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ABUNDANCE FOR 3-FOLDS WITH NON-TRIVIAL ALBANESE
MAPS IN POSITIVE CHARACTERISTIC

LEI ZHANG

Abstract. In this paper, we prove abundance for 3-folds with non-trivial Al-
banese maps, over an algebraically closed field of characteristic p > 5.

1. Introduction

Over an algebraically closed field of characteristic p > 5, existence of log minimal
models of 3-folds has been proved by Birkar, Hacon and Xu ([2] [21]); and log
abundance has been proved for minimal klt pairs (X,B) when KX +B is big or B
is big ([2] [7] [45]), and when X is non-uniruled and has non-trivial Albanese map
([48]).

This paper aims to prove abundance for 3-folds with non-trivial Albanese maps.

Theorem 1.1. Let X be a klt, Q-factorial, projective minimal 3-fold, over an al-
gebraically closed field k with char k = p > 5. Assume that the Albanese map
aX : X → AX is non-trivial. Then KX is semi-ample.

Precisely we prove log abundance in some cases.

Theorem 1.2. Let (X,B) be a klt, Q-factorial, projective minimal pair of dimension
3, over an algebraically closed field k with char k = p > 5. Assume that the Albanese
map aX : X → AX is non-trivial. Denote by f : X → Y the fibration arising from
the Stein factorization of aX and by Xη the generic fiber of f . Assume moreover
that B = 0 if

(1) dim Y = 2 and κ(Xη, (KX +B)|Xη) = 0, or
(2) dim Y = 1 and κ(Xη, (KX +B)|Xη) = 1.

Then KX +B is semi-ample.

Throughout of this paper, as f : X → Y frequently appears as a projective
morphism of varieties, we denote by η (resp. η̄) the generic (resp. geometric generic)
point of Y and by Xη (resp. Xη̄) the generic (resp. geometric generic) fiber of f .
Moreover we say f : X → Y is a fibration if f∗OX = OY .

To study abundance for varieties with non-trivial Albanese maps, it is necessary
to study the following conjecture on subadditivity of Kodaira dimensions.

Conjecture 1.3 (Iitaka conjecture). Let f : X → Y be a fibration between two
smooth projective varieties over an algebraically closed field k, with dimX = n and
dim Y = m. Then

Cn,m : κ(X) ≥ κ(Y ) + κ(Xη, KXη).
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The divisor KXη = KX |Xη is a Cartier divisor corresponding to the dualizing
sheaf of Xη, which is invertible since Xη is regular. In characteristic zero, since the
geometric generic fiber Xη̄ is smooth over k(η), so κ(Xη̄) = κ(Xη, KXη). In positive
characteristic, Xη is not necessarily smooth over k(η), if Xη has a smooth projective

birational model X̃η̄,
1 then by [8, Corollary 2.5]

κ(Xη, KXη) = κ(Xη̄, KXη̄) ≥ κ(X̃η̄).

We refer to [46] for more discussions on this conjecture. In this paper we prove the
following theorem, which implies Theorem 1.2 after combined with the results of
[48].

Theorem 1.4 (= Theorem 4.1). Let f : X → Y be a fibration from a Q-factorial
projective 3-fold to a smooth projective variety of dimension 1 or 2, over an alge-
braically closed field k with char k = p > 5. Let B be an effective Q-divisor on
X such that (X,B) is klt. Assume that Y is of maximal Albanese dimension, and
assume moreover that

♠ if κ(Xη, KXη + Bη) = dimX/Y − 1, then B does not intersect the generic
fiber Xξ of the relative Iitaka fibration I : X 99K Z induced by KX + B on
X over Y .

Then
κ(X,KX +B) ≥ κ(Xη, KXη +Bη) + κ(Y ).

Remark 1.5. As char k = p > 5, for a fibration h : X → Z, if the generic fiber is a
curve with arithmetic genus one, then the geometric generic fiber must be a smooth
elliptic curve (Proposition 2.11). So in case κ(Xη, KXη + Bη) = dimX/Y − 1, the
assumption ♠ guarantees that the relative Iitaka fibration I : X 99K Z is fibred
by elliptic curves. The advantage of an elliptic fibration is the canonical bundle
formula: if h : W → Z is a flat relative minimal elliptic fibration then there exists
an effective divisor BZ on Z such that KW ∼Q h∗(KZ + BZ) ([8, 3.2]). Canonical
bundle formula is the key technique to study log abundance ([25]). Here we mention
that in positive characteristic, only under some very strong conditions, BZ has been
proved to be effective ([7, Lemma 6.7], [11, Theorem 3.18], [10, Theorem B]).

The result above has been proved when the geometric generic fiber Xη̄ is smooth
and B = 0 ([8, 12]), which was used in [48] to prove log abundance for non-uniruled
3-folds with non-trivial Albanese maps. To study the uniruled case, we have to
treat fibrations with singular geometric generic fibers. For a separable fibration
with possibly singular geometric generic fiber, C3,m has been proved by the author
[46] when KX +B is f -big, KY is big and Y is of maximal Albanese dimension. To
prove Theorem 1.4, the essentially new results are the following two theorems.

Theorem 1.6 (= Theorem 4.2). Let (X,B) be a projective Q-factorial klt pair
of dimension 3, over an algebraically closed field k with char k = p > 5. Let
f : X → Y = A be a fibration to an elliptic curve or a simple abelian surface.
Assume that KX +B is f -big. Then

κ(KX +B) ≥ κ(Xη, KXη +Bη).

1Existence of smooth resolution of singularities has been proved in dimension ≤ 3 by [6].
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Theorem 1.7 (= Theorem 4.4). Let (X,B) be a Q-factorial klt pair of dimension
3, over an algebraically closed field k with char k = p > 5. Let f : X → Y be a
fibration to a normal curve Y of genus g(Y ) ≥ 1. Assume κ(Xη, (KX +B)|Xη) = 0.
Then

κ(X,KX +B) ≥ κ(Y ).

If moreover KX +B is nef then it is semi-ample.

We summarize the techniques to study C3,m which appeared in the papers [37,
11, 46, 12], then explain the ideas of the proof of Theorem 1.6 and 1.7.

(1) Positivity results. Let f : X → Y be a separable fibration of normal projective
varieties. In positive characteristic, Parakfalvi [37] first proved that for sufficiently
divisible n, the sheaf f∗OX(n(KX/Y +B)) is weakly positive under the condition that
(Xη, Bη) is strongly F -regular and KX/Y +B is f -ample, then Ejiri [11] reproved it
and made some generalizations using different method. This result may fail when
Xη is singular. But in dimension three and over an algebraically closed field k
with char k = p > 5, we can take advantage of minimal model theory. Under the
condition that KX +B is nef, relatively big and semi-ample over Y , the author [46]
(or [38] under stronger conditions) proved that for sufficiently divisible n, g > 0, the
sheaf F g∗

Y (f∗OX(n(KX/Y +B))⊗ωn−1
Y ) contains a non-zero weakly positive sub-sheaf

Vn, which plays a similar role as f∗OX(n(KX/Y +B)) does in studying subadditivity
of Kodaira dimensions.

If f : X → Y is a fibration from a 3-fold to a smooth curve, when κ(Xη) = 1
the relative Iitaka fibration of X over Y is fibred by elliptic curves since p > 5
(Proposition 2.11). By canonical bundle formula ([8, 3.2]) and minimal model theory,
one can reduce to a pair (Z,BZ) of dimension two with KZ + BZ being relatively
big over Y . Then one can show that f∗ω

n
X/Y contains a non-zero nef sub-sheaf Vn

([12, Theorem 2.8]).
Using these positivity results above, one can usually treat the case when KY is

big or the case when det Vn is big. Note that this approach only requires KX +B to
be nef (not necessarily klt). This paper also treats inseparable fibrations, which can
be reduced to a separable fibration of a pair (X ′, B′) not necessarily klt by applying
foliation theory (Proposition 2.10).

To treat the case when Y is an elliptic curve and deg Vn = 0, we have the following
two approaches.

(2.1) Trace maps of relative Frobenius. Ejiri [11, Theorem 1.7] introduced a clever
trick as follows. First there exists an isogeny π : Y ′ → Y such that π∗Vn =

⊕

Li

where Li ∈ Pic0(Y ′) by [27, 1.4. Satz] and [34, Corollary 2.10]. Then by applying
trace maps of relative Frobenius, one gets many relations of Li, from which one
can prove that every Li is torsion in Pic0(Y ′). This indicates that for sufficiently
divisible N , the line bundle O(NKX) has many global sections.

This method heavily relies on the smoothness of the geometric generic fiber Xη,
it was applied to prove C3,1 when Xη is smooth and either KX is f -big ([11, Thm.
1.7]) or is f -Q-trivial ([12, Sec. 3]).

(2.2) Adjunction formula. Granted the isogeny π : Y ′ → Y and the splitting
π∗Vn =

⊕

Li, first by applying covering theorem (Theorem 2.3) one can construct
effective divisors Di ∼ NKX + Pi for some Pi ∈ f ∗Pic0(Y ) and an integer N . Then
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applying adjunction formula to different components of Di and log abundance for
surfaces ([41]), one can get some relations of Pi which conclude that Pi are torsion.

This approach was used in [12, Sec. 4] and [47]. In fact it applies once granted
positivity results as in (1) without requiring Xη to be smooth.

Now we explain the ideas of the proof of Theorem 1.6 and 1.7.

(3) To prove Theorem 1.6, we consider the cohomological locus

V 0(f∗OX(n(KX +B))) = {L ∈ Pic0(A)|h0(A, f∗OX(n(KX +B))⊗ L) > 0}.

If dim(V 0(f∗OX(n(KX +B)))) > 0, then V 0(f∗OX(n(KX +B))) generates Pic0(A)
since Pic0(A) is simple, and it is easy to show that κ(X,KX + B) ≥ dimA. For
the remaining case dimV 0(f∗OX(n(KX +B))) ≤ 0, we follow the approach in (2.2).
The key point is to find at least two effective divisors Di ∼ n(KX +B)+Pi for some
Pi ∈ f ∗Pic0(A). We try to find a subsheaf F of f∗OX(n(KX + B)) and an isogeny
π : A′ → A such that π∗F =

⊕

Li where Li ∈ Pic0(A′). The sheaf F is obtained as
the image of the trace map

Tre,nX,B : f∗(F
e
X∗OX((1− pe)(KX +B))⊗OX(n(KX +B))) → f∗OX(n(KX +B)).

We apply Frobenius amplitude to show that F satisfies a property slightly weaker
than generic vanishing (Theorem 3.7), then apply “killing cohomology” ([40, Prop.
12 and Sec. 9] or [20, Lemma 1.3]) to get an isogeny π : A′ → A, some Pi ∈ Pic0(A′)
and a generically surjective homomorphism

⊕

i Pi → π∗F .

(4) To prove Theorem 1.7, we can assume KX + B to be f -nef by replacing
(X,B) with a relative minimal model, then for a sufficiently divisible integer k > 0,
k(KX + B) = f ∗L for some nef L ∈ Pic(Y ) ([43]). It suffices to show that either
degL > 0 or L is torsion. For the case degL = 0, we use the strategy of [1, Theorem
8.10]. First we construct a nef divisor D = aH − bF on X with ν(D) = 2 where H
is an ample divisor and F is a general fiber of f , second we prove that there exists a
semi-ample divisor D′ ≡ D, which induces a fibration g : X → Z to a surface, finally
we can show the restriction on the generic fiber k(KX + B)|G = k(KG +B|G) ∼ 0,
which implies that L is torsion.

Remark 1.8. The crucial results to be used include minimal model theory of 3-
folds [2, 4, 21, 45], abundance for surfaces [41, 43] and results on positivity and
subadditivity of Kodaira dimensions in [46]. We try to make the proof self-contained.
But for some cases we only sketch the proof and refer to [12] and [48] for details.

This paper is organized as follows. In Section 2, we collect some useful results and
study inseparable fibrations as preparations. Section 3 is devoted to studying sheaves
on abelian varieties. In Section 4, we study subadditivity of Kodaira dimensions.
Finally in Section 5 we finish the proof of abundance in Theorem 1.2.

Conventions: Sometimes we do not distinguish between line bundles and Cartier
divisors, and abuse the notation additivity and tensor product if no confusion occurs.

Let X be a normal projective variety. Denote by Wdiv(X) the set of Weil divisors
and by Cdiv(X) the set of Cartier divisors on X . Assume K = Q or R. The divisors
in Wdiv(X)⊗ZK are called K-divisors, and the ones in Cdiv(X)⊗ZK are called K-
Cartier K-divisors. We use ≡ for the numerical equivalence relation in Cdiv(X)⊗ZK.
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Let D be a Q-divisor on a normal variety X . The Weil index of D is the minimal
positive integer l such that lD is integral. If D is Q-Cartier, the Cartier index
is defined similarly. We use ∼ (resp. ∼Q) for linear (resp. Q-linear) equivalence
between Cartier (resp. Q-Cartier) divisors and line bundles. For two (Q-)divisors
D1, D2 on X , if D1|Xsm ∼ D2|Xsm (resp. D1|Xsm ∼Q D2|Xsm), we also denote
D1 ∼ D2 (resp. D1 ∼Q D2).

Let X be a normal variety and D a Weil divisor on X . Then OX(D) is a subsheaf
of the constant sheaf K(X) of rational functions, with the stalk at a point x being
defined by

OX(D)x := {f ∈ K(X)|((f) +D)|U ≥ 0 for some open set U containing x}.

For notions in minimal model theory such as lc, klt dlt pairs, flip and divisorial
contraction and so on, we refer to [2].

For a variety X , we usually use F e
X : X → X to denote the eth iteration of absolute

Frobenius, we sometimes use Xe for the origin scheme of F e
X to avoid confusions.

Let ϕ : X → T be a morphism of schemes and let T ′ be a T -scheme. Then we
denote by XT ′ the fiber product X×T T

′. For a divisor D onX (resp. an OX -module
G), the pullback of D (resp. G) to XT ′ is denoted by DT ′ or D|XT ′ (resp. GT ′ or
G|XT ′ ) if it is well-defined.

If X is a projective variety in dimension ≤ 3, it always has a smooth birational
model X̃ , then κ(X) := κ(X̃) which is birational invariant.

Acknowledgments. Part of the work was done during the period of the author visiting
Xiamen University and Institute for Mathematical Sciences of National University
of Singapore, he would like to thank Prof. Wenfei Liu and Deqi Zhang for their
hospitalities and support. The author also thanks Hiromu Tanaka, Yi Gu, Zsolt
Patakfalvi, Zhi Jiang and Yong Hu for some useful communications and discussions.
He is very grateful to the anonymous referee, who kindly points out one serious
mistake in the original version and many other inaccuracies and gives many valuable
and explicit suggestions to improve the proof and the writing. This work is supported
by grant NSFC (No. 11771260).

2. Preliminaries

In this section we collect some technical results which will be used in the paper.

2.1. Separability of fibrations.

Proposition 2.1. Let f : X → Y be a fibration of normal varieties over an alge-
braically closed field k of characteristic p > 0. Then

(1) f is separable if and only if Xη̄ is reduced, and if and only if Xη̄ is integral;
(2) if dimY = 1 then f is separable.

Proof. Since f is a fibration we have H0(OXη) = K(Y ), and since Xη is normal we
can show K(Y ) is algebraically closed in K(X). Then the assertion (1) follows from
applying [28, Sec. 3.2.2 Cor. 2.14 and Prop. 2.15]. The assertion (2) is [1, Lemma
7.2]. �
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2.2. Relative Fujita Vanishing. The following result is [26, Theorem 1.5].

Lemma 2.2. Let f : X → Y be a projective morphism over a Noetherian scheme,
H an f -ample line bundle and F a coherent sheaf on X. Then there exists a positive
integer N such that, for every n > N and every nef line bundle L,

Rif∗(F ⊗Hn ⊗ L) = 0, if i > 0.

2.3. Covering Theorem. The result below is [[22], Theorem 10.5] when X and Y
are both smooth, and the proof also applies when varieties are normal.

Theorem 2.3. ([22, Theorem 10.5]) Let f : X → Y be a proper surjective morphism
between complete normal varieties. If D is a Cartier divisor on Y and E an effective
f -exceptional divisor on X, then

κ(X, f ∗D + E) = κ(Y,D).

As a corollary we get the following useful result, which also appeared in [12].

Lemma 2.4. ([12, Lemma 2.3]) Let g : W → Y be a surjective projective morphism
between projective varieties. Assume Y is normal and let L1, L2 ∈ Pic(Y ) be two
line bundles on Y . If g∗L1 ∼Q g∗L2 then L1 ∼Q L2.

Proof. Let L = L1 ⊗ L−1
2 . Denote by σ : W ′ → W the normalization and let

g′ = g ◦σ : W ′ → Y . Then g′∗L ∼Q 0. Applying Theorem 2.3 to g′ : W ′ → Y shows
that L ∼Q 0, which is equivalent to that L1 ∼Q L2. �

2.4. Minimal model theory of 3-folds. The following theorem includes some
recent results of minimal model theory for 3-folds in positive characteristic.

Theorem 2.5. Assume char k = p > 5. Let (X,B) be a Q-factorial projective pair
of dimension three and f : X → Y a projective surjective morphism.

(1) If either (X,B) is klt and KX + B is pseudo-effective over Y , or (X,B) is
lc and KX + B has a weak Zariski decomposition over Y , then (X,B) has a log
minimal model over Y .

(2) If (X,B) is dlt and KX + B is not pseudo-effective over Y , then (X,B) has
a Mori fibre space over Y .

(3) Assume that (X,B) is klt in (3.1) and is dlt in other cases, and that KX +B
is nef over Y .

(3.1) If KX +B or B is big over Y , then KX +B is semi-ample over Y .
(3.2) If dim Y ≥ 1, then (KX +B)η is semi-ample on Xη.
(3.3) If Y is a smooth curve, Xη is integral and κ(Xη, (KX +B)η) = 0 or 2, then

KX +B is semi-ample over Y .
(3.4) If Y contains no rational curves, then KX +B is nef.

(4) Assume (X,B) is klt. If Y is a non-uniruled surface and KX +B is pseudo-
effective over Y , then KX+B is pseudo-effective, and there exists a map σ : X 99K X̄
to a minimal model (X̄, B̄) of (X,B) such that, the restriction map σ|Xη is an
isomorphism from Xη to its image.

Proof. Assertion (1) is from [2, Theorem 1.2 and Proposition 7.3]; (2) is [4, Theorem
1.7]; (3.1) is [2, Theorem 1.4]; (3.2) is from [43, Theorem 1.1]; and (3.3) is from [3,
Theorem 1.5 and 1.6 and the remark below 1.6].
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Assertion (3.4) follows from the cone theorem [4, Theorem 1.1]. Indeed, otherwise
we can find an extremal ray R generated by a rational curve Γ, so Γ is contained
in a fiber of f since Y contains no rational curves, this contradicts that KX + B is
f -nef.

For (4), KX +B is obviously pseudo-effective because otherwise, X will be ruled
by horizontal (w.r.t. f) rational curves by (2), which contradicts that Y is non-
uniruled. The exceptional locus of a flip contraction is of dimension one, so it does
not intersect Xη, neither does that of an extremal divisorial contraction because it
is uniruled (see the proof of [4, Lemma 3.2]). Running an LMMP for KX + B, by
induction we get a map σ : X 99K X̄ as required. �

2.5. Numerical dimension.

Definition 2.6. Let D be an R-Cartier R-divisor on a smooth projective variety X
of dimension n. The numerical dimension κσ(D) is defined as the biggest natural
number k such that

lim inf
m→∞

h0(xmDy+ A)

mk
> 0 for some ample divisor A on X.

If such a k does not exist then we define κσ(D) = −∞.

Remark 2.7. In arbitrary characteristics, since smooth alterations exist due to de
Jong [23], this invariant can be defined for R-Cartier R-divisors on normal varieties
by pulling back to a smooth variety, which does not depend on the choices of smooth
alterations by [5, 2.5-2.7].

Proposition 2.8. Let X be a normal projective variety and D an R-Cartier R-
divisor on X.

(1) When D is nef, then κσ(D) coincides with

ν(D) = max{k ∈ N|Dk · An−k > 0 for an ample divisor A on X}.

If moreover D is effective and S is a normal component of D, then

ν(D|S) ≤ ν(D)− 1.

(2) Let µ : W → X be a generically finite surjective morphism between two
normal projective varieties and E an effective µ-exceptional R-Cartier R-divisor on
W . Then

κσ(D) = κσ(µ
∗D + E).

(3) If (X,∆) is a Q-factorial log canonical 3-fold, and (X ′,∆′) is a minimal model
of (X,∆), then

κσ(KX +∆) = ν(KX′ +∆′).

Proof. For (1), the first assertion is [33, V, 2.7 (6)] in characteristic zero, and is
[5, Porposition 4.5] in characteristic p > 0. The second assertion follows from the
relation [9, Sec. 1.2]

(D|S)
k−1 · (A|S)

n−k = Dk−1 · An−k · S ≤ Dk · An−k.

(2) is from applying Theorem 2.3 (cf. [5, 2.7]).
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Finally for (3), taking a common log resolution of (X,∆) and (X ′,∆′), this as-
sertion follows from applying (2) and some standard arguments of minimal model
theory. �

2.6. Inseparable fibrations. In this section we work over an algebraically closed
field k of characteristic p > 0. Let X be a smooth variety. Recall that a (1-)foliation
is a saturated subsheaf F ⊂ TX which is involutive (i.e., [F ,F ] ⊂ F) and p-closed
(i.e., ξp ∈ F , ∀ξ ∈ F). A foliation F is called smooth if it is a subbundle of TX .

Proposition 2.9. Let X be a smooth variety and F a foliation on X.
(1) We get a normal variety Y = X/F = SpecAnn(F), and there exist natural

morphisms π : X → Y and π′ : Y → X(1) fitting into the following commutative
diagram

X

π
��

FX

""❊
❊❊

❊❊
❊❊

❊

Y
π′

// X(1).

Moreover deg π = pr where r = rk F .
(2) There is a one-to-one correspondence between foliations and normal varieties

between X and X(1), by the correspondence F 7→ X/F and the inverse correspon-
dence Y 7→ Ann(OY ) := {ξ ∈ TX |ξ(a) = 0, ∀a ∈ OY }.

(3) The variety Y is regular if and only if F is smooth.
(4) If Y0 denotes the regular locus of Y and X0 = π−1Y0, then

KX0 ∼ π∗KY0 + (p− 1) detF|X0.

Proof. We refer to [29, p.56-58] or [13]. �

The following result helps us to reduce an inseparable fibration to a separable one.

Proposition 2.10. Let f : X → Y be a fibration from a normal projective 3-fold
to a normal surface of maximal Albanese dimension, and let B be an effective Q-
divisor on X. Then there exist a purely inseparable morphism σ : X → X ′, a
separable fibration f ′ : X ′ → Y , a rational number t > 0 and an effective Q-divisor
B′ on X ′ such that

KX +B ∼Q t(σ∗(KX′ +B′)).

Proof. Let aY : Y → A be the Albanese map and let aX = aY ◦f . If f is a separable
morphism, then we are done.

Assume that f is inseparable. Let L1 and L2 denote the saturation of the im-
age of the natural homomorphisms a∗XΩ

1
AX

→ Ω1
X and f ∗Ω1

Y → Ω1
X respectively.

Then L1 ⊆ L2 and rk L2 ≤ 1 since f is inseparable ([17, Prop. 8.6A]). And by
Igusa’s result ([39, Theorem 4]), we have L1 is generically globally generated, and
h0(X,L1) ≥ h0(AX ,Ω

1
AX

) ≥ 2 > rk L1. Therefore L1 = L2 = L is of rank one and
h0(X,L∗∗) ≥ 2 ([48, Lemma 4.2]).

We get a natural foliation F = L⊥ ⊂ TX of rank 2, and a quotient map ρ :
X → X1 = X/F , which is a factor of f by the construction above. Denote by X0
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the maximal smooth open subset of X such that F|X0 is smooth, and let X0
1 =

X0/(F|X0). Then

(1) KX0 ∼ ρ∗KX0
1
+ (p− 1) detF|X0 .

On the other hand, we have the following exact sequence

0 → L|X0 → Ω1
X0 → F∗|X0 → 0,

which gives

detF|X0 ∼ L|X0 −KX0 .

Combining with Equation (1), we get

(2) KX0 ∼Q

1

p
(ρ∗KX0

1
+ (p− 1)L|X0).

Since L is generically globally generated, there exists an effective Weil divisor B′

on X such that B′ ∼ L. And since ρ is purely inseparable, there exist Q-divisors
B1, B

′
1 on X1 such that ρ∗B1 = B and ρ∗B′

1 = B′. Let B1 = pB1 + (p− 1)B′
1. Then

since X \X0 is of codimension ≥ 2 in X , by Equation (2) we have that

KX +B ∼Q

1

p
(ρ∗(KX1 +B1)).

If the natural fibration f1 : X1 → Y is separable then we are done. If not, we
consider the pair (X1, B1) instead and repeat the process above. We can prove that
mult((X1)η) < mult(Xη) by the argument of [48, the latter case of Thm. 4.3]. So
this process will terminate, and we can show the assertion by induction. �

For a fibration fibred by curves of arithmetic genus one, we have the following
result if char k = p ≥ 5.

Proposition 2.11. Assume char k = p ≥ 5. Let g : X → Z be a fibration of normal
varieties of relative dimension one. Assume that the generic fiber Xξ of g is a curve
with arithmetic genus pa(Xξ) = 1. Then the geometric generic fiber Xξ of g is a

smooth elliptic curve over K(Z).

Proof. Assume by contrary that Xξ is singular. Applying [42, Lemma 2.3 and 2.4],
we get the following commutative diagram

X

g

��

X1
oo

��

X2

��

oo X̃2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

oo

Z Z1
oo Z2

oo

where Z1 → Z is a purely inseparable base change (or identity), Z2 → Z1 is a degree
p purely inseparable extension, X1 = X ×Z Z1 and X2 = X ×Z Z2, such that Xξ1 is
regular and that Xξ2 is reduced but not normal, here ξ1, ξ2 denote the generic point

of Z1, Z2 respectively. The normalization X̃ξ2 of Xξ2 has smaller arithmetic genus
hence must be a smooth curve of genus zero. If necessary by shrinking Zi, we can
assume both X̃2 and X1 are smooth, so the natural morphism π : X̃2 → X1 is the
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quotient induced by a smooth foliation F on X̃2, which is a subbundle of TX̃2
of

rank one. Since

KX̃2
= π∗KX1 + (p− 1)F

we get a contradiction by (p− 1) degFξ = degKX̃ξ2
= −2 and p ≥ 5. �

2.7. Trace maps of absolute Frobenius morphisms. Let X be a projective
variety over an algebraically closed field k of characteristic p > 0. We will consider
the trace maps in the following two settings.

Notation 2.12. Assume X is normal. Denote by X0 the smooth open subset of X .
Let B be an effective Q-Weil divisor with Weil index not divisible by p. There exists
a positive integer g such that (pg − 1)B is integral, thus (peg − 1)B is integral for
every integer e > 0. The composition map of the natural inclusion

F eg
X∗OX((1− peg)(KX +B))|X0 →֒ F eg

X0∗
OX0((1− peg)KX0)

and the trace map TrF eg
X0

: F eg
X0∗

OX0((1− peg)KX0) → OX0 extends to a map on X :

TregX,B : F eg
X∗OX((1− peg)(KX +B)) → OX .

Let D be a Cartier divisor on X . Twisting TregX,B with OX(D) induces

Tr
eg
X,B(D) :F eg

X∗OX((1 − peg)(KX +B))⊗OX(D)

∼= F
eg
X∗OX((1 − peg)(KX +B) + pegD) → OX(D).

Then taking global sections induces a trace map

Φeg : H
0(X,F eg

X∗OX((1− peg)(KX +∆) + pegD)) → H0(X,D).

Denote Seg
B (X,D) = ImΦeg and S0

B(X,D) = ∩e≥0S
eg
B (X,D). If B = 0, we usually

use the notation S0(X,D) instead of S0
0(X,D). Note that for e′ > e, we have

Se′g
B (X,D) ⊆ Seg

B (X,D) by the factorization

Tr
e′g
X,B(D) :F eg

X∗F
(e′−e)g
X∗ OX((1− pe

′g)(KX +B) + pe
′gD)

F eg
X∗

Tr
(e′−e)g
X,∆ ((1−peg)(KX+B)+pegD)

−−−−−−−−−−−−−−−−−−−−−−−−→

F
eg
X∗OX((1− peg)(KX +B) + pegD)

TregX,B(D)
−−−−−−→ OX(D).

Notation 2.13. Assume X is Gorenstein in codimension one and satisfies Serre con-
dition S2. Let B be an effective Q-AC divisor such that KX +B is Q-Cartier ([46,
Sec. 2.1 and 2.3], namely, B = M−nKX

n
for some n > 0, where M is a Cartier

divisor and M − nKX is effective in codimension one). Assume moreover that the
Cartier index of KX + B is not divisible by p. Let g > 0 be an integer such that
(1− pg)(KX +B) is Cartier. Then we can define trace maps TregX,B, T r

eg
X,B(D) as in

2.12 (see [46, Sec. 2.3] for details). By [14, Lemma 13.1], there exists an ideal σ(B),
namely, the non-F -pure ideal of (X,B), such that for some sufficiently divisible
g′ > 0 and any e > 0,

ImTreg
′

X,B = σ(B) = Treg
′

X,B(F
eg′

X∗(σ(B) · OX((1− peg
′

)(KX +B)))).

Borrowing the idea of the proof of [37, Lemma 2.20], we prove the following lemma.
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Lemma 2.14. Using Notation 2.13, let A,D be two Cartier divisors on X. If A is
ample, then there exists M > 0 such that for any m > M and e > 0, the trace map

Φe,m : H0(X,F
eg′

X∗ (σ(B) · OX((1− peg
′

)(KX +B)))⊗OX(mA+D))

→ H0(X,σ(B) · OX(mA+D))

is surjective. In particular, there exists some c > 0 such that for any m > 0,
dimS0

B(X,mA +D) ≥ cmdimX .

Proof. We only need to prove the first assertion, which implies the second one. Let

Keg′ = ker(Treg
′

X,B : F eg′

X∗(σ(B) · OX((1 − peg
′

)(KX + B))) → σ(B)). Then we have
the following commutative diagram of short exact sequences

0 // Keg′
//

γ1

��

F
eg′

X∗(σ(B) · OX((1− peg
′

)(KX +B))) //

γ2
��

σ(B) // 0

0 // K(e−1)g′
// F

(e−1)g′

X∗ (σ(B) · OX((1− p(e−1)g′)(KX +B))) // σ(B) // 0

where γ2 is obtained by applying F
(e−1)g′

X∗ to the trace map

F
g′

X∗(σ(B) · OX((1 − pg
′

)(KX +B)))⊗OX((1− p(e−1)g′)(KX +B))

∼= F
g′

X∗(σ(B) · OX((1− peg
′

)(KX +B))) → σ(B) · OX((1− p(e−1)g′)(KX +B)),

and γ1 arises naturally. Since F
(e−1)g′

X is an affine morphism, γ2 is surjective and

ker(γ2) = F
(e−1)g′

X∗ (Kg′ ⊗OX((1− p(e−1)g′)(KX +B))).

Let K ′ = ker(γ1). Since γ2 is surjective, applying Snake Lemma we obtain that γ1 is

surjective and K ′ ∼= F
(e−1)g′

X∗ (Kg′ ⊗OX((1− p(e−1)g′)(KX +B))). It follows an exact
sequence

0 → F
(e−1)g′

X∗ (Kg′ ⊗OX((1− p(e−1)g′)(KX +B))) → Keg′ → K(e−1)g′ → 0(3)

And since A is ample, we have

(a) there exists M0 > 0 such that for any t ∈ [0, 1], the divisor M0A + D −
t(KX +B) is nef; and

(b) applying Fujita vanishing (Lemma 2.2), there exists an integer M1 such that
for any l > M1 and any nef Cartier divisor P , H1(X,Kg′ ⊗OX(lA+P )) = 0.

Let M = M0 +M1. Fix an integer m > M . We aim to show that the trace map
Φe,m is surjective. Tensoring the following exact sequence with OX(mA +D)

0 → Keg′ → F eg′

X∗(σ(B) · OX((1− peg
′

)(KX +B))) → σ(B) → 0,

and taking cohomology, it is sufficient to show that for every e > 0,

H1(X,Keg′ ⊗OX(mA +D)) = 0.

By mA + D = (m − M0)A + (M0A + D), applying (a) and (b) we can show the
case e = 1. Assume by induction that H1(X,K(e−1)g′ ⊗OX(mA+D)) = 0 for some
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e ≥ 2. The condition (a) implies that p(e−1)g′(M0A+D) + (1− p(e−1)g′)(KX +B) is
nef. Then applying the condition (b), it follows that

H1(X,F
(e−1)g′

X∗ (Kg′ ⊗OX((1 − p(e−1)g′)(KX +B)))⊗OX(mA+D))

∼= H1(X,Kg′ ⊗OX(p(e−1)g′(m−M0)A+ p(e−1)g′(M0A+D) + (1− p(e−1)g′)(KX +B))) = 0

Tensoring the exact sequence (3) with OX(mA + D) and taking cohomology, we
deduce that H1(X,Keg′ ⊗OX(mA+D)) = 0. �

2.8. Derived categories. Let X be a projective variety, we denote by Db(X) the
bounded derived category of coherent sheaves on X .

For an object F ∈ Db(X) represented by the complex

K• : · · · → Kn−1 → Kn → Kn+1 → · · ·

we have truncations ([16, p. 69])

σ≤n(K
•) : · · · → Kn−1 → ker dn → 0 → · · · with Hi(σ≤n(K

•)) ∼= Hi(K•) for i ≤ n

and

σ>n(K
•) : · · · → 0 → im dn → Kn+1 → · · ·with Hi(σ>n(K

•)) ∼= Hi(K•) for i > n.

The exact sequence below

0 → σ≤n(K
•) → K• → σ>n(K

•) → 0,

descends to a triangle in Db(X) ([16, p. 63 Remark after Prop. 6.1])

σ≤n(F) → F → σ>n(F) → σ≤n(F)[1].

Let f : X → Y be a projective morphism of projective varieties. Assume Y is
smooth. We have derived functors Rf∗ : Db(X) → Db(Y ) and Lf ∗ : Db(Y ) →
Db(X) of f∗ and f ∗ respectively ([16, Chap. II Sec. 2,4]. By Grothendieck duality
([16, Chap. III Sec. 11]) there exists a functor f ! such that

RHomY (Rf∗E ,F) ∼= Rf∗RHomX(E , f
!F)

where E ∈ Db(X),F ∈ Db(Y ). In particular if both X and Y are smooth, then
f !F ∼= Lf ∗F ⊗OX(KX/Y )[dimX/Y ] ([16, Chap. VI Sec. 4]).

2.9. Cohomology of flat complexes under base changes. Let’s recall the fol-
lowing result, which is an adaption of [17, Chap. III Cor. 12.11] to flat bounded
complexes. Though this is known to experts ([36, Remark of 3.6]), we explain the
modifications of the proof for the convenience of the reader.

Theorem 2.15. Let f : X → Y be a projective morphism of varieties. Let K• be a
bounded complex of coherent sheaves on X such that every Ki is flat over Y . For a
closed point y ∈ Y ,

(1) if the natural map ϕi
y : R

if∗K
• ⊗ k(y) → RiΓ(Xy,K

•
y) is surjective, then ϕi

y is
an isomorphism, and there exists a neighborhood U of y such that for any y′ ∈ U ,
the map ϕi

y′ is surjective;

(2) if ϕi
y is surjective then the following two conditions are equivalent to each

other

(2.1) ϕi−1
y : Ri−1f∗K

• ⊗ k(y) → Ri−1Γ(Xy,K
•
y) is surjective;
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(2.2) Rif∗K
• is locally free at y.

Proof. We assume Y = Spec A is affine. For an A-module M , define the functor

T i(M) = RiΓ(X,K• ⊗A M).

To adapt the arguments of [17, Chap. III, Sec. 12] to flat complexes , we only need
to verify the analogue of [17, Chap. III, Prop. 12.1 and 12.2].

(a) Tensoring K• with a short exact exact sequence 0 → M ′ → M → M ′′ → 0 of
A-modules, since K• is flat, we get a short exact sequence of complexes of sheaves
on X

0 → K• ⊗A M ′ → K• ⊗A M → K• ⊗A M ′′ → 0.

Taking cohomology shows that T i is exact in the middle. So the analogue of [17,
Chap. III, Prop. 12.1] holds.

(b) Fix an open affine cover U = {Ui}i∈I of X . Consider the double complex

C•(U ,K•) = (Cq(U ,Kp), d′pq, d′′pq)

where d′pq come from C̆ech complexes C•(U ,Kp) and d′′pq are induced by the differ-
entials of K•. Consider the total complex C•

C i =
⊕

p+q=i

Cq(U ,Kp), di =
∑

p+q=i

(−1)pd′pq + d′′pq : C i → C i+1.

Note that C i is a flat A-module, the total complex of C•(U ,K• ⊗A M) coincides
with C• ⊗A M , thus H i(C• ⊗A M) ∼= RiΓ(X,K• ⊗A M). Then we can show the
analogue of [17, Chap. III, Prop. 12.2] by similar arguments. �

2.10. Abelian subvarieties generated by subschemes. Let A be an abelian
variety of dimension d and V a closed subscheme of A. Let Wn be the reduced
subscheme supported on the n-fold sum V + V + · · ·+ V . Let N be an integer (say,
N = dimA) such that d′ = dimWN attains the maximum of dimWn. Let Z be an
irreducible component of WN with dimZ = d′.

Lemma 2.16. With the above notation, take a closed point z ∈ Z and let Z0 = Z−z.
Then

(1) Z0 is an abelian subvariety of A; and
(2) every component of Wn is contained in a translate of Z0.

Proof. (1) Note that Z0+Z0 is irreducible because it is the image of m : Z0×Z0 → A
via m(z1, z2) = z1 + z1. Since 0 ∈ Z0, we have SuppZ0 ⊆ Supp(Z0 + Z0), then
dimZ0 = dim(Z0 + Z0) implies that SuppZ0 = Supp(Z0 + Z0). Applying [31, p.
44, Theorem of Appendix to Sec. 4], we see that Z0 is an abelian subvariety of A.

(2) For a component Z ′, take z′ ∈ Z ′ and let Z ′
0 = Z ′ − z′. Since 0 ∈ Z ′

0, Z
′
0 + Z0

is irreducible and contains both Z ′
0 and Z0. And since dimZ0 attains maximum,

Z ′
0 + Z0 = Z0, which shows Z ′

0 ⊆ Z0. Then (2) follows easily. �
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3. Sheaves on abelian varieties

In this section, we will study sheaves on abelian varieties. The main result is
Theorem 3.7, which, as a generalization of [12, Proposition 2.7], is used in the
present paper to study fibrations over abelian varieties. The idea of the proof is
stimulated by [19, Theorem 3.1.1].

Notation 3.1. We work over an algebraically closed field k. Let A be an abelian
variety of dimension d, Â = Pic0(A) and P the Poincaré line bundle on A × Â.

Let p, q denote the projections from A× Â to A, Â respectively. The Fourier-Mukai
transform RΦP : Db(A) → Db(Â) w.r.t. P is defined as

RΦP(−) := Rq∗(Lp
∗(−)⊗P)

which is a right derived functor. Similarly RΨP : Db(Â) → Db(A) is defined as

RΨP(−) := Rp∗(Lq
∗(−)⊗P).

If L is an ample line bundle on Â, then H i(A,L ⊗ Pt) = 0 for i > 0 and every

t ∈ A ([31, Sec. 13]), thus L̂ := R0ΨPL ∼= RΨPL is a locally free sheaf of rank

h0(Â, L) by Theorem 2.15.
Note that since p, q are smooth morphisms, we have Lp∗ ∼= p∗, Lq∗ ∼= q∗. In what

follows, for an isogeny π : A1 → A of abelian varieties, by abuse of the notation of
the pull-back map of sheaves, we use π∗ : Â → Â1 for the dual map of π.

For a coherent sheaf F on A, we define

DA(F) := RHomX(F , ωA)[d],

then applying Grothendieck duality we have

Dk(RΓ(F)) ∼= RΓ(DA(F)).

For a closed point t0 ∈ A, the translating morphism Tt0 : A → A is defined via

t 7→ t+ t0. For t̂0 ∈ Â, Tt̂0 is similarly defined.

Theorem 3.2 ([30]). Using Notation 3.1, we have

(1) RΨP ◦RΦP
∼= (−1)∗A[−d], RΦP ◦RΨP

∼= (−1)∗
Â
[−d];

(2) RΦP ◦ (−1)∗A
∼= (−1)∗

Â
◦RΦP , RΨP ◦ (−1)∗

Â
∼= (−1)∗A ◦RΨP ; and

(3) for t̂0 ∈ Â, RΨP ◦ T ∗

t̂0
∼= P−t̂0 ⊗ RΨP.

Definition 3.3. ([36, Def. 3.1]) Given a coherent sheaf F on an abelian variety A,
its ith cohomological support locus is defined as

V i(F) := {α ∈ Pic0(A)|hi(F ⊗ α) > 0}

which are Zariski closed by semi-continuity. If

gv(F) := mini>0{codimPic0(A)V
i(F)− i} ≥ 0

we say F is a GV-sheaf.

Proposition 3.4. Using Notation 3.1, let F be a coherent sheaf on A.
(1) For an ample line bundle H on Â, there is a natural isomorphism

Dk(RΓ(F ⊗ Ĥ∗)) ∼= RΓ(RΦPDA(F)⊗H),
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in particular, H i(A,F ⊗ Ĥ∗)∗ ∼= R−iΓ(RΦPDA(F)⊗H) for every integer i.
(2) The Fourier-Mukai transform

RΦPDA(F) ∈ D[−d,0](A) and Supp(−1)∗
Â
R0ΦPDA(F) = V 0(F).

(3) The following three conditions are equivalent to each other

(i) the sheaf F is a GV-sheaf;
(ii) RΦPDA(F) ∼= R0ΦPDA(F);

(iii) for any sufficiently ample line bundle L on Â,

H i(A,F ⊗ L̂∗) = 0 for i > 0.

Proof. (1) is contained in the proof of [18, Theorem 1.2], which follows from applying
Grothendieck duality and projection formula.

(2) Take an ample line bundle H on Â. By (1) we have that

(a) R−iΓ(RΦPDA(F)⊗H) = 0 unless 0 ≤ i ≤ d.

Since RΦPDA(F) ∈ Db(Â), we can assume H is sufficiently ample such that, for
every q,

(b) RqΦPDA(F)⊗H is globally generated, and
(c) RpΓ(RqΦPDA(F)⊗H) = 0 whenever p 6= 0.

Since H is a line bundle, we have the spectral sequence

Ep,q
2 := RpΓ(RqΦPDA(F)⊗H) ∼= RpΓ(Hq(RΦPDA(F)⊗LH)) ⇒ Rp+qΓ(RΦPDA(F)⊗H).

By (c) we can show

E0,q
∞ = E0,q

2 = Γ(RqΦPDA(F)⊗H) ∼= RqΓ(RΦPDA(F)⊗H).

Then by (a) and (b), we conclude that RiΦPDA(F) = 0 unless − d ≤ i ≤ 0, that
is, RΦPDA(G) ∈ D[−d,0](A).

For α ∈ Â, applying Grothendieck duality we have

Hj(F ⊗ Pα)
∗ ∼= R−jΓ(DA(F)⊗ P−α).

In particular, RiΓ(DA(F)⊗ P−α) = 0 for i > 0. Applying Rq∗ to p∗DA(F)⊗ P on

A× Â, since R1ΦPDA(F) = 0, by Theorem 2.15, we conclude

H0(F ⊗ Pα)
∗ ∼= R0Γ(DA(F)⊗ P−α) ∼= R0ΦPDA(F)⊗ k(−α),

thus Supp(−1)∗
Â
R0ΦPDA(F) = V 0(F).

(3) follows from applying [18, Theorem 1.2] and [36, Lemma 3.6]. �

Part of the following theorem is known to experts, in particular assertion (4) also
appeared in [20, Sec. 1.2], which states a special reature of positive characteristic.

Theorem 3.5. Using Notation 3.1, then
(1) If τ is a coherent sheaf supported at finitely many closed points on Â of length

r, then U = RΨPτ = R0ΨPτ is a vector bundle of rank r (homogenous vector
bundle); moreover if Suppτ = {0̂} then U is a unipotent vector bundle, that is, U
admits a filtration of vector bundles

0 = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Ur = U
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such that Ui/Ui−1
∼= OX .

(2) If π : A1 → A is an isogeny of abelian varieties, then π∗OA1
∼=

⊕

i Ut̂i
where

• t̂i are finitely many closed points on Â such that π∗Pt̂i
∼= OA1, and

• Ut̂i
= RΨPτi where τi is a skyscraper sheaf supported at t̂i.

(3) Let F be a coherent sheaf on A. Set V ≥m(F) = ∪j≥mV
j(F). If π : A1 → A

is an isogeny of abelian varieties, then

V m(π∗F) ⊆ π∗V m(F) and V ≥m(π∗F) = π∗V ≥m(F).

In particular, if for every j > 0, hj(A1, π
∗F) = 0, then hj(A,F) = 0 for j > 0.

Moreover, we have V 0(π∗F) = π∗V 0(F).
(4) Assume char k = p > 0. Let τ be a coherent sheaf supported on the union of

finitely many closed points on Â and let U = RΨPτ . Then there exists an isogeny
µ : B → A of abelian varieties such that µ∗U ∼=

⊕

i P
′
ŝi
for some closed points ŝi on

B̂ = Pic0(B), where P ′ denotes the Poincaré line bundle on B × B̂.

Proof. (1) Since dimSuppτ = 0, for any closed point t ∈ A we have

hi(Â, τ ⊗ Pt) = 0 if i 6= 0 and h0(Â, τ ⊗ Pt) = r.

The first assertion of (1) follows from applying Theorem 2.15.
If moreover τ is a skyscraper sheaf supported at 0̂, then we have a filtration

0 = τ0 ⊂ τ1 ⊂ τ2 ⊂ · · · ⊂ τr = τ

such that τi/τi−1
∼= k(0̂), which, by applying Fourier-Mukai transform RΨP , induces

a filtration of U as wanted.

(2) For t̂ ∈ Â, we have H i(A1, π
∗Pt̂)

∼= H i(A, π∗OA1 ⊗Pt̂). It follows that

V 0(π∗OA1) = V 1(π∗OA1) = · · · = V d(π∗OA1) = Sπ := {t̂′ ∈ Â|π∗Pt̂′
∼= OA1}.

We have Sπ = Supp(ker π∗), thus dimV k(π∗OA1) = 0 for 0 ≤ k ≤ d, and π∗OA1 is
a GV-sheaf. By Grothendieck duality

DA(π∗OA1)
∼= π∗DA1(OA1)

∼= π∗OA1 [d],

applying Proposition 3.4 (3) we have

RΦPπ∗OA1 [d]
∼= RdΦPπ∗OA1 and SuppRdΦPπ∗OA1 = Sπ.

We can assume that RdΦPπ∗OA1 =
⊕i=n

i=1 τ
′
i where every τ ′i is a skyscraper sheaf

supported at some t̂′i ∈ Sπ. Applying Theorem 3.2, we have that

π∗OA1
∼= (−1)∗AR

0ΨP

i=n
⊕

i=1

τ ′i
∼=

i=n
⊕

i=1

R0ΨP(−1)∗
Â
τ ′i .

So we only need to set τi = (−1)∗
Â
τ ′i , t̂i = (−1)∗

Â
t̂′i and Ut̂i

= R0ΨPτi.

(3) We use the notation of (2). For t̂ ∈ Â, we have

Hj(A1, π
∗(F ⊗ Pt̂))

∼= Hj(A,F ⊗ Pt̂ ⊗ π∗OA1)
∼= Hj(A,

⊕

i

F ⊗ Pt̂ ⊗ Ut̂i
).
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Let τ 0i = T ∗

t̂i
τi and U0

i = R0ΨPτ
0
i . Then τ 0i is supported at 0̂, Ut̂i

∼= Pt̂i
⊗ U0

i and

Hj(A1, π
∗(F ⊗ Pt̂))

∼=
⊕

i

Hj(A,F ⊗ Pt̂+t̂i
⊗ U0

i ).

Claim: For a coherent sheaf G and a unipotent vector bundle U on A,
(3.1’) if H l(A,G) = 0 then H l(A,G ⊗ U) = 0; and
(3.2’) if Hj(A,G ⊗ U) = 0 for every j ≥ m, then Hj(A,G) = 0 for j ≥ m.
Granted the claim above, we prove assertion (3) by the following arguments.

(3.1) For t̂ ∈ Â, if π∗t̂ ∈ V m(π∗F), then there exists some t̂i ∈ Sπ such that
Hm(A,F ⊗Pt̂+t̂i

⊗U0
i ) 6= 0. Applying (3.1’) shows that Hm(A,F ⊗Pt̂+t̂i

) 6= 0, i.e.,

t̂ + t̂i ∈ V m(F). Since π∗t̂i = 0̂ and π∗ : Â → Â1 is an epimorphism, we see that

V m(π∗F) ⊆ π∗V m(F).

(3.2) For t̂ ∈ Â, if t̂ ∈ V ≥m(F) then Hj(A,F ⊗ Pt̂) 6= 0 for some j ≥ m. Since
0̂ ∈ Sπ, π∗OA1 has a unipotent direct summand U . Applying (3.2’) shows that there
exists some j′ ≥ m such that Hj′(A,F ⊗Pt̂⊗U) 6= 0, thus Hj′(A1, π

∗(F ⊗Pt̂)) 6= 0.
Therefore, π∗V ≥m(F) ⊆ V ≥m(π∗F), and the equality holds by combining with (3.1).

(3.3) To show V 0(π∗F) = π∗V 0(F), by (3.1) it suffices to show that π∗V 0(F) ⊆
V 0(π∗F), which follows from the fact that the natural map π∗ : H0(A,F ⊗ Pt̂) →
H0(A1, π

∗(F ⊗ Pt̂)) is injective since π is flat.
Proof of Claim. Let r = rk U and Ur = U . By (1) we have a filtration of vector

bundles

0 = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Ur = U,

in turn we get the following short exact sequences

0 → G ⊗ Ur−1 → G ⊗ Ur → G → 0 (r)
0 → G ⊗ Ur−2 → G ⊗ Ur−1 → G → 0 (r − 1)

· · · · · ·
0 → G → G ⊗ U2 → G → 0 (2).

(3.1’) Taking cohomology of those short exact sequences (2, 3, · · · , r), since
H l(A,G) = 0 we can show that

H l(A,G ⊗ U2) = H l(A,G ⊗ U3) = · · · = H l(A,G ⊗ Ur) = 0.

(3.2’) We will prove Hj(A,G) = 0 for j ≥ m by induction on j. This is trivial if
j > d. Assume that we have proved for some fixed l > m,

H i(A,G) = 0 whenever i ≥ l,

which, by (3.1’), implies that for i ≥ l

H i(A,G ⊗ U2) = H i(A,G ⊗ U3) = · · · = H i(A,G ⊗ Ur) = 0.

Taking cohomology of the short exact sequence (r), by the vanishing H l−1(A,G ⊗
Ur) = 0 and H l(A,G ⊗ Ur−1) = 0, we show that

H l−1(A,G) = 0.

By induction, we finish the proof of this claim.
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(4) We can write that τ =
⊕

i τi where every τi is a sheaf supported at one certain

closed point t̂i. Let Ui = R0ΨPτi. Then U =
⊕

i Ui. We only need to show assertion
(4) for a single Ui.

We can assume τ is supported at exactly one closed point t̂ ∈ Â. Let

τ̄ = T ∗

t̂ τ and Ū = RΨP τ̄ .

Then Suppτ̄ = {0̂}, U ∼= Ū ⊗ Pt̂, and Ū is a unipotent vector bundle. We can
consider Ū instead and do induction on the rank. By (1) there is a filtration of
vector bundles

0 = Ū0 ⊂ Ū1 ⊂ Ū2 ⊂ · · · Ūi−1 ⊂ Ūi ⊂ · · · ⊂ Ūr = Ū .

Assume by induction that for some i ≤ r there exists an isogeny µi−1 : Bi−1 → A
such that µ∗

i−1Ūi−1
∼=

⊕i−1OBi−1
. Then we have the extension

0 →
i−1
⊕

OBi−1
→ µ∗

i−1Ūi → OBi−1
→ 0

which corresponds to

(α1, α2, · · · , αi−1) ∈
i−1
⊕

H1(OBi−1
) ∼= Ext1(OBi−1

,

i−1
⊕

OBi−1
).

Recall “killing cohomology”, which says that for a projective variety X and α ∈
H1(OX), there exists a morphism π : Y → X composed with some Frobenius
iterations and étale Z/(p)-covers such that π∗α = 0 in H1(OY ) ([40, Prop. 12 and
Sec. 9]). So applying “killing cohomology”, we get a base change νi : Bi → Bi−1,
which is an isogeny of abelian varieties such that

ν∗
i α1 = ν∗

i α2 = · · · ν∗
i αi−1 = 0 ∈ H1(OBi

).

Let µi = µi−1 ◦ νi : Bi → A. Then

µ∗
i Ūi

∼= ν∗
i µ

∗
i−1Ūi

∼=

i
⊕

OBi
.

We finish the proof. �

Lemma 3.6. Using Notation 3.1, for a coherent sheaf G on A, there exists a natural
homomorphism

αG : G∗ = Ext0(G,OA) → (−1)∗AR
0ΨPR

0ΦPDA(G)

with the kernel KG
∼= (−1)∗AR

0ΨP(σ≤−1RΦPDA(G)).

Proof. Apply (−1)∗ARΨP to the following triangle

σ≤−1RΦPDA(G) → RΦPDA(G) → σ>−1RΦPDA(G) → σ≤−1RΦPDA(G)[1]

and take cohomology. Since σ>−1RΦPDA(G) ∼= R0ΦPDA(G) (Proposition 3.4 (2)),
we get the following exact sequence

(−1)∗AR
−1ΨPR

0ΦPDA(G) →(−1)∗AR
0ΨP(σ≤−1RΦPDA(G))

→ (−1)∗AR
0ΨPRΦPDA(G)

α′
G

−→ (−1)∗AR
0ΨPR

0ΦPDA(G).
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Applying Theorem 3.2, we have an isomorphism

Ext0(G,OA) ∼= (−1)∗AH
0(RΨPRΦPDA(G)),

then we get the homomorphism αG by composing α′
G with this isomorphism. Since

R−1ΨPR
0ΦPDA(G) = 0, it follows that the kernel of αG

KG
∼= (−1)∗AR

0ΨP(σ≤−1RΦPDA(G)).

�

Let us prove the main theorem of this section.

Theorem 3.7. Using Notation 3.1, let F = F0,F1, · · · ,Fd be torsion free coherent
sheaves on A equipped with homomorphisms φe : Fe → Fe−1, e = 1, 2, · · · , d. Let
ϕe = φe ◦ φe−1 ◦ · · · ◦ φ1 : Fe → F . And let Hl, l = 0, 1, · · · , d − 1 be ample line

bundles on Â. Assume that

(a) for 0 ≤ l ≤ d−1 and every i, the sheaf RiΦPDA(Fl)⊗Hl is globally generated,

and if j > 0 then Hj(Â, RiΦPDA(Fl)⊗Hl) = 0;

(b) for 0 ≤ l < m ≤ d, if j > 0 then Hj(A,Fm ⊗ Ĥl
∗
) = 0; and

(c) the dual homomorphism F∗ → F∗
d of ϕd is injective.

Then

(i) the homomorphism αF : F∗ → (−1)∗AR
0ΨPR

0ΦPDA(F) (introduced in Lemma
3.6) is injective; and

(ii) if moreover char k = p > 0 and R0ΦPDA(F) = τ is supported at finitely
many closed points, then there exist an isogeny π : A1 → A of abelian vari-
eties, some Pi ∈ Pic0(A1) and a generically surjective homomorphism

βF :
⊕

i

Pi → π∗F .

Proof. The maps ϕe : Fe → F induce ϕ∗
e : DA(F) → DA(Fe) by taking dual, then

applying RΦP induces natural homomorphisms

RΦPDA(F) → RΦPDA(Fe).

We have the following lemma with the proof postponed.

Lemma 3.8. The natural homomorphism

R0ΨP(σ≤−1RΦPDA(F)) → R0ΨP(σ≤−1RΦPDA(Fd))

is zero.

(i) Applying Lemma 3.6, we have the following commutative diagram

0 // KF
//

��

F∗ αF
//

��

(−1)∗AR
0ΨPR

0ΦPDA(F)

��

0 // KFd
// F∗

d

αFd
// (−1)∗AR

0ΨPR
0ΦPDA(Fd),

and the vertical map KF → KFd
is zero by Lemma 3.8. Then from the condition

(c), we conclude KF = 0, thus αF is injective.
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(ii) Let U = (−1)∗AR
0ΨPτ . Then by Theorem 3.5 (1) and (4), the sheaf U is

locally free, and there exists an isogeny π : A1 → A of abelian varieties such that

π∗U ∼=
⊕

i

Qi for some Qi ∈ Pic0(A1).

Applying (−1)∗ARΨP to the natural homomorphism RΦPDA(F) → τ induces a
homomorphism

γ : RHom(F ,OA) ∼= DA(F)[−d] → U,

then applying RHom(·,OA) induces

γ∗ : U∗ → F .

Since by (i) the homomorphism αF : F∗ → U is injective, γ∗ is generically surjective.
It follows that the pull-back homomorphism via π

βF : π∗U∗ → π∗F

is surjective over the generic point of A1. So we are done by setting Pi = Q∗
i .

Proof of Lemma 3.8. We divide the proof into two steps.

Step 1: We prove that for fixed 0 ≤ l < m ≤ d and any s ≤ −1, the natural map
RsΦPDA(Fl) → RsΦPDA(Fm) is zero.

Consider the spectral sequence

Er,s
2,Fl

:= RrΓ(RsΦPDA(Fl)⊗Hl) ⇒ Rr+sΓ(RΦPDA(Fl)⊗Hl).

By the condition (a) and Proposition 3.4 (2), we see that

Er,s
∞,Fl

∼= Er,s
2,Fl

= 0 unless r = 0 and − d ≤ s ≤ 0,

thus for −d ≤ s ≤ 0, the following natural homomorphism is an isomorphism

γs
Fl

: RsΓ(RΦPDA(Fl)⊗Hl) → E0,s
∞,Fl

→֒ E0,s
2,Fl

= H0(RsΦPDA(Fl)⊗Hl).

Then consider the spectral sequence

Er,s
2,Fm

:= RrΓ(RsΦPDA(Fm)⊗Hl) ⇒ Rr+sΓ(RΦPDA(Fm)⊗Hl).

Since Er,s
2,Fm

= 0 whenever r < 0, we get a natural homomorphism

γs
Fk

: RsΓ(RΦPDA(Fm)⊗Hl)) → E0,s
∞,Fm

→֒ E0,s
2,Fm

∼= H0(RsΦPDA(Fm)⊗Hl).

For i > 0, by the condition (b) and the isomorphism R−iΓ(RΦPDA(Fm) ⊗ Hl) ∼=

H i(Fm ⊗ Ĥl
∗
)∗ = 0 in Proposition 3.4 (1), we see that the following natural map is

zero
β−i : R−iΓ(RΦPDA(Fl)⊗Hl) → R−iΓ(RΦPDA(Fm)⊗Hl) = 0.

Chasing in the following commutative diagram

RsΓ(RΦPDA(Fl)⊗Hl)
γs
Fl

∼=
//

βs

��

H0(RsΦPDA(Fl)⊗Hl)

β̄s

��

RsΓ(RΦPDA(Fm)⊗Hl))
γs
Fm

// H0(RsΦPDA(Fm)⊗Hl)

we can show that for s ≤ −1, the map β̄s is zero, consequently the mapRsΦPDA(Fl) →
RsΦPDA(Fm) is zero by the condition (a).
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To ease the notation, we denote Em = σ≤−1RΦPDA(Fm) form = 0, 1, · · · , d. Then

Em ∈ D[−d,−1](Â) by Proposition 3.4 (2). And since for every i, Hi(Em) → Hi(Em+1)
is a zero map, we can show that for every p, the homomorphism RpΨP(H

i(Em)) →
RpΨP(H

i(Em+1)) is zero.

Step 2: We prove that for 0 < m ≤ d, the natural homomorphism

αk : R0ΨP(σ>−m−1E0) → R0ΨP(σ>−m−1Em)

is zero, which completes the proof of Lemma 3.8 if setting m = d.
We prove this assertion by induction. First note that for every m and 0 ≤ i ≤ d,

the object σ≤−m(σ>−m−1Ei) ∈ Db(Â) is quasi-isomorphic to H−m(Ei)[k]. When
m = 1, the map α1 : R0ΨP(σ>−2E0) → R0ΨP(σ>−2E1) coincides with the map
R1ΨP(H

−1(E0)) → R1ΨP(H
−1(E1)), hence it is zero. Now assume that αm is a zero

map for some m < d. To prove αm+1 is zero, we consider the following commutative
diagram

H−m−1(E0)[m+ 1] //

��

σ>−m−2E0 //

��

σ>−m−1E0

��

// H−m−1(E0)[m+ 2]

��

H−m−1(Em)[m+ 1] //

��

σ>−m−2Em //

��

σ>−m−1Em

��

// H−m−1(Em)[m+ 2]

��

H−m−1(Em+1)[m+ 1] // σ>−m−2Em+1
// σ>−m−1Em+1

// H−m−1(Em+1)[m+ 2]

where the horizontal sequences are triangles. Applying the right derived functor
RΨP to the above diagram induces

Rm+1ΨP(H
−m−1(E0)) //

γm
��

R0ΨP(σ>−m−2E0) //

βm
��

R0ΨP(σ>−m−1E0)

αm
��

Rm+1ΨP(H
−m−1(Em))

µm
//

δm
��

R0ΨP(σ>−m−2Em) //

β′
m

��

R0ΨP(σ>−m−1Em)

��

Rmk+1ΨP(H
−m−1(Em+1)) // R0ΨP(σ>−m−2Em+1) // R0ΨP(σ>−m−1Em+1)

where the horizontal sequences are exact. Since αm is assumed to be a zero map, we
have Im(βm) ⊆ Im(µm). And since δm is zero, from the above commutative diagram
we can conclude Im(αm+1 = β ′

m ◦βm) ⊆ Im(β ′
m ◦µm) = 0. Therefore, αm+1 is a zero

map, and the proof is completed. �

4. Subadditivity of Kodaira dimensions

In this section, we work over an algebraically closed field k with char k = p > 5.
We will prove the following result on subadditivity of Kodaira dimensions.

Theorem 4.1. Let f : X → Y be a fibration from a Q-factorial projective 3-fold to
a smooth projective variety of dimension 1 or 2. Let B be an effective Q-divisor on
X such that (X,B) is klt. Assume that Y is of maximal Albanese dimension, and
and assume moreover that

♠ if κ(Xη, KXη + Bη) = dimX/Y − 1, then B does not intersect the generic
fiber Xξ of the relative Iitaka fibration I : X 99K Z induced by KX + B on
X over Y .
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Then
κ(X,KX +B) ≥ κ(Xη, KXη +Bη) + κ(Y ).

To prove the theorem above, we will first treat three subcases in the following
theorems, which can be seen as complements of the results of [46].

Theorem 4.2. Let (X,B) be a projective Q-factorial klt pair of dimension 3. Let
f : X → Y = A be a fibration to an elliptic curve or a simple abelian surface.
Assume that KX +B is f -big. Then

κ(KX +B) ≥ κ(Xη, KXη +Bη).

Theorem 4.3. Let (X,B) be a projective Q-factorial klt pair of dimension 3. Let
f : X → Y be a fibration to a normal curve Y of genus g(Y ) ≥ 1. Assume
κ(Xη, (KX +B)|Xη) = 1 and the condition ♠ holds. Then

κ(X,KX +B) ≥ 1 + κ(Y ).

Theorem 4.4. Let (X,B) be a projective Q-factorial klt pair of dimension 3. Let
f : X → Y be a fibration to a normal curve Y of genus g(Y ) ≥ 1. Assume
κ(Xη, (KX +B)|Xη) = 0. Then

κ(X,KX +B) ≥ κ(Y ).

If moreover KX +B is nef then it is semi-ample.

We remark that Theorem 4.3 is a generalization of [12, Theorem 1.2, the subcase
dim Y = 1 and κ(Xη) = 1] where the cases without boundary were treated. Since
the condition ♠ is assumed, we can adapt the arguments of [12, Sec. 4] to our
situation. For the convenience of the reader, we will provide a detailed proof.

4.1. Preparations. First let us recall an invariant introduced by Ejiri [11, Sec.4]
to measure the positivity of a sheaf.

Definition 4.5. Let Y be a projective variety, F a torsion free coherent sheaf and
H an ample Q-Cartier Q-divisor on Y . Let

t(Y,F , H) = sup{a ∈ Q|the sheaf (F e∗
Y F)⊗OY (x−peaHy)

is generically globally generated for some e > 0}.

We will denote t(Y,F) ≥ 0 if t(Y,F , H) ≥ 0. This property is independent of the
choices of H ([46, Remark 2.13]) and is stronger than weak positivity ([11, Prop.
4.7]).

From the main results of [46] we deduce the following theorem.

Theorem 4.6. Let f : X → Y be a separable fibration between smooth projective
varieties, and let D be a nef and f -big Cartier divisor on X.

(1) If D is f -semi-ample, then
(1.a) for sufficiently divisible positive integers n and g, the sheaf F g∗

Y f∗OX(nD +
KX/Y ) contains a nonzero subsheaf Vn with t(Y, Vn) ≥ 0, and rk Vn ≥ cndimX/Y for
some c > 0 independent of n; and

(1.b) for any sufficiently divisible n > 0 and big Q-divisor H on Y , nD+KX/Y +
f ∗H is big.

(2) If KY is big, then for any sufficiently divisible n > 0, nD +KX is big.
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Proof. We can assume D = A + E where A is f -ample and E is effective. For an
integer n > 0 such that nEη is Cartier, let sn be a global section of OXη̄(nEη) with
(sn)0 = nEη. We get an inclusion S0(Xη, (nA +KX)η) →֒ S0(Xη, (nD +KX)η) by
tensoring with sn. Then by applying Lemma 2.14 on Xη for the divisor (nA+KX)η,
we can show that there exists some c > 0 such that for any sufficiently divisible n,

dimk(η̄) S
0(Xη, (nD +KX)η) ≥ dimk(η̄) S

0(Xη, (nA+KX)η) ≥ cndimX/Y .

The assertion (1.a) follows from applying [46, Theorem 1.11]. For (1.b), fix a suf-
ficiently divisible integer n > 0 such that F g∗

Y f∗OX(nD+KX/Y ) contains a nonzero
subsheaf Vn with t(Y, Vn) ≥ 0. Applying [46, Theorem 4.1] shows that

κ(X, nD +KX/Y + f ∗H) ≥ κ(Xη, (nD +KX/Y )|Xη) + dimY = dimX,

hence nD +KX/Y + f ∗H is big.
For (2), take an ample divisor H ′ on Y such that KY −H ′ is big. We can assume

D+ f ∗H ′ ∼Q A′ +∆ where A′ is an ample divisor and ∆ is an effective divisor with
index not divisible by p. Since nD+KX−KX/Y −∆−f ∗(KY −H ′) ∼Q (n−1)D+A′

is nef and f -ample, and dimk(η̄) S
0
∆η̄

(Xη̄, (nD + KX)η̄) > 0 for sufficiently divisible

n, we can prove (2) by applying [46, Theorem 1.5]. �

Corollary 4.7. Let (X,B) be a projective Q-factorial klt pair of dimension 3. Let
f : X → Y be a fibration to a smooth projective curve or surface Y of maximal
Albanese dimension. Assume that KX +B is f -big. Then

κσ(X,KX +B) ≥ κ(Xη, (KX +B)η) + κ(Y ).

In particular, if KY is big, then KX +B is big.

Proof. Let (X̄, B̄) be a log minimal model of (X,B) over Alb(Y ). And let ρ : X̃ → X

be a log resolution such that the natural map µ : X̃ → X̄ is a morphism. Let
D = µ∗(KX̄ + B̄). By Theorem 2.5 (3.1) and (3.4), (X̄, B̄) is in fact minimal, and
D is a nef divisor relatively big and semi-ample over Alb(Y ) (hence over Y ). By

Proposition 2.8, we only need to prove ν(X̃,D) ≥ dimXη + κ(Y ).
First we reduce to separable fibrations by the following commutative diagram

X ′′ ν
//

f ′′

++❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱ X ′

f ′

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼ X̃

σ
oo

f̃
��

µ
// X̄

��

Y
albY

// Alb(Y )

where σ : X̃ → X ′ is a purely inseparable morphism constructed in Proposition
2.10 such that f ′ : X ′ → Y is separable, ν : X ′′ → X ′ is a smooth resolution of
singularities, and f̃ , f ′, f ′′ denote natural induced morphisms.

Since σ is purely inseparable, there exists D′ on X ′ such that σ∗D′ = D. Set
D′′ = ν∗D′, which is a nef divisor relatively big and semi-ample over Y . Take a
big divisor H on Y . By Theorem 4.6, for sufficiently divisible n > 0, the divisor
nD′′ + KX′′ − f ′′∗KY + f ′′∗H is big. By Proposition 2.10, there exist a rational
number t > 0 and an effective divisor ∆′ such that KX̃ ∼Q σ∗t(KX′ +∆′). And we
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can write that KX′′ = ν∗(KX′ + ∆′) + E ′′ − F ′′ where E ′′, F ′′ are effective divisors
on X ′′ and E ′′ is ν-exceptional. Applying Theorem 2.3, we conclude that

κ(X̃, tnD +KX̃ − tf̃∗KY + tf̃∗H)

≥ κ(X ′, t(nD′ − f ′∗KY + f ′∗H) + t(KX′ +∆′))

= κ(X ′′, ν∗t(nD′ − f ′∗KY + f ′∗H) + ν∗t(KX′ +∆′) + tE′′)

≥ κ(X ′′, t(nD′′ +KX′′ − f ′′∗KY + f ′′∗H)) ≥ 3.

(4)

Since this is true for any big Q-divisor H , and D is nef, we conclude that for q ≫ 0,
qD +KX̃ − tf̃ ∗KY is pseudo-effective.

When κ(Y ) = 0, if dimXη = 1 then ν(X̃,D) ≥ dimXη since D is nonzero and

nef; if dimXη = 2, then for a general fiber F̃ of f̃ , D2 · F̃ > 0 since D is nef and

f̃ -big, thus ν(X̃,D) ≥ 2.
When KY is big, by setting H = KY in Eq. (4), we obtain that nD +KX̃ is big.

As we can write that KX̃ = µ∗(KX̄ + B̄) + E − F where E, F are effective divisors

on X̃ and E is µ-exceptional, applying Theorem 2.3, it follows that (n+1)D is big.
It remains to consider the case κ(Y ) = 1 and dimY = 2. Take an ample divisor

Ā on X̄ . We only need to prove that D2 · µ∗Ā > 0. Fix a q ≫ 0 such that
qD+KX̃ − tf̃ ∗KY is pseudo-effective. Then D2 · (qD+KX̃− tf̃ ∗KY ) ≥ 0. And since
E is µ-exceptional, by projection formula we have µ∗(KX̄ + B̄) · µ∗Ā · E = 0. Take

a general divisor H ′ ∈ |NKY | for some sufficiently divisible N and set H̃ ′ = f̃ ∗H ′.
Then H̃ ′ contains a component H̃, such that µ∗Ā|H̃ is semi-ample and big and that

D|H̃ is nef and f̃ |H̃-big. Therefore,

D · µ∗Ā · f̃ ∗KY =
1

N
D · µ∗Ā · H̃ ′ ≥

1

N
D · µ∗Ā · H̃ =

1

N
(D|H̃) · (µ

∗Ā|H̃) > 0

where the last strict inequality is obtained by applying Hodge Index Theorem. Fi-
nally the proof is completed by

(q + 1)D2 · µ∗Ā = D · (qD + µ∗(KX̄ + B̄)) · µ∗Ā = D · (qD +KX̃ − E + F ) · µ∗Ā

≥ D · (qD +KX̃ − tf̃ ∗KY + tf̃ ∗KY ) · µ
∗Ā > 0.

�

Recall a positivity result on surfaces.

Lemma 4.8. ([12, Lemma 2.11]) Let g : Z → Y be a generically smooth fibration
from a smooth projective surface to a smooth projective curve. Let H be a nef and
g-big divisor on Z. Then g∗OZ(KZ/Y + lH) is a nef vector bundle for every l ≫ 0.

The following result was proved by Waldron [44] when κ = 2, and the case κ = 1
follows easily from applying Theorem 2.5 (3.2).

Theorem 4.9. ([48, Theorem 3.1]) Let (X,B) be a Q-factorial klt projective 3-fold.
Assume that KX +B is nef. If κ(X,KX +B) ≥ 1, then KX +B is semi-ample.

We extract the following lemma from the strategy of [12, Sec. 4], which will be
used in the proof of Theorem 4.2 and 4.3.
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Lemma 4.10. Let (X̂, B̂) be a minimal projective Q-factorial dlt pair of dimension

3, and let f̂ : X̂ → Y be a fibration to a normal variety. Assume that
(a) B̂ = G1 +G2 + · · ·+Gn is a sum of prime Weil divisors.

Then for every j = 1, 2, · · · , n, (KX̂ + B̂)|Gj
is semi-ample, and a general fiber Fj

of the Iitaka fibration induced by (KX̂ + B̂)|Gj
is integral.

Assume moreover that
(b) there exist N > 0 and two different effective Cartier divisors D̂i, i = 1, 2 such

that D̂i ∼ N(KX̂ + B̂) + f̂ ∗Li for some Li ∈ Pic0(Y ) and that

SuppD̂i ⊆ SuppB̂;

(c) there exist effective divisors Ĝ1, Ĝ2, Ĝ
′
1, Ĝ

′
2 such that D̂1 = a11Ĝ1 + a12Ĝ2 +

Ĝ′
1 and D̂2 = a21Ĝ1 + a22Ĝ2 + Ĝ′

2 where a11 > a21 ≥ 0 and a22 > a12 ≥ 0; and

(d) there exist two irreducible components, say, G1, G2 of Ĝ1, Ĝ2 respectively, such
that for i, j ∈ {1, 2} and i 6= j, Fj is dominant over Y and

Fj ∩ Supp (Ĝ′′
j := Ĝi + Ĝ′

1 + Ĝ′
2) = ∅.

Then both L1 and L2 are torsion.
Furthermore, condition (d) holds, if for j = 1, 2, Gj is not a component of Ĝ′′

j

and κ(Fj) ≥ 0.

Proof. Note that since each Gi is a dlt center of (X̂, B̂), Gi is a normal surface by [2,

Lemma 4.2]. Moreover we have (B̂−Gi)|Gi
≥ 0, and (KX̂+B̂)|Gi

= KGi
+(B̂−Gi)|Gi

is log canonical. Then sinceKX̂+B̂ is assumed nef, by [41, Theorem 1.2], (KX̂+B̂)|Gi

is semi-ample. And as dimGi = 2, Fj is always integral by Proposition 2.1.
Assume (b), (c) and (d). Let’s prove that L1, L2 are torsion. First considering the

restrictions on F1, by (KX̂ + B̂)|F1 ∼Q 0, applying these assumptions we can show

a21f̂
∗L1|F1 ∼Q a21(N(KX̂ + B̂) + f̂ ∗L1)|F1

∼ a21D̂1|F1 ∼ a11a21Ĝ1|F1 ∼ a11D̂2|F1

∼ a11(N(KX̂ + B̂) + f̂ ∗L2)|F1 ∼Q a11f̂
∗L2|F1,

thus a21L1 ∼Q a11L2 by Lemma 2.4. And restricting on F2, in the same way we
can show a22L1 ∼Q a12L2. Then granted these two relations, we can conclude

Li ∼Q 0, i = 1, 2 from the fact that

(

a11 a12
a21 a22

)

is invertible over Q, which is because

a11 > a21 ≥ 0 and a22 > a12 ≥ 0.
It remains to prove the third assertion. As κ(Fj) ≥ 0, we can assume the canonical

divisor KF ′
j
≥ 0 where F ′

j is the normalization of Fj . Applying the adjunction

formula, we get

0 ∼Q (KX̂ + B̂)|F ′
j
∼Q ((KX̂ + B̂)|Gj

)|F ′
j

∼Q (KGj
+ (B̂ −Gj))|F ′

j
∼Q KF ′

j
+ C ′

j + (B̂ −Gj)|F ′
j
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where C ′
j ≥ 0 on F ′

j . As Fj is general, we may assume Fj is not contained in B̂−Gj .

In turn we conclude that (B̂ −Gj)|F ′
j
= 0. This, combing with the assumption that

Gj is not a component of Ĝ′′
j , indicates that Fj ∩ Supp Ĝ′′

j = ∅. �

4.2. Proof of Theorem 4.2. For a sufficiently large integer e, the Weil index of
B′ = pe

pe+1
B is not divisible by p, and KX + B′ is still f -big. Replacing B with B′,

we can assume the Weil index of B is not divisible by p. By Theorem 2.5 (3.1, 3.4),
we can replace X with the relative log canonical model over A with the loss of X
being Q-factorial, thus KX +B is a nef and f -ample Q-Cartier Q-divisor.

We claim that we only need to prove κ(KX +B) ≥ 1. Indeed, if this is true then
KX + B is semi-ample by Theorem 4.9, thus for a sufficiently divisible M > 0, the
linear system |M(KX+B)| has no base point. Since (KX+B)η is big, the restriction
|M(KX + B)||Xη on the generic fiber defines a generically finite morphism, which
indicates that κ(X,KX +B) ≥ κ(Xη, (KX +B)η).

Let l, g > 0 be two integers such that l(KX + B) is Cartier and (pg − 1)B is
integral. For an integer e > 0 divisible by g, we have the trace map

Tre,lX,B : Fe,l := f∗(F
e
X∗OX((1−pe)(KX+B))⊗OX(l(KX+B))) → f∗OX(l(KX+B)),

and denote its image by F l
e. The restriction of F l

e on the generic point η defines a
linear system |(F l

e)η| contained in |l(KX +B)η|.

We claim the following assertions with the proof postponed.

C1 For every l > 0 such that l(KX + B) is Cartier, there exists some e(l) > 0
such that for any e ≥ e(l) divisible by g, the rank of F l

e is a stable number rl;
and there exists an integer K > 0 such that, for any l divisible by K and any
e divisible by g, the linear system |(F l

e)η| defines a generically finite map.

C2 If L is an ample line bundle on Â and l ≥ 2 is an integer such that l(KX+B)
is Cartier, then for any i > 0 and sufficiently divisible integer e > 0,

H i(A,Fe,l ⊗ L̂∗) = 0.

Fix a positive integer l divisible by K and an integer e0 such that rk F l
e0 = rl.

Let F = F l
e0
. Then by (C1), the linear system |Fη| defines a generically finite

map of Xη. Recall that for positive integers e′ > e divisible by g, there exists a
natural trace map Fe′,l → Fe,l (Sec. 2.7). Applying (C2), by induction we can
find two integers e1 < e2 divisible by g and bigger than e0, two ample line bundles
H0, H1 on Â and three sheaves F0 := F ,F1 := Fe1,l,F2 := Fe2,l which satisfy
the conditions of Theorem 3.7. Note that if dimA = 1 we only need two sheaves
F0,F1. Applying Theorem 3.7 (i) and Proposition 3.4 (2), the cohomological locus
V 0(F) = (−1)∗

Â
SuppR0ΦPDA(F) 6= ∅.

The statement is trivial when ν(KX +B) = 3, so from now on we assume ν(KX +
B) ≤ 2. We break the proof into three steps.

Step 1: We prove that if dimV 0(F) > 0, then κ(KX +B) ≥ 1.

In this case V 0(F) generates Â since Â is simple. Hence so does V 0(f∗OX(l(KX +
B))) too, as V 0(F) ⊆ V 0(f∗OX(l(KX +B))). So for m ≥ dimA, the map

×mV 0(f∗OX(l(KX +B))) → Â via (α1, α2, · · · , αm) 7→ α1 + α2 + · · ·+ αm
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is surjective. In particular if m > 2 dimA, there exist infinitely many m-tuples
(α1, α2, · · · , αm) mapped to 0̂. Consider the natural map

H0(X, l(KX +B)+f ∗α1)×H0(X, l(KX +B) + f ∗α2)× · · · ×H0(X, l(KX +B) + f ∗αm)

→ H0(X,ml(KX +B) + f ∗(α1 + α2 · · ·+ αm)) ∼= H0(X,ml(KX +B)).

We can show h0(X,ml(KX +B)) ≥ 2, thus κ(KX +B) ≥ 1.

From now on we assume that V 0(F) = (−1)∗
Â
SuppR0ΦPDA(F) consists of finitely

many closed points.

Step 2: We will find an integerm1 and some divisors Di ∈ |m1(KX+B)+f ∗Li|, i =
1, 2, · · · , r for some Li ∈ Pic0(A), such that the sub-linear system of |m1(KX +B)η|
generated by (Di)η, i = 1, 2, · · · , r defines a generically finite map of Xη.

By Theorem 3.7 (ii), there exist an isogeny π : A1 → A, P1, P2, · · · , Ps ∈ Pic0(A1)
and a generically surjective homomorphism

⊕

j Pj → π∗F . Consider the following
commutative diagram

X ′
1

f ′
1

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆ ν

//

π′
1

++X1 = X ×A A1

f1
��

π1

// X

f

��

A1
π

// A

where X ′
1 is the normalization of the reduced scheme structure of X1. There exists

a natural composition homomorphism by [17, Chapter III. Prop. 9.3]

α :
⊕

j

Pj → π∗F →֒π∗f∗OX(l(KX +B)) ∼= f1∗π
∗
1OX(l(KX +B))

→ f ′
1∗(ν

∗π∗
1OX(l(KX +B))) ∼= f ′

1∗(π
′∗
1 OX(l(KX +B))).

The linear system |(Imα)η| ⊆ |π′∗
1 (l(KX+B))|(X′

1)η
| defines a generically finite map of

(X ′
1)η. If the direct summand Pj is not mapped to zero via α, then h0(X ′

1, π
′∗
1 (l(KX+

B)) − f ′∗
1 Pj) ≥ 1. Since π∗ : Pic0(A) → Pic0(A1) is an isogeny, there exist Qj ∈

Pic0(A) such that Pj = π∗Qj. Applying Theorem 2.3, if α(Pj) 6= 0 then

κ(X, l(KX +B)− f ∗Qj) = κ(X ′, π′∗
1 (l(KX +B)− f ′∗

1 Pj) ≥ 0.

We can find a sufficiently divisible integer l1 > 0 such that for every j, if α(Pj) 6= 0,
the pull-back linear system (π′∗

1 |l1(l(KX +B)− f ′∗
1 Pj)|)|(X′

1)η
defines a rational map

φj : (X ′
1)η 99K Prj where rj = dim |l1((l(KX + B) − f ′∗

1 Pj)|, whose image has
dimension κ(X, l(KX + B) − f ∗Qj). By the construction, the sub-linear system of
|π′∗

1 (l1l(KX+B))η| generated by the divisors of (π′∗
1 |l1(l(KX+B)−f ′∗

1 Pj)|)|(X′
1)η

, j =
1, 2, · · · , s defines a generically finite map of (X ′

1)η. Therefore, there exist Li =
−l1Qji ∈ Pic0(A) for some j1, j2, · · · , jr and effective divisors Di ∈ |m1(KX +B) +
f ∗Li| where m1 = l1l, such that the linear system generated by (Di)η, i = 1, 2, · · · , r
defines a generically finite map of Xη.

We aim to prove that there exist at least two different divisors among Di, say,
D1 6= D2, such that L1, L2 are torsion in Pic0(A). Then for some sufficiently divisible
N > 0 such that NL1 ∼ NL2 ∼ 0, we have ND1, ND2 ∈ |Nm1(KX + B)|, which
concludes κ(X,KX +B) ≥ 1.
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Step 3: We will construct a minimal dlt pair (X̂, B̂) and divisors D̂1, D̂2 satisfying
the conditions of Lemma 4.10.

(3.1) Take a log resolution µ : X̃ → X of B +
∑

i Di. Let B̃ be the reduced
divisor supported on the union of µ−1(B +

∑

i Di) and the µ-exceptional divisors.

Then (X̃, B̃) is dlt, and KX̃ + B̃ has a weak Zariski decomposition. By Theorem

2.5, running a relative log MMP for (X̃, B̃) over A, we can get a dlt log minimal

model (X̂, B̂) and a fibration f̂ : X̂ → A. The divisor Ẽ = KX̃ + B̃ − µ∗(KX + B)

is effective. Take a sufficiently divisible integer l2 > 0 such that l2Ẽ is Cartier. Let
m2 = m1l2. We get effective divisors

D̃i = l2µ
∗Di + l2Ẽ ∼ m2(KX̃ + B̃) + l2µ

∗f ∗Li

and the push-forward divisors via the natural map X̃ 99K X̂

D̂i ∼ m2(KX̂ + B̂) + l2f̂
∗Li.

(3.2) We prove ν(KX̂ + B̂) = ν(KX +B) as follows. Applying Proposition 2.8, on

one hand since KX̃+B̃ ≥ µ∗(KX+B) we have ν(KX̂+B̂) = κσ(KX̃+B̃) ≥ ν(KX+

B), on the other hand since there exists an effective µ-exceptional divisor Ẽ ′ such

that KX̃+B̃ ≤ µ∗(KX+B)+
∑

i µ
∗Di+Ẽ ′ ≡ (rm1+1)µ∗(KX+B)+Ẽ ′, we conclude

κσ(KX̃+B̃) ≤ ν(KX+B). In summary, we get the equality ν(KX̂+B̂) = ν(KX+B).

(3.3) The restrictions of D̂i on X̂η generate a linear system |V̂ | ⊆ |m2(KX̂ + B̂)η|,

which defines a generically finite map X̂η 99K Pr−1
k(η) by the construction in Step 2. Let

Ĉη be the fixed part of |V̂ |, and set Âi,η = (D̂i)η − Ĉη. We may assume Â1,η 6= Â2,η.

Since Â1,η ∼ Â2,η, we can choose two irreducible components G1,η, G2,η of Â1,η+ Â2,η

such that,

• if bij , i, j = 1, 2 are the coefficients of Gj,η in Âi,η respectively, i.e.,

Â1,η = b11G1,η + b12G2,η +G′
1,η and Â2,η = b21G1,η + b22G2,η +G′

2,η

where neither of G1,η, G2,η are contained in G′
1,η + G′

2,η, then b11 > b21 ≥ 0
and b22 > b12 ≥ 0.

(3.4) If dim X̂η = 2, since KX̂ + B̂ is relatively big over A, we can choose Â2,η

and Gi,η, i = 1, 2 such that (KX̂ + B̂)|Gi,η
is big as follows. First we can choose

a component G1,η of Â1,η such that (KX̂ + B̂)|G1,η is big. Second since Âi,η, i =

1, 2, · · · , r have no common component, we can choose Â2,η not containing G1,η, i.e.,

b21 = 0. Finally since Â1,η ∼ Â2,η and the intersection number (KX̂ + B̂) · (Â1,η −

b11G1,η) < (KX̂ + B̂) · Â2,η, Â2,η must have an irreducible component G2,η such that

(KX̂ + B̂) ·G2,η > 0 and the coefficients b22 > b12.

(3.5) Let Gi, i = 1, 2 be the reduced irreducible divisors on X̂ such that (Gi)η =
Gi,η. By (3.3) we can write that

D̂1 = a11G1 + a12G2 +G′
1 and D̂2 = a21G1 + a22G2 +G′

2

where a11 > a21 ≥ 0 and a22 > a12 ≥ 0, and neither of G1, G2 are contained in
G′

1 +G′
2.
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(3.6) By Lemma 4.10, we know that Gi is normal, and (KX̂+ B̂)|Gi
is semi-ample.

Since D̂i ≡ m2(KX̂ + B̂) and Gi is a component of D̂i, by Proposition 2.8 we have

κ(Gi, (KX̂ + B̂)|Gi
) = ν(Gi, (KX̂ + B̂)|Gi

) ≤ ν(X̂,KX̂ + B̂)− 1.

For the case dimA = 2, we have ν(Gi, (KX̂+B̂)|Gi
) = 0 or 1. The case ν(Gi, (KX̂+

B̂)|Gi
) = 1 does not happen, because otherwise, the divisor (KX̂ + B̂)|Gi

∼Q KGi
+

(B̂ − Gi)|Gi
will induce a fibration fibred by curves of arithmetic genus ≤ 1 on Gi,

which is impossible since Gi is dominant over A and A is simple. Thus the Iitaka
fibration induced by (KX̂ + B̂)|Gi

is trivial. By (3.5), the surface Gi is dominant
over A, hence κ(Gi, KGi

) ≥ 0 (see for example [1, Prop. 13.1]).

For the case dimA = 1, X̂η is a surface over k(η), and by (3.4)

κ(Gi, (KX̂ + B̂)|Gi
) = ν(Gi, (KX̂ + B̂)|Gi

) = 1.

Take a general fiber Fi of the Iitaka fibration induced by (KX̂ + B̂)|Gi
on Gi. Since

(KX̂ + B̂)|Gi,η
is big, Fi is a curve dominant over A, thus κ(Fi, KFi

) ≥ 0.

Let Ĝi = Gi and Ĝ′
i = G′

i for i = 1, 2. By (3.1), (3.5) and (3.6), the conditions of
Lemma 4.10 are satisfied, hence l2L1, l2L2 are torsion, which finishes the proof.

It remains to prove Claim (C1) and (C2).

(C1) For every l > 0, if e′ > e then F l
e′ ⊆ F l

e, hence there exists some e(l) such
that for every e ≥ e(l), we have rk F l

e = rk F l
e(l), which is denoted by rl.

To study the linear system |(F l
e)η|, we may replace B with B + f ∗H for some

ample divisor H on A, so KX + B is ample. And we may replace B with a bigger
divisor B+ tD for some effective divisor D ∼Q KX +B and a rational number t > 0,
to make the Cartier index of KX +B not divisible by p.2 Moreover we remark that
for some fixed l, to show that the linear system |(F l

e)η| defines a generically finite
map of Xη, we only need to prove this assertion for any sufficiently divisible e.

Fix a sufficiently divisible integer g′ > 0 such that (1 − pg
′

)(KX + B) is Cartier,
and that for the non-F -pure ideal σ(B) (Sec. 2.7)

Trg
′

X,B(F
g′

X∗(σ(B) · OX((1− pg
′

)(KX +B)))) = σ(B).

Since KX + B is ample, applying Lemma 2.14, we can find a sufficiently divisible
integer K such that for every positive integer l divisible by K the trace map

Φe,l : H
0(X,F eg′

X∗(σ(B) · OX((1− peg
′

)(KX +B)))⊗OX(l(KX +B)))

→ H0(X, σ(B) · OX(l(KX +B))).

2The divisor D can be obtained as follows. Take an effective Weil divisor D1 ∼ KX + A for
some ample divisor A on X . For sufficiently large v the divisor KX + B − 1

pv
−1

(D1 + B) is an

ample Q-Cartier Q-divisor and hence is Q-linearly equivalent to an effective divisor D2, which can
be assumed to have Cartier index not divisible by p. Let D = D2+

1

pv
−1

(D1+B). Identifying KX

with D1 − A similarly as in [37, Lemma 3.15], one can verify that p does not divide the Cartier
index of

KX +B +
1

pv + 1
D = −A+

1

pv + 1
D2 +

p2v

p2v − 1
(D1 +B)
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is surjective. It follows that

|σ(B) · OX(l(KX +B))||Xη = |Im(Φe,l)||Xη .

If necessary, we can enlarge K to assume that the linear system |σ(B) ·OX(K(KX +
B))| defines a generically finite map of X . Then by |Im(Φe,l)||Xη ⊆ |(F l

e)η|, we show
that |(F l

e)η| defines a generically finite map of Xη.

(C2) Before the proof we remind that the Weil index q0 of KX +B is not divisible
by p, but the Cartier index q1 is possibly divisible by p. From now on to the end
of the proof of (C2), we assume the integer e always satisfies q0|p

e − 1. Let d = q1
q0
.

Then H = q1(KX +B) is a nef and f -ample divisor, and we have a set consisting of
finitely many coherent sheaves

{Gr = OX(rq0(KX +B))|r = 0, 1, · · ·d− 1}.

Define φL : Â → A via t̂ 7→ T ∗

t̂
L ⊗ L−1 ∈ Pic0(Â) = A. Then by results of [31,

Sec. 13, 16], the morphism φL is an isogeny since L is ample, and

φ∗L̂∗ ∼=

r
⊕

L where r = h0(Â, L).

The isogeny φL : Â → A is not necessarily separable. Denote by K̂ the kernel of
φL, let K̂0 be the maximal sub-group of K̂ supported at 0̂ and let A′ = Â/K̂0. Then
we have a factorization

φL : Â
ν
−→ A′ µ

−→ A

where ν : Â → A′ is the natural quotient map which is purely inseparable, and
µ : A′ → A is étale. Fix a sufficiently large integer g1 such that F g1

A′ : A′g1 → A′

factors through ν. Let

φ = µ ◦ F g1
A′ : A

′g1 → A′ → A.

Then φ∗L̂∗ ∼=
⊕r L′ where L′ is an ample line bundle on A′g1. For a larger integer

e > g1, we get the following commutative diagram

X ′e

f ′e

��

F e
X′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

he

((σ
// X ′e

1 = Xe ×A A′

W e
X′

��

he
1

// Xe

F e
X

��

X ′ = X ×A A′ h
//

f ′
��

X

f
��

A′e
F e
A′

// A′
µ

// A

where W e
X′ , he

1, f
′, h denote the natural projections of the corresponding fiber prod-

ucts, and σ : X ′e → X ′e
1 arises from the universal property of the fiber product.

Since the base change h : X ′ → X is étale, σ is an isomorphism.
Assume l ≥ 2, q1|l. Let ne = x

1−pe+lpe

q1
y. Then we can write that 1 − pe + lpe =

neq1 + req0 where 0 ≤ re < d. It follows that

OX((1− pe + lpe)(KX +B)) ∼= OX(neH)⊗ Gre .
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By Theorem 3.5 (3), to get that for every i > 0,

H i(A, f∗(F
e
X∗OX((1− pe)(KX +B))⊗OX(l(KX +B)))⊗ L̂∗) = 0,

we only need to verify that for every i > 0,

H i(A′, µ∗(f∗F
e
X∗OX((1− pe + lpe)(KX +B)))⊗ L̂∗)) = 0.

This is true when e ≫ 0, which is proved as follows

H i(A′, µ∗(f∗F
e
X∗OX((1− pe + lpe)(KX +B)))⊗ L̂∗))

∼= H i(A′, µ∗(f∗F
e
X∗OX((1− pe + lpe)(KX +B)))⊗ µ∗L̂∗))

∼= H i(A′, f ′
∗W

e
X′∗(h

e∗
1 OX((1− pe + lpe)(KX +B)))⊗ µ∗L̂∗)

∼= H i(A′, f ′
∗W

e
X′∗σ∗(σ

∗he∗1 OX((1− pe + lpe)(KX +B)))⊗ µ∗L̂∗)

∼= H i(A′, f ′
∗F

e
X′∗(h

e∗OX((1− pe + lpe)(KX +B)))⊗ µ∗L̂∗)

∼= H i(A′, F e
A′∗f

′e
∗ (h

e∗OX((1− pe + lpe)(KX +B)))⊗ µ∗L̂∗)

∼= H i(A′e, f ′e
∗ (he∗OX((1 − pe + lpe)(KX +B)))⊗ F e∗

A′µ∗L̂∗)

∼= H i(A′e, f ′e
∗ ((he∗OX((1− pe + lpe)(KX +B)))⊗ (f ′e∗F

(e−g1)∗
A′ F

g1∗
A′ µ∗L̂∗))

∼= H i(A′, f ′
∗(OX′(h∗neH)⊗ h∗Gre ⊗

r
⊕

f ′∗(L′)p
e−g1

))

∼=

r
⊕

H i(X ′,OX′(h∗neH + pe−g1f ′∗L′)⊗ h∗Gre) = 0

where

• the 2nd ∼= is due to µ∗f∗F
e
X∗

∼= f ′
∗W

e
X′∗h

e∗
1 since µ is a flat base change;

• the 3rd ∼= is due to the fact that σ is an isomorphism;
• the 6th ∼= is from applying projection formula and RF e

A′∗
∼= F e

A′∗;
• the 9th ∼= is from applying Lerray spectral sequence and relative Fujita van-
ishing (Lemma 2.2) Rjf ′

∗(OX′(h∗neH) ⊗ h∗Gre) = 0 for j > 0 since neH is
sufficiently f ′-ample if e ≫ 0, and the last vanishing follows from applying
Fujita vanishing since h∗neH + pe−g1f ′∗L′ is sufficiently ample if e ≫ 0.

4.3. Proof of Theorem 4.3. We may assume that KX +B is nef by working on a
log minimal model of (X,B) over Y (Theorem 2.5 (3.4)). As κ(Xη, KXη

+Bη) = 1,
there exist a log resolution σ : W → X and a fibration h : W → Z to a smooth
projective surface Z, which is birational to the relative Iitaka fibration induced by
σ∗(KX+B) onW over Y . These varieties fit into the following commutative diagram

W

h
��

σ
// X

f
��

Z
g

// Y

By the assumption ♠ and Proposition 2.11, the geometric generic fiber of h is a
smooth elliptic curve over K(Z). Applying flattening trick ([4, Lemma 5.6]), we can
assume σ∗(KX +B) ∼Q h∗C where C is a nef and g-big divisor on Z. By [8, Claim
3.1 and 3.2], there exists an effective divisor E on W such that KW ∼Q h∗KZ + E.
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For the case g(Y ) > 1, applying Theorem 4.6 for g : Z → Y , we show that for
n ≫ 0, nC +KZ is big. By KW ∼Q h∗KZ + E, applying Theorem 2.3, we have

κ(X,KX +B) = κ(X, (n + 1)(KX +B)) ≥ κ(X, n(KX +B) +KX)

= κ(W,σ∗n(KX +B) +KW ) ≥ κ(Z, nC +KZ) = 2.

Let’s restrict on the case g(Y ) = 1. We aim to prove that κ(X,KX + B) ≥ 1.
First applying [8, Theorem 1.2 and 1.3], we have

κ(X,KX +B) ≥ κ(X) = κ(W ) ≥ κ(Z) ≥ κ(Z,KZη̄).

So we may assume that κ(Z,KZη̄) ≤ 0, i.e., pa(Zη̄) ≤ 1, hence the geometric generic
fiber Zη̄ is either a smooth elliptic curve (Proposition 2.11) or a rational curve over
k(η̄). And if ν(Z,C) = 2 then C is big, applying Theorem 2.3 we are done by

κ(X,KX +B) = κ(W,σ∗(KX +B)) = κ(Z,C) = 2.

So we may assume additionally that ν(Z,C) = 1.
We will mimic the proof of Theorem 4.2 and break the arguments into three steps

for similar purposes.

Step 1: By the assumptions above, g : Z → Y is generically smooth. And since
KY ∼ 0 and C is nef and g-big, we can apply Lemma 4.8 and obtain that, for
sufficiently divisible n > 0, V ′ := g∗OZ(nC + KZ) is a nef vector bundle of rank
≥ 2. Fix a sufficiently divisible N > 0 such that NKW ∼ h∗NKZ +NE where NE
is integral, and that N(KX + B) is Cartier. Applying the projection formula, we
can get a natural inclusion OZ(NKZ) →֒ h∗OW (NKW ). In turn we have

SymNV ′ = SymNg∗OZ(nC +KZ) → g∗OZ(nNC +NKZ)

→֒ g∗h∗OW (nNσ∗(KX +B) +NKW ) ∼= f∗σ∗OW (nNσ∗(KX +B) +NKW )

⊆ f∗OX(Nn(KX +B) +NKX) ⊆ f∗OX(Nn(KX +B) +N(KX +B))

= f∗OX(N(n+ 1)(KX +B)).

Denote by V the image of SymNV ′ via the above composition map. Let l = N(n+1).
Then V is a nef sub-vector bundle of f∗OX(l(KX +B)), and rk V = r′ ≥ 2.

By [12, Proposition 2.7], there exists a flat base change π : Y1 → Y between elliptic

curves such that π∗V ∼=
⊕i=r′

i=1 L′
i where each L′

i is a line bundle with degL′
i ≥ 0.

Consider the following commutative diagram

X ′
1

f ′
1

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆ ν

//

π′
1

++X1 = X ×Y Y1

f1
��

π1

// X

f

��

Y1 π
// Y

(5)

where X ′
1 is the normalization of X1. We have a natural inclusion map

α :

i=r′
⊕

i=1

L′
i
∼=π∗V ⊆ π∗(f∗OX(l(KX +B)))

∼= f1∗OX1(π
∗
1(l(KX +B))) ⊆ f ′

1∗OX′
1
(π′∗

1 (l(KX +B))).
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If some L′
i0 satisfies that degL′

i0 > 0, by doing a further étale base change, we
may assume degL′

i0 ≥ 2, thus

h0(X ′
1, π

′∗
1 (m(KX +B))) = h0(Y1, f

′
1∗OX′

1
(π′∗

1 m(KX +B))) ≥ h0(Y1, L
′
i0
) ≥ 2,

which implies κ(X,KX +B) = κ(X ′, π′∗
1 (KX + B)) ≥ 1 by Theorem 2.3.

From now on, we assume every L′
i ∈ Pic0(Y1).

Step 2: Granted the inclusion map α and the commutative diagram (5) in Step 1,
as in Step 2 of the proof of Theorem 4.2, we can find an integer m1 = l1l and some
divisors Di ∈ |m1(KX +B) + f ∗Li|, i = 1, 2, · · · , r for some Li ∈ Pic0(Y ), such that
the sub-linear system of |m1(KX +B)η| generated by (Di)η, i = 1, 2, · · · , r defines a
nontrivial map of Xη.

We only need to prove that there exist at least two different divisors among Di,
say, D1 6= D2, such that L1, L2 are torsion in Pic0(Y ) (Step 2 of Theorem 4.2).

Step 3: We will construct a minimal dlt pair (X̂, B̂) and divisors D̂1, D̂2 satisfying
the conditions of Lemma 4.10.

(3.1) Take a log resolution µ : X̃ → X of the pair (X,B +
∑

i Di). Denote by

f̃ : X̃ → Y the natural morphism. Let B̃ be the reduced divisor supported on
the union of

∑

i µ
∗Di and the exceptional divisors. By running a log MMP, we get

a minimal dlt model (X̂, B̂), and a natural morphism f̂ : X̂ → Y . The divisor
Ẽ = KX̃ + B̃ − µ∗(KX + B) is effective. Take a sufficiently divisible integer l2 > 0

such that l2Ẽ is Cartier. Let m2 = m1l2. We get effective divisors

D̃i = l2µ
∗Di + l2Ẽ ∼ m2(KX̃ + B̃) + l2µ

∗f ∗Li

and the push-forward divisors via the natural map X̃ 99K X̂

D̂i ∼ m2(KX̂ + B̂) + l2f̂
∗Li.

(3.2) We can prove ν(KX̂ + B̂) = ν(KX + B) = 1 as in Step 3 (3.2) of the proof

of Theorem 4.2. Note that (KX̂ + B̂)η is semi-ample by Theorem 2.5 (3.2), thus

κ(X̂η, (KX̂ + B̂)η) = 1. Considering the relative Iitaka fibration ĥ′ : X̂ 99K Ẑ ′ of X̂

over Y induced by KX̂ + B̂ and applying flattening trick ([4, Lemma 5.6]), we get a
commutative diagram

Ŵ

ĥ
��

σ̂
// X̂

f̂
��

X̃oo

f̃����
��
��
��

Ẑ
ĝ

// Y

such that σ̂∗(KX̂+ B̂) ∼Q ĥ∗Ĉ for some nef and ĝ-big divisor Ĉ on Ẑ , where Ŵ and

Ẑ are smooth, birational to X̂ and Ẑ ′ respectively, and ĥ is a fibration birational to
ĥ′. By the construction, ĥ : Ŵ → Ẑ is an elliptic fibration, and ν(Ẑ, Ĉ) = 1.

(3.3) We can take effective divisors Ĉi ∼ m2Ĉ+l2ĝ
∗Li on Ẑ such that ĥ∗Ĉi = σ̂∗D̂i.

Note that Ĉi is nef and Ĉ2
i = 0. Considering the connected components of the union

of Ĉi, 0 ≤ i ≤ r, we can show that there exist effective Cartier divisors Ĉ ′
1, . . . , Ĉ

′
s

satisfying the following conditions:

• Supp(Ĉ ′
j) is connected for each j, and Supp(Ĉ ′

j1) ∩ Supp(Ĉ ′
j2) = ∅ if j1 6= j2;
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• every Ĉ ′
j is nef and (Ĉ ′

j)
2 = 0;

• the greatest common divisor of the coefficients of every Ĉ ′
j is equal to one;

• for each i, there exist ai1, . . . , ais ∈ Z≥0 such that Ĉi = ai1Ĉ
′
1 + · · ·+ aisĈ

′
s.

As σ̂∗D̂i = ĥ∗Ĉi, by the construction, ĥ∗Ĉ ′
1, . . . , ĥ

∗Ĉ ′
s are disjoint connected compo-

nents of σ̂∗(
∑

D̂i). Let Ĝj := σ̂∗ĥ
∗Ĉ ′

j. Then Supp(Ĝj1) ∩ Supp(Ĝj2) = ∅ if j1 6= j2,

and D̂i = ai1Ĝ1 + · · ·+ aisĜs.
(3.4) We can take two divisors among D̂i, say, D̂1, D̂2 such that (D̂1)η 6= (D̂2)η.

And since (D̂1)η ∼ (D̂2)η, we can find two connected components among Ĝj, say,

Ĝ1, Ĝ2, such that (Ĝ1)η, (Ĝ2)η > 0 and a11 > a21 ≥ 0 and a22 > a12 ≥ 0. And if we
write that

D̂1 = a11Ĝ1 + a12Ĝ2 + Ĝ′
1 and D̂2 = a21Ĝ1 + a22Ĝ2 + Ĝ′

2

then for i, j ∈ {1, 2} and i 6= j, Ĝj does not intersect Ĝ
′′
j := Ĝi + Ĝ′

1 + Ĝ′
2.

(3.5) Take two reduced, irreducible and dominant over Y components G1, G2 of

Ĝ1, Ĝ2 respectively. SinceKX̂+B̂ is nef and ν(X̂, D̂j) = ν(X̂,KX̂+B̂) = 1, applying
Proposition 2.8 we obtain that for j = 1, 2,

ν(Gj , (KX̂ + B̂)|Gj
) = ν(Gj , D̂j|Gj

) ≤ ν(X̂, D̂j)− 1 = 0,

hence (KX̂ + B̂)|Gj
∼Q 0 (Lemma 4.10), so the Iitaka fiber Fj = Gj .

Finally, as the conditions of Lemma 4.10 are verified for the pair (X̂, B̂) and the

divisors D̂1, D̂2, we conclude that L1 and L2 are torsion. The proof is completed.

4.4. Proof of Theorem 4.4. We can assume (X,B) is relatively minimal over Y .
Then by Theorem 2.5 (3.3, 3.4), KX + B is nef and f -Q-trivial, so we can assume
l(KX +B) ∼ f ∗L for some integer l > 0 and a nef line bundle L on Y . If degL > 0
then κ(X,KX + B) ≥ 1 ≥ κ(Y ). So we may assume degL = 0. And we only need
to prove that g(Y ) = 1 and L is torsion in Pic0(Y ).

Lemma 4.11. Let D be a pseudo-effective Q-Cartier Q-divisor on X. If D is f -nef,
then D is nef.

Proof. Assume the contrary. We can take an ample Q-divisor H on X such that
D + H is not nef. Since D is pseudo-effective, there exists an effective Q-divisor
B′ ∼Q D + H . Take a small rational number t > 0 such that (X,B + tB′) is klt.
Since KX +B+ tB′ is f -nef, applying Theorem 2.5 shows that tB′ ≡ KX +B+ tB′

is nef, which contradicts the assumption. �

Let H be an ample Cartier divisor on X and F a general fiber of f . We can find
two positive integers a, b such that D3 = 0 where D = aH − bF .

We claim that D is nef, thus ν(D) = 2. By Lemma 4.11 it suffices to show that
D is pseudo-effective. Otherwise, denote by t0 the maximal real number such that
H−t0F is pseudo-effective. Then t0 <

b
a
and (H−t0F )3 > 0. Since for every rational

number t < t0 the divisor H − tF is f -ample and pseudo-effective, so H − tF is nef
by Lemma 4.11. Taking the limit shows that H − t0F is nef, thus H − t0F is big
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since (H − t0F )3 > 0 ([33, Chap. V Lemma 2.1]).3 It follows that for a sufficiently
small ǫ > 0 such that t0 + ǫ ∈ Q, the divisor H − t0F − ǫF is Q-linearly equivalent
to an effective divisor. However, this contradicts the definition of t0.

Take a smooth resolution of singularities σ : W → X and let h = f ◦ σ : W →
X → Y . Since nσ∗D + KW/Y − KW/Y = nσ∗D is nef, h-big and h-semi-ample,
applying Theorem 4.6 shows that for sufficiently divisible integers n and g, the sheaf
F g∗
Y h∗OW (nσ∗D +KW/Y ) contains a nonzero nef subbundle V .

We exclude the case g(Y ) > 1 as follows. Otherwise, for sufficiently large n, the
divisor nσ∗D +KW is big by Theorem 4.7. We can find an effective σ-exceptional
divisor E on W such that KW ≤ σ∗KX + E. Then nσ∗D + σ∗(KX + B) + E ≥
nσ∗D +KW + σ∗B is big. Applying Theorem 2.3,

κ(X, nD + (KX +B)) = κ(W,nσ∗D + σ∗(KX +B) + E) = 3.

As KX + B is numerically trivial, we conclude that D is big, but this contradicts
that ν(D) = 2.

We may assume Y is an elliptic curve. Next we will prove that there exists a
semi-ample divisor D′ ≡ tD for some rational number t > 0. Since the subbundle
V ⊆ F g∗

Y h∗OW (nσ∗D + KW/Y ) is nef, for every L′′ ∈ Pic0(Y ), applying Riemann-
Roch formula gives

h0(Y, V ⊗ L′′)− h1(Y, V ⊗ L′′) = χ(Y, V ⊗ L′′) = deg V ≥ 0.

We claim that there exists some L′′ ∈ Pic0(Y ) such that h0(Y, V ⊗ L′′) > 0. Oth-
erwise, for every L′′ ∈ Pic0(Y ) and i = 0, 1, hi(Y, V ⊗ L′′) = 0, thus RiΦPV =
0, i = 0, 1, i.e., the Fourier-Mukai transform RΦPV is acyclic ([16, p.53]). Therefore
V = 0 by Theorem 3.2, and the claim follows from this contradiction. Note that
since dim Y = 1, by Proposition 2.1 the fibration h : W → Y is separable, hence
WY g = W ×Y Y g is integral. Consider the following commutative diagram

W ′

ρ

))ρ′
//

h′

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ WY g

πg
//

hg

��

W

h
��

Y g
F g
Y

// Y

where W ′ denotes the normalization of WY g and ρ, ρ′, h′ denote the natural mor-
phisms. From the commutative diagram above, by [17, Chapter III, Prop. 9.3] we
obtain

F g∗
Y h∗OW (nσ∗D +KW ) ∼= hg∗(π

g∗OW (nσ∗D +KW )) ∼= hg∗OWY g (π
g∗(nσ∗D +KW ))

→֒ h′
∗OW ′(ρ′∗πg∗(nσ∗D +KW )) = h′

∗OW ′(ρ∗(nσ∗D +KW )).

It follows that

h0(OW ′(ρ∗(nσ∗D +KW ))⊗ h∗L′′) = h0(Y, h′
∗OW ′(ρ∗(nσ∗D +KW ))⊗ L′′)

≥ h0(Y, V ⊗ L′′) > 0.

3this is well known for Q-Cartier Q-divisors ([24, Prop. 2.61]), but the proof also applies for
R-Cartier R-divisors as mentioned by [33, Chap. V Lemma 2.1]
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Take L′ ∈ Pic0(Y ) such that F g∗
Y L′ ∼ L′′. Then applying Theorem 2.3, we can show

κ(X, nD + (KX +B) + f ∗L′) ≥ κ(W,nσ∗D +KW + h∗L′)

= κ(W ′, ρ∗(nσ∗D +KW ) + h′∗L′′) ≥ 0.

There exists an effective divisor D1 ∼Q nD+(KX+B)+f ∗L′. The pair (X,B+tD1)
is klt for a sufficiently small rational number t, so the divisor KX +B+ tD1 is semi-
ample by Theorem 4.2. Since KX +B ≡ 0, we can set D′ = KX +B + tD1.

Since D′ is f -ample and ν(D′) = 2, the associated morphism to D′ is a fibration
g : X → Z to a surface. Let Xξ be the generic fiber of g. Then Xξ is a normal
curve defined over k(ξ) = K(Z) and dominant over Y ⊗k k(ξ). It follows that
pa(Xξ) ≥ 1, thus KXξ

is semi-ample. Since l(KX + B)|Xξ
∼Q l(KXξ

+ B|Xξ
) is

numerically trivial, we conclude that KXξ
∼Q KX |Xξ

∼Q 0 and B|Xξ
= 0, thus

l(KX + B)|Xξ
∼Q f ∗L|Xξ

∼Q 0. Though the geometric generic fiber Xξ̄ is not

necessarily reduced, we can apply Lemma 2.4 to the morphism (Xξ̄)red → Y ⊗k k(ξ̄)
and show that L is torsion.

4.5. Proof of Theorem 4.1. In the following we assume that κ(Xη, KXη
+Bη) ≥ 0.

Case (i) dimY = 1. If κ(Xη, KXη
+ Bη) = 0 then we can use Theorem 4.4. If

κ(Xη, KXη
+ Bη) = 1 then we can use Theorem 4.3. If κ(Xη, KXη

+ Bη) = 2, then
we can use Theorem 4.2 when g(Y ) = 1 and use Corollary 4.7 when g(Y ) > 1.

Case (ii) dimY = 2. If κ(Xη, KXη
+ Bη) = 0, then by the assumption ♠, f is

an elliptic fibration (Proposition 2.11), applying [8, Theorem 1.2] shows that

κ(X,KX + B) ≥ κ(X) ≥ κ(Y ).

So we may assume KX +B is f -big. We fall into three cases according to κ(Y ).

When κ(Y ) = 2, we can use Corollary 4.7.

When κ(Y ) = 1, we need to prove that κ(X,KX +B) ≥ 2. Denote by g : Y → C
the Iitaka fibration of Y and by albY : Y → Alb(Y ) the Albanese map which
is generically finite. Take a general fiber G of g, which is an elliptic curve. Let
E = albY (G). We may assume Alb(Y ) is an abelian variety and E passes through
the origin. Let A(E) be the sub-abelian variety generated by E. It follows that 1 ≤
dimA(E) ≤ g(E) ≤ g(G) = 1, hence the equalities are attained, and E = A(E) is a
sub-abelian variety. Since the composition morphism φ : Y → Alb(Y ) → Alb(Y )/E
contracts the fiber G, applying Rigidity Lemma ([32, Proposition 6.1]), every fiber
of g is contracted by φ, and φ : Y → Alb(Y )/E factors through g : Y → C. By the
universal property of the Albanese map we have the following commutative diagram

Y

g

��

albY
// Alb(Y )

h
��

φ

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

C
albC

// // Alb(C) // Alb(Y )/E

.

Wee see that the morphism Alb(C) → Alb(Y )/E is in fact an isomorphism, hence
h : Alb(Y ) → Alb(C) is of relative dimension one, in particular g(C) ≥ 1. Next

let Y
σ
−→ Ȳ → Alb(Y ) be the Stein factorization. Then σ : Y → Ȳ is a birational

morphism, and the σ-exceptional locus does not intersect the generic fiber of g :
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Y → C. Therefore, the natural morphism Ȳ → Alb(C) factors through a morphism
ḡ : Ȳ → C, which is induced by the Stein factorization. Let (X̄, B̄) be a log minimal
model of (X,B) over Ȳ . By Theorem 2.5 (3.4), (X̄, B̄) is in fact minimal. Then we
have the following commutative diagram

X // X̄

f̄ ′

��

// Ȳ //

ḡ

��

Alb(Y )

h
��

C ′ // C
albY

// Alb(C)

where f̄ ′ : X̄ → C ′ is the fibration induced by the Stein factorization of X̄ → C.
Note that g(C ′) ≥ g(C) ≥ 1. Denote by ζ ′ the generic point of C ′. Consider the
fibration f̄ ′ : X̄ → C ′. By Theorem 2.5 (3.2), (KX̄ + B̄)ζ′ is semi-ample. And since
KX̄ + B̄ is big over Alb(Y ), it is not numerically trivial over the generic point of C ′,
which implies that κ(X̄ζ′, (KX̄ + B̄)ζ′) ≥ 1.

Claim 4.12. If κ(X̄ζ′, (KX̄ + B̄)ζ′) = 1 then f̄ ′ satisfies the assumption ♠.

Proof. Denote by ϕ : X̄ 99K Z the relative Iitaka fibration induced by KX̄ + B̄
on X̄ over C ′ and by X̄ξ the generic fiber of ϕ. Then X̄ξ is a normal curve over
K(Z). As KX̄ + B̄ is big over Alb(Y ) while (KX̄ + B̄)|X̄ξ

∼Q 0, we see that X̄ξ is

not contracted by X̄ → Alb(Y ), hence is generically finite over Alb(Y ) ⊗k K(Z).
Therefore, pa(X̄ξ) ≥ 1, and KX̄ξ

is semi-ample. Since (KX̄ + B̄)|X̄ξ
∼Q KX̄ξ

+ B̄|X̄ξ

is numerically trivial, we conclude that B̄|X̄ξ
= 0, thus f̄ ′ satisfies the assumption

♠. �

So we can apply the results of Case (i) to the fibration f̄ ′ : X̄ → C ′ and show that

κ(X̄,KX̄ + B̄) ≥ κ(X̄ζ′, (KX̄ + B̄)ζ′) + κ(C ′) ≥ 1.

Hence KX̄ + B̄ is semi-ample by Theorem 4.9. And by Corollary 4.7, we have
ν(X̄,KX̄ + B̄) ≥ 2, hence κ(X̄,KX̄ + B̄) ≥ 2.

When κ(Y ) = 0, we need to prove that κ(X,KX + B) ≥ 1. In this case Y
is birationally equivalent to an abelian surface ([1, Sec. 10]). We may assume Y
is an abelian surface and assume (X,B) is minimal by working on a log minimal
model over Y . If Y is simple then we can use Theorem 4.2. Otherwise, Y admits a
fibration to an elliptic curve, then we get a fibration f ′ : X → C ′ with g(C ′) = 1.
Let ζ ′ denote the generic point of C ′. Again since KX + B is big over Y , we have
κ(Xζ′ , KXζ′

+Bζ′) ≥ 1, and if κ(Xζ′ , KXζ′
+Bζ′) = 1 we can verify that f ′ satisfies

the assumption ♠ by the same proof of Claim 4.12. Applying the results of Case (i)
to the fibration f ′ : X → C ′, we complete the proof by

κ(X,KX +B) ≥ κ(Xζ′, KXζ′
+Bζ′) + κ(C ′) ≥ 1.

5. Abundance

In this section, we will prove Theorem 1.2. By Theorem 4.9, we only need to
show that either κ(X,KX + B) ≥ 1 or KX + B ∼Q 0. Hence we may assume
κ(X,KX + B) ≤ 0. If X is of maximal Albanese dimension, then we are done by
[48, Theorem 1.1] or [20, Theorem 0.3]. Let f : X → Y be the fibration arising from
the Stein factorization of aX . Then κ(Xη, (KX + B)η) ≥ 0 by Theorem 2.5 (3.2).
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Therefore, by Theorem 4.1 it is only possible that κ(Y ) = κ(Xη, (KX +B)η) = 0. If
dim Y = 1 then we can use Theorem 4.4. If dimY = 2 then B = 0 by the assumption
(1), and f is an elliptic fibration by Proposition 2.11, so X is non-uniruled, and this
case has been treated in [48, Theorem 1.1].
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inar, 26. Birkhäuser Verlag, Basel, 1997.

[30] S. Mukai, Duality between D(X) and D(X̂) with its application to Picard sheaves, Nagoya
Math. J. 81 (1981), 153–175.

[31] D. Mumford, Abelian varieties, 2nd edition, Oxford University Press, 1974.
[32] D. Mumford, J. Fogarty and F. C. Kirwan, Geometric Invariant Theory, 3rd edition, Springer-
Verlag, 1994.

[33] N. Nakayama, Zariski decomposition and abundance, MSJ Memoirs, 14. Mathematical Society
of Japan, Tokyo, 2004.

[34] T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J. 43 (1971), 41–72.
[35] G. Pareschi and M. Popa, Regularity on abelian varieties I, J. Amer. Math. Soc. 16 (2003),
no. 2, 285–302.

[36] G. Pareschi and M. Popa, GV-sheaves, Fourier-Mukai transform, and generic vanishing,
Amer. J. Math. 133 (2011), no. 1, 235–271.

[37] Z. Patakfalvi, Semi-positivity in positive characteristics, Ann. Sci. École Norm. Sup. 47 (2014),
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