F. O
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Example 4.9. Let m € N. It follows easily from Theorems 3.8 and 4.6 of [46] that
for every d € N there is a constant C' > 0 such that for every free action Z™ ~ X on
a compact metrizable space with dim(X) < d one has

(1) dimt! (X,Z™) < C - dim™(X),

tow

and that we can also relax the hypothesis dim(X) < d by merely requiring that the
action have the topological small boundary property with respect to d ([46], Defini-
tion 3.2). The arguments in Section 7 of [47] show more generally that that if G is
finitely generated and nilpotent then there exists such a C' > 0 such that (II) holds for
every free action G ~ X on a compact metrizable space with dim(X) < d.

Finally, we define a variant of tower dimension which requires that the bases of the
towers have small diameter.

Definition 4.10. The fine tower dimension dimygq, (X, G) of the action G ~ X is
the least integer d > 0 with the property that for every finite set £ C G and § > 0
there is an E-Lebesgue collection of open towers {(V;, S;)}ier covering X such that
diam(sV;) < § for all i € I and s € S; and the family {S;V;};c; has chromatic number
at most d 4+ 1. If no such d exists we set dimgy (X, G) = o0.

Proposition 4.11. One has
dimt! (X, G) < dim}! (X, G) < dim/} (X, G) - dim™(X).

tow ftow tow

In particular, dimgy, (X, G) < oo if and only if dimyy, (X, G) < oo and dim(X) < oo.

Proof. The first inequality is trivial. For the second, we may suppose that dim;5} (X, Q)
and dim™(X) are both finite. Denote these numbers by d and c, respectively. Let
E be a finite subset of G and 6 > 0. Then there is an E-Lebesgue collection of
towers {(V;, S;) }ier covering X such that the family {S;V;};c; has chromatic number
at most d + 1. By normality we can find open sets U; C X with U; C V; such that the
family {S;U; }ies still covers X. Since X has covering dimension ¢, by compactness we
can find for each i a collection {V;1,...,V;,} of open subsets of U; which covers v,
satisfies diam(sV;) < ¢ for all s € S;, and has chromatic number at most ¢ + 1. Then
{(V;;,S:) 1 €I, 1<k <y} is an E-Lebesgue collection of towers such that each
level of each tower has diameter less than § and the family {S;V;};c; has chromatic
number at most (d + 1)(c+ 1). This establishes the second inequality. O

5. TOWER DIMENSION, AMENABILITY DIMENSION, AND DYNAMIC ASYMPTOTIC
DIMENSION

Throughout G ~ X is a free action on a compact metrizable space. Our aim here
is to establish inequalities connecting its tower dimension, amenability dimension, and
dynamic asymptotic dimension (Theorem B.14). We will see in particular that when
the space is zero-dimensional, all of these dimensions are equal (Corollary [B.15]).
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The notions of amenability dimension and dynamic asymptotic dimension are due
to Guentner, Willett, and Yu [I7] and are recalled in Definitions [5.1] and (these
do not require freeness or metrizability). After defining amenability dimension we
establish an inequality relating it to tower dimension in Theorem We then turn
to dynamic asymptotic dimension and prove some lemmas which will help us link it
to tower dimension in Theorem [(.14l

Write A(G) for the set of probability measures on G, and Ay4(G) for the set of
probability measures on GG whose support has cardinality at most d+ 1. We view both
as subsets of /}(G).

Definition 5.1. The amenability dimension dim,, (X, G) of the action G ~ X is the
least integer d > 0 with the property that for every finite set ' C G and € > 0 there
is a continuous map ¢ : X — A4(G) such that

sup [[p(sz) — sp(z)|l1 < e
zeX

for all s € F.

If G is finite then every action G ~ X has amenability dimension at most |G|,
since we may construct a G-invariant map by sending everything in X to the uniform
probability measure on . More generally, if G is amenable we can construct an
approximately invariant continuous map ¢ : X — A(G) by sending everything in X
to the uniform probability measure on a sufficiently left invariant finite subset of G.
However, when G is infinite the cardinality of the supports of such maps will necessarily
tend to infinity as the approximate invariance becomes better and better, and so to
derive bounds for the amenability dimension in this case one must search for maps
which are approximately equivariant for reasons other than approximate invariance.
Indeed the support constraint in the definition of amenability dimension results in
phenomena that are qualitatively very different from the approximate invariance we
see in an amenable group and instead involve the presence of collections of towers as
in the definition of tower dimension.

Theorem 5.2. The action G ~ X satisfies
dim,, (X, G) < dimyw (X, G).

Proof. We denote the induced action of G on C(X) by a, that is, a,(f)(z) = f(s™ x)
foralls € G, f € C(X), and z € X.

We may assume that dimy., (X, G) is finite, and we denote this number by d. Fix a
compatible metric d on X.

Let F' be a finite subset of G and let £ > 0. In order to verify the condition in the
definition of amenability dimension we may assume that F'~! = F by replacing F with
FUF™! and also that e € F. Choose an integer n > 1 such that (d+1)(d+2)/n < .
By the definition of tower dimension, there is an F"-Lebesgue collection of towers
{(V;, Si) }ier such that {S;V;};cr is a cover of X with chromatic number at most d+ 1.
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By the F"-Lebesgue condition and a simple compactness argument we can find
a 0 > 0 such that for every x € X there are an ¢ € I and a t € S; such that
d(z, X \ tV;) > § and F"t C S,;. For every i € I and t € S; define the function
9ix € C(X) by
Gis(z) = min{1,6 " d(z, X \ tV})}.
For every 7 € I set

gi = Max 01 (Git),

and note that for ¢ € S; the support of the function a;(g;) is contained in tV;.
Let i € I. Set By, = (\,epn t5i and Big = G \ [ ,cptS;. For k=1,...,n—1 set

teFk sEFkt1
The sets B, for k =0,...,n form a partition of G, and for all t € ' we have
(i) tBio C BipU B; 1,
(i) tBix € Bip—1UB;;UB; 4 forevery k=1,...,n—1,
(111) th,n - Bi,n—l U Bi,n-

For each t € G take k such that ¢ € B, ;, and define the function
. k
hiy = Eat(gi)

in C'(X), and note that |izzt(s:£) - ili’sflt(llf” <1/nforallz € X and s € F.

A~

Now set H =Y. ;> ,cc hit- By our choice of 6, for every x € X there is an i € [
and a t € S; such that d(x, X \ tV;) > 6 and F"t C S;, in which case t € B;,, and
hence, in view of the definition of g;,

hia(r) = au(gi) () > Giglw) = 1.
This shows that H > 1. Setting
hit = H_lili,t
for every i € I and t € GG, we then define a continuous map ¢ : X — A4(G) by
p(x)(t) =D hiyl)
iel
forr e X and t € G.

Since for each x € X the set of all i € I such that x € S;V; has cardinality at most
d+1, for s € F the difference between the values of H at x and sz is at most (d+1)/n.
Since H > 1, it follows that the difference between the values of H~! at = and sz is
also at most (d + 1)/n. Consequently for every x € X, s € F', and t € G we have

|hio(s2) — hys1p(2)| < H(s2) " hip(sw) — i s-14()|

+ }H(sz)_l — H(z)_l‘ﬁi,s%t(z)
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< d+2

— Y

n

while h;(sx) = h; s-14(2) = 0 whenever z ¢ S;V;. Using again the fact that for each
x € X the set of all ¢ € I such that x € S;V; has cardinality at most d + 1, it follows
that for every z € X and s € F' we have

lp(sz) = sp(@) i = Y lp(sz)(t) = p(a)(s™'D)]

tea
<Y hig(s7) = hysry ()]
teG i€l
d+2
< (d+1)(i) <
n
from which we conclude that dim,, (X, G) < d. O

Definition 5.3. The dynamic asymptotic dimension dad(X, G) of the action G ~ X
is the least integer d > 0 with the property that for every finite set £ C G there are
a finite set FF C G and an open cover U of X of cardinality d 4+ 1 such that, for all
r € X and sq,...,s, € F, if the points z, s1x, s9s12, ..., S, - s1x are contained in a
common member of U then s,,---s; € F.

Definition 5.4. Let E be a finite subset of G. An open cover U of X is said to be
E-Lebesgue if for every x € X there is an 1 < ¢ < n such that Fx C U,.

Remark 5.5. The above definition should not be confused with the E-Lebesgue con-
dition for a collection of towers. Given a collection of towers T = {(V}, S; }ser such that
the family V = {S;V;}ier covers X, if T is E-Lebesgue then V is E-Lebesgue, but not
conversely. For example, if E contains an element of infinite order then there is no
tower (V,S) such that the singleton {(V,S)} is E-Lebesgue and SV = X, although
{X} is an E-Lebesgue cover of X. For collections of towers the E-Lebesgue condi-
tion involves the way in which each tower is coordinatized by its shape, while no such
coordinatization is at play when dealing with members of an arbitrary cover.

The following is part of Corollary 4.2 in [17].
Proposition 5.6. In Definition[5.3 the open cover U can be chosen to be E-Lebesque.

We next record some lemmas that will allow us to establish the inequality dim{! (X, G) <
dad™ (X, @) - dim™(X) in Theorem [5.141

Definition 5.7. Let G ~ X be a free action on a compact metric space. A castle is
a finite collection of towers {(V;, S;)}ier such that the sets S;V; for i € I are pairwise
disjoint. The [evels of the castle are the sets sV; for i € [ and s € S;. We say that the
castle is open if each of the towers is open.
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Definition 5.8. For sets W C X and £ C G we write Ry g for the equivalence
relation on W under which two points  and y are equivalent if there exist s{,...,s, €
EuUE-'u{e} such that y = s,,---s17 and s ---syx € W for k =1,...,n — 1. Note
that Ry g is symmetric because the set E U E~! U {e} is symmetric.

For an equivalence relation R on a set Z and an A C Z we write [A]g for the
saturation of A, i.e., the set of all x € Z for which there exists a y € A such that xRy.
For sets W, A C X we write 04W for the boundary of AN W as a subset of the set A
equipped with the relative topology.

We will use without comment the following properties of covering dimension for a
metrizable space Y. The second and third are consequences of the fact that covering
dimension and large inductive dimension coincide in the metrizable setting. See [32]
for more information.

(i) If A is a closed subset of Y then dim(A) < dim(Y).
(ii) For every open set U C Y and closed set C' C U there exists an open set
V CY with C CV CU and dim(9V) < dim(Y).
(iii) If {Cy,...,Cy,} is a closed covering of Y then dim(Y) < max;—; ., dim(C;).

Lemma 5.9. Let A be a nonempty closed subset of X and let 6 > 0. Then there
is a finite collection {By,...,B,} of pairwise disjoint relatively open subsets of A of
diameter less than & such that the set | |7_, B; is dense in A and dim(0aB;) < dim(A)
for every j=1,...,n.

.....

Proof. By compactness there exists a finite open cover {Uy, ..., U,} of X whose mem-
bers each have diameter less than 9, and by normality we can find closed sets C; C U;
such that the collection {C,...,C,} is also a cover of X. Relativizing to A, we
can then find for each j = 1,...,n a relatively open subset V; of A such that
C;NACV; CU;N A and dim(04V;) < dim(A). Now recursively define B; = 1} and
By =V;\(ViU---UV;y) for j =2,...,n. Then the set B =| |7, B, is dense in A
and for every j = 1,...,n we have

dim(94B;) < max{dim(94V;), dim(0aV;_1),...,dim(04V1)}
< max{dim(94V;), dim(04V;_1), ..., dim(04aV1)}
< dim(A). O

Lemma 5.10. Let E be a finite subset of G with E=' = E and e € E. Let C be
a closed subset of X, and suppose that there is a finite set F C G such that, for all
reCand sy,...,8m € B, if sp---s10 € C forallk =1,...,m then s,,---s; € F.
Let A be a closed subset of C. Then [A] is closed.

Re.E

Proof. Let x be a point in X which is the limit of some sequence {z,} in [A]g.,
and let us show that x € [A]g, . Since F is finite we can assume, by passing to a
subsequence, that there are sq,...,s,, € F and a, € A such that for every n we have
Tp = Sy -+ S10, and sy - - - s1a, € C for k =1,...,m. By the continuity of the action,
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we have a,, = 57" --s7 w, — s7' - s7lx as n — co. Writing a = s - - - s 'z, which

belongs to A since A is closed, we then have x = s, - - - s1a, and also s - - - sja € C for
k=1,...,msince C is closed. Thus x and a are R¢ g-equivalent, so that = € [A]g, .
We conclude that [A]g,. , is closed. O

Lemma 5.11. Let E be a finite subset of G with E=' = E and e € E. Let § > 0.
Let U be an open subset of X and F' a finite subset of G such that, for all x € U and
S1y--ySm € E, if sp---syx € U forallk =1,....m then s,,---s1 € F'. Let C be a
nonempty closed subset of X such that C C U. Let A be a closed subset of U with
A= [A]RU,E' Then there are an open set W C X with C C W C W C U, an open
castle {(V;, Si) }ier, and sets O; C 'V, such that

(i) diam(sV;) < ¢ for alli € I and s € S,

(i) | ;e SiVi €W,

(iii) [tx|gy, , = Six for everyi € I, t € S;, and x € O;,

() the set (AN W)\ |;c; SiO; is closed and has dimension strictly less than

dim(A).

Proof. Take an open set W, C X with C C W, C W, C U. Then we can find a
relatively open subset W; of A with ANC C W; C AN W, such that dim(9,4W;) <
dim(A). Now take an open set W C W, such that W; = ANW and C' C W, and note
that W C W, C U. Set

Xo=A\ [8AW1]RW’E

Since A is closed the set daW) is closed, and thus by Lemma [5.10] the set [04W1]r_.

is closed, so that Xj is relatively open in A. Moreover, since [04 W] Ry, 18 contained
in F'0,W; we have

Define a map ¢ : Xo — Z(F) (the power set of I') by
o(z) ={s€ F:s52€[z]ry,}

which by freeness is determined by the equation p(z)r = [7]g,, . Let us verify that
@ is continuous. Let x € X,. Since W is open and the action is continuous, we can
find a relatively open subset V' of X containing z such that ¢(z) C ¢(y) for every
y € V. Suppose that there exists a sequence {z,} in Xy converging to x such that
o(x) # p(x,) for every n. We may assume, by passing to a subsequence, that there
is a t € F such that t ¢ ¢(z) and ¢t € ¢(x,) for every n. Since the cardinality of
each equivalence class of R is bounded above by |F|, we can also assume, by passing

to a further subsequence, that there are si,...,s,, € F such that s,,---s; =t and
Sgre-s12, € Wfor k = 1,...,m. Then by the continuity of the action we have
Sg---syx € Wfor k=1,...,m. Now if it were the case that s;---s;x ¢ W for some

1 < k < m, then since s;---s1x € [A]RUE = A and s;---s1x, € [A]RUE NW =
ANW for every n it would follow that sy --- sz € 94W; and hence = € [04 W]

RW,E’
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contradicting the membership of z in Xy. Therefore s;---s12 € W for k=1,...,m,
showing that t € p(z), a contradiction. We conclude from this that ¢ is constant on
some open neighbourhood of z, and hence that ¢ is continuous on X, as desired.

Enumerate the subsets of F' containing e as Si,...,S5;. Recursively define subsets
O1,...,0, of X, by setting O; = p~1(S;) and, for i = 2,...,q,

Oi = 30_1(51) \ (Si_lgo_l(Si_l) U---u 51(,0_1(51)).
The sets S;0; for ¢ = 1,...,q are pairwise disjoint because Ry g is an equivalence
relation. Note also that each set S;0; is contained in X since [A]g,, , C [A]r, = A
and [7|ry, » C [0aWi]r..  for every @ € [04Wi]g_. . Moreover, for every i =1,...,¢q
we have, using the relative openness of ¢~(S;) in A and the closedness of A and
appealing to (2),
dim(948;071(S;)) = dim(S;040(S;))
= dim(0ap ' (S:)) < dim([04Wi]g, ) < dim(A)
and hence
dim(940;) < max (dim(dap~'(S;)), dim(9aSi—197(Si=1))s - - . , dim(9aS17(S1)))
S max (dlm(ﬁAgp_l(S,)), dim(@ASi_lw_l(Si_l)), ceey dlm(8A51Q0_1(Sl)))
< dim(A).
We thus have a castle {(O;, S;) }1<i<q with the following properties:
(1) L, Si0: € Xo € LI, SiOs,
(ii) [tz|ry, , = Siw for every i =1,...,¢,t € S;, and z € O;,
(iii) dim(040;) < dim(A) for every i = 1,...,q.
By Lemma and uniform continuity there is a family {Bj,..., B,} of pairwise
disjoint relatively open subsets of A such that the diameter of sB; is less than § for
every j = 1,...,n and s € F, the set | |7, B; is dense in A, and dim(daB;) <
dim(A) for every j = 1,...,n. Replacing the castle {(O;, S;)}1<i<, (the details of
and relabeling, we may assume that, in addition to satisfying (i) to (iii), the castle
{(Os, Si) }1<i<, has the property that all of its levels have diameter less than § (to see
that condition (iii) still holds observe that dim(d4(O; N B;)) < dim(9040; U 04B;) <
max{dim(940;), dim(04B;)} < dim(A)).

Next let 1 < i < g and s € S; and let us show that sO; is relatively open in
Xo. Suppose to the contrary that there exists a sequence {y,} in Xg \ sO; which
converges to some y € sO;. Set x = s~'y € O;. Then there are s;,...,5, € F
such that s = s,,...51 and s,---s;x € W for every k = 1,...,m. For every n
set , = s 'y, = s;'---s-ly,, and note that x, — x by the continuity of the

action. Since W is open we may assume, by passing to subsequences, that for each
n we have s;---s1x, € W for every £ = 1,...,m, which means that x, and y,
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are Ry p-equivalent. Since y, belongs to A but not [04W]
z, € [A] C [Algr,, = A and z, ¢ [04W]
Since x,, = sy, & O; for every n and x, — x, and O; is relatively open in X, by
the continuity of ¢, we thus arrive at a contradiction. We therefore conclude that sO;
is relatively open in Xj. It follows that for each : = 1,...,¢q and s € S; we can find
an open subset V; s of W which contains sO; and has diameter less than 0 so that
the sets V; ; are pairwise disjoint. For each ¢ = 1,...,¢ set V; = msGSi s_le Then
{(V4,Si) }1<i<q is an open castle such that O; C V; for every i = 1,...,¢q and

(iv) dim(sV;) <d foralli=1,...,qand s € S;,

(v) Ui, sivicw.

Define the set

Rw.z, this implies that

Therefore x,, € X, for every n.

Rw,E Rw,g-

D = 8,040, U - U 8,040,

which can be written as 04(5101) U --- U 04(5,0,) by the relative openness of each
O; in A and thus by (i) satisfies X \ D C | |, S;O;. Using (iii) we have

(3) dim(D) < max{dim(S510401), ...,dim(5,040,)}
< max{dim(940y),...,dim(040,)}
< dim(A).

Finally, set A’ = (AN W)\ ||, S;O;, which is relatively closed in A and hence
closed in X. Since Xo\ D C | |2, S,0; and ANW = ANW = Wi, we have

A CANW)\ (Xo\ D) C oW, U (Wi \ Xo)UD
C [0aWi]py, ,UD
and hence, using (2) and (3) and the fact that [04W1]ry, , and D are relatively closed
in A,
dim(A’) < max{dim([04Wi]g,, ), dim(D)} < dim(A).

This completes the verification of the required properties. O
Lemma 5.12. Let E, 6, U, F, and C be as in the statement of Lemma[5.11. Then
there are a monnegative integer d < dim(X) and for each j = 1,...,d+ 1 an open

castle {(V;, Si) Yier;, and sets O; C V; such that
(1) CC U;P:ri |_|z'elj 5i0; © U;l:i |_|z'elj siVic U,
(ii) [#)re , € Siw for everyi€ I, t € S;, and x € tO; N C, and
(iit) for every j =1,...,d+ 1 one has diam(sV;) < § for alli € I; and s € S;.
RU_O,E' Then AQ

. Thus by Lemma [5.11] there is an open

Proof. Take an open set Uy with C' C Uy C Uy C U and set Aq = [Uj]
is closed by Lemma 510, and Ay = [Ay] R

set U; with C C U; C U; C Uy, an open castle {(V;, Si) }ier,, and sets O; C V; such
that
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diam(sV;) < § for all i € I; and s € S,
|_|7,EI S V g Ul’
[t ]RU » = Sz forevery i € I;, t € S;, and x € O;, and
the set Af = (Ao N Up) \ | ;c;, SiO; is closed and satisfies
dim(Aj) < dim(Ap).
Note that (iii) implies that for every i € I, t € S;, and x € tO; N C' we have
[x]RCE c [x]RU E Sit.
Set Ay = [A}] Ry v Which is closed by Lemma[5.10, and observe that since A; C F A
we have

(i)
(i)
(iii)

)

(iv

dim(A4;) < dim(FAp) = dim(Aj) < dim(A4y).
Apply Lemma B.11] again, this time using A; and Uy, to get an open set U, with
C C U, C U, C Uy, an open castle {(V;, S;) bier,, and sets O; C V; such that
(i) diam(sV;) < 6 for all i € I, and s € S;,
(i) e, SiVi € Un,
(iil) [tz]ry, , = Siw for every i € I}, t € S;, and = € O;, and
(iv) the set A} = (Ay NUL) \ ey, SiO; is closed and satisfies

dim(A}) < dim(A;).
Note that (iii) implies that for every i € I, t € S;, and = € tO; N C' we have
[l’]Rc,E C [x]RUQ,E = Six.

Set Ay = [A]] which is closed by Lemma[5.10] and observe that since Ay C F'A}

we have

RAl,EJ

dim(Ay) < dim(FA}) = dim(A}) < dim(A,).

Continue this procedure by recursively applying Lemma [5.11] to produce at the jth
stage sets U; and Aj;, an open castle {(V;, Si) }iez;, and sets O; C V; as above, until we
reach the point that dim(A4.1) = —1 for some d < dim(X). The castles {(V;, Si) }ie,
and sets O; then satisfy the requirements of the lemma. O

Lemma 5.13. Let E be a finite subset of G and let {Uy,...,U,} be an E-Lebesgue
open cover of X. Then there exist closed sets C; C U; such that {C,...,Cy} is an
E-Lebesgue cover of X.

Proof. For i = 1,...,n write V; for the set of all x € X such that Fx C U;. This
is an open set since U; is open and the action is continuous. Because {Uj,...,U,} is
E-Lebesgue, the collection {V1,...,V,,} covers X. By normality we can find closed
sets D; C Vj such that {D, ..., D,} still covers X. For each i define C; = | J,p sT'D;,
which is a closed subset of U;. Then {C1,...,C,} is an E-Lebesgue cover of X of the
required kind. O
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Theorem 5.14. The action G ~ X satisfies
dad™(X,G) < dim} (X, Q) < dim{} (X, G)

tow

< dimg! (X,G) < dad™(X, Q) - dim ™t (X).

ftow

Proof. The first inequality follows from Theorem 4.11 of [I7], as pointed out in Re-
mark 4.14 of that paper. The second inequality is Theorem The third inequality
is trivial.

It remains to establish the last inequality. For this we may assume that dad(X, G)
and dim(X) are both finite. Let E be a finite subset of G with E~! = F and e € E. By
Proposition 5.0 there are a finite set /' C G and an E-Lebesgue open cover {Uy, ..., Uy}
of X with d < dad(X, @) such that, for all j =0,....d, if z € U; and s4,...,s, € E
satisfy s, ---syx € U; for all k = 1,...,n then s,,---s; € F. By Lemma .13 there
exist closed sets C; C U, for j = 0,...,d such that {Cy,...,Cy} is an E-Lebesgue
cover of X. By Lemma .12 for every j = 0,...,d there are a collection of open towers
{(Vi, Si) }ier, with chromatic number at most dim(X) + 1 and levels of diameter less

than 0 and sets O; C V; such that C; C U;l:O |_|Z.€Ij S;0,; C U;l:O |_|Z.€Ij S;Vi C U; and
) [elne, 5 € Siz

for every i € I;, t € S;, and x € tO; N C;. Note that the collection of open towers
{(Vi, Si) }ier,, 0<j<a has chromatic number at most (d + 1)(dim(X) + 1).

Now let € X. Since the cover {Cy, ..., Cy} is E-Lebesgue, thereisa 0 < j < d such
that Ex C C}. Since x € C; there are i € I, t € S;, and y € O, such that x = ty. By
(@) and our choice of j, for every s € E we have sty € [ty]chyE C S;y so that Ety C Sy
and hence Et C S;. This shows that the collection of open towers {(V;, Si) }ier,,0<j<a
is E-Lebesgue. We have thus verified that dim}!! (X, G) < dad™ (X, G) - dim*!(X),

ftow

as desired. 0

Corollary 5.15. Suppose that X is zero-dimensional. Then the action G ~ X satis-
fies

dimyey (X, G) = dimgew (X, G) = dad(X, G) = dim,, (X, G).

6. TOWER DIMENSION AND NUCLEAR DIMENSION

Let G ~ X be a free action on a compact Hausdorff space. We write C'(X) x, G
for the associated reduced crossed product. In Section 8 of [17], Guentner, Willett,
and Yu showed that

dimtl (C(X) x) G) < dad™ (X, G) - dim™ (X).

nuc

By Theorem [5.14] this implies that
(5) dim}! (C(X) %, G) < dim! (X, G) - dim™ (X).

nuc tow
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We will give here a shorter direct proof of () in order to illustrate the formal affinity
between tower dimension and nuclear dimension. This can be seen as a distillation of
the arguments in Section 8 of [17] into their simplest combinatorial form.

First we recall the definition of nuclear dimension [58]. We use the abbreviation
c.p.c. for “completely positive contractive”. A map ¢ : A — B between C*-algebras
is order zero if it preserve orthogonality, that is, p(ai)p(az) = 0 for all aj,as € A
satisfying ajas = 0.

Definition 6.1. The nuclear dimension dimy,.(A) of a C*-algebra A is the least integer
d > 0 such that for every finite set 2 C A and ¢ > 0 there are finite-dimensional C*-
algebras By, ..., By and linear maps

A Bio-- @By -5 A
such that ¢ is c.p.c., ¥|p, is c.p.c. and order zero for each i =0, ...,d, and

[ opla) —all <e
for every a € Q. If no such d exists then we set dimy,.(A) = oc.

Let (V,S) be an open tower. Write Ay g for the C*-subalgebra of C(X) x), G
generated by the sets u,Co(V)u; for s,t € S. Denoting by My the matrix algebra
with entries indexed by pairs in 7' x T" and by {es+}ster the matrix units of My, there
is a canonical isomorphism Mr ® Cy(V) — Ay g determined by

est @ f = usfuy
for s,t € S and f € Cy(V).
Theorem 6.2. The action G ~ X satisfies
dim L (C(X) x, G) < dim L (X, G) - dim™ (X).

nuc tow

Proof. We denote the induced action of G on C(X) by a, that is, a,(f)(z) = f(s™ x)
foralls e G, f e C(X), and z € X.

We may assume that dimg.y, (X, G) is finite. For brevity we denote this quantity by
d. Let € be a finite subset of C(X) x G and € > 0. In order to verify the existence of
the desired maps in the definition of nuclear dimension which approximately factorize
the identity map on C'(X) x G to within € on the set €2, we may assume that Q =
{fus: f €Y, s € F} where T is a finite set of functions in C'(X) and F' is a finite
subset of G satisfying F~! = F and e € F.

Let n be an integer greater than 1, to be determined. By the definition of tower
dimension, there is an F"-Lebesgue collection of open towers {(V;, S;)}ier covering X
such that the family {S;V;};c; has chromatic number at most d 4+ 1. For convenience
we may assume that for each ¢ the set S; contains e, for if necessary we can choose a
t € S; and replace S; by S;t~! and V; by tV;.

Take a partition of unity {§;}icr.tes, subordinate to the open cover {tV;};crtes,. We
will modify these functions so that over each tower they are dynamically generated by a
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single function and together sum to a function which, while no longer necessarily equal
to 1, is still greater than or equal to 1. For every i € [ set g; = maxyes, a-1(g;¢). Then
for every i € I and t € S; the support of ay(g;) is contained in tV;, and ay(g;) > Gir,
which implies that >, ;> ¢ ai(g:) > 1.

Let i € I. Set By, = (\yepn t5i and Big = S; \ [LeptSi- For k=1,...,n —1 set

Bij = ( N tSZ-) \ () S
teFk teFkt1
The sets B, for k =0,...,n form a partition of S;, and for all s € F' we have
(1) sBix C Bij—1UB;x UB, 4 forevery k=1,...,n—1,
(i) sBin € Bipn—1 U B,
Since for each t € S; the function a(g;) is supported in the tower level tV;, it follows

that the function
. n k
h; = Z Z 50%(9@')

k=0 teB;

satisfies sup,cy |hs(s™'z) — hi(z)| < 1/n for every s € F. Put H = Y il h;. Then
H > 1 by the F™-Lebesgue condition, and so for every ¢ we can set h; = H _1izi, which
gives us a partition of unity {h;}icr in C(X).

Let s € F'. Let x € X. The collection of all i € I such that x € S;V; has cardinality
at most d + 1, and so the difference between the values of H at x and s~z is at most
(d+1)/n. Since H > 1, it follows that the difference between the values of H~1 at z
and s~'z is also at most (d + 1)/n. We then get, for every i,

(6) [ushi = hiug|| = lushiug™ — hil]
= sup |hy(s™'a) — hi(2)]
zeX
< sup H(s_lzv)_l}izi(s_lx) — izz(x)}
zeX
+sup [H(s '2)™ — H(z) "' |h(x)
zeX
< d+ 2.
n

Since the collection {S;V; };c; has chromatic number at most d+1, there is a partition
Iy, ..., 15 of I such that for every k = 0,...,d the collection {S;V;}icy, is disjoint. For
each k =0,...,dset gy = > ;. hi.

For i € I we write A; for the C*-subalgebra of C(X) x G generated by the sets
usCo(Vi)uj for s,t € S;. Let k € {0,...,d} and set Ay = @,¢; Ai. Since the A; for
i € I, are pairwise orthogonal as sub-C*-algebras of C'(X) x G, we can view A as a
C*-subalgebra of C'(X) x G. Since A; = Mg, ® Cy(V;) for every i (as explained prior
to the statement of the theorem), the nuclear dimension of A; is at most dim(X), as
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one can verify by a straightforward partition of unity argument using the formulation
of covering dimension in term of the chromatic numbers of open covers (see the proof
of Proposition 3.4 in [25]). Noting that fusqx = usas(f)qr € Ag for every f € T
and s € F' since izl vanishes on B, for each i, we can thus find finite-dimensional C*-
algebras Dy o, ..., Dgm, with my < dim(X), a c.p.c. map 0y : Ay — Dy o®- @B Dg .,
and a map ¢y, : Dy o®- - @B Dy, — A € C(X)XxG whose restriction to each summand
is c.p.c. and order zero such that

") 9.0 0 Fusan) = fusaull < 57

for all f € T and s € F. By Arveson’s extension theorem we can extend 6, to a c.p.c.
map C(X) X G — Do ® -+ @ Dy, which we will again call 6. Define the c.p.c.
map ¢ : C(X) X G — Dyo@ -+ Dy, by

er(a) = (g aqy).
Now define the maps

d
C(X) % G -2 @D Do @+ ® Dy, — C(X) % G
k=0
by ¢ = Bl vk and
Y(ao, . - ., aq) = Yolag) + -+ + Yaaq).

Then ¢ is c.p.c. and the restriction of 9 to each Dy ; is c.p.c. and order zero. Since
mo + - +my < dim™(X, Q) - dim™(X), to obtain the desired upper bound on
dimy,.(C(X) x G) it remains to verify that |1 o p(fus) — fus|| < e for all f € T and
se .

By a straightforward functional calculus argument that uses a polynomial approx-

imation to the function z ~ x'/2 on [0, 1], we see from (@) that if n is small enough
relative to d then for each i € I, f € T, and s € F we will have

1/2 /2 ' €
\|h,”” fush, fush;|| < 72(d+ T

Let s € F and k € {0,...,d}. Since for every i € I the element hil/zfushil/2 — fugh;

belongs to A; and the sub-C*-subalgebras A; for ¢ € I, are pairwise orthogonal, we get

12, 1/2 12 fugh)? -
o fua” = fuaull = I Fuahi = fuahil] < s

Using (7)) this yields
4br 0 i (fus) — Fusgrll < 10n © Ok(qy* Fusgy* — Fusar)|
+ ||tk © Ok (fusqr) — fusqrl|

1/2 1/2 €
< ||hk/ fus(Jk/ - fus(JkH + 2

£
(d+1) Sdrr
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whence
d
v 0 @(fus) = fusll = Z i 0 gi(fus) — fusq)
dk
Z| ko r(fus) — fusql|
k=0
<(d+1)- - g,
d+1
as desired. 0

7. TOWER DIMENSION AND COMPARISON

We aim here to establish Theorem

Lemma 7.1. Suppose that G is amenable. Let G ~ X be a free action with tower
dimension d < co. Let K be a finite subset of G and 6 > 0. Then there is a finite
collection {(V;, Si) }ier of open towers covering X such that S; is (K, d)-invariant for
every i € I and the family {S;V;}ie; has chromatic number at most d + 1.

Proof. By the main theorem of [7] there exist nonempty (K, d)-invariant finite sets
Fi,...,F, CGand sets C,...,C, C G such that

G:|i| |_|ch.

k=1 ceC}

Set F'= FyF;'U---UF,F;'. By our tower dimension hypothesis there is a finite
F-Lebesgue collection of open towers {(V;,T;)}ie; covering X such that the family
{S;V;}ier has chromatic number at most d + 1. For each i € I set

:U{chzlgk‘gn,ceCk, and Fyc C T;},

Ti// _ ﬂ S_ITZ-.
seF

Let i € I. Let x € T; \ T!. Take 1 < k < n and ¢ € C} such that x € FreNT;.
Then there exists a y € FreN (G \ T;). We have x = sc and y = tc for some s,t € Fy,
whence ts™'x = y ¢ T;, which shows that x ¢ T} since ts~! € F. We conclude from
this that T} C T7. It follows by the F-Lebesgue condition that the towers (V;,T7) for
1 € I cover X.

Finally, for each i € I write T = | e, 05 where each S; has the form Fjc for some
1 <k <nand c € Cy. Then the collection of open towers {(V;, S;) }ierjes, covers X,
each of its shapes is (K, d)-invariant, and the family {S;V;};c; has chromatic number
at most d + 1, as desired. O
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Theorem 7.2. Suppose that G is amenable. Let X be a compact metric space with
covering dimension ¢ < co. Let G ~ X be a free action with tower dimension d < oco.
Then the action has ((c + 1)(d + 1) — 1)-comparison.

Proof. Let A be a closed subset of X and B an open subset of X such that u(A) < u(B)
for all p € Mg(X). By Lemma we can find an 7 > 0 such that the sets

B_={reX:d(z,X\B)>n},
Ay ={r e X :d(z,A) <n}
satisfy pu(Ay) +n < p(B-) for all p € Mg(X).

We claim that there are a finite set K C GG and a 6 > 0 such that if F' is a nonempty
(K, 0)-invariant finite subset of G then for all x € X we have

1 i 1
(8) m21A+(sx)+§ < WZL&(SI).

seF

Suppose that this is not possible. Then there exists a Fglner sequence {F},} and a se-
quence {x,} in X such that, writing j, for the probability measure (1/|F,|) > .7 sz,
we have

sEFy,

fin(Ay) + g > pn(B-)

for all n. By passing to a subsequence we may assume that the sequence {u,, } converges
to some p € M(X), and the Fglner property implies that p is G-invariant, as is easily
verified. Since B_ is open and A, is closed, the portmanteau theorem yields

n(B-) + g < liminf 1, (B-) + g < limsup pp(A4) + 1 < p(As) +,
n—oo n—o0
contradicting our choice of n. The desired K and ¢ thus exist.

By Lemma [7.1] there are a finite collection {(V;,T;)}ier of open towers covering X
and a partition I = IyLJ- - -l such that for every i € I the shape T; is (K, §)-invariant
and for every j =0, ...,d the sets T;V; for ¢ € I; are pairwise disjoint. By normality
we can find for every ¢ € I a closed set V;/ C V; such that the sets T;V/ for i € I
still cover X. Using the formulation of covering dimension in term of the chromatic
numbers of open covers, we can then find, for each ¢ € I, a finite collection U; of open
subsets of V; such that

(i) the collection U; covers V|

(i) each of the sets sU for s € T; and U € U; has diameter less than 7, and

(iii) there is a partition U; = U; oU- - - LUU; . such that the collection U, ; is disjoint

for each j.

For convenience we reindex the collection of towers {(U,T;) }iervew, as {(Uj, S})}jes.
Then the shapes S; are all (K, §)-invariant and, setting m = (¢+1)(d+1) — 1, there is
a partition J = Jy U --- U J,, such that for each £k =0, ..., m the sets S;U; for j € Jj
are pairwise disjoint.
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Let 0 <k <m and j € J;. Since the levels of the tower (Uj, S;) all have diameter
less than 7, if sU; N A # () for some s € S; then sU; C Ay, and so by (§) the sets

Sj@z{SESjZSUjQA?&@},
Sj72:{S€SjISUij_7£®}

must satisfy |S;1]/[S;] +1/2 < |S;2|/|S;] and hence [S;1| < |Sj2|. We can thus find
an injection ¢; : Sj; — S;2. Now the sets sU; for s € Sj; and j € J cover A, while
for each k = 0,...,m the pairwise disjoint sets p(s)U; = (¢(s)s™1)sU; for j € Ji, and
s € Sj are contained in B since the levels of the tower (U;, S;) all have diameter less
than 7. This verifies that A <,,, B, as desired. U

8. ALMOST FINITENESS

We begin by recalling the following notion of castle from Definition 5.7

Definition 8.1. Let G ~ X be a free action on a compact metric space. A castle is
a finite collection of towers {(V;, S;)}ier such that the sets S;V; for i € I are pairwise
disjoint. The [evels of the castle are the sets sV; for i € I and s € S;. We say that the
castle is open if each of the towers is open, and clopen if each of the towers is clopen.

Definition 8.2. We say that a free action G ~ X on a compact metric space is almost
finite if for every n € N, finite set K C G, and § > 0 there are

(i) an open castle {(V;, S;) }ier whose shapes are (K, §)-invariant and whose levels
have diameter less than 9,

(ii) sets S! C S; such that |S!| < |S;|/n and

X\ |svi <] | sivi.

icl icl
Remark 8.3. Observe in the context of Definition that if we have sets S C S;
satisfying
X\ |svi<]| |svi
icl icl
then any other sets S/’ C S; with |S/| > |S!| will similarly satisfy

XA\ | |svi < | |sivi.
il i€l
since the relation < is transitive and | |,.,; S;Vi < | l,c; Si'Vi. The latter follows from the
fact that for each i we have S/V; < S!V;, which can be witnessed by taking an injection
¢ : S! — S and considering the open collections {sV; : s € S/} and {p(s)V; : s € S},
the first of which partitions S!V; and the second of which partitions the subset ¢(S})V;
of S'V;.
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Remark 8.4. Almost finiteness does not pass to extensions, the obstruction being the
diameter condition. For example, the minimal actions in [13] factor onto an odometer,
which is almost finite, but are not themselves almost finite by Theorem [12.4], since
their crossed product fails to be Z-stable. See however Theorem

Example 8.5. Every free Z™-action on a zero-dimensional compact metrizable space
is almost finite. This was established in Lemma 6.3 of [29] in the language of groupoids,
whose translation to Definition is discussed in the first paragraph of Section [10.

The following was shown in [4].

Theorem 8.6. Let G be a countable amenable group. Then a generic free minimal
action of G on the Cantor set is almost finite.

The following two facts are simple consequences of Definition
Proposition 8.7. Almost finiteness is preserved under inverse limits of free actions.

Proposition 8.8. Let G ~ X be a free action on a compact metrizable space, and
suppose that G can be expressed as a union of an increasing sequence G1 C Gy C ...
of subgroups such that the restriction action G, ~ X is almost finite for every n.
Then the action G ~ X is almost finite.

Problem 8.9. Let G ~ X be a uniquely ergodic free minimal action of a countable
amenable group on the Cantor set. Must it be almost finite?

9. ALMOST FINITENESS AND COMPARISON

In Theorem [9.2 we relate almost finiteness and comparison. By combining this with
Theorem we are then able to give a connection between tower dimension, almost
finiteness, and comparison, which we record as Theorem

Lemma 9.1. Let X be a compact metrizable space and let ) be a weak* closed subset

of M(X). Let A be a closed subset of X such that p(A) = 0 for all p € Q, and let
€ > 0. Then there is a 0 > 0 such that

p{r e X :d(x,A) <d}) <e
for all p € €.

Proof. Suppose that the conclusion does not hold. Then for every n € N we can find
a p, € 2 such that the set A, = {z € X : d(z, A) < 1/n} satisfies u,(A,) > €. By
the compactness of €2 there is a subsequence {,, } of {{,} which weak® converges to
some g € €. For a fixed j € N we have fi,, (Ay,) > € for every k > j, and since A,, is
closed the portmanteau theorem then yields

(1(An;) > limsup i, (Ap;) > e.

k—o0 o

As A is closed it is equal to the intersection of the decreasing sequence of sets A,
and so p(A) = lim;_,o p(Ay;) > €, in contradiction to our hypothesis. O
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Theorem 9.2. Suppose that G is amenable. Let G ~ X be a free minimal action and
consider the following conditions:

(i) the action is almost finite,
(ii) the action has comparison,
(111) the action has m-comparison for all m > 0,
(iv) the action has m-comparison for some m > 0.
Then (i)= (ii)= (i11)= (v), and if Eq(X) is finite then all four conditions are equiva-
lent.

Proof. (i)=-(ii). Let A be a closed subset of X and B an open subset of X such
that p(A) < w(B) for all p € Mg(X). We aim to show that A < B, which will
establish (ii). By Lemma B3 there exists an n > 0 such that u(A) +n < p(B) for
all p € Ma(X). As the set B \ A must be nonempty, we can pick ay € B\ A. By
Lemma 0.1 there is a £ > 0 such that the closed ball C' = {x € X : d(x,y) < Kk} is
contained in B\ A and satisfies u(C) < n/2 for all p € Mg(X). By minimality the
open ball C_ = {z € X : d(z,y) < k/2} satisfies u(C_) > 0 for all u € Mg(X), and so
by Lemma B3] (taking A = () and B = C_ there) there is a 6 > 0 such that u(C_) > 0
for all p € Mg(X).
Set B = B\ C. Then for all 4 € Mg(X) we have

H(B) = u(B) = j(C) = p(A) + 3 > p(A)

and so by Lemma .3 there exists an 7 > 0 with 1’ < 7 such that the sets
B_.={reX:dz,X\B) >},
Ay ={ze X :d(z A) <1}
satisfy p(Ay)+n < p(B_) for all p € Mg(X). Note that each of the sets A, and B_
is disjoint from C'.

We claim that there are a finite set K C GG and a 6 > 0 such that if F'is a nonempty
(K, 6)-invariant finite subset of G then for all z € X the following both hold:

1 n 1
9) — 1a,(sz)+ = < — 1p_(sx),
|F] Z o 2 = |F] Z 7
(10) L21 (sz) > 4
|F| seF “ B 2

Suppose to the contrary that this is not possible. Then we can find a Fglner sequence
{F,} and a sequence {z,} in X such that, writing p, for the probability measure
(1/1F0l) >_scp, se, one of the following holds:

(i) pn(As) +1'/2 > pn(B-) for all n,
(ii) pn(C-) < 8/2 for all n.
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Suppose first that (i) holds. By passing to a subsequence we may assume that the
sequence { i, } converges to some pu € M(X), and it is readily verified using the Fglner
property that p is G-invariant. Since B_ is open and A, is closed, the portmanteau
theorem then yields

/ /
p(B-) 4 < lminf g (B2) + - < limsup oy (AL) 4+ < p(Ay) £
n—0o0 n—oo
a contradiction. If on the other hand (ii) holds, then as before we may assume that
{{n} converges to some p € Mg(X), and since C_ is open the portmanteau theorem
yields

N D

p(C) < liminf i, (C) <

Y

a contradiction. We may thus find the desired K and 4.
Set ¢ = min{r/,x/2} and choose an integer n > 3/6. Then by almost finiteness
there are

(i) an open castle {(V;, S;) }ie;r whose shapes are (K, §)-invariant and whose levels
have diameter less than €, and

(ii) sets Si C S; such that |S!| < |S;|/n and the set D = |._; S;V; satisfies

iel
X\D=<| |svi.
icl
Let ¢ € I. Since the levels of the towers all have diameter less than both n" and x/2,
by ([@) and (I0) the sets

Si1={s€S;:sV;NA#0D},

Sio={s€S;:sV;NnB_ #0},

Sizs={s€S;:sV,nC_ # 0}
satisty

so that |S; 1] < |Si2| and [S; 3| > |S]|. We can thus find injective maps ¢; : S;1 — Sio
and ’QDZ : Sz/ — SZ'73.

Since X\ D < | |,c; S;V; we can find a finite collection U of open subsets of X which
cover X \ D and a ty € G for each U € U such that the images t;U for U € U are
pairwise disjoint subsets of | |,.,; SiV;. For all U € U, i € I, and s € S] write Wy,
for the (possibly empty) open set U Nt;'sVi. These open sets cover X \ D, and so in
particular cover (X \ D)N A, and the images ¢;(ty)Wy,;s for U € U, i € I, and s € 5!
are pairwise disjoint subsets of B N[ |,c; S 3V;. At the same time, the open sets sV;
fori € I and s € S;; cover DN A, while the images ¢;(s)V; = (p;(s)s™)sV; fori € I
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and s € S;; are pairwise disjoint subsets of BN Uiel S;2Vi. Since the sets Uiel SisVi
and |_|Z.eI S;2Vi are disjoint, we have thus verified that A < B.

(ii)=> (iii)=>(iv). Trivial.

Now suppose that Eq(X) is finite and let us verify (iv)=-(i). We thus suppose that
there is an m € N such that the action has m-comparison. We may assume that
(G is infinite, for otherwise minimality implies that X consists of a single orbit, in
which case the action is obviously almost finite. Write Eq(X) = {p1, ..., itq} and set
p=(1/q)> 1t € Mg(X). Let K be a finite subset of G, 6 > 0, and n € N. Put
e =1/(4ng(m + 1)). Choose an integer N > 1/e. Since G is infinite and m - 4ge < 1
we can find a finite set K/ C G with K C K and a ¢’ > 0 with ¢’ < § such that every
nonempty (K’,d’)-invariant finite set /' C G has large enough cardinality so that it
has m pairwise disjoint subsets of equal cardinality  satisfying 2¢e < k/|F| < 4qe.

Since the action is free, by the Ornstein-Weiss tower theorem (as formulated in
Theorem 4.46 of [22]) there exists a finite collection {(M;, T;) }iesr of measurable towers
such that the sets T;M; for ¢ € I are pairwise disjoint, u(| |,c; TiM;) > 1 —¢€/(2q), and
T; is (K',¢')-invariant for every i. By regularity we can find closed sets C; C M; with
p(M; \ C;) small enough to ensure that u(| |,.; 7;C;) > 1 —¢/q. Then by compactness
we can find open sets V; O C; such that the sets T;V; for ¢ € I are pairwise disjoint.

Let i € I. By our choice of K’ and ¢’ we can find pairwise disjoint sets S; o, ..., Sim C
T; all having the same cardinality x satisfying 2ge < x/|T;| < 4qe. Set T} = S;oUI-- - U
Sim- Then

1
(11) T3] = (m+ 1w < 4(m + Vge| T = —|T]-

Set A = X\ |],.;TiVi and B = | |,.; SioVi. Then for every v € Mq(X) we have,

since v is convex combination of the measures p1, ..., fiq,

v(A) < max gy(A) < gp(A) <e,

=Ly

from which we get v(| |,.; T;V;) > 1 —¢ > 1/2 and hence

|Si 0l 1
W(TV}) > 2 wi)>—— >
2D ] T, ) > 2eev| | “ntm+1) =

el el

Since A is closed and B is open we thus have A <,,, B by our m-comparison hypothesis.
We can therefore find a finite collection U of open subsets of X which cover A, an
sy € G for each U € U, and a partition U = Uy LI --- U U, such that for each
1 =0,...,m the images syU for U € U; are pairwise disjoint subsets of B.

For each i € I and j = 0,...,m choose a bijection ¢;; : S;p — S;;. For U € U,
1€ l,and t € S; write Wy, for the open set Uﬂsl}ltVi. For a fixed U, the sets Wy,
for i € I and t € S; partition U. Moreover, writing ji for the j such that U € U;,
the sets @i,jU(t)t_lsUWU,i,t overall U € U, ¢ € I, and t € 5, are pairwise disjoint and
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contained in | |;., 77V;. This shows that

A< |_|TZ.’VZ-.

icl
Combined with (1), this verifies almost finiteness. O
Combining Theorems [[.2] and 0.2 yields:

Theorem 9.3. Suppose that G is amenable. Let G ~ X be a free minimal action on a
compact metrizable space such that Eq(X) is finite. Consider the following conditions:

(1) dimyow (X, G) < 00 and dim(X) < oo,
(11) dimgow (X, G) < 00,
(111) the action is almost finite,

(iv) the action has comparison.

Then (1)< (ii)= (iii)< (iv).

The implication (ii)=-(iii) in Theorem cannot be reversed, as the following ex-
amples show. The obstruction in both cases is infinite-dimensionality, whether in the
space (Example [0.4]) or in the group (Example 0.5).

Example 9.4. Let {6;} be a sequence of rationally independent numbers in [0, 1).

Consider the product action Z A [12y X% whose zeroeth factor is the odometer
action Z ~ {0,1} and whose kth factor for k > 1 is the action (n,z) — ¥
on T. This action is free. It is uniquely ergodic since each factor is uniquely ergodic
(as is well known) and the factors are mutually disjoint (because no two of them,
when viewed as measure-preserving actions with respect to the unique invariant Borel
probability measure on each, have a common eigenvalue except for 1). It is minimal
since the unique invariant Borel probability measure on [[;-, Xy, i.e., the product of
the unique invariant Borel probability measures on the factors, has full support. It
is also almost finite. To see this, first note that the odometer action Z ~ {0, 1}" is
almost finite since for every n € N the clopen set {0}{1-m} x {0, 1}{nF1n+2} g the
base of a tower with shape {0,1,...,2" — 1} whose levels partition {0, 1}. Now for
m > 1 we can view Z ~ [[i_, Xj as an extension of Z ~ [[[, X via the natural
projection map, and so it follows by Theorem and induction that Z ~ [[,-, X
is almost finite for every m > 0. One can alternatively derive this conclusion by
combining the fact that the odometer action has tower dimension 1 (Example [4.35))
with Proposition (tower dimension is nonincreasing under taking extensions) and
(i)=(iii) of Theorem It follows finally by Proposition B.7that «, being the inverse
limit of the actions Z ~ [[,—, Xk, is almost finite. This example shows that, for free
minimal actions of Z, almost finiteness does not imply finite tower dimension, since
the latter implies that the space has finite covering dimension, which is not the case
here.
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Example 9.5. By Proposition 4.8 a necessary condition for a free action G ~ X to
have finite tower dimension is that the group G have finite asymptotic dimension, which
fails for many amenable groups, such as the Grigorchuk group. Since every countably
infinite amenable group admits almost finite free minimal actions by Theorem [R.6]
this gives many examples of almost finite free minimal actions which fail to have finite
tower dimension.

10. DISJOINTNESS IN TOWER CLOSURES AND ALMOST FINITENESS IN DIMENSION
ZERO

In [29] Matui introduced a notion of almost finiteness for second countable étale
groupoids with compact zero-dimensional unit spaces. We show in Theorem that
when the groupoid arises from a free action G ~ X on a zero-dimensional compact
metrizable space, our notion of almost finiteness coincides with Matui’s, justifying
our use of the terminology. What we in fact prove is that the action is almost finite
(in the sense of Definition B2) if and only if for every finite set X C G and § > 0
there is a clopen castle (Definition R1) whose shapes are (K, d)-invariant and whose
levels partition X (a clopen castle whose levels partition X will be called a clopen
tower decomposition of X'). That this characterization is equivalent to Matui’s almost
finiteness is recorded as Lemma 5.3 in [45].

The following lemma will be useful in establishing not only Theorem but also
Theorem [12.41

Lemma 10.1. In Definition we may equivalently require each tower (Vi,S;) to
have the additional property that the sets sV; for s € S; are pairwise disjoint.

Proof. Let G ~ X be a free action which is almost finite. If G is finite, then by taking
n > |G|, K = G, and § < |G|~ in Definition B.2 we are guaranteed the existence of an
open castle {(V;, S;) }ier such that each shape is equal to G, every level has diameter
smaller than ¢, and |_|Z.E ; SiVi = X. It follows that every V; is clopen and so we obtain
the assertion of the lemma. We may thus assume that G is infinite.

Let K be a finite subset of G, n € N, and § > 0. Since G is infinite, there exists
a finite set K’ C G with K C K" and a §' > 0 with ¢’ < ¢ such that every (K’,J)-
invariant nonempty finite subset of G has cardinality greater than 2n. By almost
finiteness there exist

(i) an open castle {(V}, S;) }ser whose shapes are (K, §')-invariant and whose levels
have diameter less than ¢,
(ii) sets S C S; with |S]| < |5;|/(2n) such that

X\ |svi <] |sivi
icl il
For each i the set S; has cardinality greater than 2n by our choice of K’ and ¢, and
so by setting S/ = S! U {s} for some arbitrarily chosen s € S;\ S we will have
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1S}] < |Si|/n. Given a p € Mq(X), from (ii) we have (X \ | ;c; SiVi) < p(l;e; SiVi).
which in particular implies that u(V;) > 0 for at least one ¢ € I, and hence that

u(X \ |_|5m) < u(|_|s;’w).
iel iel
It follows by Lemma [3.3] there is an 1 > 0 such that the sets

B = {xeX:d(x,X\US;/%) >n},

i€l
A= {:c €X: d(:c,X\|_|SZ-VZ-) < n}
iel
satisfy p(A) < p(B) for all u € Mg(X). By uniform continuity we can then find an
1’ > 0 such that the open sets

U={zxeX:dxz,X\V,) >1n}

for i € I satisfy X \ | |,.; S;U; € A and B C | |,.; S/'U;. Then for every p € Mg(X)
we have

iel

u(X\Us0) < ut) < i) < u( 5701 ).
iel iel
Since the action is almost finite, it has comparison by Theorem [0.2] and so we deduce
that
X\ |siui =< | | st
iel iel

Therefore the open castle {(U;, S;) }ier and the sets S C S; witness the definition of
almost finiteness with respect to n, K, and 8, and for each i € I the inclusion U; C V;
implies that the sets sU; for s € S; are pairwise disjoint, as desired. O

Theorem 10.2. A free action G ~ X on a zero-dimensional compact metric space
1s almost finite if and only if for every finite set K C G and 6 > 0 there is a clopen
castle whose shapes are (K, d)-invariant and whose levels partition X .

Proof. The only issue in establishing the backward implication is arranging for the
small diameter condition in the definition of almost finiteness, and this can be done by
observing that for every ¢ > 0 and clopen tower (V,S) we can use uniform continuity to
find a clopen partition {V;};c; of V' such that the levels of the clopen castle {(V;, S) }ier,
which partition SV, all have diameter less than e.

For the forward implication, suppose that the action is almost finite. Let K be a
finite subset of G and 6 > 0. Take an n € N such that 2/n < §/2. By Lemma [I0.1]
there are

(i) an open castle {(V;, ;) }ier with (K, d/2)-invariant shapes such that for each
1 the sets sV; for s € S; are pairwise disjoint,
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(ii) sets Sj C S; such that |S;| < [S;|/n and the set D := X \ | |,.,; S;V; satisfies
D <[ |svi

i€l

Since the sets sV; for i € I and s € S; are closed, by uniform continuity we can find,
for each 4, an open set V; D V; such that the sets sV/ for i € I and s € S; are pairwise
disjoint. Then, using compactness and zero-dimensionality, for each ¢ € I we can cover
V; with finitely many clopen subsets of V7, and so by replacing V; with the union of
these clopen sets we may assume that each of the sets V; is clopen. Note in particular
that the set D = X\ | |,c; S;V;, which is now clopen, still satisfies D < | |,, S;V;, since
each new V; contains the original one. By Proposition we can then find a clopen
partition U of D and elements ¢t € G for U € U such that the images tyU for U € U
are pairwise disjoint subsets of | |,.; S;V;. We may assume, by splitting each tower
(V;,S;) into finitely many towers having the same shape S; and with bases forming
a suitable clopen partition of V;, that for every U € U, i € I, and s € S! such that
sViNtyU # B we in fact have sV; C tyU. By replacing U with the clopen refinement
consisting of the sets of the form tl}lsVi where sV is a tower level which is contained
in tyU for some U € U, we may now also assume that for every U € U there are an
iy € I and an sy € S;  such that tyU = syVy,.

Let i € I. Set S! = {t;;'sy : U € U and sy € S!}. Note that the map U + t;' sy
from {U € U : iy = i} to S is injective, for if t;;'sy = t;/sp: for U and U’ in the
domain then U = t;,'s;V; = t;tsprV; = U'. Thus |SY| < |S!|. Define S; = S; U SY.
Then for every t € K we have

[tS;AS;| < |tS;ASy| + |tSY| + |SY]

< J1s+als)

o 2
< | — — .
< (2 + n) 1S5

showing that S; is (K, §)-invariant. Therefore {(V;, S;)}ics is clopen tower decomposi-
tion of X with (K, d)-invariant shapes, as desired. O

Remark 10.3. Matui showed in [29] that almost finiteness for a second countable étale
groupoid G with compact zero-dimensional unit space has several implications for the
homology groups H"(G) and their relation to both the topological full group [G] and
the K-theory of the reduced groupoid C*-algebra of GG. In particular, if the groupoid
is principal and almost finite then there is a canonical isomorphism H'(G) = [G]/N
where N is the subgroup generated by the elements of finite order (see Section 7 of [29]).
As Matui observes in Lemma 6.3 of [29], the groupoid associated to a free action of Z™
on a zero-dimensional compact metrizable space is almost finite. By Theorem [10.2]
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Example 4.9, and Theorem 0.3, we see that this is also the case for every free minimal
action G ~ X of a finitely generated nilpotent group on a zero-dimensional compact
metrizable space with Eg(X) finite.

11. ALMOST FINITENESS AND EXTENSIONS

As noted in Remark [8.4] almost finiteness does not pass to extensions in general. We
will show however in Theorem that an extension G ~ Y of an almost finite free
action G ~ X is again almost finite whenever Eg(Y') and dim(Y") are both finite. To
this end we will employ the following notions of coarse almost finiteness and m-almost
finiteness.

Definition 11.1. We say that a free action G ~ X on a compact metric space is
coarsely almost finite if for every n € N, finite set K C G, and § > 0 there are

(i) a collection {(V}, S;)}ier of open towers with (K, §)-invariant shapes such that
{SiVi}icr is a castle,
(ii) sets Si C S; such that |S!| < |S;|/n and

X\ |svi <] |sivi.
icl iel
An almost finite free action is coarsely almost finite by Lemma [T0.11

Definition 11.2. Let m € N. We say that a free action G ~ X on a compact metric
space is m-almost finite if for every n € N, finite set K C G, and 6 > 0 there are

(i) a collection {(V},S;)}ier of open towers with (K, §)-invariant shapes such that
diam(sV;) < 6 for every ¢ € I and s € S; and the family {S;V;}ie; has

chromatic number at most m + 1,
(ii) sets Si C S; such that |S!| < |S;|/n and
X\ |svi<] |sivi
iel iel
The following is easily verified by taking the inverse images under the extension

Y — X of all of the sets at play in the definition of coarse almost finiteness.

Proposition 11.3. If Y — X s an extension of free actions of G and G ~ X is
coarsely almost finite, then G 'Y s coarsely almost finite.

Lemma 11.4. Suppose that X has covering dimension d < oo and let G ~ X be a
free action which is coarsely almost finite. Then the action is d-almost finite.

Proof. Let n € N, and let K be a finite subset of G and § > 0. By coarse almost
finiteness there are

(i) a collection {(V;, i) }ier of open towers with (K, §)-invariant shapes such that
{S;V;}ier is a castle, and
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(ii) sets S; C S; such that |S}| < |S;|/n and

XA\ ]svi <] | sivi.
i€l iel
Since the towers S;V; for i € I are pairwise disjoint, for each ¢ we can find an open set
U; D V; so that the towers S;U; for i € I are still pairwise disjoint. Since X has covering
dimension d, for each i we can find a collection {V;1,...,Vix,} of open subsets of U;
which covers V;, satisfies diam(sV;;) < 6 for every j = 1,...,k;, and has chromatic
number at most d + 1. The collection of towers {(V;;,S;) : i € I, 1 < j < k;} then
fulfills the requirements in the definition of d-almost finiteness. O

The proof of the following is essentially the same as for (i)=-(ii) of Theorem [0.2]
which is the case m = 0. We leave the details to the reader.

Lemma 11.5. Let G ~ X be a free action which is m-almost finite. Then the action
has m-comparison.

Theorem 11.6. Let G A~ X be an almost finite free action and let G A Y be an
extension of a such that Eq(Y) is finite and dim(Y') < oco. Then [ is almost finite.

Proof. Since « is almost finite it is coarsely almost finite, and so by Proposition [I1.3the
action [ is coarsely almost finite. Consequently [ has m-comparison by Lemmas [11.5]
and [IT.4l We then conclude by Theorem that (8 is almost finite. O

12. ALMOST FINITENESS AND Z-STABILITY

We show here in Theorem [[2.4] that, assuming G is infinite, the reduced crossed
product C'(X) x, G of an almost finite free minimal action G ~ X on a compact
metrizable space is Z-stable. The argument uses tiling technology as in the proof of
Theorem 5.3 of [4]. Note that since almost finiteness implies that G is amenable, the
reduced and full crossed products coincide in this case, although we will not need this
fact.

Recall that c.p.c. stands for “completely positive contractive”, and that a map
¢ : A — B between C*-algebras is order-zero if ¢(ai)p(az) = 0 for all ay,a0 € A
satisfying ajas = 0. We write 3 for the relation of Cuntz subequivalence.

In order to verify Z-stability we will use the following result of Hirshberg and Orovitz
(Theorem 4.1 of [19]).

Theorem 12.1. Let A be a simple separable unital nuclear C*-algebra not isomorphic
to C. Suppose that for every n € N, finite set 2 C A, € > 0, and nonzero positive
element a € A there exists an order-zero c.p.c. map ¢ : M, — A such that

(i) L —p(1) S a,

(ii) ||[a, p(b)]|| < € for all a € Q and norm-one b € M,,.

Then A is Z-stable.
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The following is the Ornstein—Weiss quasitiling theorem [34]. See Theorem 4.36 of
[22] for this precise formulation. For 0 < n < 1, we say that a collection {A;} of
subsets of a finite set E' is n-disjoint if there exist sets A, C A; with |A;| > (1 —n)| A
such that the collection {A}} is disjoint, and that it n-covers E if ||J, A;| > n|E].

Theorem 12.2. Let 0 < § < 5 and let n € N be such that (1 — 3/2)" < 8. Then
whenever e € Ty C Ty, C --- C T, are finite subsets of a group G such that |0r,_,T;| <
(B/8)|T;| for i = 2,...,n, for every (T,,5/4)-invariant nonempty finite set E C G
there exist Cy,...,C, C G such that
(i) U, T:C; C E, and
(ii) the collection of right translates J;_{T;c : ¢ € C;} is B-disjoint and (1 — B)-
covers F.

Lemma 12.3. Let G ~ X be an action on a compact metrizable space. Let A be a
closed subset of X and B an open subset of X such that A < B. Let f,g: X — [0, 1]
be continuous functions such that f =0 on X \ A and g =1 on B. Then there is a
v € C(X) x\ G such that vigv = f.

Proof. As A < B there exist open sets Uy, ..., U, C X such that A C |J;_, U; and an

s; € G for each ¢ = 1,...,n such that the images s;U; for ¢ = 1,...,n are pairwise
disjoint subsets of B. In the same way that one constructs a partition of unity sub-
ordinate to a given open cover, we can produce, for each ¢ = 1,...,n, a continuous

function h; : X — [0,1] with h; =0on X\U;sothat 0 < >  h; <land > h; =1
on A. Set v =" u (fhi)'/%

Denote by a the induced action of G on C(X), that is, a,(f)(z) = f(s ') for all
seG, feC(X),and x € X. Since ag, (hvz)asj(hlm) =0 for i # j and g dominates

J
o, (R, / %) for every i, we have

vigu = <zn:(hf1/2 ) <Zu (fhi 1/2)

i=1

(Zu a0l )g (Zasz (a7,
= Z U;asl(fhl)usz

i=1
as desired. 0

Theorem 12.4. Suppose that G is infinite. Let G ~ X be a free minimal action
which is almost finite. Then C(X) x\ G is Z-stable.



40 DAVID KERR

Proof. As before we denote the induced action of G on C(X) by «, that is, as(f)(z) =
f(s7lz) forall s € G, f € C(X), and z € X.

Let n € N. Let T be a finite subset of the unit ball of C'(X), F' a symmetric finite
subset of G containing e, and € > 0. Let a be a nonzero positive element of C'(X) x G.
We will show the existence of a map ¢ : M,, = C(X) %, G as in Theorem [I2.T] where
the finite set {2 there is taken to be T U{us : s € F'}. Since C(X) %, G is generated as
a C*-algebra by the unit ball of C'(X) and the unitaries u, for s € G, we will thereafter
be able to conclude by Theorem [I2.1] that C(X) x, G is Z-stable.

By Lemma 7.9 in [37] we may assume that a € C'(X). Then we can find an x5 € X
and a # > 0 such that a is strictly positive on the closed ball of radius 36 centred at
xo. We may therefore assume that a is a [0, 1]-valued function which takes value 1 on
all points within distance 26 from x, and value 0 at all points at distance at least 36
from xy. Write O for the open ball of radius # centred at xy. Minimality implies that
the sets sO for s € G cover X, and so by compactness there is a finite set D C G such
that D~'0 = X.

Let 0 < k < 1, to be determined. Choose an integer Q > n?/c. Take a 3 > 0
which is small enough so that if T"is a nonempty finite subset of G which is sufficiently
invariant under left translation by F' then for every set 7" C T with |T"| > (1—np)|T|
one has

ﬂ sT'

sECFQ

> (1—w)|T].

Choose an L € N large enough so that (1 — 3/2)" < . Since G is amenable by the
almost finiteness of the action, there exist finite subsets e € T}y C Ty, C --- C Ty of G
such that |07, T;| < (8/8)|T;| for I = 2,..., L. By the previous paragraph, we may
also assume that for each [ the set T; is sufficiently invariant under left translation by
F® so that

(12)

ﬂsT

SEFQ

> (1-r)|TH|

for every T' C T; satisfying |T'| > (1 — nB)|T;|.

By the uniform continuity of functions in T U Y? and the uniform continuity of the
transformations = +— tz of X for ¢ € Ty, there is an n > 0 such that if d(z,y) < 7
then |f(tz) — f(ty)| < e/(4n?) for all f € YUY? and t € Ty. Let U = {Uy,..., Uy}
be an open cover of X whose members all have diameter less that 7. Let ' > 0 be a
Lebesgue number for U which is no larger than 6.

Let E be a finite subset of G containing T and let 6 > 0 be such that § < /4.
Since G is infinite, we may enlarge E and shrink ¢ as necessary so as to guarantee that
the cardinality of every nonempty (FE,d)-invariant finite set S C G is large enough to
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satisfy

(13) (im)Mn < 918l

=1
Since the action is almost finite, by Lemma [I0.1] we can find

(i) nonempty open sets Vi,...,Vx C X and nonempty (F, d)-invariant finite sets
Si,..., Sk C G such that the family {(V4, Sk)}E, is a castle with levels of
diameter less than 7/, and

(ii) sets S}, C Sy such that |S;|/|Sk| < 1/(4]|D]?) and

K K
k=1 k=1

Let k£ € {1,...,K}. Since Sg is (T, /4)-invariant, by Theorem and our
choice of the sets 11,...,Ty we can find Cj 1,...,Cy C Sk such that the collection
{Tic:1=1,...,L, c € Cy,} is f-disjoint and (1 — )-covers Si. By [-disjointness, for
every [ =1,...,L and ¢ € Cy; we can find a T} . C T} satistying |Ty..| > (1 — B)|1}]
so that the collection of sets T} .c forl =1,..., L and ¢ € Cy, is disjoint.

Since 7’ is a Lebesgue number for U and the levels of the tower (Vj, Sk) have diameter

less than 7/, for each [ = 1,..., L there is a partition
Ciy=CryaUCryol--UChim
such that ¢V, C U, for all m = 1,..., M and ¢ € Cy;,,. For each | and m choose

pairwise disjoint subsets C,Sl{m,...,C,gZ?m of Cyum such that each has cardinality
||Cr.im|/n]. For each i = 2,...,n choose a bijection
1 i
Akﬂz LJ(jéan_+ LJ(jézm
I,m I,m

which sends Czi,lz),m to C’gm for all I,m. Also, define Ay, to be the identity map from
Lo Czi,lz),m to itself, and write Ay ; for the composition Ay ; o A,;j..

Now consider for each j = 1,...,n and ¢ € C',gjl)m the set Ty, . = Ny Tt A 5(c)s
which satisfies

(15) Tysel = (L= np)|Ti].
since each Ty, ,(¢) 15 a subset of T; with cardinality at least (1 — 3)|T}|. Set
Bk7l7C7Q = m ST]:I,l,C

seFQ
and for ¢ =0,...,Q — 1 put
Biteq=F¥ Biieq \ F¥ "' Biico
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Then the sets By o, .., Bricq partition FQBk,l,QQ, which is a subset of T,;l’c. For
s € F' it is clear that

(16) $Brie,q € Brle,g-1Y Bl
while for g =1,...,Q — 1 we have
(17) 8Bk icq € Bricqg—1U BrieqU Briegrt,

for if we are given a t € By ., then st € FO9T1B; ;. o, while if st € FO™92By ;. o
then t € F 77'By ;.o since F is symmetric, contradicting the membership of ¢ in
Bk,l,c,q-

We view C'(X) x, G as being canonically included in the crossed product B(X) x, G
of the action induced by G ~ X on the C*-algebra B(X) of bounded Borel functions
on X. Since the sets sV}, for k =1,..., K and s € S; are closed and pairwise disjoint,
for each k we can find an open set U, DO Vj, such that the sets sU, for k = 1,..., K
and s € S are pairwise disjoint. We define a linear map ¢ : M,, — B(X) x, G by
declaring it on the standard matrix units {e;}};,_, of M, to be given by

62] ZZ Z Z utA;c,iyj(c)cfltfl1th;c

k=1 1=1 m=1 col) el

and extending linearly.
For each k =1,..., K choose a continuous function hy : X — [0, 1] such that hy =1
on Vi and hy = 0 on X \ U. Recalling that o denotes the induced action of G on

C(X), for all k, [, and m, all 1 <i,7 <n,and all c € C',gl)vm we set

hk,l707i7J E § utAk i,5(c)e™ 1t*1atc(hk>-

q= ltEBleq

Define a linear map ¢ : M,, — C(X) x, G by setting

K L
(p(eij) = Z Z Z hk,l,c,z,]

k=1 [=1 m=1 Ceclij,l),m

and extending linearly. Note that if we put
K

h = Z Z Z hk,l,c,z,z

k=1 =1 m=1 i=1 Ceclilgm

then h is a continuous function taking values in [0, 1] which commutes with the image
of ¢, and we have

p(b) = hyp(b)

for all b € M,,, which shows that ¢ is an order-zero c.p.c. map.
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We now verify condition (ii) in Theorem [[2.T]for the elements of the set {u, : s € F'}.
Let 1 <14,7 <n. For s € F we have

—1
ushk,l,c,i,jus - hk,l,c,i,] § § ustAk (e (st) 1astc(h'k)

q= 1tEBklcq

- Z Z utA;c i,j(c)e~ 1t*1atc(h’k)a

q= 1t€Bklcq

and so in view of (I6) and (I7) we obtain
1 €
~1
Jushipeigtts — Prpeigll < 0
Since the element a = ushk,l,cmus_l — Ny, satisfies a*a < lreB,, . ocUs and aa* <
1FQBkyl’A(C),QCUk and the sets FQBk7l7C,QcUk are pairwise disjoint for all k, [, and ¢, this
yields

_ 19
b — ()| = max tshpg e vy = Pieigll < —

"y

||us<)0(eij)ug
and hence, for every norm-one b = (b;;) € M,
s, D] = [lusp(D)ugt — @(b)]|

“ _ €
< Y (b = ool < - = <.
ij=1
Next we verify condition (ii) in Theorem [[2.1lfor the functionsin Y. Let 1 <4, < n.
Let fETUT2 Let 1 <k<Kand1<I<L. Letcec C,gl)’m. Since the elements
tAkj(c) for t € T}, . are distinct, we have

(18) hz,l,c,i,jfhk,l,07i7J Z Z atCAk ,i,5 (o~ 1=t (f)atc(h'z)

q= 1t€Bklcq

and similarly

(19> fhk Cyird k ,Cylyj Z Z fatc h,2

q= 1t€Bklcq

Now let x € Vj,. Since Ay, ;(c)z and cz both belong to U, by our definition of Cj ,
we have d(Ay; j(c)x, cx) < n. It follows that for every ¢ € T} we have

€
|f(tAg i (c)x) — f(tex)| < e
in which case

Hatc/\k,i,j(C)*lt*l (f) = fll =l (O‘tcAk,i,j(C)*lfl(f) sl
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= sup [f(tAr;;(c)r) — f(ter)l

€V,
_ €
3n?’
Using (I8)) and (19) this gives us
(20) 1Pk i Pk = Pk g e ghieill

2

_ a _ 2
= max wmax o ll(een 01 (F) = bl

5
< W
Set w = @(e;;) for brevity. Let f € Y. Since the functions hy ., ; for 1 < k < K,
1<I<L,1<m<M,andcé€ Clgz),m have pairwise disjoint supports, we infer from

20) that
* * €
e
for g equal to either f or f2. It follows that

o 20— ] < P — Pl + (e )| < o

and hence

Ifw—wf|?=|(fw—wf)*(fw—wf)]|
= |w* fPw — fu* fw+ fw'wf —w* fwf]|
< lw* fPw = fw* fwll + [|(fw'w — w* fw) f]|
2e € €

32 32

Therefore for every norm-one b = (b;;) € M,, we have

1L, @< D L i)l < n® - % =e.

i,j=1

To complete the proof, let us now show that 1 — ¢(1) =% a. By enlarging E and
shrinking ¢ if necessary we may assume that the sets Si,..., Sk are sufficiently left
invariant so that for every k = 1,..., K there is an Ry C S such that the set {s €
Ry : Ds C Si} has cardinality at least |Sk|/2. Let 1 <k < K. Let R}, be a maximal
subset of R with the property that the sets Ds for s € R) are pairwise disjoint.
Observe that if s,t € Ry satisfy Ds N Dt # () then s € D~'Dt, which shows that
|R}| > |Ri|/|D™'D| > |Sk|/(2|D|?). Since D7'O = X, for each s € Rj there is
at € D such that tsV} intersects O, which implies that the function a takes the
constant value 1 on tsV} since the diameter of the latter set is less than 6 and a takes
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value 1 at all points within distance 6 of the set O. Therefore the set St of all t € S},
such that a takes the constant value 1 on tVj, has cardinality at least |Sk|/(2|D]?). Set

L M n
UL U Breee

l=1m=1i=1 (%)
ceck,l m

Since |Bycql > (1 —&)|[T1] > (1 — K)|Tk1.m| by (12) and (I5), using (I3]) we obtain
M

cEC“m
L M n

> (1=5)) DD [ Teuml O]
I=1 m=1 i=1

L M
> (1=5)) D |Thtml(IChitim| — )

=1 m=1
L
~Mn) |Tl|)
=1

L
|_| T 1.mCle

=1
> (1= £)(1=20)[Sl,
and so if k and [ are small enough we have

EARE

ADE = 2

Choose an injection fi : Sp\ Sy — SE. Now since for each k the set Qp, = S2\ fi(Sk\SY)
satisfies

1—/{

/—\

1Sk \ S| <

Sel o ISk
> |58 — > Iil >

we deduce, in view of ([4]) and Remark B3] that

K K

k=1 k=1
We can thus find an open cover {Uy,...,U,} of X\|_|,~CK:1 SiVi and sq,...,s, € GG such
that s,Uy, ..., s,U, are disjoint subsets of |_|,€K:1 Q1 Vi. Then the open sets fi(s)V =

(fr(s)s™H)sVj for k =1,...,K and s € Si \ S} together with s,Uy,...,s,U, form a
disjoint collection whose union is contained in |_|kK .S d Vi, which shows that

k=1
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Since the function 1 — (1) is supported on X \ ||, S¢'Vi and a takes the constant

value 1 on Uszl S}in, it follows by Lemma[I2.3]that there is a v € C'(X)x,G satisfying
v*av =1 — (1). This shows that 1 — ¢(1) = a. O

Example 12.5. In [I3] examples were given of free minimal actions Z ~ X on
compact metrizable spaces such that the crossed product C'(X) x, G fails to be Z-
stable. As mentioned in Exampleld.7] these examples have finite tower dimension since
they factor onto an odometer. By Theorem [I2.4] they fail to be almost finite.

Using Theorem [12.4] we can give some new examples of classifiable crossed products,
as we now demonstrate. Let us write ¢ for the class of simple separable unital C*-
algebras having finite nuclear dimension and satisfying the UCT. This class is classified
by the Elliott invariant (ordered K-theory paired with traces) as a consequence of the
work of Elliott-Gong-Lin-Niu [10], Gong-Lin-Niu [15], Tikuisis-White-Winter [4§]
in the stably finite case and of Kirchberg [23] and Phillips [36] in the purely infinite
case. Moreover, the stable finite C*-algebras in the class % are ASH algebras of
topological dimension at most 2. What is particularly novel in the examples below
from the perspective of classification theory is that one can combine infinite asymptotic
dimension in the group with positive topological entropy in the dynamics. For a general
reference on entropy for actions of amenable groups see Chapter 9 of [22].

Proposition 12.6. Suppose that G is infinite, residually finite, and amenable. Let
r € [0,00]. Then there exists a uniquely ergodic free minimal action G ~ X on the

Cantor set which is almost finite and has topological entropy r, and the crossed product
C(X) x G belongs to the class € .

Proof. As G is residually finite we can find a decreasing sequence N O Ny D ...
of finite-index normal subgroups of G such that (;—; Ny = {e}. Then for each k we
have the surjective homomorphism G /N1 — G /Ny given on cosets by sN 1 +— $Ng.
Form the inverse limit Y of the sequence G/N; <— G /Ny < - - -, which as a topological
space is a Cantor set since G is infinite. Then we have the free minimal action G ~ Y
arising from the actions (s, tNy) — stNy of G on each G/Nj. This is an example of a
profinite action, which by definition is an inverse limit of actions on finite sets. It has
a unique G-invariant Borel probability measure u, namely the one induced from the
uniform probability measures on the quotients G/N;. The p.m.p. action G ~ (Y, u),
being compact, has zero measure entropy. By [54] there is a Fglner sequence {F}} for
G such that for each k the set F} is a complete set of representatives for the quotient
of G by N, from which it follows that the action G ~ Y is almost finite, since the
clopen partition of Y corresponding to Ny, is the set of levels of a single clopen tower
with shape F}.

By the Jewett—Krieger theorem [53] 41] there is a uniquely ergodic minimal action
G ~ Z on the Cantor set whose invariant measure x gives a Bernoulli action with
entropy r. Then the p.m.p. actions G ~ (Y, ) and G ~ (Z,v) are disjoint, which
implies that the action G ~ Y x Z is uniquely ergodic and minimal, as is readily seen.
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Moreover, the action G ~ Y X Z is free because the action G ~ Y is free, has entropy
r by the additivity of topological entropy and the variational principle, and is almost
finite by Theorem since it factors onto the almost finite action G ~ Y and the
space Z is zero-dimensional.

By Theorem [[2:4] the crossed product C'(X) x, G is Z-stable. Since the action
is free, minimal, and uniquely ergodic, the crossed product also has a unique tracial
state, given by composing the canonical conditional expectation C(X) x) G — C(X)
with integration with respect to the unique G-invariant Borel probability measure on
X. It follows by [43] that C'(X) x, G has finite nuclear dimension. Since C'(X) %) G
satisfies the UCT [51], we conclude that C'(X) x, G belongs to the class €. O

We note finally that profinite actions of countably infinite residually finite amenable
groups, such as the action G ~ Y in the proof of Proposition 2.0, are already known
to be classifiable (see Remark 5.3 in [47]).

13. THE TYPE SEMIGROUP AND ALMOST UNPERFORATION

Let G ~ X be an action on a zero-dimensional compact Hausdorff space. Write «
for the induced action on C(X), that is, as(f)(z) = f(s7'z) for all s € G, f € C(X),
and x € X. On the space C(X,Zs¢) of continuous functions on X with values in the
set Zs( of nonnegative integers we define an equivalence relation by declaring that
f ~ g if there are hy,..., h, € C(X,Z>) and s1,...,s, € G such that "  h; = f
and > """ | ay,(h;) = g (transitivity is not immediately obvious but is readily checked).
Write S(X, G) for the quotient C'(X,Z>g)/ ~. This is an Abelian semigroup under
the operation [f] + [g] = [f + ¢], which is easily seen to be well defined. We moreover
endow S(X,G) with the algebraic order, that is, for a,b € S(X,G) we declare that
a < b whenever there exists a ¢ € S(X, G) such that a + ¢ = b. The ordered Abelian
semigroup S(X, Q) is called the (clopen) type semigroup of the action. Note that, in
view of Proposition B.5] comparison can be expressed in this language by saying that,
for all clopen sets A, B C X, if u(A) < p(B) for all p € Mg(X) then [14] < [15].

One can equivalently define S(X, G) by considering the collection of clopen subsets
of X x N of the form | || A; x {i} for some n € N (the bounded subsets of X x N)
and quotienting by the relation of equidecomposability, under which | |}, A; x {i} ~
", B; x {i} if for each i = 1,...,n there exist a clopen partition {4;,...,A4; s} of
Ay Sinyo.y S € Gyand ki, ... kg, € {1,...,m} such that

n

Ji m
|_| I_I Si,in,j X {ki,j} = |_|Bz X {’l}
i=1

i=1j=1

The semigroup operation is the concatenation

[UA{}} +L:|i|lBi><{i}} - K|_|A{})u(|_]n B )|

i=n+1
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The isomorphism with the first construction can be seen by considering for each func-
tion f € C(X,Z>o) the decomposition f = Y"1 14, where 4; = {z € X : f(z) > i}
and n = max,ex f(z) and associating to f the subset | |, A; x {i} of X x{1,...,n}.

The idea of a type semigroup originates in Tarski’s work on amenability (see [52])
and has variants depending on the type of action (e.g., on an ordinary set, on a
measure space, or on a zero-dimensional compact space) and the types of sets use in
the definition equidecomposability (e.g., arbitrary, measurable, or clopen). The clopen
version was studied in [40].

Note that every measure p in Mg(X) induces a state on S(X,G) given by [f] —
wu(f). When the action is minimal, this gives a bijection from measures in Mg (X) to
states on S(X, G) by the proof of Lemma 5.1 in [40].

An ordered Abelian semigroup A is said to be almost unperforated if, for all a,b € A
and n € N, the inequality (n + 1)a < nb implies a < b.

Lemma 13.1. Let G ~ X be a free minimal action on the Cantor set such that
S(X,G) is almost unperforated. Then the action has comparison.

Proof. Let A and B be clopen subsets of X such that p(A) < p(B) for all p € Mg(X).
By Lemma 5.1 of [40], every state o on S(X, G) gives rise to a measure pu in Mg(X)
satisfying pu(A) = o([14]) for every clopen set A C X. Thus o([1a]) < o([1p]) for
every state o on S(X,G). Since the action is minimal, X is covered by finitely many
translates of B, so that [14] < m[lg] for some m € N. It follows by Proposition 2.1 of
[35] that there exists an n € N for which (n 4 1)[14] < n[lg]. Almost unperforation
then yields [14] < [1p], establishing comparison. O

The following is a generalization of Theorem [0.2(i)=-(ii). It shows that, for free
minimal actions on the Cantor set, almost finiteness implies a stable version of com-
parison.

Lemma 13.2. Let G ~ X be a free minimal action on the Cantor set which is almost
finite. Let f,g € C(X,Z>o) be such that u(f) < p(g) for every p € Mg(X). Then

1f] < 9]

Proof. Write f =377 14, and g = 37", 15, where A; = {z € X : f(z) > j} and
B, ={z € X : g(x) > k}, with n = max,cx f(z) and m = max,cx g(z).

Let K be a finite subset of G and § > 0, both to be determined. By Theorem [10.2]
there is a clopen castle {(V;, S;) }ie;r with (K, §)-invariant shapes such that | |,., S;V; =
X. By replacing each tower (V;,S;) with finitely many thinner towers with the same
shape S; and with bases forming a clopen partition of V;, we may assume that every
level of every tower in the castle is either contained in or disjoint from A; for every
j=1,...,n, and also either contained in or disjoint from By for every k = 1,...,m.
For each i set E; ; = {s € S; : sV; C A;} for every j and F; , = {s € S; : sV; C By} for
every k. An argument by contradiction using a weak* cluster point as in the proof of
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Theorem shows that we can choose K and d so that for every ¢ we have

1 — ] —
|Ez,| S T~ |F’i,k|a
5 2 1Pl < 7 2

in which case we can find a bijection | [, F;; x {j} — [J;Z; Fix x {k}, which we
write as (s, j) — (tis;, kis;). We then have

=YY Y L

el j=1 SEEi’j

and
)3) SDIETNSIIED 3) BB BRI
1€l j=1 se€kj; i€l j=1 sck; ;
showing that [f] < [¢], as desired. O

The following adds almost unperforation to the conditions in Theorem in the
case that the space is the Cantor set.

Theorem 13.3. Let G ~ X be a free minimal action on the Cantor set and consider
the following conditions:

(i) the action is almost finite,
(i1) S(X,G) is almost unperforated,
(i1i) the action has comparison,
(iv) the action has m-comparison for all m € N,
(v) the action has m-comparison for some m € N.
Then (i)= (i1)=(11i)= (iv)=(v), and if Eq(X) is finite then all five conditions are
equivalent.

Proof. (i)=(ii). Let f,g € C(X,Z>o) be such that (n + 1)[f] < n[g] for some n € N.
Then for every p € Mg(X) we have (n + 1)u(f) < nu(g) and hence p(f) < p(g). It
follows by Lemma that [f] < [g], establishing almost unperforation.

(ii)=-(iii). This is Lemma I3.1]

(iii)=(iv)=-(v). Trivial.

(v)=(i). This is a special case of Theorem @.2(iv)=-(i). O
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