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email:slawton@math.ist.utl.pt

Department of Mathematical Sciences, West Point, NY 10996
email: elisha.peterson@usma.edu

1 Introduction

The purpose of this chapter is to demonstrate the utility of a graphical calculus
in the algebraic study of SL(2,C)-representations of the fundamental group of
an oriented surface of Euler characteristic −1.

Let F2 be a rank 2 free group, the fundamental group of both the three-
holed sphere and the one-holed torus. The set R = Hom(F2, SL(2,C)) of
representations inherits the structure of an algebraic set from SL(2,C). The
subset of representations that are completely reducible, denoted by Rss, have
closed orbits under conjugation. Consequently, the orbit spaceRss/SL(2,C) =
R//SL(2,C) is an algebraic set referred to as the character variety . The
character variety encodes both Teichmüller Space and moduli of geometric
structures [17].

Graphs known as spin networks permit a concise description of a natural
additive basis for the coordinate ring of the character variety

C[R//SL(2,C)] = C[R]SL(2,C).

We will refer to the basis elements as central functions . The central functions
are indexed by Clebsch-Gordan injections

Vc →֒ Va ⊗ Vb,

where Vc = Symc(C2) denotes an irreducible representation of SL(2,C). Our
main results use the spin network calculus to describe a strong symmetry
within the central function basis, a graphical means of computing the product
of two central functions, and an algorithm for computing central functions.
This provides a concrete description of the regular functions on the SL(2,C)-
character variety of F2 and a new proof of a classical result of Fricke, Klein,
and Vogt.

http://arxiv.org/abs/math/0511271v3
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We are motivated by a greater understanding of the invariant ring, and the
subsequent knowledge of various geometric objects of interest encoded within
the character variety. Consequently, the main results in this chapter concern
the structure of the central function basis. The results and methods of this
chapter may also provide new insight into gauge theoretic questions. However,
we are most interested in a methodology and point of view that allows for
generalizations to other Lie groups and other surface groups.

History of Central Functions and Spin Networks.
The first reference to the central function basis in the literature appears in

[2], where Baez used spin networks to describe a basis of quantum mechanical
“state vectors.” He considered the basis abstractly, showing that the space
of square integrable functions on a related space of connections modulo gauge
transformations is spanned by a set of labelled graphs. He also demonstrated
that the basis is orthonormal with respect to the L2 inner product. His basis,
when restricted to SU(2), is precisely the one under consideration here.

More recently, Florentino, Mourão, and Nunes use a like basis to produce
distributions related to geometric quantization of moduli spaces of flat con-
nections on a surface [13]. Adam Sikora has also used spin networks to study
the character variety for SL(n,C), although without using the central func-
tion basis [30]. The construction of arbitrary rank SL(2,C) central functions
is described in [25], while much of the diagrammatic theory required for the
SL(n,C) case is covered in [8, 9, 25, 30].

The history of the diagrammatic calculus in this chapter is hard to trace,
due to the historical difficulty in publishing papers making extensive use of
figures. While it is likely that many works on diagrammatic notation have
been lost over the years, the specific notation used in this chapter is due to
Roger Penrose. In a 1981 letter to Predrag Cvitanović, a physicist who also
used diagrams extensively, Penrose recalls developing the notation in the early
1950s while “trying to cope with Hodge’s lectures on differential geometry”
[24].

Diagrammatic notations have also played an important role in modern
physics. Feynman diagrams are probably the most famous example, but spin
networks have also been used for many years, as a graphical description of
quantum angular momentum [23]. The use of diagrams in physics is probably
best summarized in [31]. Cvitanović also has a thorough description of such
notations, which he calls birdtracks in [8, 9]. In his work, birdtracks play a
starring role in a new classification of semi-simple Lie algebras. Using prim-
itive invariants, which have unique diagrammatic depictions, the exceptional
Lie algebras arise in a single series in a construction that he calls the “Magic
Triangle.”

The remainder of this chapter is organized as follows.



Spin networks and SL(2,C)-character varieties 3

Section 2 gives some basic definitions and results from invariant theory, as
well as a short history of SL(2,C) invariant theory. It also covers necessary
material from representation theory.

In Section 3, we introduce spin networks, which are special types of graphs
that may be identified with functions between tensor powers of C2. We give a
full treatment of the spin network calculus, a powerful means for working with
regular functions on R//SL(2,C).

Section 4 begins by constructing an additive basis for C[R//SL(2,C)]. This
basis, denoted by {χa,b,c}, is indexed by triples of nonnegative integers (a, b, c)
satisfying the admissibility condition:

1
2 (−a+ b+ c), 1

2 (a− b+ c), 1
2 (a+ b− c) ∈ N.

The functions χa,b,c ∈ C[R//SL(2,C)] are central in

End(Vc) →֒ End(Va)⊗ End(Vb),

and are referred to as central functions. The construction of the central func-
tion basis uses the decomposition

C[SL(2,C)] ∼=
∑

n≥0

V ∗n ⊗ Vn.

We include a constructive proof of this decomposition, since it is hard to find
in the literature. The section concludes by examining the SL(2,C)-central
functions of a rank one free group.

Section 5 contains the main results of this chapter, which concern the case
of a rank two free group. In this case, central functions may be written as
polynomials in three trace variables, a consequence of a theorem due to Fricke,
Klein, and Vogt [14, 32]. The results we prove are summarized below.

• Theorem 5.2 describes a symmetry property of the central function basis:
permuting the indices of a central function is equivalent to permuting the
variables of its polynomial representation.

• Corollary 5.7 states that, with an appropriate definition of rank, any
central function may be written in terms of at most four central functions
of lower rank:

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c − (−a+b+c)2

4c(c−1)
χa,b,c−2

− (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

Together with Theorem 5.2, this result gives an algorithm for computing
central functions explicitly.

• Proposition 5.8 states that central functions are monic, and gives the
leading term of the central function χa,b,c.

• Proposition 5.9 describes a Z2×Z2 grading on the central function basis.
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• Theorem 5.11 gives the coefficients in the expression of the product of
two central functions as a sum of central functions, and therefore a pre-
cise description of the ring structure of C[R]SL(2,C) in terms of central
functions.

Finally, as another consequence of the recurrence relation and Theorem 5.2,
we provide a new constructive proof of the following classical theorem [14, 32]:

Theorem 5.12 (Fricke-Klein-Vogt Theorem). Let G = SL(2,C) act on G×G
by simultaneous conjugation. Then

C[G×G]G ∼= C[tx, ty, tz],

the complex polynomial ring in three indeterminates. In particular, every reg-
ular function f : SL(2,C)× SL(2,C)→ C satisfying

f(x1,x2) = f(gx1g
−1, gx2g

−1) for all g ∈ SL(2,C),

can be written uniquely as a polynomial in the three trace variables x = tr(x1),
y = tr(x2), and z = tr(x1x

−1
2 ).
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2 Preliminaries

2.1 Algebraic Structure of the Character Variety
R//SL(2,C)

The group G = SL(2,C) has the structure of an irreducible algebraic set, since
it is the zero set of the irreducible polynomial det(x)− 1. Since the product of
two varieties is again a variety, the representation variety R = Hom(F2, G) ∼=
G × G of a rank 2 free group F2 is an irreducible algebraic set as well. The
coordinate ring of R is

C[R] =
C[xk

ij : 1 ≤ i, j, k ≤ 2]

(det(x1)− 1, det(x2)− 1)
.

Stated otherwise, it is the free commutative polynomial ring in 8 indetermi-
nates over C subject to the ideal generated by the two polynomials det(xk)−1,
where xk = (xk

ij) are called generic matrices .
There is an action of G onR by simultaneous conjugation. Given (x1,x2) ∈

G×G, then

g · (x1,x2) = (gx1g
−1, gx2g

−1).

This is a polynomial action, since R×G→R is a regular mapping.

Definition 2.1. The ring of invariants C[R]G consists of elements of the
coordinate ring C[R] which are invariant under the action of simultaneous
conjugation:

C[R]G = {f ∈ C[R] : g · f = f}.

Recall that an algebraic group is linearly reductive if its finite dimensional
rational representations are decomposable as direct sums of irreducible rep-
resentations. Since G = SL(2,C) is linearly reductive, the ring of invariants
C[R]G = {f ∈ C[R] : g ·f = f} is finitely generated [10]. This implies that the
space of maximal ideals of C[R]G is also an irreducible algebraic set, permitting
the following definition:

Definition 2.2. The G-character variety of F2 is the space of maximal ideals

X = Specmax(C[R]G) = R//G.

The character variety X is identified with conjugacy classes of completely
reducible representations in R [1, 27]. Procesi [26] has shown that C[R]G is
generated by traces of products of matrix variables of word length less than
or equal to three [26]. Hence C[X] is generated, although not minimally, by

{tr(x1), tr(x2), tr(x1x2), tr(x1x
2
2), tr(x2x

2
1)}.
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2.2 History of SL(2,C) Invariant Theory

The invariant theory of SL(2,C) has a long history. Two pioneering papers
on the subject were authored by Vogt in 1889 [32], and by Fricke and Klein
in 1896 [14]. Both investigated the invariants of pairs of unimodular 2 × 2
matrices with respect to simultaneous conjugation. They showed this ring of
invariants to be the free commutative polynomial ring in three indeterminants,
given by the trace of each generic matrix and the trace of their product. This
chapter concludes with a reproof of this classical result using the spin network
calculus.

In 1972, Horowitz investigated the algebraic structure of this ring, saying
that Fricke’s approach was principally analytic, and partially incomplete [20].
In 1980, Magnus made clear the priority of Vogt’s approach [32] and worked
out the defining polynomial relations for an arbitrary number of matrices un-
der simultaneous conjugation [22]. In 1983, Culler and Shalen defined the
character variety and showed that it is in fact an algebraic set [6]; the set is
the image under a “trace” map. González-Acuña and Montesinos-Amilibia
showed in 1993 that the relations of Magnus in fact determine the algebraic
set that Culler and Shalen had defined [19]. In 2001, Sikora, using results
of Procesi [26], showed that the character variety of SL(n,C) can be realized
as spaces of graphs subject to topologically motivated relations [30]. These
graphs correspond to the spin networks discussed in this chapter when n = 2.

Closely related is the ring of invariants of arbitrary generic 2× 2 matrices
under simultaneous conjugation. The works of Procesi (1976) and Razmyslov
(1974) generalized the work above to the case of n × n matrices [26, 28],
and showed that the invariant ring is generated by traces of words in generic
matrices. Methods from geometric invariant theory (see Dolgachev [10]) show
that the character variety is the variety whose coordinate ring is the ring
of invariants. Restricting to unimodular matrices gives like results for the
unimodular ring of invariants. From this point of view, the character variety
begins as an algebraic set and so is obviously closed. However, the defining
relations and minimal generators are not at all obvious.

A central question in invariant theory is a description of the generators and
relations of an invariant ring. Indeed, a theorem that characterizes the gener-
ators of an invariant ring is called a first fundamental theorem, and a theorem
giving the relations is called a second fundamental theorem. In [26, 28] both
Procesi and Razmyslov gave the two fundamental theorems, although they
offered only sufficient generators and an implicit description of the relations.

It is much more difficult to determine minimal generators and explicit re-
lations. In this more general context, which bears strongly on the unimodular
case, minimal generators and defining relations for the invariants of an arbi-
trary number of generic 2 × 2 matrices were found only recently by Drensky
in 2003 [11].
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2.3 Representation Theory of SL(2,C)

The coordinate ring C[G] decomposes into a direct sum of tensor products
of the finite-dimensional irreducible representations of G. We will use this
decomposition, given explicitly by Theorem 4.1, to understand C[X]. To this
end, we review the representation theory of G (see [3, 10, 15]).

The symmetric powers of the standard representation of G are all irre-
ducible representations and moreover they comprise a complete list. Let
V0 = C = V ∗0 be the trivial representation of G. Denote the standard ba-
sis for C2 by e1 =

[
1
0

]
and e2 =

[
0
1

]
, and the dual basis by e∗1 = eT1 and

e∗2 = eT2 . Then the standard representation and its dual are

V = V1 = Ce1 ⊕ Ce2 and V ∗ = V ∗1 = Ce∗1 ⊕ Ce∗2,

respectively. Denote the symmetric powers of these representations by

Vn = Symn(V ) and V ∗n = Symn(V ∗).

Since Vn admits an invariant non-degenerate bilinear form, Vn
∼= (Vn)

∗.
Moreover, V ∗n is naturally isomorphic to (Vn)

∗, so elements in Vn pair with
elements in V ∗n . Denote the projection of v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n to Vn by
v1 ◦ v2 ◦ · · · ◦ vn. There exist bases for Vn and V ∗n , given by the elements

nn−k = en−k1 ek2 = e1 ◦ e1 ◦ · · · ◦ e1
︸ ︷︷ ︸

n−k

◦ e2 ◦ e2 ◦ · · · ◦ e2
︸ ︷︷ ︸

k

and

n∗n−k = (e∗1)
n−k(e∗2)

k = e∗1 ◦ e∗1 ◦ · · · ◦ e∗1
︸ ︷︷ ︸

n−k

◦ e∗2 ◦ e∗2 ◦ · · · ◦ e∗2
︸ ︷︷ ︸

k

,

respectively, where 0 ≤ k ≤ n. In these terms, this pairing is given by

n∗n−k(v1 ◦ v2 ◦ · · · ◦ vn) =
1

n!

∑

σ∈Σn

(nn−k)
∗(vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)),

where Σn is the symmetric group on n elements. In particular,

n∗n−k(nn−l) =
(n− k)!k!

n!
δkl = δkl

/
(
n
k

)
.

Let g =

[
g11 g12
g21 g22

]

∈ G. Then the G-action on Vn is given by

g · nn−k = (g11e1 + g21e2)
n−k(g12e1 + g22e2)

k

=
∑

0≤j≤n−k
0≤i≤k

(
n−k
j

)(
k
i

) (

gn−k−j11 gk−i12 gj21g
i
22

)

nn−(i+j).

For the dual, G acts on V ∗n in the usual way:

(g · n∗n−k)(v) = n∗n−k(g
−1 · v) for v ∈ Vn.
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The tensor product Va ⊗ Vb, where a, b ∈ N, is also a representation of G
and decomposes into irreducible representations as follows:

Proposition 2.3 (Clebsch-Gordan formula).

Va ⊗ Vb
∼=

min(a,b)
⊕

j=0

Va+b−2j .

Finally, we give several versions of Schur’s Lemma, which will be used
frequently.

Proposition 2.4 (Schur’s Lemma). Let G be a group, V and W representa-
tions of G, and f ∈ HomG(V,W ) with f 6= 0.

(1) If V is irreducible, then f is injective.

(2) If W is irreducible, then f is surjective.

(3) If V = W is irreducible, then f is a homothety.

(4) Suppose V,W are irreducible:

if V ∼= W , then dimC HomG(V,W ) = 1;

if V 6∼= W , then dimC HomG(V,W ) = 0.

See [3] or [7] for proof of Propositions 2.3 and 2.4.

3 The Spin Network Calculus

This section provides a self-contained introduction to spin networks and the
spin network calculus. Our treatment employs a nonstandard definition of
spin networks which is more natural when working with traces. This definition
leads to different versions of the usual spin network relations in the literature
[5, 8, 9, 21, 23, 31].

3.1 Spin Networks and Representation Theory

At its heart, a spin network is a graph that is identified with a specific function
between tensor powers of V = C

2, the standard SL(2,C) representation.
In order for this function to be well-defined, the edges incident to each

vertex of the spin network must have a cyclic ordering. This ordering is often
called a ciliation, since it is represented on paper by a small mark drawn
between two of the edges. The edges adjacent to a ciliated vertex are ordered
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by proceeding in a clockwise fashion from this mark. For example, in the

degree 2 case, there are two possible ciliations:
1

2
and

2

1
.

Definition 3.1. A spin network § is a graph with vertex set §i ⊔ §o ⊔ §v
consisting of degree 1 ‘inputs’ §i, degree 1 ‘outputs’ §o and degree 2 ‘ciliated
vertices’ §v. If there are ki = |§i| inputs and ko = |§o| outputs, then § is
identified with a function f§ : V

⊗ki → V ⊗ko . If the spin network is closed,
meaning ki = 0 = ko, it is identified with a complex scalar f§ ∈ C.

Spin networks are drawn in general position inside an oriented rectangle
with inputs at the bottom and outputs at the top. This convention allows
us to equate the composition of functions f§′ ◦ f§ with the concatenation of
diagrams §′ ◦ § formed by placing §′ on top of §.

For example, the following spin network has two ciliated vertices and rep-
resents a function from V ⊗5 → V ⊗3:

3 outputs
︷ ︸︸ ︷

︸ ︷︷ ︸

5 inputs

=

( )

◦
( )

◦
( )

.

Note that the marks on the local extrema do not indicate vertices of the graph,
but are indicators of how to decompose the graph.

Since spin networks are just graphs with ciliations, it does not matter how
the graph is represented inside the square. Strands may be moved about freely
and ciliations may “slide” along the strands. As long as the endpoints remain
fixed, the underlying spin network does not change.

Let v, w ∈ V and let {e1, e2} be the standard basis for C2. The function f§
of a spin network § is computed by decomposing § into the four spin network
component maps :

• the identity : V → V , v 7→ v;

• the cap : V ⊗ V → C, v ⊗ w 7→ vTw (inner product);

• the cup : C→ V ⊗ V , 1 7→ e1 ⊗ e1 + e2 ⊗ e2;

• the cap vertex : V ⊗ V → C, v ⊗ w 7→ det[v w].

For example, since and are the same ciliated graph,

(v ⊗ w) = (v ⊗ w) = ◦ (v ⊗ w) = (w ⊗ v) = det[w v].
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The definition given here differs from the literature [5, 21, 23]. In particular,

we omit the i =
√
−1 factor in the definition of to gain an advantage in

trace calculations. Also, the maps and are included in order to simplify
the proof that f§ is well-defined.

Theorem 3.2. The spin network function f§ is well-defined.

Proof. We need to show that every decomposition of § into the component
maps gives the same function.

If § has n ciliated vertices, then any decomposition of § into component

maps has n occurrences of . The remainder of the diagram consists of loops
or arcs without any vertices. Two corresponding arcs in different decomposi-
tions will differ only by the insertion or deletion of a number of ‘kinks’ of the

form . Finally, since

(v) = ◦ (v) = (v)

for all v ∈ V , these kinks do not change the resulting function. For alternate
proofs, see [5, 21].

This theorem allows us to freely interpret a spin network § as a function.
The computation of f§ will be easier once the functions for a few simple spin
networks are known.

Proposition 3.3. As spin network functions,

(1) the swap : V ⊗ V → V ⊗ V takes v ⊗ w 7→ w ⊗ v;

(2) the vertex on a straight line : V → V takes v 7→
[
0 −1
1 0

]
v;

(3) the vertex on a cup : C→ V ⊗ V takes 1 7→ e1 ⊗ e2 − e2 ⊗ e1;

(4) with opposite ciliations, = − , = − , and = − .

Proof. First (1) is the statement that crossings change only the order of the
outputs. Statement (2) follows from, for v =

[
v1

v2

]
:

(v) =

( )

◦
( )

(v) =

( )

(v ⊗ e1 ⊗ e1 + v ⊗ e2 ⊗ e2)

= det[v e1]e1 + det[v e2]e2 = −v2e1 + v1e2 =
[
0 −1
1 0

]
v.

Statement (3) is computed similarly, using the decomposition

=

( )

◦
( )

.
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Finally, (4) follows from the observation = = − , which has already

been demonstrated.

Given these facts, the function of the earlier example can be computed.
The reader may check that the function given by

takes e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e2 to −e2 ⊗ e2 ⊗ e2.
The maps and are unnecessary for trace computations, and so we

make the following assumption:

Convention 3.4. For the remainder of this chapter, the set of ciliated vertices
will coincide exactly with the set of local extrema. The ciliations are usually
omitted, with the understanding that

= : 1 7→ e1 ⊗ e2 − e2 ⊗ e1

and = : v ⊗ w 7→ det[v w].

Under this assumption, each straightened kink ↔ introduces a sign,

and more generally

..
.... ..

n

= (−1)n
n

.. .

Thus, any diagram manipulation in which kinks are straightened must be done
carefully.

Spin networks exhibit considerable symmetry, which can be exploited for
calculations. For example:

Proposition 3.5. Let § be a spin network with function f§ : V
⊗ki → V ⊗ko .

Denote its images under reflection through vertical and horizontal lines by
←→§

and §l, respectively. Then

f←→
§
= (−1)|§v|←→f§ : V ⊗ki → V ⊗ko ,

where |§v| is the number of local extrema in the diagram and
←→
f indicates that

the ordering of inputs and outputs is reversed. Also, f§l = (f§)
∗ where

(f§)
∗(v1 ⊗ · · · ⊗ vki

) =
∑

eb∈B(V ⊗ki )

(f§(eb) · (v1 ⊗ · · · ⊗ vko
)) eb,
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where · indicates the dot product with respect to the standard basis for V ⊗ko

and B(V ⊗ki) is the basis for V ⊗ki . That is, (f§)
∗ and f§ are dual with respect

to the standard inner product on V .

Proof. The first statement is an extension of the fact that reflecting through

a vertical line gives = − .

For the second statement, consider § = . If vi =
[ v1

i

v2
i

]
, then

(f§)
∗(v1 ⊗ v2) = (1) · (v1 ⊗ v2) = (e1 ⊗ e2 − e2 ⊗ e1) · (v1 ⊗ v2)

= v11v
2
2 − v21v

1
2 = det[v1 v2] = (v1 ⊗ v2).

This computation, together with the corresponding one for § = , are suffi-
cient to prove the second claim (see [25] for details).

The next theorem, which follows from Proposition 3.5, describes how to
apply these symmetries to relations among spin networks:

Theorem 3.6 (Spin Network Reflection Theorem). A relation
∑

m

αm§m = 0

among some collection of spin networks {§m} is equivalent to the same rela-
tion for the vertically reflected spin networks {§lm} and (up to sign) for the

horizontally reflected spin networks {←→§ m}, that is
∑

m

αm§l
m

= 0 and
∑

m

αm(−1)|§mv |←→§ m = 0.

3.2 Basic Diagram Manipulations

In this section, we describe the spin network calculus , which governs diagram
manipulations.

Proposition 3.7. Any spin network can be expressed as a sum of diagrams
with no crossings or loops. In particular,

= − ; § = tr(I)§ = 2§. (1)

The proof is given in [25]. The first of these relations is called the Fun-
damental Binor Identity, and represents a fundamental type of structure in
mathematics; it is the core concept in defining both the Kauffman Bracket
Skein Module in knot theory [4] and the Poisson bracket on the set of loops
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on a surface, which Goldman describes in [16]. It can also be identified with
the characteristic equation for 2× 2 matrices [25, 30].

Since 2 × 2 matrices act on V , the definition of spin networks may be

extended to allow matrices to act on diagrams: x is the action v 7→ x · v. The
corresponding action on the tensor product V ⊗n is represented by

x x x

n

..

..
(v1 ⊗ · · · ⊗ vn) = xv1 ⊗ · · ·xvn.

The matrices x ∈ SL(2,C) of interest in this chapter satisfy the following
special property:

Proposition 3.8. The spin network component maps , = , and =

, and therefore all spin networks, are equivariant under the natural action
of SL(2,C) on V described above.

Proof. The case for the identity is clear, while

x x (v ⊗ w) = det[xv xw] = det(x · [v w])

= det(x) · det[v w] = 1 · det[v w] = (v ⊗ w)

shows that ◦ x = = x ◦ .
The proof for follows by reflecting this relation.

This means that matrices in such a diagram can “slide across” a vertex
(local extremum) by simply inverting the matrix, so that

if x̄ = x−1 ∈ SL(2,C), then
x

= x̄ .

For a general matrix x ∈M2×2, the determinant is introduced in such relations

since
x x

= det

(

x

)

. If x is invertible, this implies

x
= det

(

x

)

x̄ .

A closed spin network with one or more matrices is called a trace diagram,
and may be identified with a map G × · · · × G → C. One of the primary
motivations for this chapter is the study of invariance properties of such maps.
The simplest cases are given by:
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Proposition 3.9. For x ∈M2×2 and I =
[
1 0
0 1

]
,

= 2 = tr(I); x = tr(x); x x = det(x) · tr(I). (2)

3.3 Symmetrizers and Irreducible Representations

Another important SL(2,C)-equivariant map is the symmetrizer, defined by:

Definition 3.10. The symmetrizer n..
..

: V ⊗n → V ⊗n is the map taking

v1 ⊗ v2 ⊗ · · · ⊗ vn 7→
1

n!

∑

σ∈Σn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n), (3)

where vi ∈ V and Σn is the group of permutations on n elements.

For example,

2 = 1
2

(

+

)

= − 1
2

( )

;

3 = 1
6

(

+ + + + +

)

= − 2
3

(

+

)

+ 1
3

(

+

)

Note that the crossings are removed by applying the Fundamental Binor Iden-
tity.

The defining equation (3) of n..
..

should look familiar: its image is a sub-

space of V ⊗n isomorphic to the nth symmetric power SymnV , and thus it can
be thought of as either the projection π : V ⊗n → SymnV or as the inclusion
i : SymnV → V ⊗n (see [15], page 473).

What does this mean for us? If a diagram from V ⊗ki to V ⊗ko has sym-
metrizers at its top and bottom, it can be thought of as a map between Vki

and
Vko

. We freely interpret such spin networks as maps between tensor powers of
these irreducible SL(2,C)-representations.
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Proposition 3.11 (Basic Symmetrizer Properties).

Invariance:
n

AA A.... =

n

AA A

.. ; (4)

stacking relation:
n

k
.... =

n
.... ; (5)

capping/cupping: n
..

= 0 =
n

.. ; (6)

symmetrizer sliding:
.. ..

n =
....

n ; (7)

Proof. The first relation (4) is evident if one expands the symmetrizer in terms
of permutations, since permutations are SL(2,C)-equivariant.

The stacking relation is the statement that symmetrizing the last k elements
of a symmetric tensor has no effect, since they are already symmetric.

For the capping and cupping relations, notice that

◦ 2 (v ⊗ w) = (12 (v ⊗ w + w ⊗ v)) = 1
2 (det[v w] + det[w v]) = 0.

This implies the general case because, by the stacking relation, one may insert

2 between and n..
..

. The other case is similar.

There are a number of ways to demonstrate (7). It follows by reflec-
tion (Proposition 3.5) or as a special case of SL(2,C)-equivariance, since

= =
x

for x = g =
[

0 1
−1 0

]
∈ SL(2,C). More directly, expand the

symmetrizer into a sum of permutations. Since each permutation is a product

of transpositions, then (7) follows from the simple relation = . See

[25] for more details.

We now move on to some more involved relations among symmetrizers.

Although it is easy to write down an arbitrary n..
..

in terms of permutations,

it is usually rather difficult to write it down in terms of diagrams without
crossings (the Temperley-Lieb algebra). The next two propositions describe
how to do exactly this. As such, they are a fundamental step in the proof of
Theorem 5.6, which permits a fast computation of rank two central functions.
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Proposition 3.12. The symmetrizer n..
..

satisfies:

n

.. =
n− 1

.. −
(
n− 1

n

)
n− 1

.. +

(
n− 2

n

)
n− 1

.. + · · ·

+ (−1)i
(
n− i

n

)
n− 1

.. .. + · · ·+ (−1)n−1
(
1

n

)
n− 1

.. . (8)

Proof. If Σn is the group of permutations on the set Nn = {1, 2, . . . , n}, then
|Σn| = |Nn| |Σn−1|.

Interpret |Σn| as the number of ways to arrange n people in a line. To do this,
one may first select someone to be at the front of the line (|Nn| choices), and
then rearrange the remaining n− 1 people (|Σn−1| choices).

In diagram form, the selection of someone to head the line corresponds to
one of the diagrams

.. , .. , .. , . . . , ..
.. .. , . . . , ..

..
.

The arrangement of the remaining people corresponds to
n− 1

.. . Thus, the

diagrammatic form of the above interpretation is:

n

.. = 1
n

n− 1

.. ◦
(

.. + .. + .. + · · ·+ ..
.. .. + · · ·+ ..

.. )
.

Now, use the binor identity to remove crossings. Most of the resulting
terms disappear, since any term whose cups are not in the ‘first position’ on
top will vanish due to the capping relation. In particular:

n− 1

.. ◦ ..
.. .. =

n− 1

.. −
n− 1

.. +
n− 1

.. + · · ·+ (−1)i
n− 1

.. .. ,

where i is the number of ‘kinks’ .. in ..
.. .. or 1 plus the number of kinks

in
n− 1

.. .. . Finally, group the number of terms on the righthand side

with the same number of kinks together: there will be n− i − 1 terms with i
kinks.

Proposition 3.13. n..
..

also satisfies the recurrence relations:

n

..

..
=

i n− i

n− 1

.. .. + (−1)i
(
n− i

n

)

i n− i

n− 1

..
.. .. ; (9)

n

..

..
= n− 1

..

..
−
(
n− 1

n

) n− 1

n− 1
.. . (10)
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Proof. Compose relation (8) with i

..

..
⊗ n− i

..

..
. This has no effect on the

lefthand side, by the stacking relation. On the righthand side, all but one of
the terms with a cap on the bottom vanish, due to the capping relation, since

they will cap off either the i

..

..
or the n− i

..

..
. The one term which remains

‘caps between’ these two symmetrizers. The coefficient is (−1)i
(
n−i
n

)
since

in recurrence (8), i is equal to one more than the number of kinks .. in

n− 1

.. .. .

Relation (10) is a special case of (9) for i = 1.

The next relations follow directly from these recurrences:

Proposition 3.14 (Looping Relations).

n

..

..
=

(
n+ 1

n

)

n− 1

..

..
. (11)

When k strands of n..
..

are closed off:

n..
..
.. ..

..
k
{

=

(
n+ 1

n− k + 1

)

n− k

..

..
. (12)

..
..
..

n = n+ 1. (13)

Proof. Close off the left strand in (10) above. Then, n

..

..
, n− 1

..

..
, and

n− 1

n− 1
.. become n

..

..
, n− 1

..

..
= 2 n− 1

..

..
and n− 1

..

..
, respectively. Now

collect terms to get (11), and proceed to (12) by applying the first relation k
times. Finally, (13) is a special case of (12) with k = n.

3.4 Symmetrizers and Trivalent Spin Networks

Recall the Clebsch-Gordan decomposition (Proposition 2.3):

Va ⊗ Vb
∼=

⊕

c∈⌈a,b⌋

Vc, ⌈a, b⌋ = {a+ b, a+ b − 2, . . . , |a− b|}.

The requirement c ∈ ⌈a, b⌋ is equivalent to the following symmetric condition:
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Definition 3.15. A triple (a, b, c) of nonnegative integers is admissible, and
we write c ∈ ⌈a, b⌋, if

1
2 (−a+ b+ c), 1

2 (a− b+ c), 1
2 (a+ b− c) ∈ N. (14)

Two maps arise from the Clebsch-Gordon decomposition: an injection ιa,bc :
Vc → Va ⊗ Vb and a projection (ι∗)ca,b : Va ⊗ Vb → Vc. Both have simple
diagrammatic depictions [5]:

ιa,bc =

a b

c

.. ....
: Vc → Va ⊗ Vb; (ι∗)ca,b =

a b

c

.. ....
: Va ⊗ Vb → Vc.

The admissibility condition (14) is the requirement that there is a nonnega-
tive number of strands connecting each pair of symmetrizers. These “strand
numbers” appear frequently in diagram manipulations, and will be referenced
by the Greek letters α, β, γ:

Convention 3.16. Given an admissible triple (a, b, c), denote by α, β, and
γ the total number of strands connecting Vb to Vc, Va to Vc, and Va to Vb,
respectively. Also, denote by δ the total number of strands in the diagram.
Then:

α = 1
2 (−a+ b+ c), β = 1

2 (a− b+ c), γ = 1
2 (a+ b− c); δ = 1

2 (a+ b+ c).

Note that (a, b, c) is admissible if and only if α, β, γ ∈ N.

Convention 3.17. Because the maps ιa,bc and (ι∗)ca,b will be so important for
the remainder of this chapter, we introduce a notation which simplifies their
depiction. Let n lines with a symmetrizer be represented by one thick line

labelled n, so that
n

≡ n..
..

.

Definition 3.18. A trivalent spin network § is a graph drawn on the plane
with vertices of degree ≤ 3 and edges labelled by positive integers such that:

• 2-vertices are ciliated and coincide with local extrema;

• 3-vertices are drawn ‘up’ or ‘down’ ;

• any two edges meeting at a 2-vertex have the same label;

• the three labels adjacent to any vertex form an admissible triple.

If there are m input edges with labels li for i = 1, . . . ,m and n output edges
with labels l′i for i = 1, . . . , n, the network is identified with a map between
tensor products of irreducible SL(2,C) representations,

f§ : Vl1 ⊗ · · · ⊗ Vlm → Vl′1
⊗ · · · ⊗ Vl′n

.
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This map is computed by identifying § with a regular spin network using the
following identifications:

n

≡ n

..

.. n

≡ ..
.. n n

=
n ≡

n

.. ..

a b

c
≡

a b

c

.. ....

a b

c

≡
a b

c

.. ....
.

Note that ciliations are normally chosen to be on the local extrema, and
degree-3 vertices, when expanded, also have a number of ciliated vertices. The
need to keep track of these ciliations makes diagram manipulation a more
delicate operation.

3.5 Trivalent Diagram Manipulations

This section describes in detail the relations which may be used to manipulate
trivalent spin networks. For the remainder of this chapter, we assume that
all sets of labels incident to a common vertex in a diagram are admissible.
Moreover, whenever we sum over a label in a diagram, the sum is taken over
all possible values of that label which make the requisite triples in the diagram
admissible.

Any closed trivalent spin network may be interpreted as a constant. The
simplest such diagrams are given by

Proposition 3.19. Let Θ(a, b, c) = b

a
c

and ∆(c) =
c

. Then Θ(a, b, c)

is symmetric in {a, b, c} and explicitly (recall the α, β, γ, δ given in Convention
3.16):

∆(c) = c+ 1 = dim(Vc); (15)

Θ(a, b, c) =
(−a+b+c

2 )!( a−b+c
2 )!( a+b−c

2 )!( a+b+c+2
2 )!

a!b!c! = α!β!γ!(δ+1)!
a!b!c! ; (16)

Θ(1, a, a+ 1) = ∆(a+ 1) = a+ 2. (17)

Proof. The first equation (15) is a consequence of the Looping Relation (11).
That Θ(1, a, a+ 1) = ∆(a + 1) is a consequence of the stacking relation, and
demonstrates (17). We refer the reader to [5] for the Θ(a, b, c) formula.

Ratios of ∆ and Θ show up in the next two propositions, which tell us
how to “pop bubbles” and how to “fuse together” two thick edges. The first
demonstrates the usefulness of Schur’s Lemma (Proposition 2.4) in diagram-
matic techniques.
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Proposition 3.20 (Bubble Identity).
b

d

a
c

=

(

Θ(a,b,c)
∆(c)

c
)

δcd, where δcd is

the Kronecker delta.

Proof. Schur’s Lemma requires
b

d

a
c

= C
c

δcd for some constant C, since

b
d

a
c

is a map between irreducible representations. This equation remains

true if we “close off” the diagrams, giving:

b

a
c

= C
c

=⇒ C =
Θ(a, b, c)

∆(c)
.

Proposition 3.21 (Fusion Identities).

a b

=
∑

c∈⌈a,b⌋

(
∆(c)

Θ(a, b, c)

)

a

a

c

b

b

a b

=
∑

c∈⌈a,b⌋

(−1) 1
2 (a−b+c)

(
∆(c)

Θ(a, b, c)

) a b

ab

c
.

Proof. Maps of the form
a

a

c

b

b

for c ∈ ⌈a, b⌋ form a basis for the space of

SL(2,C)-equivariant maps Va ⊗ Vb → Va ⊗ Vb [5]. Thus, we may express the
first diagram as a linear combination:

a b

=
∑

c∈⌈a,b⌋

C(c)
a

a

c

b

b

.

For a fixed d ∈ ⌈a, b⌋, the constant C(d) is computed by composing this ex-

pression with
a b

d
:

a b

d
=

∑

c∈⌈a,b⌋

C(c)
a b

c
◦

b
d

a
c

=
∑

c∈⌈a,b⌋

C(c)

(
Θ(a, b, c)

∆(c)

) a b

c
◦

d

δcd

= C(d)

(
Θ(a, b, d)

∆(d)

) a b

d
=⇒ C(d) =

∆(d)

Θ(a, b, d)
.
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The second equation follows from the first and from Proposition 3.22 below:

a b

= (−1)b
a b

=
∑

c∈⌈a,b⌋

(−1)b
(

∆(c)

Θ(a, b, c)

)

c

a

a

b

b

=
∑

c∈⌈a,b⌋

(−1) 1
2 (a−b−c)

(
∆(c)

Θ(a, b, c)

)

c

a

a

b

b

=
∑

c∈⌈a,b⌋

(−1) 1
2 (a−b+c)

(
∆(c)

Θ(a, b, c)

) a b

ab

c
.

The identity = gives rise to the following compendium of sign changes

through diagram manipulations:

Proposition 3.22.

n

= (−1)n
n

; (18)

c

ba

= (−1) 1
2 (a+b−c)

a b

c

; (19)

a

c

b
= (−1) 1

2 (−a+b+c)

a b

c

; (20)

e

c

a

d

b

= (−1) 1
2 (a+b+c+d−2e)

a b

cd

e
; (21)

(−1) 1
2 (a+c)

a b

cd

e
= (−1) 1

2 (b+d)
a b

cd

e
; (22)

e

c

a

d

b

= (−1)b+d−e
a b

cd

e
. (23)
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Proof. First, (18) is just a restatement of ..
.... ..

n

= (−1)n
n

.. , and (19)

follows directly from the Proposition 3.5, since
a b

c

contains γ = 1
2 (a+b−c)

local extrema and

c

ba

=
b a

c

.

For (20), notice that in the simplest case

= − ,

the negative sign comes from the strand on top of the diagram. Similarly,

the general case for transforming
a

c

b
into

a b

c

has a sign for each strand

between b and c, giving (−1)α = (−1) 1
2 (−a+b+c). This identity is used twice

to give (21).
Finally, (22) follows from:

a b

cd

e
= (−1)e

a b

cd

e
= (−1)e+ 1

2 (d+e−a+b+e−c)
a b

cd

e
,

and (23) is given by combining (21) and (22).

The above relations permit the definition of a “π
4 -reflection” on certain

types of diagrams, which will be important later:

Proposition 3.23. If a relation consists entirely of terms of the form
a b

cd

e

and
d

a

f

c

b

, then one may “reflect about the line through a and c” in the fol-

lowing sense:

∑

e

αe

a b

cd

e
=
∑

f

βf

d

a

f

c

b

⇐⇒
∑

e

αe

b

a

e

c

d

=
∑

f

βf

a d

cb

f
.
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Proof. By horizontally reflecting the first relation, using Theorem 3.6,

∑

e

αe

a b

cd

e
=
∑

f

βf

d

a

f

c

b

⇐⇒
∑

e

αe(−1)
1
2 (a+b+c+d−2e)

b a

dc

e
=
∑

f

βf (−1)
1
2 (a+b+c+d−2f)

c

b

f

d

a

⇐⇒
∑

e

αe

b a

dc

e
=
∑

f

βf

c

b

f

d

a

,

where the signs cancel due to the admissibility conditions.

Now, add strands to both sides, so that the right side
c

b

f

d

a

becomes

f

c

a

b

d

= (−1)b+d−f
a d

cb

f
.

Likewise, on the left side,
b a

dc

e
becomes (−1)b+d−e

b

a

e

c

d

. Once again,

admissibility implies that e and f must have the same parity, so these signs
cancel.

Two alternate versions of this proposition follow (see [25]).

Corollary 3.24.

∑

e

αe

a b

cd

e
=
∑

f

βf

d

a

f

c

b

⇐⇒
∑

e

αe

b

a

e

c

d

=
∑

f

βf

a d

cb

f

∑

e

αe

a b

cd

e
=
∑

f

βf

d

a

f

c

b

⇐⇒
∑

e

αe(−1)
1
2 (e−b)

cba

d

e =
∑

f

βf (−1)
1
2 (d−f)

a b c

d

f .
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4 Decomposition of C[G]

The following theorem is a consequence of the “unitary trick”[10], the Peter-
Weyl Theorem, and the fact that the set of matrix coefficients of G is exactly
its coordinate ring [7]. We offer a self-contained constructive proof in Section
4.2, since it gives an explicit correspondence between regular functions and
spin networks.

Theorem 4.1. There is a G-module isomorphism

C[G] ∼=
∑

n≥0

V ∗n ⊗ Vn.

4.1 Central Functions

Theorem 4.1 allows C[G × G]G to be described in terms of an additive basis
of class functions that have an elegant realization as spin networks. Indeed,
together with the Clebsch-Gordan decomposition, it implies

C[G×G] ∼= C[G]⊗ C[G]

∼=




∑

a≥0

V ∗a ⊗ Va



 ⊗




∑

b≥0

V ∗b ⊗ Vb





∼=
∑

a≥0

∑

b≥0

V ∗a ⊗ Va ⊗ V ∗b ⊗ Vb

∼=
∑

0≤a,b<∞

(V ∗a ⊗ V ∗b )⊗ (Va ⊗ Vb)

∼=
∑

0≤a,b<∞





min(a,b)
∑

i=0

V ∗a+b−2i



⊗





min(a,b)
∑

j=0

Va+b−2j





∼=
∑

0≤a,b<∞
0≤i,j≤min(a,b)

V ∗a+b−2i ⊗ Va+b−2j .

Since the above maps are G-equivariant,

C[G×G]G ∼=
∑

0≤a,b<∞
0≤i,j≤min(a,b)

(
V ∗a+b−2i ⊗ Va+b−2j

)G
. (1)

By Schur’s Lemma (Proposition 2.4),

dimC

(
V ∗a+b−2i ⊗ Va+b−2j

)G
=

{
1 if i = j
0 if i 6= j

,
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so

C[G×G]G ∼=
∑

0≤a,b<∞
0≤j≤min(a,b)

End(Va+b−2j)
G.

Definition 4.2. Given the above isomorphism, for each c ∈ ⌈a, b⌋ (see Defini-
tion 3.15), there exists a class function χa,b,c ∈ C[G×G]G which corresponds
to a generating homothety (unique up to scalar) in End(Vc)

G. We refer to the
functions χa,b,c as central functions.

Denote by Cχa,b,c ⊂ C[G×G]G the linear span over C of χa,b,c. Then (1)
may be rewritten as

C[G×G]G ∼=
∑

0≤a,b<∞
c∈⌈a,b⌋

Cχa,b,c.

Thus, the central functions χa,b,c form an additive basis for the ring of regular
functions on X = Specmax(C[R]G) = R//G. In Section 5, we describe the
multiplicative structure of C[G×G]G in terms of this basis.

The central functions may be described using the Clebsch-Gordan injection
ιa,bc : Vc →֒ Va ⊗ Vb:

χa,b,c(x1,x2) = tr

(

ι(c∗i )
(

(x1,x2) · ι(cj)
))

ij

,

where {cj} is a basis for Vc. We will omit indices on ι when they are clear
from context.

The functions χa,b,c take a natural diagrammatic form. If the matrix x is

represented diagrammatically by x : V → V , then its action on Va can be

represented by x

a

≡
a

x x x.... . A closed spin network with r different matrices

is an invariant regular function G×r → C. In particular, since and

are the Clebsch-Gordan injection and projection, respectively,

χa,b,c(x1,x2) = x1 x2

a b c

=
x1 x2

c
a b .

As a special case, setting x1 = x2 = I, where I is the identity matrix in G,
gives χa,b,c(I, I) = Θ(a, b, c).
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4.2 Proof of C[G] Decomposition Theorem

Define

Υ :
∑

n≥0

V ∗n ⊗ Vn −→ C[G]

by linear extension of the mapping

n∗n−k ⊗ nn−l 7→ n∗n−k(x · nn−l),

where x =

[
x11 x12

x21 x22

]

is a matrix variable.

Proposition 4.3. Υ is a well-defined G-equivariant morphism.

Proof. The image of Υ consists of regular functions since

n∗n−k(x · nn−l) = n∗n−k
(
(x11e1 + x21e2)

n−l(x12e1 + x22e2)
l
)

=
∑

i+j=k
0≤i≤n−l
0≤j≤l

(
n
k

)−1(n−l
i

)(
l
j

)
xn−l−i
11 xl−j

12 xi
21x

j
22.

Equivariance is verified by the calculation:

Υ(g · (n∗n−k ⊗ nn−l)) = Υ
(
(g · n∗n−k)⊗ (g · nn−l)

)

= (g · n∗n−k)(x · (g · nn−l)) = n∗n−k((g
−1xg) · nn−l)

= g · n∗n−k(x · nn−l) = g ·Υ(n∗n−k ⊗ nn−l).

There is a right action of G on C[G] given by f · g(x) = f(xg). Denote
by C[G]right the ring C[G] with this right action, to distinguish it from the
conjugation action already imposed on C[G]. Additionally, G acts on the left
of HomG(Vn,C[G]right) by

(g · γ)(v)(x) = γv(g
−1x),

where γv = γ(v). This action is well-defined since

(g · γ)(g′ · v)(x) = γg′·v(g
−1x) = γv(g

−1xg′) =
(
(g · γ)(v)

)
· g′(x).

The next two lemmas, whose proofs are deferred, define two additional
maps which will be used to prove the theorem.

Lemma 4.4. The map

Φ :
∑

n≥0

HomG(Vn,C[G]right)⊗ Vn −→ C[G]

defined by linearly extending the mappings γ⊗ v 7→ γ(v) is an isomorphism of
G-modules.



Spin networks and SL(2,C)-character varieties 27

Lemma 4.5. Define Ψn : V ∗n → HomG(Vn,C[G]right) by w∗ 7→ Fw∗, where
Fw∗(v)(x) = w∗(x · v). Then the map

Ψ :
∑

n≥0

V ∗n ⊗ Vn −→
∑

n≥0

HomG(Vn,C[G]right)⊗ Vn

given by Ψ =
∑

(Ψn ⊗ id) is an isomorphism of G-modules.

Assuming the above lemmas, Theorem 4.1 is equivalent to showing that
the following diagram commutes:

∑

n≥0

V ∗n ⊗ Vn Υ //

Ψ

$$JJJJJJJJJ

C[G]

∑

n≥0

HomG(Vn,C[G]right)⊗ Vn

Φ

<<
yyyyyyyyyy

The proof of commutativity follows:

Φ ◦Ψ(w∗ ⊗ v) = Φ(Fw∗ ⊗ v) = Fw∗(v) = w∗(x · v) = Υ(w∗ ⊗ v).

It remains to establish Lemmas 4.4 and 4.5. The proof of Lemma 4.4
requires some preliminary technical results.

Lemma 4.6. Every regular function is contained in a finite-dimensional sub-
representation of C[G].

Proof of Lemma 4.6. The following G×G-action encompasses both the right
and diagonal G-actions defined above. Let

α : G×G×G −→ G

be defined by (g1, g2,x) 7→ g1xg
−1
2 , and further let

α∗ : C[G] −→ C[G×G×G] ∼= C[G]⊗3 (2)

be defined by f 7→ f ◦ α, the pull-back of regular functions on G to regular
functions on G × G × G. For f ∈ C[G], (2) implies that there exist nf ∈ N

and regular functions fi, f
′
i , f
′′
i for 1 ≤ i ≤ nf such that

α∗(f) =

nf∑

i=1

fi ⊗ f ′i ⊗ f ′′i .

Therefore

α∗(f)(g−11 , g−12 ,x) =

nf∑

i=1

fi(g
−1
1 )f ′i(g

−1
2 )f ′′i (x).
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On the other hand,

α∗(f)(g−11 , g−12 ,x) = f(α(g−11 , g−12 ,x)) = f(g−11 xg2) = ((g1, g2) · f)(x),

which implies

(g1, g2) · f =

nf∑

i=1

fi(g
−1
1 )f ′i(g

−1
2 )f ′′i . (3)

Let (G×G)f = {(g1, g2) · f : f ∈ G} be the G ×G-orbit of f , and let Wf be
the linear subspace spanned over C by (G × G)f in C[G]. By (3), {f ′′i } is a
spanning set for Wf , and so Wf is finite-dimensional. Clearly Wf is G × G-
invariant, and so invariant with respect to the diagonal and right G-actions.
Thus, it is a finite-dimensional sub-representation containing f .

Lemma 4.7. C[G] is completely G×G-reducible.

Proof of Lemma 4.7. Let I be the set of direct sums of irreducible finite-
dimensional sub-representations of C[G]. I is partially ordered by set inclu-
sion and is nonempty. Thus, by Zorn’s lemma there exists a maximal element
M ∈ I. If M 6= C[G], then consider any f /∈M . By Lemma 4.6, there exists a
finite-dimensional sub-representation Wf that contains f . Let K = SU(2) be
the maximal compact subgroup of G. Restrict the action of G×G to K ×K
to find an invariant orthogonal complement to Wf in M ∪Wf . Denote this
complement by M⊥. Then M⊥⊕Wf ∈ I, since K×K representations extend
to G×G representations. Hence M is not maximal, which is a contradiction.
Therefore C[G] is completely reducible with respect to the G×G-action, and
so

C[G] ∼=
∑

j≥0

cjVj ,

where cj is the (possibly infinite) multiplicity of Vj in C[G]. This decomposi-
tion also holds for C[G] with both the right and diagonal actions since they
are restrictions of the same G×G-action.

Proof of Lemma 4.4. By Lemma 4.7,

Φ :
∑

n≥0

(
HomG(Vn,C[G]right)⊗ Vn

)
−→ C[G]

is an isomorphism if and only if

∑

n≥0




∑

j≥0

HomG(Vn, cjVj)⊗ Vn



 −→
∑

j≥0

cjVj
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is an isomorphism. By Schur’s Lemma, this reduces to
∑

n≥0

(cnC⊗ Vn) ∼=
∑

n≥0

(HomG(Vn, cnVn)⊗ Vn) −→
∑

n≥0

cnVn.

However, this is the map sending
∑

λ ⊗ v 7→ ∑
λv for λ ∈ C and v ∈ Vn,

which is canonically an isomorphism.

The final task is to show that Ψ is an isomorphism:

Proof of Lemma 4.5. Recall that

Ψn : V ∗n −→ HomG(Vn,C[G]right)

was defined by w∗ 7→ Fw∗ , where Fw∗(v)(x) = w∗(x · v). Ψn is well-defined
since

Fw∗(g · v)(x) = w∗(x · (g · v)) = w∗((xg) · v) = Fw∗(v)(xg) = (Fw∗(v)) · g(x),
and is G-equivariant because

Ψn(g · w∗)(v)(x) = Fg·w∗(v)(x) = (g · w∗)(x · v) = w∗((g−1x) · v)
= Fw∗(v)(g−1x) = (g ·Fw∗)(v)(x) = g ·Ψn(w

∗)(v)(x).

Since V ∗n is irreducible, Schur’s Lemma implies Ψn is injective. We now
show surjectivity. Consider γ ∈ HomG(Vn,C[G]right). For I ∈ G, γ(v)(I) is a
linear functional on Vn. Hence there exists w

∗ ∈ V ∗n such that w∗(v) = γ(v)(I)
for all v ∈ Vn. The following computation establishes that Ψn(w

∗) = γ:

Fw∗(v)(x) = w∗(x · v) = γ(x · v)(I) = (γ(v)) · x(I) = γ(v)(Ix) = γ(v)(x).

Therefore Ψn is an isomorphism and so is Ψ =
∑

(Ψn ⊗ id):
∑

n≥0

V ∗n ⊗ Vn
∼=
∑

n≥0

(HomG(Vn,C[G]right)⊗ Vn) .

4.3 Ring Structure of C[G]G

We have established

C[G] ∼=
∑

n≥0

V ∗n ⊗ Vn.

By Schur’s Lemma and the fact that V ∗n ⊗ Vn
∼= End(Vn),

C[G]G ∼=
∑

n≥0

(V ∗n ⊗ Vn)
G ∼=

∑

n≥0

Cχn,

where χn ∈ End(Vn)
G is a multiple of the identity.
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The isomorphism End(Vn)→ V ∗n ⊗ Vn is given by

nn−l(nn−k)
T 7→

(
n
k

)
n∗n−k ⊗ nn−l.

Therefore, the central function χn corresponds to an invariant function in
C[G]G by

χn =

n∑

i=0

ni(ni)
T 7−→

n∑

i=0

(
n
i

)
n∗i ⊗ ni

Υ7−→
n∑

i=0

(
n
i

)
n∗i (x · ni).

We will freely identify χn with its image in C[G]G.
For example, the trivial representation V0 gives χ0 = 1. The standard

representation V1 has diagonal matrix coefficients x11 and x22, hence

χ1 = x11 + x22 = tr(x).

The remaining functions may be computed directly, or by using the follow-
ing product formula:

Theorem 4.8 (Product Formula).

χaχb =
∑

c∈⌈a,b⌋

χc (4)

Proof. From the Clebsch-Gordan decomposition,

(Va ⊗ Vb)
∗ ⊗ (Va ⊗ Vb) ∼=

∑

c,d∈⌈a,b⌋

V ∗c ⊗ Vd.

Hence

End(Va ⊗ Vb)
G ∼=

∑

c∈⌈a,b⌋

End(Vc)
G

and the characters satisfy

χaχb = χ
(Va⊗Vb)

= χ
⊕cVc

=
∑

c∈⌈a,b⌋

χc.

There is an alternate diagrammatic proof of this statement, which uses the
fusion and bubble identities in Propositions 3.20 and 3.21. If the matrix x is
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represented by x , then:

χaχb = x

a

x b =
∑

c∈⌈a,b⌋

(
∆(c)

Θ(a, b, c)

)
x

a
x b

c

=
∑

c∈⌈a,b⌋

(
∆(c)

Θ(a, b, c)

)
a

b
x

c

=
∑

c∈⌈a,b⌋

(
∆(c)

Θ(a, b, c)

)

x

c

a b

=
∑

c∈⌈a,b⌋

(
∆(c)Θ(a, b, c)

Θ(a, b, c)∆(c)

)

x

c

=
∑

c∈⌈a,b⌋

x

c

=
∑

c∈⌈a,b⌋

χc.

The product formula (4) and the initial calculations of χ0 and χ1 may be
used to show:

Theorem 4.9. C[G]G ∼= C[t].

Proof. Consider the ring homomorphism Φ : C[t] → C[G]G defined by f 7→
f ◦ tr. Suppose f(tr(g)) = 0 for all g ∈ G. If f 6= 0, then since f has a finite
number of zeros, tr(g) must have a finite number of values. However,

[
t 1
−1 0

]

∈ G

for all values of t. Hence, f = 0 and Φ is injective. It remains to establish
surjectivity. We have already shown t 7→ χ1 and 1 7→ χ0. Suppose a ≥ 2 and
χb is in the image of Φ for all b < a. Equation (4) implies χ1χa−1 = χa+χa−2.
Thus, by induction,

tΦ−1(χa−1)− Φ−1(χa−2) 7→ χa.

The following closed formula for χn is given in [25]:

χn(t) =

⌊n2 ⌋∑

r=0

(−1)r
(
n− r

r

)

tn−2r.

The characters χn may also be expressed as functions of eigenvalues, since
χn is determined by its values on normal forms

[
λ ∗
0 λ−1

]

∈ G.
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Explicitly,
[
λ ∗
0 λ−1

]
acts on Vn by the matrix

2

6

6

6

6

6

6

4

λn
∗ ∗ · · · ∗

0 λn−2
∗ · · · ∗

... 0
. . . ∗ ∗

0
... 0 λ2−n

∗

0 0 · · · 0 λ−n

3

7

7

7

7

7

7

5

.

Hence,

χn = λn + λn−2 + · · ·+ λ2−n + λ−n =
λn+1 − λ−n−1

λ− λ−1
= [n+ 1]λ,

where [n+ 1]λ is the quantized integer for q = λ.

5 Structure of C[G × G]G

Recall the decomposition

C[G×G]G ∼=
∑

a,b∈N
c∈⌈a,b⌋

Cχa,b,c,

where χa,b,c corresponds by Υ to the image of

c∑

k=0

ck(ck)
T 7→

c∑

k=0

(
c
k

)
c∗k ⊗ ck

under the injection V ∗c ⊗Vc →֒ V ∗a ⊗V ∗b ⊗Va⊗Vb. This inclusion is determined
by the Clebsch-Gordan injection ι : Vc →֒ Va ⊗ Vb. Hence, an explicit formula
for ι provides a means to compute χa,b,c directly. We freely use χa,b,c to denote
its image in C[G×G]G.

A few simple examples will motivate the construction of ι. For k = 1, 2, let
xk = [xk

ij ] be 2× 2 matrix variables, and let

x = tr(x1) = x1
11 + x1

22,

y = tr(x2) = x2
11 + x2

22,

z = tr(x1x
−1
2 ) = (x1

11x
2
22 + x1

22x
2
11)− (x1

12x
2
21 + x1

21x
2
12).

Recall that the map : V0 →֒ V1 ⊗ V1 given by

c0 7→ a1 ⊗ b0 − a0 ⊗ b1
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is invariant, using the notation defined in section 2.3. More generally, the
injection V0 →֒ Va ⊗ Va is given by

a
: c0 7−→

a∑

m=0

(−1)m
(
a
m

)
aa−m ⊗ bm. (1)

Hence, χ0,0,0 = 1 and χ1,1,0 may be computed by:

χ1,1,0 7→ c∗0 ⊗ c0

7→ (a∗1 ⊗ b∗0 − a∗0 ⊗ b∗1)⊗ (a1 ⊗ b0 − a0 ⊗ b1)

7→ (a∗1 ⊗ a1)⊗ (b∗0 ⊗ b0)− (a∗0 ⊗ a1)⊗ (b∗1 ⊗ b0)

− (a∗1 ⊗ a0)⊗ (b∗0 ⊗ b1) + (a∗0 ⊗ a0)⊗ (b∗1 ⊗ b1)

7→ x1
11 ⊗ x2

22 − x1
12 ⊗ x2

21 − x1
21 ⊗ x2

12 + x1
22 ⊗ x2

11

7→ (x1
11x

2
22 + x1

22x
2
11)− (x1

12x
2
21 + x1

21x
2
12) = z.

The representation Vc may be identified with a subset of V ⊗c via the equiv-
ariant maps

Vc

Sym

$$
V ⊗c

Proj

dd

where Proj ◦ Sym = id. Thus, when c = a+ b, ι is given by the commutative
diagram

V ⊗c

�

V ⊗a ⊗ V ⊗b

Proj⊗Proj

��
Vc ι

//

Sym

OO

Va ⊗ Vb.

In particular,

(
c
k

)
ck

ι7−→
∑

0≤i≤a
0≤j≤b
i+j=k

(
a
i

)
ai ⊗

(
b
j

)
bj . (2)

For example, consider χ1,0,1. In this case, c0 7→ a0 ⊗ b0 and c1 7→ a1 ⊗ b0.
Hence,

χ1,0,1
7→ c

∗

0 ⊗ c0 + c
∗

1 ⊗ c1 7→ (a∗0 ⊗ a0)⊗ (b∗0 ⊗ b0) + (a∗1 ⊗ a1)⊗ (b∗0 ⊗ b0)

7→ x
1
11 ⊗ 1 + x

1
22 ⊗ 1 7→ x

1
11 + x

1
22 = x.

A similar computation shows that χ0,1,1 7→ y.
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The general form of ι is determined by combining (1) and (2) in the fol-
lowing diagram:

Vc
ι //

ι

��
�

Vβ ⊗ Vα

id⊗
γ
⊗id

��
Va ⊗ Vb Vβ ⊗ Vγ ⊗ Vγ ⊗ Vα

oo

It follows that the mapping ι : Vc → Va ⊗ Vb is explicitly given by:
(
c
k

)
ck 7−→

∑

0≤i≤β
0≤j≤α
0≤m≤γ
i+j=k

(
β
i

)
ai ⊗

[
(−1)m

(
γ
m

)
aγ−m ⊗ bm

]
⊗
(
α
j

)
bj

7−→
∑

0≤i≤β
0≤j≤α
0≤m≤γ
i+j=k

(−1)m
(
β
i

)(
α
j

)(
γ
m

)
ai+γ−m ⊗ bj+m.

5.1 Symmetry of Central Functions

Our first theorem regarding central functions is a symmetry property that is es-
sentially trivial in diagram form, despite being highly nontrivial algebraically.
A portion of the Fricke-Klein-Vogt Theorem (5.12) is required to state the the-
orem. We begin with a diagrammatic proof of this classical result, in which the
the binor identity plays the role of the characteristic equation in the classical
proof.

Lemma 5.1. Each central function χa,b,c is associated to a unique polynomial
pa,b,c, denoted for all pairs (x1,x2) ∈ G×G by

χa,b,c(x1,x2) = pa,b,c(tr(x2), tr(x1), tr(x1x
−1
2 )).

Proof. Expanding the symmetrizers in χa,b,c gives a collection of circles with
matrix elements, each of which correspond to a product of traces of words in
x1 and x2, so it suffices to show that every loop can be reduced to a collection
of loops containing one of x1, x2, or x1x

−1
2 .

This reduction depends entirely on the binor identity, which when com-

posed with x1 ⊗ x2 = x1 x2 gives:

x1 x2

=
x1 x2 −

x1 x2

. (3)
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Denote x−11 by x̄1. Two special cases of (3) follow:

x1 x̄1

=
x1 x̄1 −

x1 x̄1

= x1 x̄1 −
x2
1

and
x1 x1

=
x1 x1 −

x1 x1

= x1 x1 −
I

.

The first relation allows us to assume no loop has both x1 and x−11 , while the
second allows us to assume no loop has more than one of any matrix. The
remaining cases are the traces tr(x1), tr(x2), tr(x1x2), and tr(x1x

−1
2 ). Finally,

closing off (3) permits the reduction of tr(x1x2):

tr(x1x2) = tr(x1)tr(x2)− tr(x1x
−1
2 ).

We can now prove the symmetry result. In the statement and proof below,
σ(♦1,♦2,♦3) denotes the ordered triple (♦σ(1),♦σ(2),♦σ(3)) obtained by ap-
plying a given permutation σ ∈ Σ3 to the triple (♦1,♦2,♦3). This result was
first outlined in [29].

Theorem 5.2 (Symmetry of Central Functions). The family of polynomials
χa,b,c(x1,x2) = pa,b,c(tr(x2), tr(x1), tr(x1x

−1
2 )) posseses the following symme-

try:

pσ(a,b,c)(y, x, z) = pa,b,c(σ
−1(y, x, z)).

Proof. Define the following function G×G×G→ C:

χ
α,β,γ(x,y, z) =

. . . . . . . . . . . .
x x y y z z

α β γ

where the symmetrizer on the right is assumed to ‘wrap around’ to the one
on the left (imagine this diagram being drawn on a cylinder). By construction
this function is symmetric, in the sense that:

χ
σ(α,β,γ)

(

σ

(

x1 , x2 , x3

))

= χ
α,β,γ

(

x1 , x2 , x3

)

.

A central function χa,b,c(x1,x2) may be drawn as:

x1 x2

a b c

=

. . . . . . . . . . . .
x2x2x2x2x1x1x1x1

a−b+c
2

a+b−c
2

−a+b+c
2

=

. . . . . . . . . . . .
x̄1 x̄1 x1x̄2x1x̄2 x2 x2

β γ α

,
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with the symmetrizers in the last two diagrams assumed to wrap around as
before. Thus, pa,b,c(y, x, z) = χ

α,β,γ(x2,x
−1
1 ,x1x

−1
2 ) and so:

pσ(a,b,c)(y, x, z) = χ
σ(α,β,γ)(x2,x

−1
1 ,x1x

−1
2 )

= χ
α,β,γ(σ

−1(x2,x
−1
1 ,x1x

−1
2 ))

= pa,b,c(σ
−1(y, x, z)).

Table 5.1 contains six central functions illustrating this symmetry.

χ1,2,3 = xy2 − 2
3 (yz + x) χ3,2,1 = xz2 − 2

3 (yz + x)

χ2,3,1 = yz2 − 2
3 (xz + y) χ1,3,2 = y2z − 2

3 (xy + z)

χ3,1,2 = x2z − 2
3 (xy + z) χ2,1,3 = x2y − 2

3 (xz + y)

Table 1. Rank Two Central Function Symmetry.

5.2 A Recurrence Relation for Central Functions

Define the degree of a central function to be:

δ = deg(χa,b,c) = 1
2 (a+ b+ c).

We will obtain a recurrence relation for an arbitrary central function χa,b,c by
manipulating diagrams to express the product

tr(x1) · χa,b,c(x1,x2)

as a sum of central functions. This formula can be rearranged to write χa,b,c

as a linear combination of central functions with lower degree. There are three
main ingredients to the diagram manipulations: the bubble identity and the
fusion identity from Section 3.5, and two recoupling formulae which we prove
in the following lemma.

Lemma 5.3. For i = 1
2 (a+ 1− b+ c) and appropriate triples admissible,

1 a

bc

c−1
=

c

1

a+1

b

a

−(−1)i
(

a+b−c+1
2(a+1)

)

c

1

a−1

b

a

; (4)

1 a

bc

c+1
=(−1)i

(
−a+b+c+1

2(c+1)

)

c

1

a+1

b

a

+
(

(a+b+c+3)(a−b+c+1)
4(a+1)(c+1)

)

c

1

a−1

b

a

. (5)
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Proof. Note that i is just the number of strands connecting a+ 1

..

..
to c

..

..
in

c

1

a+1

b

a

=
c b

a+1

. For (4), use n = a+1 and i in recurrence relation (9) to get:

a+ 1

..

..
=

i a+ 1− i

a+ 1− 1

.. .. + (−1)i
(
a+ 1− i

a+ 1

)

i a+ 1− i

a+ 1− 1

..
.. .. .

Compose this equation with
c b

.. ....

i a+1−i

to get, via the stacking relation:

c

1

a+1

b

a

=
c b

a+1

=
1 a

bc

c−1
+ (−1)i

(
a+ 1− i

a+ 1

)

c

1

a−1

b

a

,

which is the desired result.
To prove (5), notice that if we switch a and c in the previous relation, and

apply a π
4 -reflection to the relation about the 1 ↔ b axis as in Proposition

3.23, then i is unchanged and the equation becomes:

1 a

bc

c+1
=

c

1

a−1

b

a

+ (−1)i
(
c+ 1− i

c+ 1

) 1 a

bc

c−1
.

Rearrange this equation, and use (4) in its exact form to get:

1 a

bc

c+1
=

c

1

a−1

b

a

+ (−1)i
(

c+1−i
c+1

)





c

1

a+1

b

a

− (−1)i
(

a+1−i
a+1

)

c

1

a−1

b

a




= (−1)i
(

c+1−i
c+1

)

c

1

a+1

b

a

+
(

1− (a+1−i)(c+1−i)
(a+1)(c+1)

)

c

1

a−1

b

a

= (−1)i
(
−a+b+c+1

2(c+1)

)

c

1

a+1

b

a

+
(

(a+b+c+3)(a−b+c+1)
4(a+1)(c+1)

)

c

1

a−1

b

a

.

To show the last computation, note that a + 1 − i = 1
2 (a + b − c + 1) and

c+ 1− i = 1
2 (−a+ b+ c+ 1), so the numerator of the last term is:

4((a + 1)(c+ 1) − (a+1− i)(c + 1− i))

= 4(a + 1)(c+ 1) − ((b + 1) + (c− a))((b + 1)− (c− a))

= 4(a + 1)(c+ 1) − (b + 1)2 + (a− c)2

= ((a + 1) − (c+ 1))2 + 4(a + 1)(c + 1)− (b + 1)2

= ((a + 1) + (c+ 1))
2 − (b + 1)

2

= (a + 1 + c + 1 + b + 1)(a + 1 + c + 1− b− 1)

= (a + b + c + 3)(a− b + c + 1).
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The coefficients we have computed are examples of 6j-symbols , most easily
defined to be the coefficients

[
a b f
d c e

]′
in the following change of basis equation:

a b

cd

e
=

∑

f∈⌈a,b⌋∩⌈c,d⌋

[
a b f
d c e

]′ ·
d

a

f

c

b

.

We use a prime because we will need an alternate version later:

Definition 5.4. The 6j-symbols
[
a b f
d c e

]
are the coefficients given by

cba

d

e =
∑

f∈⌈a,b⌋∩⌈c,d⌋

[
a b f
d c e

]
·
a b c

d

f .

Both versions given here differ from those in the literature [5, 21]. It is not
hard to show, using Corollary 3.24, that

[
a b f
d c e

]′
= (−1) 1

2 (b+d−e−f)
[
a b f
d c e

]
.

Thus, as a corollary to the above lemma we have the following 6j-symbols,
given by replacing c with c+ 1 or c− 1, which will be used to prove the next
theorem:

Corollary 5.5.
[

1 a a+1
c+1 b c

]
= 1;

[
1 a a−1

c+1 b c

]
= (−1) 1

2 (a−b+c+2) (a+b−c)
2(a+1) ;

[
1 a a+1

c−1 b c

]
= (−1) 1

2 (a−b+c) (−a+b+c)
2c ;

[
1 a a−1

c−1 b c

]
= (a+b+c+2)(a−b+c)

4(a+1)c .

We can now prove the “multiplication by x” formula.

Theorem 5.6. The product x · χa,b,c(x, y, z) can be expressed by:

x · χa,b,c = χa+1,b,c+1 + (a+b−c)2

4a(a+1)
χa−1,b,c+1 + (−a+b+c)2

4c(c+1)
χa+1,b,c−1

+ (a+b+c+2)2(a−b+c)2

16a(a+1)c(c+1)
χa−1,b,c−1. (6)

This equation still holds for a = 0 or c = 0, provided we exclude the terms
with a or c in the denominator.

Proof. Diagrammatically, x · χa,b,c(x, y, z) is represented by

1
c

x1 x1

a
x2

b

,
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since x = tr(x1) = x1 and multiplication is automatic on disjoint diagrams.

Now manipulate the diagram to obtain a sum over χ’s with the following three
steps.

First, apply the fusion identity to connect the lone x1 strand to the χa,b,c:

1
c

x1 x1

a
x2

b

=
c

c+ 1

1 c

x1 x1

a
x2

b

+
c

c+ 1 c
c− 1

1 c

x1 x1

a
x2

b

, (7)

where the coefficients are evaluated from

∆(c± 1)

Θ(1, c, c± 1)
=

c± 1 + 1

c+ 3
2 ± 1

2

.

Second, use the 6j-symbols computed in Corollary 5.5 above to move the
a strand from one side of the diagram to the other:

c
c+ 1

1 c

x1 x1

a
x2

b

= c+ 1

x1

a+ 1
x2

b

+ (a+b−c)2

4(a+1)2
a−1

c+ 1
a−1
1

x1 x1

a
x2

b

(8)

c
c− 1

1 c

x1 x1

a
x2

b

= (−a+b+c)2

4c2 c− 1

x1

a+ 1
x2

b

+ (a+b+c+2)2(a−b+c)2

16(a+1)2c2
a−1

c− 1
a−1
1

x1 x1

a
x2

b

. (9)

In each case, we are recoupling twice: once for the top piece and once

for the corresponding bottom piece. In doing this, we would actually get four
terms, but since the a ± 1 labels must be the same on both the top and the
bottom (a consequence of Schur’s Lemma or the bubble identity), two of the
terms vanish.
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In the final step, use the bubble identity to collapse the final pieces:

a+1
c± 1

a+1
1

x1 x1

a
x2

b

=
(

Θ(1,a,a+1)
∆(a+1)

)

c± 1

x1

a+ 1
x2

b

= χa+1,b,c±1;

a−1
c± 1

a−1
1

x1 x1

a
x2

b

=
(

Θ(1,a,a−1)
∆(a−1)

)

c± 1

x1

a− 1
x2

b

=
(
a+1
a

)
χa−1,b,c±1.

At this point, obtaining (6) is simply a matter of multiplying the coefficients
obtained in the previous formulae.

Now consider the special cases. For a = 0, since b = c and consequently
c

c+1 = (−a+b+c)2

4c(c+1) , the desired formula is exactly (7). Similarly, for c = 0, the

desired formula is (8).

We find it interesting that, for all our discussion of signs introduced by non-
topological invariance, all signs introduced are eventually squared and thus do
not show up in this result.

We can rearrange the terms in (6) and re-index to get:

Corollary 5.7 (Central Function Recurrence). Provided a > 1 and c > 1, we
can write

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c − (−a+b+c)2

4c(c−1)
χa,b,c−2

− (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

The relation still holds for a = 1 or c = 1, provided we exclude the terms with
a− 1 or c− 1 in the denominator.

The condition a > 1, c > 1 arises because decrementing a and c in (6)
means (a − 1, b, c− 1) must now be admissible. Also, note that formulae for
multiplication by y and z may be obtained by applying the symmetry relation
of Theorem 5.2. This fact is indispensable in our proof of Theorem 5.12.

5.3 Graded Structure of the Central Function Basis

The majority of the content in this section was suggested to us by Carlos
Florentino [12] after he read an early draft of this chapter.

Recall the α, β, γ notation used earlier, and the notation

χ
α,β,γ(x2,x

−1
1 ,x1x

−1
2 ) = χa,b,c(x1,x2)
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introduced in the proof of Theorem 5.2. The recurrence in Corollary 5.7 may
be rewritten as

χ
α,β,γ = χ

0,1,0
χ

α,β−1,γ − γ2

a(a−1)
χ

α+1,β−1,γ−1 − α2

c(c−1)
χ

α−1,β−1,γ+1

− δ2(β−2)2

a(a−1)c(c−1)
χ

α,β−2,γ .

The interchangeability of (a, α) and (c, γ) is guaranteed by the symmetry the-
orem.

Proposition 5.8. The polynomial χa,b,c = χ
α,β,γ is monic, with highest degree

monomial xβyαzγ.

Proof. Induct on the degree δ = α+β+γ of central functions. The statement
is clearly true for the base cases, since χ

0,0,0 = 1, χ0,1,0 = x, χ1,0,0 = y, and
χ

0,0,1 = z. The recurrence relation implies that the highest order term of χα,β,γ

is x times the highest order term of χα,β−1,γ , hence x(xβ−1yαzγ) = xβyαzγ .
This fact, together with the appropriate symmetric facts for y and z, completes
the induction.

The basis also preserves a certain grading on C[x, y, z]. To define this
grading, partition the standard basis B = {xaybzc} of this space as follows.
Let gr : B → Z2 × Z2 be defined by:

gr(xaybzc) = (a+ c, b+ c) mod 2.

If B is considered as a semigroup under multiplication, then gr is a homomor-
phism since

gr(xaybzc) + gr(xa′

yb
′

zc
′

) = (a+ c, b+ c) + (a′ + c′, b′ + c′) mod 2

= (a+ a′ + c+ c′, b+ b′ + c+ c′) mod 2

= gr(xa+a′

yb+b′zc+c′) mod 2.

Therefore, gr defines a grading on this basis.

Proposition 5.9. The basis {χa,b,c} respects the Z2×Z2-grading on C[x, y, z]
defined by gr, in the sense that

χa,b,c ∈ C
(
gr−1(a, b)

)
.

Proof. This is another proof by induction on the degree δ. Clearly, χ0,0,0 =
1 ∈ gr−1(0, 0), and likewise χ1,0,1 = x ∈ gr−1(1, 0), χ0,1,1 = y ∈ gr−1(0, 1), and
χ1,1,0 = z ∈ gr−1(1, 1). In the induction step, note that

(a, b) = (1, 0) + (a− 1, b) = (a− 2, b) mod 2,

so all terms on the righthand side of the recurrence relation in Corollary 5.7
have the same grading. Thus χa,b,c ∈ gr−1(a, b).
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5.4 Multiplication of Central Functions

It is not difficult to write down the formula for the product of two central
functions, although the formula is by no means simple. The proof that follows
was motivated by [29]. We begin with a lemma which encapsulates the most
tedious diagram manipulations:

Lemma 5.10.

a
a′ b

b′

c c′

a
a′ b

b′

=
∑

i,j,k,l,m

Cabc,a′b′c′

j1k1l1,j2k2l2,m

a
a′ b

b′
k2 l2

m
k1 l1
a

a′ b
b′

,

where the coefficients are given by the formula

Cabca′b′c′

j1k1l1,j2k2l2,m
= Θ(c,c′,m)

∆(m)

∏

i=1,2

∆(ji)
Θ(a′,b,ji)

·
[
a a′ ki

c ji b

][
b′ b li
c′ ji a′

][
ki li m

c c′ ji

]
,

and the following 15 triples are assumed to be admissible:

(a, a′, ki), (b, b
′, li), (c, c

′,m), (a′, b, ji), (c, ji, ki), (c
′, ji, li), (b, ji, li),

(ki, li,m).

Proof. We will just demonstrate the diagram manipulation for the top half of
the diagram, which by symmetry must be the same as for the bottom half.
Combining these two manipulations and applying a bubble identity will give
the desired result. We will save enumeration of admissible triples until after
the manipulation, but keep a close eye on signs in the meantime.
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c

a b

c′

a′ b′

=
X

j

(−1)
1
2
(a′

−b+j) ∆(j)
Θ(a′,b,j)

c

a

c′

b′

b
a′

ja′ b

=
X

j,k

(−1)
1
2
(a′

−b+j)+j ∆(j)
Θ(a′,b,j)

ˆ

a a′ k
c j b

˜

c′

b′

c

k

a a′

j
a′

b

=
X

j,k,l

(−1)
1
2
(a′

−b−j) ∆(j)
Θ(a′,b,j)

ˆ

a a′ k
c j b

˜ˆ

b′ b l

c′ j a′

˜

c

k

a a′

c′

l

b b′

j

=
X

j,k,l

(−1)
1
2
(a′

−b−j)+ 1
2
(j+l−c′) ∆(j)

Θ(a′,b,j)

ˆ

a a′ k
c j b

˜ˆ

b′ b l

c′ j a′

˜

a a′ b b′

c

k

c′

j l

=
X

j,k,l,m

(−1)
1
2
(a′−b+c−c′−j−m)+l ∆(j)

Θ(a′,b,j)

ˆ

a a′ k
c j b

˜ˆ

b′ b l

c′ j a′

˜ˆ

k l m

c c′ j

˜

a a′ b b′

c c′
m

k l

The (−1) terms all cancel in the end, a consequence of the fact that the
following triples must be admissible:

(a, a′, k), (b, b′, l), (c, c′,m), (a′, b, j), (c, j, k), (c′, j, l), (b, j, l), (k, l,m).

One computes the 13-parameter coefficients Cabc,a′b′c′

j1k1l1,j2k2l2,m
above by reflecting

this result vertically, taking two sets of indices for the variables j, k, l,m on
the two halves, and noting that the resulting bubble in the middle collapses

with a factor of Θ(c,c′,m)
∆(m) for m = m1 = m2.

With that out of the way, we can describe the central function multipli-
cation table explicitly. Note the symmetry with respect to k, l,m, which is
guaranteed by Theorem 5.2.

Theorem 5.11 (Multiplication of Central Functions). The product of two
central functions χa,b,c and χa′,b′,c′ is given by:

χa,b,cχa′,b′,c′ =
∑

j1,j2,k,l,m

Cj1klmCj2klm
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)
χk,l,m,

where the sum is taken over admissible triples

(a, a′

, k), (b, b′, l), (c, c′,m), (a′

, b, ji), (c, ji, k), (c
′

, ji, l), (b, ji, l), (k, l,m)
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and the coefficients are given by:

Cjiklm = ∆(ji)
Θ(a′,b,ji)

[
a a′ k
c ji b

][
b′ b l
c′ ji a′

][
k l m
c c′ ji

]
.

Proof. By the previous lemma and the bubble identity, we have:

c c′

x1

a

x1
a′

x2
b

x2

b′
=

∑

j1,k1,l1,j2,k2,l2,m

Cabc,a′b′c′

j1k1l1,j2k2l2,m
k2 l2

m
k1 l1

x1

a

x1
a′

x2
b

x2

b′

=
∑

j1,j2,k,l,m

Cabc,a′b′c′

j1kl,j2kl,m

(
Θ(a, a′, k)Θ(b, b′, l)

∆(k)∆(l)

)

m

x1

k
x2

l

=
∑

i,j,k,l

Cj1klmCj2klm
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m) m

x1

k
x2

l

.

5.5 Applications

Spin networks offer a novel approach to a classical theorem of Fricke, Klein,
and Vogt [14, 32]. We give here a new constructive proof which depends on
the symmetry, recurrence, and multiplication formulae for central functions.

Theorem 5.12 (Fricke-Klein-Vogt Theorem). Let G = SL(2,C) act on G×G
by simultaneous conjugation. Then

C[G×G]G ∼= C[tx, ty, tz],

the complex polynomial ring in three indeterminates. In particular, every reg-
ular function f : SL(2,C)× SL(2,C)→ C satisfying

f(x1,x2) = f(gx1g
−1, gx2g

−1) for all g ∈ SL(2,C),

can be written uniquely as a polynomial in the three trace variables x = tr(x1),
y = tr(x2), and z = tr(x1x

−1
2 ).

Proof. Define the ring homomorphism

Γ : C[tx, ty, tz]→ C[G×G]G

by f(tx, ty, tz) 7→ f(tr(x1), tr(x2), tr(x1x
−1
2 )).



Spin networks and SL(2,C)-character varieties 45

We first show that Γ is injective. Suppose f(tr(x1), tr(x2), tr(x1x
−1
2 )) = 0

for all pairs (x1,x2) ∈ G × G. Let (τx, τy, τz) ∈ C3, ǫx =

[
τx 1
−1 0

]

, and

ηy,z =

[
τy

1
ζ

−ζ 0

]

, where ζ + ζ−1 = τz. Then

(τx, τy, τz) = (tr(ǫx), tr(ηy,z), tr(ǫxη
−1
y,z)).

Hence f = 0 on C3, Ker(Γ) = {0}, and Γ is injective. This is the “Fricke slice”
given by Goldman in [18].

It remains to show that Γ is surjective. Theorem 4.1 implies that the central
functions form a basis for C[G × G]G. Since tx 7→ x, ty 7→ y, and tz 7→ z, it
suffices to show that every χa,b,c may be written as a polynomial in x, y, and
z. This was already done via Lemma 5.1, but we provide here a constructive
proof.

Proceed by induction on the degree δ = 1
2 (a + b + c) of a central function

χa,b,c. For the base cases δ = 0, 1 recall our earlier computations demonstrating

χ0,0,0 = 1, χ1,0,1 = x, χ0,1,1 = y, χ1,1,0 = z.

For δ > 0, we may inductively assume that all central functions with degree
less than δ are in C[x, y, z]. The admissibility conditions imply that at least
two out of the triple (a, b, c) are positive. Without loss of generality, using
Theorem 5.2, we may assume that a and c are positive. In this case, the
recurrence given by Corollary 5.7,

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2,

allows us to write χa,b,c in terms of central functions of lower degree, which
by induction must be in C[x, y, z]. Thus, χa,b,c ∈ C[x, y, z], and we have
established surjectivity.

The recursion relations provide an algorithm for writing any χa,b,c as a
polynomial in {x, y, z}. Conversely, in [25] the following formula is established,
which may be used to express any polynomial in C[x, y, z] in terms of central
functions:

xaybzc =

⌊a2 ⌋,⌊
b
2 ⌋,⌊

c
2 ⌋∑

r,s,t=0
k,l,m

((
a
r

)
−
(

a
r−1

))((
b
s

)
−
(

b
s−1

))((
c
t

)
−
(

c
t−1

))

·

(
∆(l)∆(m)Θ(a−2r,c−2t,k)

∆(k)Θ(a−2r,b−2s,m)Θ(b−2s,c−2t,l)

)[
a−2r c−2t k
m l b−2s

]2χk,l,m.
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Table 5.5 lists several central functions that were computed with Mathe-
matica using Corollary 5.7. Only one function per triple of indices is listed;
the others follow directly from Theorem 5.2.

δ χa,b,c χ
α,β,γ pa,b,c(y, x, z)

0 χ0,0,0 χ
0,0,0 1

1 χ1,0,1 χ
0,1,0 x

2 χ2,0,2 χ
0,2,0 x2 − 1

χ1,1,2 χ
1,1,0 xy − 1

2z

3 χ3,0,3 χ
0,3,0 x3 − 2x

χ2,1,3 χ
1,2,0 x2y − 2

3 (xz + y)

χ2,2,2 χ
1,1,1 xyz − 1

2 (x
2 + y2 + z2) + 1

4 χ4,0,4 χ
0,4,0 x4 − 3x2 + 1

χ3,1,4 χ
1,3,0 x3y − 3

4x
2z − 1

2 (3xy − z)

χ2,2,4 χ
2,2,0 x2y2 − xyz + 1

6z
2 − 1

2 (x
2 + y2) + 1

3

χ3,2,3 χ
1,2,1 x2yz − 2

3 (xz
2 + xy2)− 1

2x
3 − 1

9 (2yz − 13x)

Table 2. SL(2,C)-Central Functions.
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