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THE FAILURE OF CANCELLATION LAWS 
FOR EQUIDECOMPOSABILITY TYPES 

J. K. TRUSS 

ABSTRACT. Let B be a Boolean algebra and G a group of automor­
phisms of B. Define an equivalence relation ~ on B by letting x ~ y if 
there are xi,X2, . . . ,xn , y\, y2, • • • yn in B such that x is the disjoint union 
of the xi, y is the disjoint union of the yi, and for each i there is a member 
of G taking Xj to yi. The equivalence classes under ~ are called equide-
composability types. Addition of equidecomposability types is given by 
(x) + 00 = (x Vy) provided x Ay = 0. An example is given of a complete 
Boolean algebra B and a group G of automorphisms of B with X, Y 6 B 
such that (X) + (X) = (Y) + (Y) but (X) ^ (F), answering a question of 
Wagon (see [5 p. 231 problem 14]). Moreover B may be taken to be the 
algebra of Borel subsets of Cantor space modulo sets of the first category. 
It is also remarked that in this case equidecomposability types do not form 
a weak cardinal algebra. 

1. Introduction. Let B be a Boolean algebra and G a group of automor­
phisms of B. We define an equivalence relation ~ on B by letting x ~ y if there 
are x\, X2,..., xn, y\, V2,..., yn in B such that x is the disjoint union of the xt, y 
is the disjoint union of the yi9 and for each / there is a member of G taking xt 

to v/. It is readily seen that ~ is an equivalence relation, and the equivalence 
classes are called equidecomposability types (with respect to B and G) after 
Tarski [2]. 

There is a natural partially defined operation of addition of equidecompos­
ability types given by 

C*) + 00 = (z) 

whenever x A _y = 0 and x V y — z, where (x) is the equidecomposability type 
of x, etc. This is clearly independent of the choice of (disjoint) x and y from 
the types (JC), (y). Unfortunately + need not be total. A method for enlarging 
the class of equidecomposability types to a semigroup was given by Tarski [2] 
and is described in Chapter 8 of [5]. One construction (essentially equivalent to 
that given in [5]) is to consider the Boolean algebra C of infinite sequences of 
members of B under the co-ordinatewise operations. Note that C is complete (or 
countably complete) if and only if B is. The corresponding group H is taken to 
be the wreath product of G and Symmw under its natural action on C. One may 
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then check the following: (i) B may be naturally identified with {(/?, 0,0,...) : 
b G B} Ç C, (ii) under this identification, b\,b2 G B are equidecomposable 
with respect to B and G if and only if they are equidecomposable with respect 
to C and / / , (iii) addition of equidecomposability types with respect to C and 
H is totally defined. For this last it suffices to observe that 1C = ( 1 B , 1 B , 1 B , . ) 

is equidecomposable with each of the disjoint elements (1B, OB, 1B, OB, 1B, • • •) 
and (0B, 1B,0B, 1B,0B,...). 

We shall therefore assume from now on that the family of equidecomposability 
types is closed under +. This means in particular that for each positive integer 
N,x+x + —-+x = N.x is defined for equidecomposability types x. The question 
addressed in this paper is the validity of the cancellation laws 

C(N):N.x =N.y-^x=y 

for equidecomposability types x and y, principally in the case N — 2. This case 
is by far the easiest to handle. 

THEOREM 1.1. There is a complete Boolean algebra B and a group G of 
automorphisms of B such that the cancellation law C(2) fails for equidecom­
posability types with respect to B and G. 

It seems likely that our methods can be adapted to discuss N > 2 also, but 
the technical details will be more involved. The goal would be to prove the 
following (as in [3, Theorem 6.2]). 

CONJECTURE 1.2. In the semigroup of equidecomposability types of a count-
ably complete Boolean algebra B with respect to a group of automorphisms of 
B, (V7V G Z)C(N) —> C{M) is provable for Z U {M} a set of positive integers 
if and only if every prime factor of M is a factor of a member of Z. 

The question of the provability of C(N) for equidecomposability types is a 
generalization of the corresponding question for arbitrary cardinal numbers. Of 
course in that case for the problem to have any significance we should ask 
whether C(N) is provable without appeal to the axiom of choice. This was 
achieved by Tarski [1] and [2]. Guided by that case one would like equide­
composability types to behave as much like cardinals as possible. In particular 
one would like the Schroder-Bernstein Theorem to hold. It turns out (see [5]) 
that for this it suffices that B be countably complete, which we shall require to 
hold from now on. The Schroder-Bernstein Theorem may be formulated in this 
context as: 

if x ^ y ^ z and x ~ z then x ~ y. 

In our main result, that C(2) is unprovable for equidecomposability types, we 
shall actually be able to arrange that B is complete, and it may be taken to be 
the category algebra (the family of Borel subsets of Cantor space, 2^, modulo 
the ideal of meagre sets). 
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Figure 1. Illustration for the case N=2. 

Theorem 8.7 of [5] gives the result of Kônig, Valko and Kuratowski that 
C(N) is provable when B is the power set Boolean algebra of a set and G 
is an arbitrary group of automorphisms of B. Notice that this implies that to 
find a counter-example we must look at a a-field of subsets of an uncountable 
set, or else a quotient of such a cr-field. Moreover it is instructive to consider 
the contrast between their proof and that given by Tarski for cardinal numbers 
without choice, since this illustrates important features of our proof. Suppose 
that a 1 -1 map / from X x N onto F xiV is given, where for simplicity we 
assume X H Y = 0. For 0 ^ / < j < N let ptj be the permutation of (XUY)xN 
given by 

UtJ) ifk = i 
Pij{t, k) = I (f, /) if k = j 

v (r, k) otherwise 

and let G be the (countable) group generated by / U / _ 1 and {/?// : 0 ^ / < 
j < N}. Then any "effective" construction of a 1-1 map g from X x {0} onto 
Y x {0} should involve choosing g(x,0) to lie in the G-orbit of (x,0) for each 
x G X. This is how the proofs mentioned above proceed. This is illustrated for 
the case N = 2 in Figure 1. 

There is on each G-orbit a natural notion of "distance" defined by d(s, t) — the 
smallest length of a word in the generators taking s to t. The rather complicated 
proof of Tarski's involved choices of g(x,0) arbitrarily far from (x,0) in this 
sense, whereas in the proof of Konig, Valko and Kuratowski, g(x, 0) was taken at 
distance 1 from (x, 0) in each case. This difference was high-lighted in [3] in the 
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study of properties C(N) and T(N), C(N) the cancellation law given as above, 
and T(N) a related but stronger form of "direct" cancellation law. It follows from 
what we show in §3 that if one can establish cancellation with d{g(x, 0), (JC, 0)) 
bounded then it can also be established with distance 1 (provided B is countably 
complete). Thus Tarski's use of d(g(x, 0), (JC, 0)) unbounded was essential in his 
case (where AC was not to be assumed). 

In §2 we give the basic elements of the construction of the algebra B, X, Y G 
B, and group G such that 2. (X) = 2. (F). In §3 the kernel of the proof, namely 
that (X) ^ (Y), is presented. A key point here is the fact that B comprises 
the family of Borel subsets of a space homeomorphic to 2U, so that the Baire 
category theorem holds and any member of B has the property of Baire. At 
the same time we show how to deduce failure of cancellation for the category 
algebra. Finally in §4 we make some brief remarks on cardinal algebras and 
weak cardinal algebras. The failure of C(2) immediately implies by [2] that 
equidecomposability types do not (necessarily) form a cardinal algebra. It is 
remarked that they do not even form a "weak cardinal algebra" in the sense of 
[4], since "approximate cancellation" fails. 

I would like to thank A. Lachlan, A. Mekler, J. Mycielski, and S. Wagon for 
helpful suggestions. 

2. The Main Construction. The example in which 2. (X) = 2.(7) and 
(X) ^ (Y) will be constructed using a family of "undirected Z-cycles". A "Z-
cycle" or "Z-sequence" would be a function with domain Z and would hence 
automatically have associated with it a direction, corresponding to the ordering 
of Z. Since we want to avoid this, and indeed any particular indexing of the 
entries by integers, we shall rather take an undirected Z-cycle to be a simple 
loop-free, circuit-free, connected graph in which every vertex has degree 2. To 
obtain the appropriate X and Y we then let T be the family of all undirected 
Z-cycles in which each vertex and edge is labelled so that 

(i) the vertices are labelled 0 or 1, and adjacent vertices have different labels, 
(ii) the edges are labelled by pairs (ij) where ij G {0,1}, 
(iii) if (/,/), (&, /) are the labels on the edges incident with a vertex labelled 0 

then i^k, 
(iv) if (/J), (&, /) are the labels on the edges incident with a vertex labelled 1 

then j ^ /. 
We identify members of T which are isomorphic (by a label-preserving iso­

morphism). Of course any tree is bipartite, but (i) fixes an explicit bipartition. 
The import of (iii) is that from a vertex labelled 0, for each / G {0,1} we 
can pass to an adjacent vertex by an edge labelled (ij) in precisely one way. 
Similarly for (iv) except with regard to the second co-ordinate. Let 

X = {(?, a) : t eT and a is a vertex of t labelled 0} and 

Y = {(/, a) : t ET and a is a vertex of t labelled 1}. 

Once again we identify members of X and Y which are isomorphic by a label 
and root-preserving isomorphism (where a is the root of (r, a)). Strictly speaking 
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then the members of X and F are equivalence classes of labelled rooted trees. It 
is easier however to handle them using representative trees. Moreover this will 
be justified below in the sense that the equivalence classes having more than one 
member (the periodic case) form a meagre set in the topology to be introduced, 
so cause no essential problem. We further define 

X(j = {(t,a) G X : some edge incident with a is labelled (ij)} and 

Yij — {(t,a) G Y : some edge incident with a is labelled (/,/)}. 

Note that it follows from (iii) and (iv) that for each /, X is the disjoint union of 
Xio and X/i and Y is the disjoint union of FQ; and Yu. We let fij be a bijection 
from Xij U Y^ to itself given by /jy(f, a) — (t,b) where {a,b} is an edge of t 
labelled (ij). Then/jy maps X,y to Yi} and Yi} to Xl} and/j? is the identity. We 
extend fi} to f[} on the whole of X U Y by letting 

f'(u)= ( ^ ( w ) i f M G ^ u y y 
^ I w otherwise. 

The group G of permutations o f X U F is taken to be the group generated by 
{/oo? /oi > /i'o> / n } ' anc* B will be the family of all Borel subsets of X U Y under a 
topology shortly to be defined. Since each X,y, F,y will be open (clopen in fact), 
we deduce that 

2. (X) = [(Xoo) + (*oi)l + K*io) + (Xn)] 

= [(Foo) + (Fio)] + [(Foi) + (Fn)] = 2. (F). 

The appropriate topology is obtained by considering finite approximations to 
members of X U F. Let Ti be the family of finite connected subsets of members 
of T (with the induced labelling) and let X\ = {(r, a) : r G 7i and « is a vertex of 
r labelled 0)} and similarly for Yx. If (T, a) G Xi we let X(r, a) = {(f, Û ' ) ^ : T 
is isomorphic to a connected subset of t by a label-preserving map taking a to 
a'}, and similarly Y(T,a) for (r,a) G Fi. The topology is that which is obtained 
by taking the family of all X(r,<z) for (r, a) G Xi and F(r, âf) for (T,Û) G Fj as 
basic open sets. 

By considering the T £ T\ having two nodes joined by an edge labelled 
(ij) we at once see that X,y and Y y are open as remarked above. Moreover 
for any fixed k there are only finitely many members of T\ having k vertices, 
(2* in fact) and from this it easily follows that each basic X(r, a), Y(T, a) is 
actually clopen (including X,y, F/y). Moreover it is clear that X U F is a compact 
Hausdorff space with a countable base of clopen sets and no isolated points, so 
is homeomorphic to Cantor space 2U. An explicit homeomorphism is not hard 
to construct. More is true indeed. If we assign measures to the basic clopen 
sets by letting /x(X(r,fl)) = 1/2* if r has k nodes, and similarly for /x(F(r, a)), 
then the homeomorphism with Cantor space may be chosen so as to carry \i to 
Lebesgue measure there. (We conjecture that this will form the basis of a proof 
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that cancellation also fails in the measure algebra = the Borel subsets of 2U 

factored by the ideal of measure zero sets). 
We deduce that the Baire category theorem holds in X U Y, and the usual 

properties of meagre and comeagre sets apply. In particular if we let B be the 
algebra of Borel subsets of X U Y it follows that any member of B has the 
property of Baire, so is either meagre, or is comeagre on a non-empty basic 
clopen set. 

Now the f/j were defined as permutations of XUY. To show that they induce 
automorphisms of B it suffices to prove that they are homeomorphisms of the 
above topology, and since (f/j)2 = 1, that they take basic clopen sets to clopen 
sets. Now a basic clopen set X(r, a) either has a as an interior vertex of r, or is 
the union of two such basic clopen sets. But if a is interior, f/jX(r, a) is either 
F(r, b) or X(r,a), according as some edge {a, b} incident with a is or is not 
labelled (ij). Similarly for Y(T, a). Hence any image of a basic clopen set under 
f/j is clopen, as required. It also follows that f/j induces an automorphism of B 
factored by the ideal of meagre sets. 

As remarked above we have now done enough to establish 2.(X) — 2.(7), 
and this holds in both cases, i.e. B and B/meagre sets. §3 will be devoted to 
proving that (X) ^ (Y) in these algebras. 

We conclude this section by remarking on some points of the construction. 
We have ensured that the orbits of G on X U Y are clearly exhibited. Namely if 
t eT, then {0, a) : a is a vertex of t} is an orbit, and all orbits are of this form. 
Most of these orbits are infinite, but exceptionally some will be finite, where 
the labelling is periodic (remembering that we are identifying isomorphically 
labelled undirected Z-cycles). The finite orbits form a countable set however 
which is therefore meagre and so does not impede the proof. On an infinite 
orbit if (£, a) and (t, b) are two members there is a unique word w in the fj 
such that w(r, a) = (£, b), with any two adjacent elements distinct. Although the 
definition of the fj (and f/j) is given separately on each orbit, it is nevertheless 
"uniform", as measured by the topology. Since there is a definability restriction 
on the members of B, this uniformity will enable us to show that no piece wise 
combination of members of G can take X to Y. 

3. Proof of Non-Cancellation. The Boolean algebra B and its factor algebra 
(the category algebra) were defined in §2 and the group G given for which 
2. (X) = 2. (Y). Here we shall show that (X) ^ (F). This means in the case of B 
that there is no bijection from X to Y which piecewise lies in G. The proof will 
at the same time establish the corresponding property for the category algebra. 

If (X) — (Y) then only finitely many members of G will be involved in 
showing this. Since each is represented by a reduced word in the generators 
there is a maximum distance N by which members of X are moved under the 
bijection. The proof proceeds by showing this is impossible by induction on N. 
Firstly we look at the basis case. 
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LEMMA 3.1. Suppose that Sy, Ty for ij G {0,1} are pairwise disjoint Bore I 
subsets ofXUYfor which S y Ç Xy, Tl} Ç ^ andfySy — Ty. Then X — U/,/<2 ^7 
a«<i F — (J/ <2 7y cannot both be meagre. 

Proof. Suppose otherwise for a contradiction. Firstly let T 6 Ti have an 
endpoint a labelled 0 and an edge {a, b} incident with a labelled (ij). We show 
that Sij is not comeagre on X(r, a). We form i* £ T\ from two copies of r, an 
additional vertex c and two new edges. Let c be labelled 1 and be joined to the 
two copies of vertex a by edges labelled (1 — /,0) and (1 — /, 1). This ensures 
t ha t / G 7V 

By hypothesis, Y\^Q—(TQOUTQUJTIOUTH) is meagre. Since YioHYi-io — 0 and 
Tio Ç Yi0, Ki-zo-^i-ioUroiUrn) is meagre. Similarly yi_/i-(ri_nU7boUrio) 
is meagre, from which we deduce that (Yi_/onFi_/i) — (ri_/oUTi_/i) is meagre. 
But YtfiC) Ç Y\-ioC\Y\-i\ and Ytf^c) is non-meagre. Hence Y(7/^c)nT\^ik is 
non-meagre for k — 0 or 1. Applying/i_# and noting that X(r, tf) ~3 f\-ikY(i1, c) 
we find that X(T,tf)nSi_/* is non-meagre for & = 0 or 1. Hence S y cannot be 
comeagre on X(r, a). 

Now let r G l i have a vertex « labelled 0 and an edge {a, fr} incident with a 
labelled (ij). Suppose also that r has an endpoint c on the opposite side of a 
from b labelled 0. We show by induction on the distance from a to c (necessarily 
even) that 5,y is not comeagre on X(r, a). 

If the distance is 0, a — c and this is the case already covered. 
Otherwise let J, e be the next vertices beyond a in the path to c. Then their 

labels are 1,0 respectively. Let the edges {a1 d}, {d,e} be labelled (&i,/i) and 
(&2, W- By the induction hypothesis, S*2/2 is not comeagre on X(r, <?). Applying 
fk2i2iTk2i2 is not comeagre on F(r,J). But l\ / /2 since d is labelled 1, so as 
above FM l n F*2/2 Ç 7^,/, UTklh. As F ( T , J ) Ç 7M l nYk2i2,Tkxh is not meagre 
on Y(r,d). Applying/^/^Sjt,/, is not meagre on X(T,Û) and so 5// cannot be 
comeagre there. 

But Sy is Borel so that it has the property of Baire. Therefore if S y is non-
meagre it is comeagre on some basic clopen set X(r, a) where we may suppose 
that the endpoints of r are labelled 0, contrary to what has just been shown. 
Hence S y is meagre for each ij, so that X — \Jt j<2Sy is comeagre after all, 
giving the desired contradiction. • 

Next we move towards the induction step. Let W be the set of ordered mem­
bers of T\, and V the set of members of W whose initial and final vertices 
are labelled 0,1 respectively. For w G W we define a bijection fw. Let r be 
the unordered version of w, and a and b its initial and final vertices. Then 
domfw — X(T,<Z) or Y(r,a) (according as a is labelled 0 or 1) and range 
fw = X(r,b) or Y(r,b), and/w(f,a) = (f,fc), for (f,a) G dom/^. Note that if 
the edges of r in the order chosen by w are a\1 a2l...,<**: then /w is just the 
composition/c^/c^,, .. ,fai on the appropriate domain. Often we think of w just 
as a word in the a,, neglecting the labels on the vertices, so that the definition 
just given amounts to letting faxa2...aK =faJaK-] • • •/«,- We let |w| = |r| = K = 
the number of edges of w = the length of w as a word. 
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Note that if w G V, domfw — X(r, a) and range fw — Y (r, a). 

LEMMA 3.2. Suppose that S/ ÇX, 7/ Ç Y are pairwise disjoint Borel sets, w, 
are distinct members ofV, 1 ^ i ^ n, and N ^ 3, SWC/J that for S — Ui^/^«^/ 
andT = {jxûiûnTi, 

(i) N = | w 1 | ^ | w 2 | ^ . . . ^ | w l l | , 
(ii) ifw€V and \w\ < N then w — w/ for some i, 
(iii) fWiSt = T/, 
(iv) /or awy g eG, g(SUT)CSUT, 
(v) 5U71 w a union of infinite G-orbits. 

Then there are pairwise disjoint Borel sets S/ ÇXJJ ÇY such that U i ^ « ^/ — 
s> U i ^ « r / = r> A-s/ = r;/or ^cA /, am/ 5; = r; = 0. 

Proof It is rather easier to think of the S/,T/,S/, T/ in terms of the rejec­
tions corresponding, which are piece wise combinations of members of G. We 
therefore let 

0(x)=fWi(x) if x€ Si. 

Thus 6 is a bijection from S to 7\ From 8 we shall define another bijection ff 
between the two sets, and then S/, T\ will result by letting 

S'i={xeS:ff(X)=fWi(x)} and7?=/M,s; (= fl'S/). 

This definition works because whenever w and v are in the same infinite G-orbit 
of X U Y it is clear that there is a unique w G W such that/w(«) = v, and by 
(v) the orbits under consideration are infinite. 

As previously remarked it is easiest to think of 0 and ff as acting separately 
on each G-orbit in SUT and this is essentially how our construction will go. On 
the other hand the definition of ff in terms of 6 has to be sufficiently "uniform" 
for the resulting sets S/ and T\ still to be Borel. The main point we have to 
aim for is that S[ is empty. Rephrasing this, if x G S\ we must ensure that 
ff(x) ^ 9(x). This will be done by mapping x a little less far along its G-orbit 
than before. More precisely, if w\ = oc\ot2...OCN where each a, G {0, l } 2 we 
shall let ff(x) =/aia2...aA,_2W instead of fai(X2_aN(x). This makes sense since by 
(i), TV = |H>I| ^ 3 and by (ii), ot\ot2 • • • &N-2 — H>/ for some /. 

Since we propose making ff(x) differ from 8(x) for x G Si, this will (or may) 
entail altering other values of 6(x). This has to be done with some care to ensure 
that if ff(x) = faia2...aK(x) then oc\oc2 . . . OLK — w/ for some j ^ 2. In particular 
we must make sure that K ^ N. Since we have a pictorial representation of the 
situation in mind, we make the following definitions. 

Two members x\ and X2 of S are adjacent if for some w G W of length 
2, fw(*i) = X2- (This relation is symmetric since if fw(x\) = X2 t hen /^ fe ) = 
x\ where wR is the conversely ordered member of W). If JCI,JC2 are adjacent 
members of S then they are said to be parallel if there are w, v G W both of 
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Figure 2 

length 2 and ij with |w/| = \WJ\ = N such thai fu(x\) = x2,x\ G S/, JC2 G Sy 
and eitherfW]fu(xx) = fvfWi(x\) orfWifo(x2) =fvfWj(x2). The intuitive meaning of 
this is that x\ and x2 are both mapped in the same direction along their G-orbit 
by the greatest possible distance. An interval of S is a connected subset of S 
under the graph structure given by adjacency. A parallel interval is an interval 
I of S such that any two adjacent members of / are parallel, and some member 
of/ is in S\. 

The terminology adopted is suggested by the natural mapping diagram, (see 
Figure 2). 

Members of a parallel interval are mapped by the same distance and in the 
same direction. Since ff{x) ^ 0(x) for x G S\ this will entail altering the image 
of each member of a parallel interval. 

LEMMA 3.3. (i) If X$,X\,...,XK are members of S such that xi is adjacent to 
Xi+\ for 0 ^ i < K and {x\, x2l..., XK-\ } is a parallel interval with K > N then 
{XO,X\,...,XK} is also a parallel interval (i.e. any sufficiently large parallel 
interval can be extended arbitrarily far in both directions). 

(ii) Any finite maximal parallel interval has at most N — 1 members. 

Proof, (i) Let xo = (t,ao) and let t have vertices {at : i G Z} with {a/,a/+i} 
an edge of t for each i,a2i labelled 0 and #2/+i labelled 1, and X[ — (t,a2i) for 
0 ^ / ^ K. Let if be the bijection from the set of even integers to the set 
of odd integers given by ip(2i) = 2j + 1 <-• Q{t,a2i) = (t,a2j+\). By definition 
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associated 
point 

final point 

/ < 

initial point 

>&V) 

Figure 3 

of "parallel interval", either ip(2i) — 2/ + N for all /, 1 ^ / ^ K — 1, or 
(f(2i) = 2i—N for all such /. Suppose the former without loss of generality. To 
show that {xo,-*i7 • ••?-*#} is a parallel interval it suffices to see that (f(0) = N 
and y(2K) = 2K+N. 

Suppose (p(0) ̂  N. Then (p~l(N) ^ 2 since by assumption (i) of Lemma 
3.2, \<p(r)-r\ ^N for all r. As N <£ <p{2,4,... ,2K - 2}, ^_1(A0 ^ 2A\ But 
(f((f~l(N)) ^ (f~l(N)—N so N ^ 2K —N and N ^ K contrary to supposition. 

Suppose ^(2^) ^ 2K +N. Then v?(2AT) < 2K + N and similarly we deduce 
that (/?(2/0 £ N. As (̂2AT) ^ 2K - N, again N ^K,a contradiction. 

(ii) is immediate from (i). • 

It follows from this lemma that any maximal parallel interval is either finite 
with ^ N — I members, or is the whole of a G-orbit. It is obvious that distinct 
maximal parallel intervals cannot overlap, but we require a slightly stronger form 
of disjointness, namely that their ^'-images do not overlap. To make this more 
precise (since we haven't yet defined ff) we give the following definitions. 

Let / be a finite maximal parallel interval. If |/| = 1 its one member is both 
its initial and final point. Otherwise it has two endpoints (r, a) and (f, b), {t1 à) G 
5/, (r, b) G Sj. Of these there is just one, (f, a) say, such that if w, = /?i/?2 • • • PN 
then fp2 fait, a) G /, and we call (t,a) the initial point of/ and (t,b) its final 
point. We call 0~xfplp2..fiN_2(t,d) the point associated with / . See Figure 3. 

The idea is that as fplp2...pN-i(t^a) & W)> m e point z associated with / lies 
outside / , but 0' will be so defined that 0'(I U {z}) - 6(1 U {z}). 
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LEMMA 3.4. IfI\,Ï2 are distinct finite maximal parallel intervals with asso­
ciated points z\,Z2 then z\ ^ z2. 

Proof. If/i,/2 are contained in different G-orbits, so are z\ and z2, so z\ ^ z2. 
So suppose they are both contained in the G-orbit {(>,#/) : / G Z} chosen as 
previously so that each {«/, ai+\} is an edge of f, a-n is labelled 0, «2/+1 is labelled 
1, and let ip be given as before by < (̂2/) = 2j: + 1 «=>> 0(t,a2i) — (t1a2j+\). Let 
/7 = {/:(f,a,)G/,}fory = 1,2. 

The main point is to check that (p is order-preserving on R = {r : (Y, ar) G Si}. 
For suppose not and let 2r < 2s in /? with <p(2r) > <p(2s). Then <̂ (2.s) — 2s < 
(f(2r) - 2r so ip(2s) - 2s = -N and <p(2r) - 2r = N. Therefore 0(f,a2r) = 
(t^air+N) and 0(t,a2S) = (f,CLIS-N)- Recalling that wi = aia2...ayv it follows 
that {^2r+/-b^2r+/} and {û2s-i+b02s-/} a r e ^ o t n labelled a/ for 1 ^ / ^ N. Now 
0 < ^ - r = ±[(ip(2s) + N) - (ip(2r) - N)] < N. Putting i = s - r, we find that 
{ar+iS_i,ar+J} and {ûr+i+i,ûr+5} both have the label a,, contrary to stipulations 
(iii) and (iv) in the definition of T (which required that the two edges incident 
with a vertex of a member of T should have different labels.) 

Now let the smallest and largest members of Jj be 2r7 and 2SJ respectively 
(j =. 1,2) and suppose that 2s\ < 2r2. Since each of I\ and h contains a member 
of Si, each of J\ and J2 contains a member of R, 2r and 2r' respectively. As 
2r S 2s\ < 2r2 ^ 2r' and ip is order-preserving on R, ip{2r) < <p(2r'), from 
which it follows that (p(2s) < (f(2sf) for all 2s G J\,2sf G J2, and in particular 
that <p(2s\) < (p(2r2). If z\ = z2 = (t,am) then (p(2m) = 2n + AT - 2 or 
2si — TV + 2 (according as (/7a2r,) or ( ,̂̂ 25,) is the initial point of I\) and 
also <p(2m) = 2r2 + N — 2 or 2s2 — N + 2. Since n 7̂  r2 and s\ ^ 52, either 
2ri + N - 2 = 2s2 - N + 2 or 2r2 + N -2 = 2s{ - N + 2. The former implies 

<p(2si) = 25i + N >2r } + A f - 2 = 252-J/V + 2 > 2 r 2 - A f = y>(2r2), 

contrary to <p(2s\) < ip(2r2), and the latter is also impossible, since 

25i - N + 2 < 2si < 2r2 < 2r2 + N - 2. • 

We may now define ff according to the following cases: 
Case 1. If x G S/ lies in a parallel interval and w; = f3\(32. • ./3yv we let 

Case 2. if JC does not lie in a parallel interval but is the point associated with 
a finite maximal parallel interval / having final point y then we let 6'(x) = 9(y), 

Case 3. if JC does not lie in a parallel interval and is not the point associated 
with any finite maximal parallel interval, then ff(x) = 8{x). 

We firstly remark that consideration of the function (p defined once we have 
represented a G-orbit in the form {(/, ai) : i G Z} shows that no point associated 
with a finite maximal parallel interval can lie in that interval or any other (one 
again uses the fact that ip is order-preserving on R). Thus ff is well-defined. 
Next we see that for each G-01 bit {(/, ai) : / G Z} indexed as before, ff maps 
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{(t,ci2i) : / E Z}1 — 1 onto {(t,a2i+\) : l £ Z}. For this, since all points covered 
by Case 3 are mapped to the same place by 6 and ff, it suffices to show that for 
each maximal parallel interval / , either / is the whole of the G-orbit (in which 
case 6/(I) = 6(1) follows by Case 1), or / is a finite maximal parallel interval 
with associated point z and ff(I U {z}) = 6(1 U {z}), which follows by Cases 1 
and 2. 

Since 6 is a bijection from S to T and 6f has the same effect setwise on 
G-orbits as 6, it follows that 6/ is also a bijection from S to T. We may now 
deduce the values of the sets S- and T[ as indicated above by 

S[ = {x e S : 6,(x) =fWl(x)} and T[ =/w.(S/) - 0S[. 

The facts that S is the disjoint union of the 5/ and T is the disjoint union of 
the T- follow since 61 is a bijection. We do need to remark that if ff(x) = fw(x) 
then w = wi for some / with 2 ^ i ^ n. If x lies in some parallel interval 
then this follows from Case 1 and (ii) of Lemma 3.2, since w will be a proper 
initial segement of Wj for some j . If x is not associated with any finite maximal 
parallel interval then as 6f(x) = 6(x), we have 6/(x) = fWi(x) for some /, and as 
any member of Si clearly lies in a parallel interval, / > 1. Suppose therefore 
that x is associated with a finite maximal parallel interval / . Then we may index 
the G-orbit of x in such a way that / = {(t,a2i) : r ^ / ^ s}, x = (t,a2m), 
and 6(t,a2i) = (t,a2i+N) for r ^ i ^ s, with s < ra. As 6(t,a2m) = (t,a2r+N^2), 
2r+N-2^2m-N,so that 

2m-N <2r+N ^ 2s+N <2m+N. 

Since 0'(f, «2m) = (f, tf^+yvX* € 5/ for some / with 1 ^ / ^ « (by (ii) of Lemma 
3.2) and as |w,-| <NJi>\. 

The only other thing to check is that each S/ is Borel. This is important, 
but though a little tedious to verify, is essentially straightforward, since ff was 
defined in a fairly "natural" way. 

LEMMA 3.5. Let â — oc\oc2...aK G V, L — \(K — N + 2), #rcd /ef î = 
(z'l, i*2,..., Z'L) ^£ Û sequence of integers (necessarily between 1 and n) such that 
for lûj^L, a2HXa2j... a2j+N-2 = wir Then 

Xfta,ï) = { x ^ : x e Six&faJax(x) 

€ 5/2&... ScfaK_NfaK_N_x .. ./ai(x) G S/J 

/s Borel. 

Proof XJ"(â,ï) = 5/, nfaJa2Si2 PI... nfaifa2.. .faK„NSiL and as each/a is a 
homeomorphism, this is Borel. 

Similarly we see that if â = 0^0^+1. ..ariaç . . .«# £ V for odd AT ^ 1 
and ï = (iMliM+ij"-jh) is a sequence of integers with M = ^(K + 1) such 
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that a2j-ia2j... a2j+N~2 = wtj then Xx (a, i) = {x G S : x € Sh&fa_Jao(x) G 
S/0&... &faicfaK+l • • ./a0U) G S/M } is also Borel. • 

LEMMA 3.6. The following sets are Borel: 
(i) X\ = {x : x //es /AZ a parallel interval}, 
(ii) X2 = {x : x w the initial point of a finite maximal parallel interval}, 
(iii) X2 — {x : x /s J/*e /?om/ associated with some finite maximal parallel 

interval}, 
(iv) X3 = {x G 5 : JC does A6tf We m a parallel interval and is not the point 

associated with any finite maximal parallel interval}. 

Proof X\ is the union of Xj^â, ï) and Xf (/3, j) for appropriate â, /?, ï ,} so is 
Borel. Similarly the other sets may be obtained as Borel combinations of ones 
previously shown to be Borel or their homeomorphic images. • 

We may now give a Borel expression for 5/ by 

x G SI &(x G Xi 8LX G SJ where Wj is an end-extension of wt 

&\WJ\ = \wi\ + 2) 

or (x G X2& for some à G VJ and /,JC G Sj& 

Jwj\x) — JaKJaK_i • • •JaN-Jwj\X)& 

faja2 • • -f*N-2UM) € Xî(â, Ï) 

-\J{XÎ(â/3il32,Ckik2) : ocx...aKl3x(52 eV,l£ kuk2 £ n}) 

or (je G X3&JC G Si). 

The second clause corresponds to Case 2 of the definition of ff and is il­
lustrated in Figure 4 for K = 9, /V = 5; note that the finite maximal parallel 
interval with which x is associated is 

\ x •)Ja2fal ( • * ) ? • • • IJOCK-N • ' 'foc\ \ x )j 

with initial point 

x = JaxJa2 • • •JaN-.2Jwj\x)' 

This completes the proof of Lemma 3.2. D 

THEOREM 3.7. X arcd F are not equidecomposable with respect to B and G, 
even up to meagre sets. Hence the cancellation law C'(2) fails in (B,G) and 
also in the category algebra (with the natural induced action of G). 

Proof. Suppose for a contradiction that X and Y are equidecomposable up to 
meagre sets, and let £,-, T; be Borel sets for 1 ̂  / ^ n such that 5/ ÇX, 7/ Ç 
Y,SiDSj, Ti H7} are meagre for / ̂  7,X — (J?=1 5/, 7 — |J/Li ^/ a r e rneagre, and 
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y^^^^^^^(x) 

/a2/a,(*') ^ ^ - ^ ^ 1 _ _ 

x' ^^^ 

Figure 4 

for some gi G G,giSi — Tt. Now any group element can be represented by a 
word in the generators. Since each generator is an involution we only need to 
consider words of the form h\h,2...hm where hj are generators and hj ̂  /iy+i for 
each j . 

Let gi be so represented, and let N be the greatest length of a word appearing. 
Now X is the disjoint union of basic clopen sets of the form X(t, ao) where t 
has 2N + 1 vertices with ao the middle one. By refining the partitions {Si : 
1 ^ / ^ «}, {Ti : 1 ̂  i S n} but not altering the group elements used to do 
the mapping, we may suppose that for each /, St Ç X(/, ao) for some such t 
and ao. In addition we now suppose that each gi is represented as a word of 
minimal length m in the generators. By choice of N,m û N. Let us rewrite 
this word in the iovm f^mf^m x .. . /^ . By the minimality of ra, /£ does not fix 
X(r, tfo)- Therefore an edge incident with ao must be labelled oc\ and/^ =/ t t l on 
X(t,ao). Let the other end of this edge be a\. Similarly/^ does not fix X(t,a\) 
and the other edge {^1^2} of t incident with a\ is labelled a^, and/<£2 = fa2 

on X(t,a\). Continuing in this way, using m ^ N, we find consecutive vertices 
ao, tfi, #2? • • •, dm oft with {aj-i, ay} labelled ay and with/^ = / a . on X(f, ay-i). 
Hence if w, is the subtree of t with vertices aQ,a\,...,am in that order (with the 
induced labellings) gi is equal to/W|. on X(t,ao) and hence on Si. Observe that 
as 5/ Ç I andT, <ZY,wt EV. 

To sum up, we have Borel sets 5/, Ti and elements w>/ of V such that/^ Si — Tt 

and up to meagre sets X,Y are respectively the disjoint unions of the 5/ and 
r,. By modifying these we may make the following also hold: (i) the vvf- are 
all distinct (by lumping together those S/,Ti with the same value of H>/), (ii) 
the S/,!/ are pairwise disjoint (by removing appropriate meagre sets), (iii) any 
G-orbit of a member of (JS/ is infinite, (iv) if g G G and JC G Ui^«(S/ u ^*) 
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then g(x) G \J\^i^n(SiUTi) (by further removing a meagre set), (v) if N = the 
greatest length of some n>/ (necessarily odd), then either N = 1, or N ^ 3 and 
for every w G V of length less than N, w = wt for some / (by adding redundant, 
empty S/'s, TVs as necessary, (vi) |H>I| ^ |w2| = ••• = |w„| (by re-ordering), 
(vii) (Jl^/i(S*' UT,-) is a union of G-orbits. 

Examining Lemma 3.1 we firstly see that N = 1 is impossible. Let us now 
choose the 5/, T/,w; subject to all the above stipulations, firstly so that N is as 
small as possible, and secondly so that for that choice of N9 n is as small as 
possible. We immediately find that Lemma 3.2 contradicts the choice of either 
N or n, establishing the theorem. • 

4. Failure of Approximate Cancellation. "Weak cardinal algebras" were 
introduced in [4] in an attempt to derive as many properties of cardinal algebras 
as possible using only finitary addition +. The infinitary defining properties 
of a cardinal algebra were replaced by "finite refinement" and the following 
"approximate cancellation" law: 

if x + y — x + z there are p, q, r such that 

x — x + p = x + q, y=p + r, z — q + r. 

Summarizing what we know about weak cardinal algebras and cancellation laws: 
(i) any cardinal algebra satisfies C(N) for all N ^ 2 [2], 
(ii) any cardinal algebra is a weak cardinal algebra, 
(iii) there is a weak cardinal algebra for which C(N) fails (N ^ 2) [3]; by 

(i) this cannot be made into a cardinal algebra however infinitary addition is 
defined, 

(iv) surjective cardinals form a weak cardinal algebra; they also satisfy C(N) 
for each N ^ 2, [3]; it is unknown whether they form a cardinal algebra. 

In view of the facts that the Schroder-Bernstein Theorem is provable for 
equidecomposability types (provided B is countably complete) and that the 
proofs for cardinal numbers of the Schroder-Bernstein Theorem and the approxi­
mate cancellation law are very similar one is led to enquire whether approximate 
cancellation is also provable there. The answer is "no" in our example above, 
(see Theorem 4.2 below), but in contrast to the Kônig, Valko and Kuratowski 
result, it isn't even provable for the case of power set Boolean algebras. 

THEOREM 4.1. There is a group G of permutations of UJ such that the approx­
imate cancellation law fails for equidecomposability types with respect to P(UJ) 
and G. 

Proof Instead of LU we use T = Z x UJ and let G be generated by g where 
g(n,i) = (w+ 1,/) all n G Z,/ G UJ. Let X = {(«,/) G T : \n\ ^ / } , Y = 
{(—/ — 1,/) : / G UJ} and Z = {(/ + 1,/) : / G UJ}. Then X,y ,Z are pair-
wise disjoint, and g(XUY) = (XUZ). For approximation cancellation to hold 
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for equidecomposability types there would have to be expressions for 7,Z as 
disjoint unions, Y = PUR,Z = QURU such that R ~ RUX ~XUP ~XUQ. 

Since R — R\ and any piece wise combination h of members of G must satisfy 
/*(«, /) = (m, /) where \m — n\ is bounded, R and R\ are finite. Hence P ^ 0. 
But if (w,/) G P, some piecewise combination of members of G must then 
map {(rij /)} U {(ra, /) : |/w| ^ /}l — 1 onto {(m, /) : \m\ ^ / } , which is im­
possible. • 

One may mimic this argument in many other instances. We give an outline 
in the case of our previous example. 

THEOREM 4.2. The approximate cancellation law fails for equidecomposability 
types for the algebra B and group G of Theorem 3.7. 

Proof For / ^ 1 we define 77 G T\ as follows. The vertices of T/ are {^ : 
—2/ ^ j ' ^ 4/} with ci{ labelled 0 or 1 according as j is even or odd. The edges 
{aj

na{+1} are labelled as follows: 

{dfj,dfj+l} is labelled (0, 0) and {afj+\dfj+2} is labelled (1, 1) 

for 0 ^ j < i, 

{dfj,dfj+l} is labelled (0, 1) and {a2j+l,a2j+2} is labelled (1,0) 

for - i ^ j < 0 and for / ^ y < 2i. 

We let Z/ = X(rh dfj) for 0 ^ y ^ /. 
Observe that the Zj are pairwise disjoint, since given a member of some Zj 

we can recover the values of / and j by looking at the vertices reachable from 
the distinguished vertex only by edges labelled (0, 0) or (1, 1). 

Let A = \J{Zf : / ^ 1}, B = \J{ZJ : / ^ 1} and C = \J{Zj : 0 < j < 
/, / ^ 1}. Then A,P, C are Borel and pairwise disjoint. Also/i 1/00 carries AUC 
1-1 onto B U C, so A U C and 5 U C are equidecomposable. If approximate 
cancellation held there would be pairwise disjoint Borel sets P,£)?^?Pi with 
A = PUR,B =QURUC - C U P - C U g and /? - / ? ! . 

Suppose thatfw(x) = y ^ x where x G Zf, 2/ ^ |w| + 1. Then w must be a 
proper initial segement of ((1,0), (0, l))1' or ((0,0), (1,1))'. But if y = (t,a), in 
the former case the edges incident with a are labelled (1,0), (0,1) and in the 
latter they are labelled (0,0), (1,1), so that y £ B. If N is the greatest length of 
a word w such that/w is involved in establishing R — R\ we therefore deduce 
that R Ç \J{Z? : 2/ < W + 1}, and hence that P D \J{Z? : 2/ ^ N + 1}. 

Now let M be the greatest length of a word w such that fw is involved in 
establishing C - C U P and let / ^ ±(N + 1), \{M + 1). Let JC G Uo^<iZ/-
Then if/ is the given bijection from C U P to C and/(jc) = fw(x), w must 
be of the form ((0,0), (1,1))* or ((1,1),(0,0))*, k < /, as/(*) G C, since fw 

preserves \J{Zj : j G Z } and all edges between x andf(x) are labelled (0,0) or 
(1,1). In particular it follows that/(x) G |J0 < 7 < /Z/. Therefore if y G Z,0,/ maps 
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{(fnfooVy : 0 ^ j < i}\ - \ onto {(fnfooVy ' 0 <j < / } , which is impossible 
since these are finite sets. • 

By modifying the argument a little, we find that approximate cancellation also 
fails when we factor out either the ideal of meagre or of measure zero sets. 
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