EXTENSIONS OF VANDERMONDE TYPE CONVOLUTIONS WITH
SEVERAL SUMMATIONS AND THEIR APPLICATIONS - 1

S.G. Mohanty* and B.R. Handa

(received June 4, 1968)

1. Summary. In an earlier paper [8], one of the authors has
established some Vandermonde type convolution identities involving
multinomial coefficients with several summations which evidently
are generalizations of identities in [1] with one summation. In this paper
similar identities are derived for coefficients (defined below) of a general
type, in the line of the results in [2] and [3]. Furthermore, in a series
of papers [4], [5], [6], Gould has obtained results on inversion of series
and on classical polynomials by an extensive use of these identities with
one summation. The purpose of this paper is to extend the results of
Gould in the light of new convolution identities with several summations.

2. Introduction. In what follows we write for brevity T in the

k k

place of > and N1 inplaceof 1 . Let, for any a; and bi ,
i=1 i=1

and for non-negative integral values of the n,

Za,
i

(1) e +bm) Eflay b))
1 11

Nn.!
+ +.o.. / i’
1 n2 +nk i

with (a)n = a(a-1)...(a-n+1), be denoted by
P(ai,...,a; b .,b.; n

k 10 k 1’
with the convention that

ey nk) or briefly as P(ai,bi, n; k)

J’.i forn1=...=nk=0,

(2) P(ai’bi’ni; k) =
10 fora1=...=a = 0, but

not all n, are zero.
i

Note that the coefficient (1) is slightly different from that in [8]. In this
terminology, the main results in [8] can be stated as
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s e ) .;'.; .rb.’ . ; k = P .+ -1b-v ;k )
() 2_0 ?_ P(ai b1 Jl k) P(Cl i nl J1 ) (al Cl i n1 )
W
"k "1 Z(e +b(n - j) _
(4) .Z_o s 2_0 P(a,, bi’Ji; k) F e Plc,b,n -j k)
Jk‘ .]1- i
Z(ai+ci+b.ni)
- ’ 1 .
- Z(a, +c,) Pla;tepbpnik),
1 1
and

PO j y .)..; .yb.) P '.;k
(5) = 'Z—o {E(pi‘rqui)} P(a, b, j;sk) Ple,b,n -jik)

(Epi) Z(ai+ci) + (;ai) Zqin‘

N T(a. tc.) Pla, + ;b nsk),
1 1
which are based on
0 [ ji Zai
(6) = =z P(a,b,j; k) s, = z )
. :0 . =O 1 1 1 1
Ik 4
and
© o z(ai-i- b.j.) ji
> cm————— .
(1) -y . 2_0 za, Pla, by jjik) s,
U 4
z a,
1
_ V4
bi-i !
1 - *sb.z
112
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where

(8) s,z = z-1.

We further define

(9) B(ai’bi’ni;k) = B(ai,..., a; bi"“’ i

+ +... %
n1 n2 nk

Ta, (=(a. +b.n,))
A i ii
>(a.+b.n,) Mn, !
1 11

1

for any an bi and non-negative integral values of n,, with the convention

that

1 for n1=... =nk=0,

i}

(10) B(a.,b., n ;k)
1 1 1

0 = .,. = =
for a1 ak 0,

but not all n, are zero.
i

Expression (9), when k=1, reduces to the coefficients in the Abel series
(see [2]). Following verbatim the proofs in [8] which essentially use the
technique in [1], we are led to the results for the coefficient B(ai, bi' ni;k)

stated below:

© ) ji Ta,
(11) ® ... T B(a,b,j;k)ns, =2z ',
. =0 . =0 1 1 1 1
Ik )
o 0 Z(a,+b,j.) j.
(12) £ ... T —2—— B(a,b,j;k) s >
;=0 =0 Z:a:.L 1 171 1
I iy
Za,
1
= z
——-——-—r— ?
1-—Esibiz 1
47

https://doi.org/10.4153/CMB-1969-006-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-006-4

where
(13) . Zsiz e log z,

which corresponds to (6), (7), and (8) respectively. Then the usual
procedure shows that convolutions (3), (4) and (5) hold good if
P(ai’bi’ji;k) is replaced by B(ai,bi,ji; k) everywhere.

The above discussion motivates consideration of the coefficient

i.; = ee ey ; s e, ; ) e aes , which will b
C(ai,bi,ji,k) C(ai, a, b1 bk n, nk) which wi e

called Ck»coefficient, satisfying the following absolutely convergent

power series:

© o ji Ta,
(14) ... T Cla,b,j;k) ns' =z
. =0 J _0 1 1 1 i
Ik
o0 o0 J. Ta.
(15) T ... T Glapb,jsk) Ms’ =z Tglzmb, ..., b)),
. :0 _] —O 1 1 1 1
Ik 1
where
1 ,b.,n; =
(16) G(a.i N k) G(a1 a b1 bk n, nk)
Z(ai+bini)
= s C(ai, bi, n; k) ,
1
b,
(17) Ts 2 Ve f(z) ,

and g(z; bi' ceos bk) is a function of z, independent of a,.
i

These lead to the convolution identities

Py Pl
(18) zZ ... T Cla,b,js;k) Clc.,b,n, -j;k)
j =0 j =0 1 11 1 1 1 1
k 1
= C(ai + ci'bi' ni;k).
48
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19 oo b, ,b,n.-j.
(19) = = c(ai SR k) G(ci bom, - k)

and
nk n1
(20) T ...z {2(9i t g0} Cla,bis k)
Jk:O ']1:0

(Zpi) = (ai+ Ci) + ():ai) Tqn,
Z(a, + c.)
i i

X ,n, = =
C(ci,bi -, k)
X C(a, +c.,b,,n;k).
1 1 1 1

Treatment of such coeffic:ientst for k=1 already exists in the
literature [2], [3]. In concluding this section, we offer the following

remarks.

(i) P(ai, bi, ni; k) and B(ai, bi' n; k) are special cases of Ck-coefﬁcient
which result from a particular choice of f(z) viz. (z-1) and log z
respectively. :

(ii) The identities (18), (19) and (20) are readily established once the
expressions for generating functions of the coefficients are known in the
forms of (14) and (15).

(iii) The convolution identities can be obtained either by following the
procedure suggested by Gould or with the help of the extended Lagrange
inversion formula for power series (ref. Skalsky [9]). The essential
feature of Gould's method is to obtain the generating function of the
coefficients under consideration (e.g. (14), (15)), from which the relation
(17) would follow. On the other hand, Lagrange's power series expansion
method assumes the knowledge of a relation of the type (17) but not the
coefficients and would subsequently yield the coefficients. These two
procedures in a way complement each other.

For completeness the extension of Lagrange's formula for two
complex variables is stated below from [7], the generalized formula for

several variables being obvious.

Consider two simultaneous equations.
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P(X, Y) = x-a-s‘ ‘41(7‘» Y)

(21)

Qx, y) = Y-b-s2 ¢ (x, y)

0 ’

where x, y are complex variables and {(x, y) and ¢(x, y) are analytic
in the neighbourhood of (a, b). Then (21) has a unique solution (§, n)

analytic in some neighbourhood of (a, b), and any function F(§, n) which
is analytic in that neighbourhood can be expanded as a double power series

in S1 and S2 as follows:

F(g,n) ) ®© s :n s Zn
(22) ®, 0] m2=0 n>=:0 m! b
D(x,y)
x=£
y=n
where
P
D(P, Q) . ox
D (x,y) : 09
ox

da ob

_ {F(a,b) ™ (a, b)¢ (a, b)},

3. Some new convolution identities. In this section we prove an
important convolution formula which generalizes (5.5) and (6.9) in [5].
The variables and numbers under discussion are complex.

THEOREM 1.

(a)
n, n1 Zji
(23) T ... Z(-1) P(c.,tb.,j;k) P(a,+b.j.-j.,(1-t)b,,n -j.; k)
i =0 . =0 1 11 1 1 11 1 1 1 1 1
Tk Iy
= P(a.-c.,(1-t.)b_,n_;k),
and i i iT1 i
(b)
n n, Zji
(24) jz—o' . .jz_o(- 1) " Ble,tb,jik) Bla + b (1-t)b.,n.-j; k)
k- 1"

= B(ai- <5 (1- ti)bi’ L k),
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t,..., t

e being any complex numbers.

k

Proof. Because of the cumbersome nature of the expressions for
general k, the proof is demonstrated for k=2. By repeating similar
steps as in [5], we can establish the theorem. However, we shall apply
the extended Lagrange formula (22) for the proof. Since the nature of
the argument remains the same for (a) and (b), we only discuss the proof
for (b).

If we write biti for bi in (13) with k=2 we get

b
logz = s zbit1 + s_z th
g = 5 2 .

Set

bt
11

(25) log z x +y where x=8,2z

b
ZtZ
and y = SZZ

Note that (25) is in the form of (21). The Lagrange expansion of
exp{ (c1 + CZ) (x +y)} with the help of (22) yields

m n
> %2 5 5
(26) exp{(c1 +c2)(x+y)} = T z
m! n!
.m=0 n=0
arn+n
X T [{t-bt;s, exp(b,t (x+y)) - b,t,s, exp(b,t, (x+y))}
ox 9y
+
X exp{(c1 + <, +b1t1m+b2t2n) (x+y)}] "
=0
© © U
= . b .
b > B(Ci'cz’t1b1't2 2,:rrx,n) s, s2
m=0 n=0

In (26) if we replace x and y by -x and -y respectively and multiply by
exp{(a1 + az) (x +y)} onboth sides, we get
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) ©

(@7)  explla, +a,-c - )(x+y)) = B 3 (- ™™
m=0 n=0
R
X B(C1’°z;t1b1’tzb2;m’ n) z, 2, exp{(a1 +a2+b1m +b2n)(x+y)}

with

2, = x/exp{(1-t,)b, (x+y)}
and

z, = y/ex{ (1-t,)b, (x+y)}

Again, replacing b‘1 and b2 in (13) with k=2, by (1~t1)b1

and (1 - tz)b2 respectively, we would end with the expressions

{28) exp{ (aL1 +a2 +b1rn + bzn) (x+vy)}
<] © ) n nz
= = = l'f’>(a1 +b1m,az+b2n;(1—t1)b1,(1_t2)b2;n1,n2)z1 z, .
n_=0 =n =0
2 1
and
(29) exp{ (a1 + az - c1 - CZ) (x+y)}
© © n, o,
B - _ . - - . .
= > (a1 Ci’aZ cz,(i t1)b1,(1 tZ)bZ’n1'n2)Zi z,
n_=0 n1=0

by similar steps as above.

The right hand side of (25) after substitution of the expression for
exp{ (a1 + 2, + birn + bzn) (x+y)} from (28) can be written as

52

https://doi.org/10.4153/CMB-1969-006-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-006-4

o ® ) © m4n
= = b =z (-1) B(c,,c;t,b,,t.b_;m,n)
- _ _ _ 1727171 272
m=0 n=0 n =0 n_=0
1 2
n1+m n2+n
X B - . R
B(a1+b1n1,a2+b2n,(i ti)bi’(i tZ)bz, n1,n2) z, z,
20 20 [s ) [2e] +
m
= T = = 2 (-7 B(c,,c.;t b ,t.b_; m,n)
_ _ _ _ 17722171 22
m=0 n=0 n =m n_=n
1 2
I'l4 nz
X B(a,+b,m,a_+b_n; (1-  (1- ;n,-m, n - )
(a1 m a2 2n (1 ti)bi (1 tZ)bZ n, -m, n, n) z, 2z,
n n
[*'e) [*e] n n 1 2
+
= = = z11 222 (-1)rrl n B(c1,c2;t1b1,t2b2;m,n)
=0 n =0 m=0 n=0

X +b H 3 = ’ - H = ) = .
B(a1 1rn a2+b n; (1 ti)bi (1 t2)b2 n1 m, n_-n)

2 2

On the other hand the expression on the left hand side is given by (29).
n n

By comparing the coefficients of N 1 z, on both sides of (27), the

proof of (b) is complete. For part (a), we consider (8) in place of (13)
and proceed as above.

Lastly, we give the extension of Jensen's convolution formula for
the coefficient B(ai, bi’ ng k) as

(30) S(a1’°"'ak;Ci""'ck;ni""’nk)

"k " Ba +b )

= = = B(a.,b.,j.; k)
=0 ;=0 zTa i 171
I 4
Z(c;- b))

X —— - -3 .
Te.-bny D37 Bymy By -k

1 11
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"k " =j _ j.
= £ ... ¥ —7—— B(a,+c,0,n -j;k)nb, "
1 1 1 1 1

L P PR RN A
310 1 k

The proof is on the same lines as that of (2.3) in [3]. Here we use the
recurrence relation

(31) S(ai'“"ak;bi'""bk;ni’""nk)

- yesesa.tb,,..., H 320, C. "D, 000, H yeeenn. =4, ...,
zbi S(ai al bx ak ci Cl bl Ck ni n1 nk)

n1+...+nk

{Z(a, + <)}

Nn.t
1

repeatedly. The extended formula for P(ai, bi’ n; k) is already given in [8].

4. Orthogonal relations and inversion of series. Substituting

a, = ci(i= 1, ..., k) in (23) and (24), we have the orthogonal relations

e ™ Z;
(32) z ... £ (-1) Pla,tb,jsk)P(a,+bj.-j,(1-t)b,n -j;k)
;=0 P 1 11 1 1 11 1 1 1 1 1
I iy
= 6'(111»-0-: nk) ’
and
nk n1 P2}
(33) Z ... T (-1) B(a,tb,j;k)B(a,+b j, (1-t)b,n_ -j;k)
. . 1 11 1 1 11 1 1 1 1
_]k=0 Ji=0

= 5 >0 3,y »
(ni. nk)

respectively, where we define
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S(ni,...,nk) =

0 otherwise.

Applications of (32) and (33) yield the following inverse series relations
for functions of several variables.

THEOREM 2.

(a) m m =i
k 1 Ii
3 e, = - S tb.,js
(34) F(a, a,) _2:0 ‘zzo( 1) Pla,tb,j; k)
U Iy
X J o= e i, -
flagtbydy-dyeeena b0 - d))
if and only if
M ™y
(35) f(ai, ooy ak) = 'Z;o cee }_“;0 P(ai, (4 -ti)bi, i k)
Ik Iy
X F(a1+b111-_]1,...,ak+bk3k-_]k) ;
(b) ’ .
My my Ziy
(36) F*(a1, .. .,ak) = _Zio vos '}_“:0 (- 1) B(ai, tibi’ i k)
Jk" Ji_
" . .
X f (a1+b1‘]1""’ak+bk‘]k)
if and only if
My my
£ 3 = - 3.
(37) f (ai. ey ak) 'Z '2 B(ai' (1 ti)bi’ i k)
Jk:O J1=0

* Jyr e j, )3
X F (a1+b1_]1,- ak+bk1k)

where the m, are non-negative integers and depend upon whether we

consider finite or infinite series.

55

https://doi.org/10.4153/CMB-1969-006-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-006-4

Proof. The proof is on the same lines as in [5]. We shall deal
only with thé proof of (a). The theorem is true for mi = o, i=1,...,k,

which can be verified by direct substitution and the use of (32) and (33).
¥ [a./(1-b,)]>0, we candiscuss a finite series case by setting
i i

m, = [ai/ (1- bi)]’ where [p] is as usual the greatest integer less than
i
or equal to p. In that case the right hand side of (34) after substituting

the expression for f(a1 +b1j1 - ji’ v ak+bkjk- jk) from (35) becomes

m m

k 1 T
S ... =T (-1) P(a.,tb.,j.; k)
. :0 . :0 1 11 1
I Iy
((a +bJ -3 )/-p)] [, +b 5, -j)/(1-b )]
X Zz e Z P(a.+b.j.-j., (1-t.)b., r.; k)
r =0 r =0 1 11 1 1 1 1
k 1
y o ) o )
F(a1+b131 31+r1b1 ri, ) ak+bk']k Jk+rkbk rk)
My ™y ™My my zj;
= T ... =z T ... = (-1 P(a,tb,,j k)
. :0 . :0 r :j r =j 1 11 1
T Iy kK 1794

X +bj.-j,(1-t)b.,r. ~-j; B P -
P(ai i_}i Ji( 1) REFESR k) F(a1 ~1~b1r1 T, ak+bkrk rk)

™y my

= S ... Z S(ri,...,rk)F(a1+b1r1-r1,...,a +b r -r
' 1

The converse is similarly established.

In the part (b) a finite case can be considered by setting
mi=[—ai/bi] > 0, i=1,..., k.

Following [4] even if all the particular cases of the theorem can
be written, we shall only present a few interesting ones,
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Substituting ti =1, bi =-1, i=1,
m, = [ai/Z], i=1,..

(38) (a
£ and only it
{39) f(ai, .

Define a polynomial T,

following manner:

., k, and hence

..k, in (34) and (35) we get the relations:

[2,/2] [2,/21 <j. =za
1) ; ?—.0 i —.:\( ) Z(ai_Ji)
=z, -3.)). | .
iy, +j
P f(a 'ijw--’a—zj)
. 1 k
o 1 K

(2, /2] [ay/2]  (zap,
- 1 k
,a ) o= = . = -
k L -0 C o mj.t
Ik Iy
X “ 2]y 0. - 23 ).
F(a1 2jys ray ZJk)

in k wvariables Xi"”’xk in the

Let
(/2] a2l 5o
(40) H(xi,,..,xk; ni,...,nk) S ' Z—). .o 'Z—o (-1)
Jk— Ji_
Zn, El =0y 44 n -j.
X i 1 k i1
ey T3, ) o
i1 i
T(xi, ,xk,O, ,0) = H(Xi’ SR ¢ 0,...,0) ,
and
. 1 .
T(xi,..., x5 ni,...nk) aH(xi,...,:ﬁ(,ni,...,nk).
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Inversion of (40) by (38) and (39) is given by

(Zn,)
K o, In /2] [n,/2] ! Bt iy
(41) m(x) = T ... I
i=1 = iy =0 mj,

X H(x1,...,>ﬁ<;n1-2_]1,...,nk-ZJk)

It can be observed that
T(xi,...,xk; O,...O,ni,O,,..,O), i=1,...,k,

is the Tchebychev polynomial of degree n., in the variable x, .

Again, substituting bi = ci+ 1 and ti = Ci/(ci+1)' i=1,...,k,
in (34) and (35), we have for mi = o, i=1,...,k, the following set

of relations:

© ) =j.
(42) F(a,,...,a ) = T ... = (-1) ' Pla,c,j;k)
1 k . . i ivi
_)k=0 Ji=0

1”1""’ak+ck‘]k)

if and only if

o0
s ey = 2135 +c j ., ...,a +c ] .
(43) f(ai, ak) Z_ > P(a1 i k)F(a1 < dy a cka)

0 j,=0

Let us define the J-function in k variables ti' e e tk by

(44) J(ai’bi'ti;k) = J(ai’”"ak;bi"“'bk;ti'“"tk)
a. +b.j.
o P =j. i “1/2’
=z z (-1 Mj LT (a; b j;- 3 +1)
j =0 j,=0 i 71Y1 i
k 1
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which for k=1 reduces to the generalized Bessel function defined by
Bateman as discussed in [5]. When t, = in (44) becomes

) o Zj.
(45) (za.) J(a.,b.,2x;k) = = ... =T (-1) ' P(a,,b.,j.;k)
1 1 1 1 J =0 _] =0 1 11
k 1
. X4ai +biJi
X 2 .

F(E(ai+biji))

With the help of (42) and (43), (45) can be inverted as

k a, ] o r(z(ai+b1ji))

(46) nmx, = T ... = ———— Z(a.+b.j.) J(a,+b j, b, 2x k).
. 1 . . nmj.t i 0171 i 111 i
i=1 _]k=0 31=0 i

Lastly,in this section, we state a generalization of Theorem 1 and of
Theorem 2 in [4] as follows:

Z(a, +b.j.-j.))

"k ™y zj. R T |
1 4 k "1
(47) F¥*¥(n ,...,n) = T ... T (-1) —
1 k o o I'[(ni-_].).
Ik I9° !
+b i
(E(ai biJi))J.1+ S,
X sk (5 ;
T3 ox(j, vy)
i
then (a)
b +b.j
© © (“(ai 'J'))j1+...+jk j.
(48) z ... = - S (..., ) 0s, ]
i =0 ;=0 HJ' k
Ik 4
Z‘al 00 =] ):ri r1
= v e T (-1) Mu F**(ri,. ,rk),
= =0
rk 0 r1
b. -1
where s, = u(d1-2Zu) ! , 1i=4,...,k,
1 1 1
59
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and
v = 1/(1‘2ui) ?

and (b)
(z(ai+bini))j1+... +iy
o
(49) — Bm,, ..,
1
x ™ 2 Zia, +bj -,
- Z e 2o (1) T(a. +bmn,-j
Jk=0 1':0 i ii

Z(a;+bm - j)) '

1+"°+rﬁ<-‘}1-"'_lk
N({n,-j.)!
i i

i

Fa(], oy

Proofs are on the same lines as that in [4]. Observe that (47) and (49)
can be considered as another set of inversion formulas.

5. Further generalizations of Bateman integral formula. Consider
two general forms of the J-function defined in (44) and (45) as

0 L zj, a +b j.

(50) J.(a,b,t;k) = T ... T (-1) n(./2)° 7}
G'i i 20 ;=0 i
Kk 4
Gla, b, j ;s k)
% 1 1 3 i
T(=(a.+b_j.) +1)
1 11

and

00 oo =J. al.+b.j.
(51)  Jda,botik) = = ... o=z (1) T ong/2a T

jkzo j1:0

da,, b,,j.;k)
x 1 1 "1 R
+b j )+
T(Z(a;+b ) +1)
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where G(a.,b,,j.;k) and C(a.,b._,j.;k) are general C -coefficients
i 1 i1 k

defined in Section 2. In [6], Gould proves (see Relation (2.7)) the
following generalization of the Bateman integral formula, in our
terminology:

1
du
(52) J la,+esb,t) = ¢ f Jolaysbys (1-w)t) o (e b s ut) ==
0
with the help of the convolution formula
™y
Z Gla;bsk) C (Ci;bi;niv-k) = Gla,+c,;bin)
k=0
Analogously, we can prove
1
+c.,b,tik) = . L b, (1- S
(53) JG(ai Ci i ) ch f JG(al i (1 u)tl )
0
du
X H -
JG(Ci’bi’ uti k) o
Similar generalizations for (3.3) and (3.5) in [6] are
1
- H b B t;
(54) / Jolapb,, (1-u)tsk) Jo (e, b,ut;k) du
0
’ s
= {-s- f JC (ai+ci,bi, sti;k) ds }s=1 ’
0
and
1 Zei Zdi
- ; »b.,ut sk 1- d
(55) f .TG(ai,bi,(i u)ti,k) JG (ci i ut:L ) u (1 -u) u
0
o0 0 zji ai+c'+biji K(j1 v "jk)
T .oz (-1 T2t
jk=0 j1=0 I‘(Z(ai+di+ci+ei+biji) + 1)
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where

Iy T4
K(_]i, . '-"Jk) = r2=0 .o . Z;o G(ai, bi' T k) G (ci, bi,_]i- T k)
k 1
+d.+b.r) + ' j. -
y r‘{Z(ai ; iri) 1} F{Z(ci+ei+bi(3i ri)) +1}
+ + (c.+b.(j. -
I‘{E(ai biri) 1} 1“{Z(<:i bi(_)i ri)) + 1}
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