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COLORFUL PARTITIONS OF CARDINAL NUMBERS 

J. BAUMGARTNER, P. ERDOS, F. GALVIN AND J. LARSON 

1. I n t r o d u c t i o n . Use the two element subsets of K, denoted by [K]2, as the 

edge set for the complete graph on K points. Wr i te C P ( K , /X, V) if there is an 

edge coloring R: [K]2 —> /x with /x colors so t h a t for every proper v e lement set 

X 5= K> there is a point X Ç K ^ I S O t h a t the edges between x and X receive a t 

least the minimum of ji and v colors. Wri te C P # ( K , JU, V) if the coloring is one-

to-one on the edges between x and elements of X. 

Peter W. Har ley I I I [5] introduced C P and proved t h a t for K ^ w, 

CP(K+ , K, K) holds to solve a topological problem, since the fact that CP(Ni, No, 
No) holds implies the existence of a symmetrizable space on Ni points in which 
no point is a G$. 

G. McNulty showed that CP(K, /X, V) holds for KV = K and v ^ \x §; cc. We 
heard about the problem from him and from Trotter, The paper owes its title 
to McNul ty . We would like to thank the referee for several useful suggestions. 

M a n y people have worked on the problem of determining for which finite m 

and k with m ^ k + 1 ^ 3 these relations hold. T h e following list summarizes 

the known results and is based on notes from W. T . Tro t t e r , Jr . 

1. CP(& + 1, k, k) if and only if k is odd (many people) 
2. not C P ( 3 , 2, 2) (from 1) C P (m, 2, 2) for m ^ 4 (Gauter , McNul ty , 

Sumner, T ro t t e r ) 

3. CP(4 , 3, 3) (from 1) not C P ( 5 , 3, 3) (many people) not C P ( 6 , 3, 3) 
C P ( 7 , 3, 3) (Sumner and Tro t t e r ) CP(10 , 3, 3) and C P ( 1 1 , 3, 3) (Weese) 
CP(19 , 3, 3) (Gauter and Rosa) 

4. CP (m, k, k) if k è 3 and m ^ ¥l2ek (Erdôs) 
5. For every e > 0 there is a k0 so t h a t if k + 2 ^ m ^ k~1/2~eek and 

k ^ k0 then not CP(m, k, k) (Erdôs and Spencer) . 
For the last two results, Erdôs and Spencer use the "probabi l i s t ic" method. 

I t would be desirable to obta in an asymptot ic formula for CP(m, k, k) bu t this 
does not seem to be easy. Sumner and Tro t te r , and Gaute r and Rosa construct 
the colorings for C P ( 7 , 3, 3) and CP(19 , 3, 3) respectively. N o t much else has 
been done to const ruct colorings in the other cases for which the relation is 
known to hold. 

In this paper, we consider only infinite parameters . We shall prove in L e m m a 
5.1 t h a t if /x is regular and K ^ /*, then C P ( K , /X, /X), and if JJL < K, then C P ( K , JLX, 
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/ i+) . In Theorem 5.2 we characterize CP under the assumption of G C H , by 
proving tha t for K, /X, V with K ^ /x, K ^ v, the relation C P ( K , /X, I>) fails only if 
K > ju ^ ^ > cf*> = cf/c. In Theorem 5.3, we characterize CP# under the 
assumption of G C H , by proving tha t for /<, /x, J> with K ^ /x ^ y, the relation 
CP#(/c, /x, Ï/) fails only if K > /x ^ y ^ cf K. 

T o prove the theorems about CP and CP#, we introduce two related rela­
tions BP and BP#. Wri te BP(/c, X, /x, v) if there is a coloring of the complete 
bipart i te K, X graph, R: K X X —> /x, with /x colors, so t ha t for every ?/ element 
subset X C K, there is a point x G X, so tha t the edges from elements of X to 
x receive a t least the minimum of /x and y colors. T h a t is, \R"X X {x}| ^ 
min(/x, *>). Wri te B P # ( K , X, /x, i>) if R restricted to X X {x} is one-to-one. 

In Section 2, we reduce problems about CP and CP# to problems abou t B P 
and BP#. In Section 3, we s tudy BP#, giving a complete characterization under 
G C H . In Section 4, we s tudy BP. Here we get a complete characterization only 
with the assumption of V = L. Wi th G C H , there is still an open problem which 
is formulated in terms of the existence of a tree together with a family of its 
branches satisfying certain properties. In Section 5, we draw the conclusions 
for C P and CP# from the results of the previous sections. 

The set theoretic terminology is s tandard. The letters K, X, /x, v, k, n, are 
reserved for cardinal numbers, while a, /3, y, 8, a, b are used for ordinals. Each 
ordinal number is identified with the set of its predecessors. Since the axiom of 
choice is assumed throughout , cardinals are identified with initial ordinals. 
Therefore, in particular, if a is an ordinal and X is a cardinal, then a < X if and 
only if a Ç X. The set of natural numbers is denoted by co. 

If A is a set, then \A\ is the cardinality of A. T h e cardinal successor of K is 
denoted by K+. T h e nth cardinal successor of K is denoted by K+{n\ Let v~ be the 
immediate predecessor if v is a successor cardinal, and let v~ = v otherwise. 

If a is an ordinal, then cf a is the least ordinal which can be mapped onto a 
cofinal subset of a. 

A cardinal K is regular if cf a = K. I t is well known tha t for any ordinal a, 
da is regular, and t ha t any successor cardinal is regular. Cardinals which are 
not successor cardinals are limit cardinals. Cardinals which are not regular are 
singular. 

Cardinal ar i thmetic plays an impor tan t role here. At points the Generalized 
Cont inuum Hypothesis , or G C H , is used, which says t ha t for every cardinal 
K, 2* = K+. 

W e denote by [K]V the family of all v element subsets of K. We have already 
used this notat ion for v = 2. We write aa for the set of all functions of domain 
a and range a subset of a. Wri te R!'A = {R(a): a G A} for the image of a set 
A under a function R. 

In the following, various sets of appropriate cardinality will be used as the 
basis for the graphs and the sets of colors. The colorings themselves will be 
considered as functions from the set of edges into the set of colors, and thus 
may also be thought of as labelings of the edges or as part i t ions. 
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2. Wri te B P (K, X, /x, v) if there is a coloring R: K X \ —* n, oî K X \ with /x 
colors, so tha t for every v element subset X Ç1 K, there is a point x Ç X so t h a t 
X X {x} has min(/x, v) colors, t h a t is, \R"X X {x}\ = min(xx, v). Wri te 
B P # ( K , X, /x, v) if in addi t ion, every edge gets a different color, namely if R is 
one-to-one on X X {x}. 

LEMMA 2.1. / / K ^ ? and K §: /x, /Aen CP(/c, /X, J>) if and only if B P ( K , K, /X, V). 

Proof. H R: K —» /x is a coloring which a t tes t s to C P ( K , XX, V), then 5 : K X K —> 
M defined by 5(x , y) = i?({x, ;y}) if x 7e 3/, S(x, x) = 0 a t tes t s to B P ( K , K, /x, y). 

Suppose S: K X K —> /x a t tes t s to B P ( K , K, /X, J>). W i t h o u t loss of generali ty we 
may assume \S"K X {x}\ = /x for all x Ç K. We may also assume S is symmetr ic 
(otherwise replace S by S', where 

S'(x, y) = {S(x, 3O, S t y , * ) } ) . 

Now define R: [K X K]2 —> /x X M by 

i ?{ (^ i , y i ) , (x2, y2)} - (S(xhx2),S(yhy2)). 

Suppose X Cl K X K, \X\ = i>, X is proper. Le t X\ = {x: 3y(x, y) Ç X) and 
X 2 = {y: 3 x ( x , y) ^ I ) . If Xi = « o r X 2 = K we are done, so suppose not. 
Ei ther |Xi | = v or |X2 | - v. Say \XX\ = v. Choose x É ^ s o t h a t | S " X i X {x)\ 
= id and choose y G /< — X 2 . Then | i£"X X {(#, 3>)}| = /x- T h e case |X2 | = *> 
is symmetric . 

LEMMA 2.2. For all K, XX, V with K ^ ix ^ p,ifCP#([K]2,u,v),thenBP#(K,KJiJL, v). 

Proof. We prove the contraposit ive. So assume not B P # ( K , K, XX, P ) , and 
suppose R: [K]2 —> ix is a coloring. Define 5 : /< X K —» M by S(x, y) = R({x, y} ) 
if x T± y and S(x, y) = 0 if x = 3;. Choose X C * with |X | = ? so t h a t for all 
x G K, S restricted to X X {x} is not one-to-one. Then X has the corresponding 
proper ty for R, so the lemma follows. 

L E M M A 2.3. For all K, IX, P with K ^ /x ^ v, if B P # ( K , K, /X, *>), //zew C P # ( K , IX, 1/). 

Proof, lî v = K, then we have K = n = v. So every coloring which is one-to-
one on [K]2 a t tes t s to C P # ( K , IX, */), thus for v = K the lemma holds. 

So assume v < K. Let R: K X K —> ix a t t es t to B P # ( K , K, /X, Î>). Since v < K, we 
have ẑ + ^ K. Wri te K as the disjoint union of v+ subsets each of power K, 
K = U{yl a : a < z^+j. For each a < *>+, let {aa(0): P < K} enumera te Aa in 
order type K. Then 

K = {aa(/3): a <v+ and /3 < K}. 

Define S: [K]2 -+ xx by 

S({aa(t3), ay(8)}) = R(aa(f3), Ô) if a < 7 and 

S({aa((3),a7(ô)\) = Oiîa = 7. 
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Suppose X C K and |X| = v. Find y < p+ so t ha t X C U { 4 a : a < y}. Find 

5 G K so tha t R restricted to X X {<5} is one-to-one. Then ay(8) (? X and 5 

restricted to 

{{aa(p),ay(8)}:aa(0) G X } 

is one-to-one. So the lemma holds for v < K. 

3 . B P # . In this section we discuss B P # ( K , X, p, v). Since the relation makes 
no sense if v > K and cannot hold if v > p, in discussing B P # ( K , X, p, Ï>) we 
always assume K ̂  v and /x ^ p. First we give arguments showing no coloring 
exists. Then we construct colorings under various assumptions. We show how 
to use the assumption of the relation in some cases to prove it in others. 
Finally, we discuss the relation under the assumption of G C H . 

LEMMA 3.1. If K > p and v ^ X, then the relation B P # ( K , X, p, v) fails to hold. 

Proof. Let R: K X ^ —> /x be a coloring. For each y £ X, i^:/< —•> /x is defined 
by i^ (x) = i?(x, 3/). Using the fact t ha t K > p, f ° r e a c n « < X choose two 
points wa, ya so tha t Ra (ua) = i?« (va). Let F be any set of power v having all the 
Ua's and va

Js as elements. Then Y works for R. 

LEMMA 3.2. If v è cfX and for all p < X, /x" < K, then the relation 

B P # ( K , X, JLX, j/) / a i / s to hold. 

Proof. Let i^: K X X —> /x be a coloring. Divide 

X = V{Aa: a < cfX} 

into cfX disjoint sets each of power less than X. For each a < cf X, since 
\Aa\ = p < X, also pp < K. So there are fewer than K functions from Aa into p. 
For each a < cf X choose two points &«, ̂ a £ KSO t ha t R restricted to {ua} X Aa 

induces the same function on Aa as R restricted to {va} X Aa. Let F be a set 
of power v having all the ua's and va's as elements. Then Y works for R. 

LEMMA 3.3. If px < K, then the relation BP#(/c, X, p, v) fails to hold. 

Proof. Let R: K X X —> xx be a coloring. For each x £ K, RX: X —» p is defined 
by Rx(y) — R(x, y). There are a t most JLXX < K functions from X into p. So for 
some S: X —> p and some X C K of power *>, we have Rx = S for all x (E X . Then 
X works for R. 

LEMMA 3.4. If p is singular, (cf JU)X < cf K, and ci p ^ p < p, then 

BP#(/c, X, p, v) holds if and only if for some p with v ^ p < p, the relation 
B P # ( K , X, p, v) holds. 

Proof. One direction follows from the definition. We prove the contraposit ive 
of the other direction. Assume for all p with v ^ p < p, the relation 
B P # ( K , X, p, v) fails to hold. Let R: K X X —> /x be a coloring. Divide xi = 
U{^4 a : a < cf JLX} into the disjoint union of cf p sets each of power between cf ju 
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and p. Define R: K X X —» cfp by R(x,y) = a where R(x,y) £ Aa. Since 
CIK > (cfp)\ there is a set X Ç K of power K and a function 5: X —* cfp so that 
for all (x, y) Ç X X X, ^ (x , 3;) = 5(3/). Now 5 induces a partition of X = 
\J{Ba: a < cf p}, where.£>« = {3/: 5(y) = a}. For each a < cf p, i? restricted to 
X X A* maps into -4a. So for each a < cf p, let Fa Ç I be a set attesting to 
not BP#(/c, X,|,4«|, Ï/) for i? restricted t o l X 5 a . Then F = VJ{ 7 a : a < cf p} 
works for i^. 

LEMMA 3.5. If X w singular and cf X ^ v, then BP#(X+, X, p, v) if and only if 
for some r < X, BP#(X+, r, p, */). 

Proof. One direction follows from the definition. We prove the contrapositive 
of the other direction. Suppose for all r < X, the relation BP#((X+, r, p, *>) fails 
to hold. Let R: X+ X X —> p be a coloring. Divide X = W{^4a: a < cf X} into 
cf X disjoint sets each of power less than X. For each a < cf X, let Xa C X+ be 
a set of power j> attesting to not BP#(X+, \Aa\, p, *>), for i? restricted to 
X+ X i4a. T h e n X = \J{Aa\a < cf X} works fori?. 

LEMMA 3.6. If p }£ K, then BP#(/c, X, p, p). 

Proo/. Define R: a X X -» p by i?(x, 3/) = x. 

LEMMA 3.7. Jf /^r^ is a family F Ç [*]" covering all subsets of K of power v, 
(that is, if A £ [K]V, then there is B £ F with A C B), then the relation 
BP#(K, \F\,u,v) holds. 

Proof. Let P : K X P—-> AX be any coloring with the property that for each 
B £ F, R restricted to B X [B] is one-to-one. 

Given a disjoint family of sets [Aa: a < p}, a transversal of the family is a 
set -B such that for every a < p,\B C\ Aa\ = 1. Two transversals are almost 
disjoint if their intersection has cardinality < p. 

LEMMA 3.8. (TRANSVERSALLEMMA) Let pbea cardinal, let {Aa: a < p} be a dis­
joint family of sets, and let D be a family of almost disjoint transversals. Let 
p < cf p, and let F Ç U«<P[^4JM be a collection of sets so that every member of 
Ua<P[Aa]

v is a subset of some member of F. Then BP#(|-D|, \F\, p, v). 

Proof. For each x £ F, let/^: x —> p be a bijection. Define R: D X F —» p so 
that i?(£, x) = ^ ( x Pi 5 ) if x H £ 9^ 0. 

Suppose X G [D]v. Choose a so that if B,C £ X and B ^ C, then 

^ni^cni . Let 

and choose 3/ G P so that x C 3;. Then for all -B, C G X, if ^ F^ C, then 
R(B,y) *R(C,y). 

COROLLARY 3.9. For all n with 0 < n < co, //ze relation BP#(p+(n+1), p+(/°, p, p) 
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This corollary is derived using two lemmas which are proved by induction. 

L E M M A 3.10. For all n < co, there is a covering family F Q [M+(W)]M of power 

/x+(w) so that for all x £ [M+(W)]M» there is y Ç F with x Q y. 

LEMMA 3.11. If for all a < X, \Aa\ = X, £/&ew //^re is a family D of almost 
disjoint transversals with \D\ = X+. 

Lemma 3.11 is proved in [3, Lemma 4.1]. 

COROLLARY 3.12. If 2K° < K^ and 2X° < 2K l , /Aew /or a// X ^ 2*1, 

BP#(X, Ki, Ko, Ko). 

Proof. S t a r t with a disjoint family of Ki sets each of power Ki. Lemma 3.10 
guarantees the existence of the required covering family. T o obtain the required 
set of transversals, employ the techniques of [1] which were used there to con­
s t ruct almost disjoint families of subsets of a given set. 

COROLLARY 3.13. For any cardinals a, r, v, if v < cf r, then the relation 
B P # < y , r, <j£, v) holds. 

Proof. Let T be a complete cr-branching tree of height r. Then \T\ = ot>, and 
\B\ = aT where B is the set of branches of T of length r. Define R: B X r —> T 
by R(f, a) = f\a = • / restricted to a. Suppose I Ç . B and |X| = y. Then for 
some a, if / and g are in X and f 9e g, then / ( a ) ^ g (a). So P restricted to 
X X {a + 1} is one-to-one. 

COROLLARY 3.14. (GCH) For all v < cf /x, / / ^ relation BP#Gu+, cf/x, M, *0 

/w/cis. 

Proof. Wi th G C H , u^ = /x+ and /xc^ = M-

COROLLARY 3.15. Assume /x < cf T. 77*ew BP#(o-r, d ,̂ /x, v). 

Proof. For a < r, let Aa = aa be the collection of all functions from a into a. 
Let Z> be the collection of branches of length r through the tree T = \Ja<Ta<?-

Let F = Ua<r ["*]". 

COROLLARY 3.16. (GCH) For all /x < cf X, the relation BP#(X+, X, /x, i>) 

/zo/ds. 

Proof. Wi th G C H , X+ = Xcfx and X = \<&. 

COROLLARY 3.17. If X is strongly inaccessible, then for all /x < X, the relation 
BP#(X\ X, n,v) holds. 

Proof. Here X̂  = X. 

LEMMA 3.18. .For all n with 0 < n < co, if B P # ( K , X, ju+(n), /x) A0W5, £Aew 

B P # ( K , \ . / X + W , / X , M) &0M5. 

Proof. T h e proof is by induction on w. Suppose BP#(/c, X, JU+ (*+ 1 ) , jit) holds, 
and 5 : K X X -> /i+(*+1) a t tes ts to the fact. For each a < /x+(A:+1), let fa: a —• 
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jJL+(k) foe a one-to-one function. Define 

R: K X (X X M+(*+D)->M+w 

so t h a t 

R(a, (0, 7 ) ) = fy(S(a, 0)) if S(a, 0) < y. 

Suppose X Q K and \X\ = /x. Then for some /3 < X, 5 is one-to-one on X X {/3}. 
Choose 7 so large t ha t S ( X X {0} ) £ 7 . Then (0, 7) works for X and i?. 

LEMMA 3.19. / / BP#(o-, r, /x, ?) and BP#(/c, X, <r, *>) Ao&k, *Aew B P # ( K , r • X, /x, *0 

Proof. Let 5 : 0- X r —> M and 7": K X X —> a a t t e s t to BP#(<7, r, pi, ?/) and 

BP#(/c, X, a-, */) respectively. Define J?: K X (X X r ) -> M by i?(a, (0, 7 ) ) = 

S ( 7 > , / 3 ) , 7 ) . 

Suppose X G [K]". Then there is /3 < X so t h a t T is one-to-one on X X {/3}. 

So r " X X {j8} Ç [o-]". T h u s there is 7 < r, so t h a t 5 is one-to-one on 

( r " X X {/?}) X {7}. Therefore i? is one-to-one on X X { ( £ , 7 ) } . 

The following corollary gives some insight into the uses of this lemma. 

COROLLARY 3.20. If BP#(2*<\ Ki, Ko, Ko) holds, then BP#(2«S Ki, Ko, Ko) 
also holds. 

Proof. F rom Corollary 3.13 to the Transversal Lemma, it follows t h a t 
BP#(2«S Ki, 2*o, Ko) holds. Set 

a = 2*o, r = X = Ki, M = v = Ko, and K = 2 N l , 

to derive the above s t a t ement from the previous lemma. 

L E M M A 3.21. If v is singular and for all / < v, the relation B P # ( K , X, pt, v+) 

holds, then the relation B P # ( K , Xcf", /xcf% v) holds. 

Proof. Let {va: a < cf v) be an increasing sequence cofinal in v. For each 
a < cf v, let Sa: K X X —» /x be a coloring a t tes t ing to B P # ( K , X, /x, *>a). Define 
i?: K X cf"X -> c f > by R(/3,f) = g where for all a < cf v, g(a) = S« ( £ , / ( « ) ) . 

Suppose X G [K]". Express X = VJ{Xa: a < cf v) as the union of a chain of 
increasing sets where \Xa\ = va. L e t / : cf v —» /x be a function so t h a t for each 
a < cf ?, the v a l u e / ( a ) a t t es t s to BP#(/c, X, /x, pa) for X a and Sa. If /3 and 7 are 
in X and 0 ^ 7, then choose a so large t h a t /3 and 7 are both in Xa. Since 5 a 

restricted to Xa X {/(«)} is one-to-one, it follows t h a t R(P,f) 9^ R(y,f). T h u s 
R is one-to-one on X X {/}. 

Now we use the lemmas already proved to give a character izat ion of the 
relation BP# under the assumption of G C H . 
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T H E O R E M 3.22. (GCH) If K is a limit cardinal, then B P # ( K , X, /x, v) holds if 

and only if /x ^ K or X > K or (X = K and v < cf K). 

Proof. If /x ^ K, then Lemma 3.6 gives the desired coloring. So assume 

K > jit. If X > /c, or X = /c and v < cf K, then G C H implies t ha t X ^ |[/c]"|, so 

Lemma 3.7 gives the desired coloring. 
If u < K and X < K, then xxx < /c, so by Lemma 3.3, the relation B P # ( K , X, xx, i>) 

fails. So assume not only tha t /x < K, bu t also tha t X = K, and v ^ cf K. If K is 
regular, then our assumptions would give the contradiction v ^ cf K = 
K > xx ^ Ï/. So we may assume K is singular. In this case, by Lemma 3.2, the 
relation B P # ( K , X, xx, v) fails to hold. So the theorem follows. 

T H E O R E M 3.23. (GCH) 7/ K is a successor cardinal, K ^ xx, /x ^ v, then 

B P # ( K , X, xx, v) holds if and only if one of the following conditions holds: 

(a) /x ^ K, 

(6) X §; K, 

(c) K = xx+ awd X ^ cf /x a^<i y < cf /x, 
(J) K = X+ and v < cf X. 

Proof. If /x ^ /c, then Lemma 3.6 gives the desired coloring. So assume 
xx < K. If X ^ K, then X ^ K = KV = \[K]V\, SO Lemma 3.7 gives the desired 
coloring. So assume X < K. 

If K > X+ and K > IJL+, then K > xx\ so by Lemma 3.3, B P # ( K , X, JLX, V) fails to 
hold. So assume either K = /x+ or K = X+. 

First assume K = /x+. If X < cf /x, then K > xxx, and Lemma 3.3 gives the 
desired result. So assume X §: cf xx. If v < cf/x, then Corollary 3.14 yields 
B P # ( K , X, /x, i>). If p ^ cf /x and JLX is regular, then xx+ = K > X ^ cf xx = xx, so 
^ ^ c f / x = jix = X and Lemma 3.1 yields not B P # ( K , X, \x,v). If v ^ cf xx and xx 
is singular, then we shall show tha t not BP#(/c, X, xx, i>). Looking a t the defini­
tion, we see tha t it is enough to show tha t BP#(xx+, /x, xx, cf /x) fails. Since xx is 
singular, by Lemma 3.5, it suffices to show tha t for all r < xx, BP#(xx+, r, xx, cf xx) 
fails to hold. If r < /x, then (cf xx)r < xx+, so by Lemma 3.4, to show t h a t 
BP#(xx+, r, xx, cf /x) fails, it suffices to show for all p < /x with cf xx ^ p < xx, t h a t 
BP#(xx+, r, p, cf /x) fails. But if p < /x and r < xx, then xx+ > p r , so Lemma 3.3 
yields the desired result. 

Now assume K = X+ and xx < X. If */ < cf X, then by Corollary 3.16, 
BP#(X+, X, v, v) holds and BP#(X+, X, /x, v) holds. If v ^ cf X, then by Lemma 
3.2, BP#(X+, X, xx, ?) fails 

This completes the proof of the theorem. 

4. B P . Recall t ha t we write B P ( K , X, xx, v) if there is a coloring R: K X X —> /x 
so tha t for every *> element set X £ M", there is a point x G X so t h a t 
\R'rX X {x}\ è min (xx, */). If v > K, the relation makes no sense, so we 
assume t h a t K ^ v. We discuss the relation first in general, and then under the 
assumption of G C H . Even under G C H , we do not have a complete character i­
zation, bu t we do have a complete characterization if V = L. 
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L E M M A 4.1 . ( M O N O T O N I C I T Y ) (a) Assume that B P ( K , X, /x, v) holds, and that 

K ^ K, X' ^ X, */ ^ ju. Assume also that if v > xx, /Aew \x = /x''. Then 
B P ( K ' , \',n',v) holds. 

(b) If B P ( K , X, /x, ?) /ztf/ds and v' ^ v ^ \x, then B P ( K , X, /x, / ) /w/aY 

T h e above lemma and the following one follow straightforwardly from the 
definitions. 

L E M M A 4.2. If B P # ( K , X, xx, v) holds, then for all v ^ v, the relation 

B P (K, X, M, v') holds. 

T h u s for BP , a t ten t ion may be restricted to those cardinals for which the 
sharp relation is not settled positively. 

L E M M A 4.3. (a) If /xx < K and either K is regular or v < K, then B P ( K , X, /x, v) 

fails to hold. 

(b) If K > /xx ^ xx > cf K, then B P ( K , X, /x, */) fails to hold. 

(c) If K > JLXX and K > cf K ^ M> ^ ^ B P ( K , X, xx, K) holds if and only if 

BP(cf K, X, /x, cf K). 

Proof. Let i?: K X A —> /x be a coloring. For each x G K, let 7?^: X —> /x be 

defined by Rx(y) = R(x, y). There are only xxx < K functions from X into xx. 
For pa r t (a), select a set I Ç [K]" SO t ha t for all x,y £ X, Rx = Rv. Then X 

works for R. 

For par t s (b) and (c), express K = Ua<Cf/c ^L as the disjoint union of cf K sets 
each of power a regular cardinal less than K bu t greater than /xx. For each 
a < cf K, select X a C ^4a with |X a | = |yla| so t ha t for all x, y £ X a , i<T = 1^. 
Let X = U«<cf, Xa. Then |X| - K, and for all x Ç X, \R"X X {x}\ g cf *. So 
(6) is proved. 

We continue this a rgument to prove pa r t (c). Using R restricted to X X X, 
define S: cf K X X —» /x by 5 (a , 3/) = i?(x, 3/) for any 3/ Ç X a . A set Y Ç cf K 
a t tes t ing to not BP(cf K, X, /x, cf K) gives rise to a set Z = U{X«: a £ F} 
at tes t ing to not B P ( K , X, /J, K). S O if BP(cf K, X, /x, cf K) fails to hold, then also 
B P ( K , X, xx, y) fails. Using similar a rguments , one can show t h a t a coloring 
S: cf K X X —» AX which a t tes t s to BP(cf K, X, AX, cf K) gives rise to a coloring of 
R: K X X —-> AX by set t ing R(x, y) = S(a,y) for x £ ^4a, and this coloring 
a t tes t s to B P ( K , X, /x, K). S O pa r t (c) is proved. 

L E M M A 4.4. If K > cf K, //zen BP(K, X, cf K, K) holds. 

Proof. Wr i te K = U«<CfK Aa as the disjoint union of cf K sets each of power 
less than K. Define R: K X X —•> cf K by R(x, y) = a; where x £ yla. 

L E M M A 4.5. (a) i f BP(o-, r, AX, v) and B P ( K , X, 0-, v), then BP(/c, r • X, /x, */). 
(&) If v > a and B P (cr, r, /x, cr) and BP(/c, X, 0-, i>), / ^ n B P ( K , T • X, /x, y). 

T h e proof of this lemma is essentially the same as the proof of the analogous 
lemma for BP#, Lemma 3.19. 
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LEMMA 4.6. For all n and v rg JLX+, the relation B P ( / J + , M+, M, V) holds. 

Proof. Use Lemma 4.2, Corollary 3.9, and if v > /x, also Lemma 4.1 (6). 

LEMMA 4.7. / / B P ( K , X, JLX+, v), then BP(/c, X-/X+, /x, v). 

Proof. By Lemma 4.6, BP(/x+, /x+, /x, p) holds, where p = min(V, xx+). If 
B P ( K , X, xx+, y) holds, then by Lemma 4.5, B P ( K , X • xx+, /x, v) holds. 

LEMMA 4.8. For all n with 0 < n < œ, if B P ( K , X, xx+(w), /x) /w/ds, /Aen a/50 

B P ( K , \ - /x + ( n ) , M, M) holds. 

Proof. Use Lemma 4.7 and induction. 

LEMMA 4.9. If B P ( K , X, /x, *>) Â0W5, /A<??z a/50 BP(/c+, X-K+, XX, V) holds. 

Proof. By Lemma 4.6, we have B P ( K + , K+, K, V). If B P ( K , X, /x, z/) holds, then 
by Lemma 4.5 (a), B P ( K + , X • K+, /X, P) holds. 

LEMMA 4.10. / / K is a fe'mi/ cardinal, ci v 9^ ci K and {p: BP(p, X, /x, *>)} is 
cofinal in K, then B P ( K , X • cf K, JLX, V). 

Proof. If JLX ^ AC, then by Lemmas 4.2 and 3.6, BP(/c, X • cf K, XX, P) holds. So 
assume K > JLX. Since K ̂  ^ and cf K 9^ cf i>, we have K > v. Express 
K- = Ua<ciK Aa as the union of a chain of nested sets where \AQ\ > /x, *>, and for 
each a < cf K, B P (|^4a|, X, /x, */) holds. For each a, let i^a: ^4a X (XX {a} ) —> /x 
be a function at tes t ing to BP(|^4a | , X, /x, *>). Then any extension of Ua<Cf« Pa to 
a function from K X (X X cf K) into xx a t tes ts to B P ( K , X -cf K, /X, Ï>). 

LEMMA 4.11. If id is regular and /x ^ K, /Aew B P ( K , K, /X, /X) /^/ds. 

Proof. The proof proceeds by induction on K. BP (XX, JLX, >LX, /X) holds by Lemmas 
4.2 and 3.6. If BP(X, X, JLX, /X) and K = X+, then B P ( K , K, xi, /x) holds by Lemma 
4.9. If K is a limit and cf K 9^ cf xx, then B P ( K , K, xx, /X) holds by Lemma 4.10. 
So suppose K is a limit cardinal, cf K = cf /x and for all X with K > X ̂  xx, 
BP(X, X, xx, /x) holds. Let {Xa: a < cf K} be an increasing sequence of cardinals 
cofinal in K with X0 è M- For each a with 0 < a < cf /c, let Ra: Xa X (Xa X {a} ) 
—>/x a t tes t to BP(Xa , Xa, JU, JLX). Let A0 = X0, and for a > 0, Aa = Xa — 
U*<« h- Then * = Ua<cfK^4a. Define i?0: /c X (K X {0}) - • xx by R0(x, (y, 0)) 
= a where x £ ^4a. Let R: K X (K X cf K) —> xx be any function which extends 
Ua<cf*c ^a- Now suppose X £ WM. If X Ç Xa for some a < cf K, then using the 
induction hypothesis, we can find (x, a) £ \a X {«} so tha t \Ra"X X {(#, a ) } | 
^ /x. Then \R"X X { (x, a)} \ = /x. If X is not a subset of Xa for any a < cf K, 
then X is cofinal in K, and | i?0"X X {(0, 0)} | = xx, so \R"X X {(0, 0)} | = xx-
In either case, the lemma follows. 

LEMMA 4.12. If n < K, then B P (K, K, JLX, XX+) ^ / ^ . 

Proof. Use Lemmas 4.11 and 4.7. 

https://doi.org/10.4153/CJM-1979-056-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-056-4


534 J. BAUMGARTNER, P. ERDÔS, F. GALVIN AND J. LARSON 

LEMMA 4.13. For any K and xx with /x = *> B P ( K , Kcf/X, xx, xx) /w/ds. Hence if 
K ^ xx ^ v, B P ( K , Kcf% /x, p) holds. 

Proof. The proof is by induction on K using Lemmas 4.9 and 4.10. T h e only 
difficult case is cf K = cf /x. If K = xx then B P ( K , KCIM, XX, XX) holds by Lemma 3.6. 
I t also holds if /x = cf /x by Lemmas 4.11 and 4 .1 . So suppose K > xx > cf /x = 
cf K and t ha t BP(X, Xcf/X, xx, xx) holds for xx ^ X < /c. Let {/xa: at < cf xx} be an 
increasing sequence of regular cardinals with limit JLX. 

Wri te K = \J{Aa\ a < cf xx} as the disjoint union of cf xx sets with 
/x Û \Aa\ < K, and for a < cf xx pu t £ a = KJ^aA^. Also, write Kcf/X = U{C«: 
a < cf /x} as the disjoint union of cf xx sets each of power Kcf/X. Let I denote the 
set of all ordered pairs, (/, g), of functions / , g with / G Qtfi cf K, g G cf/i K and 
such t h a t g (a) G 4̂« for all a < cf K. Clearly | / | :§ Kcf/X and we may assume 
wi thout loss of generality t ha t I C C0. 

Now for 0 < a < cf /x it follows from the induction hypothesis t h a t there is 
a coloring Sa: Ba X C« —» xx which a t tes t s to BP(|jB a | , |Ca | , M, M)- Also, by 
Lemma 4.11, BP(|^4 a | , |^4a|, /x ,̂ /x )̂ holds for a, (3 < cf xx. Let ra/3: ^4a X Aa 

—» xx/3 be a coloring which a t tes ts to this fact. Now define a coloring 
S0: K X /—•/* by sett ing 50(x, (/, g)) = Taf{a)(x, g (a)) for x Ç i « and 
a < cf /x. The required coloring R: K X Kcf" —•» M is any extension of Ua<CfM Sa. 

To see t ha t P works, let X £ [x]M. If for some a, 0 < a < cf xx, we have 
\X r\Ba\ = M, then there is y £ C« such t h a t | S a " ( X n £ a ) X {y}| = /x. 
Suppose \X C\ Ba\ < xx for all a < cf xx. Then there is an increasing sequence 
{a(/3): j3 < cf /x} of ordinals less than cf /x such t h a t \Aa(p) r\ X\ ^ xx̂ . L e t / : 
cf xx —» cf /x be any function which satisfies f(a(/3)) = /3 (13 < cf xx). Choose 
g: cf xx —» K so tha t , for each f3 < cf xx, g(a(/3)) G 4̂«03) and 

| r f l t f / ( ^ ( « n x ) x {g(a(p))}\ ^ ne. 

Then 

\R"XX {(f,g)}\ è l i m ^ = M. 

L E M M A 4.14. Assume X > cf X = cf v, xx ^ y > cf v, and for all p < X, 

jiip < K. 77tew BP(/c, X, xx, j/) fails to hold. 

Proof. Let R: K X X —> xx be a coloring. Express X = Ua<Cf\ 4̂<* as the union 
of a chain of nested sets each of power less than X. Pick {va\ a < cf v] a sequence 
of cardinals cofinal in v. For each a < cf X, since if p = |^4a|, then p < X, so 
xxp < K. So there are fewer than K functions from Aa into xx. Choose a set 
I a C ^ of power va so t ha t for every x, y £ X«, i? restricted to {x} X 4̂« and 
R restricted to {y} X Aa are the same function. Then X = U«<Cfx Xa works 
for i? . 

T H E O R E M 4.15. ( G C H ) . Assume X ^ K > xx. Then B P ( K , X, xx, v) holds if and 
only if it is not true that X = K and xx ^ v > cf K = cf ?>. 
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Proof. If X > K, then B P ( K , X, xx, v) holds by Lemmas 4.1 and 4.13. So 

suppose X = K. If v > /x, then by Lemma 4.12, BP(/c, K, XX, XX+) holds, so 

BP(/c, K, /x, v) holds. So suppose v ^ /x. If cf v ^ cf K, then an easy induction 

on K using Lemmas 4.6, 4.9, 4.10, and 4.13 shows BP (K, K, V, V), so BP (K, K, XX, V) 

holds. So suppose cf v = cf K. If v = cf K, then by Lemma 4.11, BP(/c, K, cf K, 

cf K) holds, so B P ( K , K, XX, J>) holds. The only remaining case is xx ^ ^ > cf K = 

cf y, and in this case BP(/c, K, /X, y) fails by Lemma 4.14. 

LEMMA 4.16. (a) If K > $ and /x ^ ^ ^ cf ^ = cf X, then not B P ( K , X, xx, v). 

(b) If /x is singular, xx §; i>, cf X = cf /x = cf v, K is regular, and aT < K 
whenever a < xx, r < X, /Aew no/ BP(/c, X, /x, i>). 

Proof. First we prove par t (a). Let {r«: a < cf X} be cofinal in X. Let i?: 
K X X —> /x be a coloring. For a £ K and /3 6 cf X, define g«(/3) 6 T/3/x by 
& * ( 0 ) ( T ) = R(a>j)- There are fewer than (xxà)+ functions of the form ga\/3. 
Since K ^ (M- ) + , there is a G K: such tha t for all 0 < cf X, 

\W G *: ga'\$ = ga\$}\ ^ W-. 

Let [vp\ (3 < cf X} be cofinal in v if v is singular; otherwise let vp = 1 for all #. 
Choose i ^ Ç K for each /3 < cf X so tha t l ^ l = ^ and for all a £ ^ ga>|/3 = 
ga|/3. Then X = U/Kcf\ Ap works. 

Next we prove par t (b). The proof is analogous to the proof of par t (a). Let 
{aa: a < cf X} and {ra: a < cf X} be cofinal in xx and X respectively. Let 
R: K X X —> xx be a coloring. For each a Ç K and /3 £ cf X, define &*(£) G ( V (073) 
by sett ing ga(P)(y) = R(a,y) if R(a,y) < ap, and setting ga(/3)(Y) = 0 
otherwise. Since /c is regular and for all cr < xx, r < X, we have K > c7", there are 
fewer than K functions of the form ga\/3. Hence there is a £ K such t ha t for all 
/3 < cf X, 

| { « ' G Kl ga>\(3 = ga\P}\ = K. 

Lett ing {vp: /3 < cf X} be as in par t (a), choose Ap Q K for each /3 < cf X so 
tha t 1^1 = i/0 and for all a £ ^4/3, ga'\P = ga\/3. Then U^<ctx Ap works. 

LEMMA 4.17. If 2X = X+ awd /x ^ X+, *Aew BP(X+, X, xx, X+). 

Proof. The proof follows from Lemma 14.1 (p. 222) of [4] which says the 
following: 

There is a func t ion / : [X+]2 —> X+ so tha t whenever X , F Ç \+ with \X\ = X 
and J Y\ = \+, then there is x G X so tha t the edges between x and members of 
Y receive all X+ colors. 

LEMMA 4.18. Suppose xx is singular. 
(a) If K is regular and for all p < xx, px < K, then for all v > cf xx w i ^ 

cf ^ = cf /x, wô  B P ( K , X, xx, Ï;). 

(b) If K *z. v > n and ci v > (cf xx)x, /feew not B P ( K , X, xx, ẑ ). 
(c) Suppose xx = X ^ cf /x, 1̂  ^ cf xx an^ e^feer 
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(i) for all p < p, Px ^ M or 
(ii) X = p, pa S pfor all p < p and a < X, v < jit, and cf v 9^ cf /i. 

77&en BP(JU+ , X, /i, v) if and only if BP(JU+ , cf p, p, y)-

Proof. First we prove part (a). Let i?: K X X —» /x be a coloring. Divide 
M = U«<cf/x 4̂« into the disjoint union of cf p sets each of power less than p.. Let 
[va\ a < cf p) be a sequence of cardinals cofinal in y. Define R: K X X —> cf jit 
by ^(x , 3;) = a where i?(x, 3/) G Aa. Since (cf JU)X < K, we can find £/ Ç K, a 
set of power K, and 5: X —-> cf JU, a function, so that for all x G £/ and y G X, 
^(x , 3;) = Sfy). Now 5 induces a partition of X, X = \Ja<QtnBa. For each 
x G £/, let .2?̂ : X —> /x be defined by Rx(y) = R(x, y)> For u G [/, the function 
i?w maps U^^a 5/3 into \Jp^aAp. There are at most px < K functions from 
KJp^aBp into [Jp^aAp where p = \{Jp^aAp\ < p. So for each a < cf p, choose 
Xa Q U so that for all w, uf G Z a , 

Then X = Ua<CfM^« works for R. 
Next we prove part (b). Let 7?: K X X —> p be a coloring. Let {pa: a < cf p\ be 

cofinal in p, and for a G K, define ga\ X —> cf p by ga(j8) = least 7 such that 
i^(a, jS) < py. Choose X G M" so that for all a, 0 G X, the functions ga and ĝ  
are equal, ga = g$. Then X works. 

Next we prove part (c) (i). Lemma 4.1 guarantees that if BP(JU+ , cf p, p. v), 
then BP(ju+, X, p, v). So assume BP(JU+, X, p} v) holds, and let R: p+ X X —» p 
attest to the fact. Let {pa: a < cf p} be cofinal in p. Define R: p+ X X —> cf p 
by R(x, y) = the least 7 with i?(x, 3O < py. Since (cf JLI)X S p < p+, there is a 
set Z7 C p+ of cardinality /x+, and a function/: X —> cf p so that for all u G £/, 
for all 3/ G X, R(u, y) = f(y). Then / induces a partition of X = Ua<CfM A* 
where/"A* = {a}. Let 

/ = Ua<cfM (LaV/(a). 

Since for all a < cf JU, the set (La)pf(a) has power |/x/(a)||Z/0!| ^ M, the set I has 
power ^ JU. Define 5: U X cf p —> / by 

S(*,a) = A G ( L " W ) , 

where h (y) = R(x, y). Now S works. For suppose X G [U]v. Let y G X be 
such that i?"X X {;y} has cardinality at least min (p, v). Now y £ La for 
some a, so 5"X X {a} has cardinality at least min (p, v). 

Finally we prove part (c) (ii). As in the previous part, only one direction 
presents any difficulty to prove. Here X = p. So suppose BP(p+, p, p, v) holds, 
and let R: p+ X p —» p be a witness. Define S on p+ X cf p by 

S(x,y) = h G ("»>(/Xy) 

where A(7) = i?(x, y) if i?(x, y) < py and A(7) = 0 otherwise. Then S is a 
coloring showing BP(JU+ , cf p, p, v). For if X G [p+]v, then there is 7 < X such 

https://doi.org/10.4153/CJM-1979-056-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-056-4


COLORFUL PARTITIONS 537 

t ha t \{R(a, y): a G X}\ = v. Since cf v ^ cf p, there is 0 such tha t \{R(a, y) < 

Pp: a G X}\ = y a n d 7 < nfi. But then |{5(a, 0): a G Z } | = v. 

LEMMA 4.19. (TRANSVERSAL LEMMA) Let {At: i G 7} 6e a family of disjoint 

sets. Let The a set of transversals of {A f: i G /} swcA that for every I f [T]" //zere 
w i G J SMCÂ / t o I f / H i j : / G X ) | è p = min(ju, */), Z,e/ C C Uze /^4 J-M 6« 
swc/z that for all i G / , for all x G [^4JP, there is y £ C with \x Pi y\ = p. Then 

BPflrua/*,*). 
Proof. For each y (z C, let fy: y —> JLI be a one-to-one function. Let i?: 

r X C —» M be any function with R(t, y) = fy(x) whenever t C\ y = \x) ^ 0. 
Then R a t tes ts to B P (| T\, | C\, /z, ?) • For suppose X G [T] \ Find i 6 I so tha t 

| { / n ^ , : / G x)\ ^ p. 

Choose y f C s o tha t 

\{x £ y:x £ tnAt}\ ^ p. 

Then \R"X X {y}\ ^ min (p,v). 

LEMMA 4.20. ( T R E E EQUIVALENCE) . Assume pi = max (p, X) awd K = (/x-)+-

77t£w B P ( K , X, p, v) if and only if there is a ^ p-branching tree T of height X and 
a set B of branches of length X such that \B\ = K and for all B' G [B]v, there is 
some a < X s^c/^ / t o {/ G 7": Z^eZ (/) = a awd / occurs in some element of B'\ 
has cardinality ^ min (p, v). 

Proof. (=>) Suppose R: K X X —» /x witnesses BP(/c, X, //, *>). For each 
a G K, let Ra: \-> p be defined by 2?a(/3) = i?(a, 0) . Let T = {i?a|/3: a G /c, 
j8 G X}, ordered by inclusion. Then T is ^ ju-branching and of height X. Let 
73 = {{Ra\/3: P £ \}: a £ K}. B is certainly a family of K branches of length X. 
If Bf G [£]", then X = {a: {7?a|/3: 0 G X} G £ '} has power a t least v. Find 
y G X so tha t |7?"X X {^}| ^ min (/*, *>). Choose /3 è y. Then 

\{Ra\$:a G X } | è min (/*,„), 

so 

(/ Ç T: level (/) = /3 and / occurs in some element of Bf) 

has cardinali ty ^ min (p, v). So B works. 
(*=) We use Lemma 4.19. The a th level of the tree is Aa. Each branch is a 

transversal. All we need exhibit is C of cardinality X. If p ^ X, then 

Ma| ^ M S ^ = P, 

so tha t 

C = {Aa: a G Xj. 

Suppose p < X. Let p = min (/x, *>). Then 

\[Aay\ g |> |^ = /xi«i^ ^ M̂  = x, 
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SO l e t 

C = U«€x[^«]". 

LEMMA 4.21. (GCH) Assume /*& < /xx = K, V < K, cf v 9^ cf X and cf v~ 9^ cf X. 

Then B P ( K , X, /x, v) holds. 

Proof. Our first proof used a theorem of E. C. Alilner [6] which characterizes 
the cardinals possible for families of almost disjoint transversals. We give a 
direct proof. 

We wish to apply Lemma 4.20. Let the tree T be the set U«<xaM, ordered by 
inclusion, and let the set of branches be 

B = U/ | /3 : /3€ X } : / € V } . 

Every th ing is clear except the assertion about B' Ç [B]v. Let 

F= { / e V : {/|l8:j8<E X} £ B'} = {VJb:btB'}. 

Then \B'\ = |F | . For e a c h / , g Ç F w i t h / ^ g, let 0 ( / , g) be the least 7 with 
f ( 7 ) ^ g ( 7 ) . Note t h a t if ô ^ 0 ( / , g), t h e n / ( ô ) 7* g(ô).Hv <ci X, then 

a = sup {0(/, g):f, g e F a n d / ^ g} 

shows 22' satisfies the conditions of Lemma 4.20. T h u s we may assume 
v ^ cf X. Since cf v ^ cf X, this inequali ty mus t be strict , namely we are 
assuming v > cf X. Let i Ç À be a cofinal set of power cf X. Let 

B" = {{f\a:atA}:f£ F\. 

Since each branch {f\a: a Ç X} of T is uniquely determined by {/|a: a £ yl j , 
we know tha t \B"\ = \B'\ = p. For each a £ X let 

K= \{f\a:fe F}\. 

Since T is a tree, a < j3 implies Xa rg X .̂ If some Xa = v, we are done, so suppose 
not, t ha t is, suppose Xa < v for all a; d A. Since cf v 7^ cf X, sup Xa < v. Now 

v = \B'\ = \B"\ ^U«CAK S (supX a) c f* = max ((cf X)+, (sup Xa)+). 

Since we have assumed cf X < v and (sup Xa) < v, we may conclude t ha t 

v = max ((cf X)+, (sup Xa)+). 

Since v — (cf X)+ is ruled out by the hypothesis cf v~ 9^ cf X, we mus t have 
v = (sup Xa)+. Also cf (sup Xa) 9

e cf X. Hence there are a < X and f3 so t h a t 
for all (3 ^ a, \0 = p. So v = p+ and pcfx = */. So cf p < cf X < p. Let r ' be the 
tree 

{ / | j 8 : / e F a n d / 3 € ^ } 

ordered by inclusion. Then 

\T'\ = jW ( ! / ( £ : / € F | : / S U | | = E ^ K = P-
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Enumerate the elements of V in order type p, T' = {tf £ < p). Now B" is 
a set of branches through V, so for each b £ B", let £& be the least £ < p such 
that & H {/,: )] < £} is cofinal in 6. Since | 5 " | = y = p+ > p, we can find £ so 
that 

|{&eB":É* = *}| = *. 

But since 21*1 ^ p < p and \B"\ = y, there must be b and &' in B" such t ha t 
b J* br \ bu t & and &' have identical cofinal subsets, a contradiction. 

T H E O R E M 4.22. (GCH) . Assume K > \ , n, K ^ n* (so K = max (n+, X+)). 

(a) Assume $ ^ K. 
(i) If \ ^ IJL and v = K then B P ( K , X, /z, *>). 

(ii) if \ ^ n and cf y = cf /z /feera wtf/ B P ( K , X, /z, p). 
( w ) w a// 0//&er cYzses, B P ( K , X, /x, v) if and only if B P ( K , cf /x, ju> *>)• 

(5) Assume $ < K. 
(i) if ci v 9^ ci\ and either (v = K and /x ^ X) or (v < K and cf y~ ^ cf X), 

/A^w B P ( K , X, /x, y). 
(w) ifo.lv = cl \ or if cl v y^ cl \, v = K and X < p., //&ew wo/ BP (K, X, /x, y). 

( m ) otherwise, i.e., if cl v 9e cl \, v < K and cf *>~ = cf X, then assuming 
V = L, BP(K, X,/X, V) holds. 

Proof, (a) Note t ha t p- ^ K. implies K = p+ and X ^ (cf JU)+ so /x is singular. 
(i) holds by Lemma 4.17. 

(ii) holds by Lemma 4.16 (b). 
If y ^ cf zx then ( w ) holds by Lemma 4.18(c). If v < cf p then 

B P ( K , cf /x, /x, Ï/) holds by Lemma 4.21. See case (b) (i) below. (Note t ha t this 
case is reduced to par t (b).) 

(b) If /ii < K, then either K = p+ and X = cf p, or K = \+. 
(i) Suppose cf v 9^ cf X, v = K, and p fg X. Then B P ( K , X, /x, v) by Lemma 

4.17. Now suppose cf v y^ cf X, *> < K, cf v~ y± cf X. Then B P ( K , X, p, v) by 
Lemma 4.21. 

(ii) Assume cf v = cf X. Then not B P ( K , X, p, V) by Lemma 4.16(a) . 
Assume cf v y^ cf X, v = K, X < /z, (so X = cf /x). Then not B P ( K , X, /z, p) by 
Lemma 4.18(e). 

(Hi) The result il V = L follows from unpublished work of Pr ikry [7]. 
I t may also be derived from the gap-1 two-cardinal theorem in L using the 

methods of Li tman [Theorem 3.4 of 2]. 

Theorem 2 completes our discussion of the BP property under G C H . For 
if K = p then B P ( K , X, p, V) by Lemma 4.2. So assume K > zx. If K > p1, then 
Lemma 4.3 either settles the problem or reduces it to the remaining cases. So 
assume K fjj p*. If K S X, then Theorem 4.15 applies, and if K > X, then 
Theorem 4.22. 
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Unfortunately, in Theorem 4.15(&) (Hi), all we can say under GCH is that 
BP is equivalent to the proposition about trees given in Lemma 4.20. The 
situation of Theorem 4.15(e) (Hi) can occur in two ways: Let xx be singular, 
v < /x, cf v ^ cf jLt, cf v~ = cf jLt. Then the open questions are BP(/x+, cf \x, /x, v) 
and BP(/x+, xx, p, y), where p < \x is arbitrary. 

Next we observe that BP either holds or fails for both situations together. 

LEMMA 4.23. (GCH) Suppose /z is singular, v < /x, cf /x 7̂  cf v and cf ^~ = 
cf M- jTAew BP(xx+, cf /x, /x, J>) if a?zd <w/;y if BP(ju+, xx, p, v) where p < xx is 

Proof. Assume BP(/x+, cf /i, tx, v). By Theorem 4.15, BP(/x, /x, p, */) holds, so 
by Lemma 4.5, BP(xx+, xx, p, y). Now assume BP(xx+, /x, p, */). Then 
BP(/x+, /x, /x, Ï/), so by Lemma 4.18(c), BP(/x+, cf /x, xx, */). 

5. In this section, we use the equivalence of CP(/c, /x, *>) with BP(K, K, /X, J>) 
and CP#(/c, /i, ?) with BP#(K, K, XX, */) together with the results of the previous 
sections to draw some conclusions about CP and CP#. 

LEMMA 5.1. (a) If K ̂  /x and /x is regular, then CP(K, /X, M). 

(Ô) If K> Xi, *ÂéW C P ( / C , XX, XX+). 

Proof. For (a), use Lemmas 2.1 and 4.11. For (b), use Lemmas 2.1 and 4.12. 

THEOREM 5.2. (GCH) For all K, XX, vwithn ^ v, K ^ v, the relation CP(K, XX, V) 
fails to hold if and only if 

K > M ^ ^ > Cf V = Cf K. 

Proof. Use Lemma 2.1 and Theorem 4.15 if K > xx. If K = xx, then any one-
to-one coloring works. 

THEOREM 5.3. (GCH) For all K, /X, V with K ^ n ^ v, the relation CVjf fails to 
hold if and only if 

K > xx ̂  v ^ cf K. 

Proof. If K = xx, then any one-to-one coloring works. If K > xx, then use 
Lemma 2.3 and Theorem 3.23. 
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