CONVEX POLYHEDRA WITH REGULAR FACES

NORMAN W. JOHNSON

1. Introduction. An interesting set of geometric figures is composed of the convex polyhedra in Euclidean 3 -space whose faces are regular polygons (not necessarily all of the same kind). A polyhedron with regular faces is uniform if it has symmetry operations taking a given vertex into each of the other vertices in turn (5, p. 402). If in addition all the faces are alike, the polyhedron is regular.

That there are just five convex regular polyhedra-the so-called Platonic solids-was proved by Euclid in the thirteenth book of the Elements (10, pp. 467-509). Archimedes is supposed to have described thirteen other uniform, "semi-regular" polyhedra, but his work on the subject has been lost. Kepler (12, pp. 114-127) showed that the convex uniform polyhedra consist of the Platonic and Archimedean solids together with two infinite families-the regular prisms and antiprisms. It was Kepler also who gave the Archimedean polyhedra their generally accepted names.

It is fairly easy to show that there are only a finite number of non-uniform regular-faced polyhedra ($\mathbf{1 1} ; \mathbf{1 3}$), but it is no simple matter to establish the exact number. However, it appears that there are just ninety-two such solids. Some special cases were discussed by Freudenthal and van der Waerden (8), and a more general treatment was attempted by Zalgaller (13). Subsequently, Zalgaller et al. (14) determined all the regular-faced polyhedra having one or more trivalent vertices and all those having only pentavalent vertices. Grünbaum and Johnson (9) proved that the only kinds of faces that a regular-faced solid, other than a prism or an antiprism, may have are triangles, squares, pentagons, hexagons, octagons, and decagons.

A regular n-gon is conveniently denoted by the Schläfli symbol $\{n\}$. Thus $\{3\}$ is an equilateral triangle, $\{4\}$ a square, $\{5\}$ a regular pentagon, etc. An edge of a regular-faced polyhedron common to an $\{m\}$ and an $\{n\}$ will be said to be of type $\langle m \cdot n\rangle$. The sum of the face angles at a vertex of a convex polyhedron must be less than 360°. If the faces are regular, it follows that no more than five can meet at any vertex; in other words, each vertex of a convex polyhedron with regular faces must be trivalent, tetravalent, or pentavalent. Various combinations of faces give rise to many different types of vertices. For example:
($4 \cdot 6 \cdot 8$)-a square, a hexagon, and an octagon;
(3.4.3.6)-a triangle, a square, a triangle, and a hexagon;
($3^{2} \cdot 4 \cdot 6$)-two triangles, a square, and a hexagon;
($3^{4} \cdot 5$)-four triangles and a pentagon.

The symbol $(4 \cdot 6 \cdot 8)$ could also be written $(6 \cdot 8 \cdot 4),(4 \cdot 8 \cdot 6)$, etc. Note, however, that $(3 \cdot 4 \cdot 3 \cdot 6)$ and $\left(3^{2} \cdot 4 \cdot 6\right)$ are not equivalent, since the two triangles are separated in the one case but adjacent in the other.
2. Uniform polyhedra. Since a uniform polyhedron is completely characterized by the faces that surround one of its vertices, the vertex-type symbol, without parentheses, may be used as a symbol for the polyhedron (2, pp. 107, 130ff.; 3, p. 394; 7, pp. 56-57). The triangular prism, for example, is $3 \cdot 4^{2}$. However, an extension of the Schläfli symbol devised by Coxeter (3, pp. 394-395; 5, pp. 403-404) reveals more clearly the relationships between polyhedra. In this notation,
$\{m, n\}$ is the regular polyhedron whose faces are $\{m\}$'s, n surrounding each vertex, i.e., the polyhedron whose vertices are of type $\left(m^{n}\right)$:
$\{3,3\}$ is the tetrahedron;
$\{3,4\}$ is the octahedron;
$\{4,3\}$ is the cube;
$\{3,5\}$ is the icosahedron;
$\{5,3\}$ is the dodecahedron.

If we let

$$
\begin{gathered}
N_{0}=\frac{4 m}{4-(m-2)(n-2)}, \quad N_{1}=\frac{2 m n}{4-(m-2)(n-2)} \\
N_{2}=\frac{4 n}{4-(m-2)(n-2)}
\end{gathered}
$$

(4, p. 13), then $\{m, n\}$ has N_{0} vertices, N_{1} edges, and N_{2} faces.
$\left\{\begin{array}{c}m \\ n\end{array}\right\}$ is the quasi-regular polyhedron with N_{2} faces $\{m\}, N_{0}$ faces $\{n\}$, $2 N_{1}$ edges $\langle m \cdot n\rangle$, and N_{1} vertices $(m \cdot n \cdot m \cdot n)$:

$$
\left\{\begin{array}{l}
3 \\
3
\end{array}\right\}=\{3,4\} ;
$$

$\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ is the cuboctahedron;
$\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ is the icosidodecahedron.
$\mathrm{t}\{m, n\}$ has N_{0} faces $\{n\}, N_{2}$ faces $\{2 m\}$, and $2 N_{1}$ vertices $(n \cdot 2 m \cdot 2 m)$:
$\mathrm{t}\{3,3\}$ is the truncated tetrahedron;
$\mathrm{t}\{3,4\}$ is the truncated octahedron;
$\mathrm{t}\{4,3\}$ is the truncated cube;
$\mathrm{t}\{3,5\}$ is the truncated icosahedron;
$\mathrm{t}\{5,3\}$ is the truncated dodecahedron.
$\mathrm{r}\left\{\begin{array}{c}m \\ n\end{array}\right\} \begin{gathered}\text { has } N_{1} \text { square faces, } N_{2} \text { faces }\{m\}, N_{0} \text { faces }\{n\} \text {, and } 2 N_{1} \text { vertices } \\ (m \cdot 4 \cdot n \cdot 4):\end{gathered}$ $r\left\{\begin{array}{l}3 \\ 3\end{array}\right\}=\left\{\begin{array}{l}3 \\ 4\end{array}\right\} ;$ $\mathrm{r}\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ is the rhombicuboctahedron; $\mathrm{r}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ is the rhombicosidodecahedron.
$\mathrm{t}\left\{\begin{array}{c}m \\ n\end{array}\right\} \begin{gathered}\text { has } N_{1} \text { square faces, } N_{2} \text { faces }\{2 m\}, N_{0} \text { faces }\{2 n\} \text {, and } 4 N_{1} \text { vertices } \\ (4 \cdot 2 m \cdot 2 n) \text { : }\end{gathered}$ $\mathrm{t}\left\{\begin{array}{l}3 \\ 3\end{array}\right\}=\mathrm{t}\{3,4\} ;$ $\mathrm{t}\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ is the truncated cuboctahedron; $\mathrm{t}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ is the truncated icosidodecahedron.
$\mathrm{s}\left\{\begin{array}{c}m \\ n\end{array}\right\} \begin{gathered}\text { has } 2 N_{1} \text { triangular faces, } N_{2} \text { faces }\{m\}, N_{0} \text { faces }\{n\} \text {, and } 2 N_{1} \text { vertices } \\ \left(3^{2} \cdot m \cdot 3 \cdot n\right):\end{gathered}$ $\mathrm{s}\left\{\begin{array}{l}S_{3} \\ 3\end{array}\right\}=\{3,5\} ;$
$s\left\{\begin{array}{l}3 \\ 3\end{array}\right\}$ is the snub cuboctahedron;
$\mathrm{s}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ is the snub icosidodecahedron.
$\left\} \times\{n\}\right.$ has n square faces separating two $\{n\}$'s, and $2 n$ vertices $\left(4^{2} \cdot n\right)$:
$\} \times\{4\}=\{4,3\} ;$
$\} \times\{n\}(n=3,5,6, \ldots)$ is the n-gonal prism.
$\mathrm{h}\left\} \mathrm{s}\{n\}\right.$ has $2 n$ triangular faces separating two $\{n\}$'s, and $2 n$ vertices $\left(3^{3} \cdot n\right)$:
$\mathrm{h}\} \mathrm{s}\{3\}=\{3,4\} ;$
$\mathrm{h}\} \mathrm{s}\{n\}(n=4,5,6, \ldots)$ is the n-gonal antiprism.
The prefix "rhomb(i)-" in the names for $\mathrm{r}\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ and $\mathrm{r}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ derives from the fact that the former has 12 square faces whose planes bound a rhombic dodecahedron, the solid dual to $\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$, while the latter has 30 squares lying in the face-planes of a rhombic triacontahedron, the dual of $\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$.

Some persons object to the names "truncated cuboctahedron" and "trun-
cated icosidodecahedron" on the ground that actual truncations of $\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ or $\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ would have rectangular faces instead of squares. For this reason $4 \cdot 6 \cdot 8$ is sometimes called the "great rhombicuboctahedron," with $3 \cdot 4^{3}$ then being known as the "small rhombicuboctahedron," and similarly for $4 \cdot 6 \cdot 10$ and $3 \cdot 4 \cdot 5 \cdot 4$ (2, p. 138; 7, p. 94). But this nomenclature is subject to the more serious objection that the words "great" and "small" have an entirely different connotation in connection with star polyhedra, as in the names of the KeplerPoinsot solids (2, pp. 143-145; 5, p. 410; 7, pp. 83-93).

It should also be pointed out that $\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ and $\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ are more commonly known as the "snub cube" and the "snub dodecahedron," respectively, the names given them by Kepler. But it is clear that they are related just as closely to the octahedron and the icosahedron, and I have renamed them accordingly (cf. 2, p. 138, or 3, p. 395).

It is sometimes useful to consider the prisms and antiprisms as being derived from the fictitious polyhedra $\{2, n\}$ and $\left\{\begin{array}{l}2 \\ n\end{array}\right\}$. Thus, for $n \geqslant 3$,

$$
\mathrm{t}\{2, n\}=\mathrm{r}\left\{\begin{array}{l}
2 \\
n
\end{array}\right\}=\{ \} \times\{n\}, \quad \mathrm{t}\left\{\begin{array}{l}
2 \\
n
\end{array}\right\}=\{ \} \times\{2 n\}, \quad \mathrm{s}\left\{\begin{array}{l}
2 \\
n
\end{array}\right\}=\mathrm{h}\{ \} \mathrm{s}\{n\},
$$

where, in the case of $\mathrm{r}\left\{\begin{array}{l}2 \\ n\end{array}\right\}$ and $s\left\{\begin{array}{l}2 \\ n\end{array}\right\}$, digonal "faces" are to be disregarded (cf. 5, p. 403). Also,

$$
\mathrm{t}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}=\{4,3\} \quad \text { and } \quad \mathrm{s}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}=\{3,3\} .
$$

All the vertices of a uniform polyhedron are necessarily of the same type. However, the fact that a regular-faced solid has only one type of vertex does not guarantee that the solid is uniform, as is shown by the existence of a non-uniform polyhedron which, like the rhombicuboctahedron, has vertices all of type $\left(3 \cdot 4^{3}\right)$. This solid, depicted in Fig. 1, was discovered by J. C. P.

Figure 1

Miller sometime before 1930 (2, p. 137). More recently, Aškinuze (1) claimed that it should be counted as a fourteenth Archimedean polyhedron.
3. Cut-and-paste polyhedra. If a uniform polyhedron has a set of non-adjacent edges that form a regular polygon, then it is separated by the plane of this polygon into two pieces, each of which is a convex polyhedron with regular faces. This can be done with the octahedron and the icosahedron, the cuboctahedron and the icosidodecahedron, the rhombicuboctahedron and the rhombicosidodecahedron. In this manner or by using uniform polyhedra and pieces of uniform polyhedra as building blocks, eighty-three non-uniform regular-faced solids can be constructed.

An n-gonal pyramid $\mathrm{Y}_{n}(n=3,4,5)$ has n triangular faces and one $\{n\}$, n vertices $\left(3^{2} \cdot n\right)$ and one (3^{n}). A triangular pyramid is, of course, a tetrahedron. A square pyramid is half of $\{3,4\}$, and a pentagonal pyramid is part of $\{3,5\}$. An n-gonal cupola $Q_{n}(n=3,4,5)$, obtainable as a fraction of $\mathbf{r}\left\{\begin{array}{l}3 \\ n\end{array}\right\}$, is a polyhedron having n triangular and n square faces separating an $\{n\}$ and a $\{2 n\}$, with $2 n$ vertices $(3 \cdot 4 \cdot 2 n)$ and n vertices $(3 \cdot 4 \cdot n \cdot 4)$.
A pentagonal rotunda R_{5}, half of $\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$, has 10 triangular and 5 pentagonal faces separating a $\{5\}$ and a $\{10\}$, 10 vertices $(3 \cdot 5 \cdot 10)$ and 10 vertices ($3 \cdot 5 \cdot 3 \cdot 5$).

A pyramid, cupola, or rotunda is elongated if it is adjoined to an appropriate prism (a pentagonal pyramid to a pentagonal prism, a pentagonal cupola or rotunda to a decagonal prism, etc.) or gyroelongated if it is adjoined to an antiprism.

Two pyramids can be put together to form a dipyramid; two cupolas, a bicupola; a cupola and a rotunda, a cupolarotunda; and two rotundas, a birotunda. In the last three cases, the prefix ortho- is used to indicate that one of the two bases is the orthogonal projection of the other (as in a prism); the prefix gyro- indicates that one base is turned relative to the other (as in an antiprism). One of these polyhedra is elongated or gyroelongated when the two parts are separated by a prism or an antiprism.

Two triangular prisms can be joined to form a gyrobifastigium.
Certain uniform polyhedra can be augmented by adjoining other solids to them: square pyramids may be added to an n-gonal prism ($n=3,5,6$), pentagonal pyramids to $\{5,3\}$, and n-gonal cupolas to $t\{n, 3\}(n=3,4,5)$. Other uniform polyhedra can be diminished by removing pieces of thempentagonal pyramids from $\{3,5\}$, pentagonal cupolas from $\mathrm{r}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$. And pentagonal cupolas in $\mathrm{r}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ can be rotated 36° to produce a gyrate solid. Prefixes $b i$ - and tri- are used where more than one piece is added, subtracted, or twisted. Where there are two different ways of adjoining, removing, or
turning a pair of pieces, these are distinguished by the further prefixes paraif the pieces are opposite each other and meta-if they are not.

To facilitate the description of regular-faced solids obtained from uniform polyhedra, certain of the latter are given abbreviated symbols:

$$
\begin{aligned}
\mathrm{S}_{2}=\mathrm{Y}_{3} & =\{3,3\} & \mathrm{T}_{3}=\mathrm{t}\{3,3\} & \mathrm{Q}_{2}=\mathrm{P}_{3}=\{ \} \times\{3\} \\
\mathrm{S}_{3}=\mathrm{Y}_{4}{ }^{2} & =\{3,4\} & \mathrm{T}_{4}=\mathrm{t}\{4,3\} & \mathrm{P}_{n}=\{ \} \times\{n\}(n \geqslant 5) \\
\mathrm{P}_{4} & =\{4,3\} & \mathrm{T}_{5}=\mathrm{t}\{5,3\} & \mathrm{I}_{5}=\{3,5\} \\
\mathrm{D}_{5} & =\{5,3\} & & \mathrm{E}_{5}=\mathrm{r}\left\{\begin{array}{l}
3 \\
5
\end{array}\right\}
\end{aligned}
$$

Each of the non-uniform regular-faced polyhedra can then be given a concise symbol indicative of its structure. For example, the Miller-Aškinuze solid, the elongated square gyrobicupola, is $\mathrm{g}_{4}{ }_{4}{ }^{2} \mathrm{P}_{8}$.

A convex polyhedron with regular faces is elementary if it contains no set of non-adjacent edges forming a regular polygon, i.e., if it cannot be separated by a plane into two smaller convex polyhedra with regular faces. The regular polyhedra $\{n, 3\} \quad(n=3,4,5)$, nine of the Archimedean polyhedra, all the prisms, and all the antiprisms except $h\} s\{3\}$ are elementary. Of the eightythree non-uniform regular-faced solids obtained from uniform polyhedra, nine are elementary:

$$
Y_{4}, \quad Y_{5}, \quad Q_{3}, \quad Q_{4}, \quad Q_{5}, \quad R_{5}, \quad Y_{5}^{-3} I_{5}, \quad p-Q_{5}^{-2} \mathrm{E}_{5}, \quad Q_{5}^{-3} \mathrm{E}_{5}
$$

The last three solids result from the respective removal of three pentagonal pyramids from an icosahedron, of two opposite pentagonal cupolas from a rhombicosidodecahedron, and of three pentagonal cupolas from a rhombicosidodecahedron. The tridiminished icosahedron $\mathrm{Y}_{5}{ }^{-3} \mathrm{I}_{5}$ is the vertex figure of a uniform four-dimensional polytope, the snub 24 -cell s\{3, 4, 3\} (4, p. 163). All of these elementary polyhedra were listed by Zalgaller (13, pp. 7-8).
4. Other non-uniform polyhedra. Freudenthal and van der Waerden (8) enumerated all the convex polyhedra with congruent regular faces. In addition to the five Platonic solids, these are the triangular dipyramid $\mathrm{Y}_{3}{ }^{2}$, the pentagonal dipyramid $\mathrm{Y}_{5}{ }^{2}$, the gyroelongated square dipyramid $\mathrm{Y}_{4}{ }^{2} \mathrm{~S}_{4}$, the triaugmented triangular prism $\mathrm{Y}_{4}{ }^{3} \mathrm{P}_{3}$, and one other figure, which they call a "Siamese dodecahedron."

Unlike all the polyhedra discussed so far, this last solid cannot be obtained by taking apart or putting together pieces of uniform polyhedra. It is, however, related to a disphenoid-a tetrahedron regarded as a belt of four triangles between two opposite edges-in the same way that $s\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ and $s\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$ are related to $\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ and $\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$. Consequently, it will be called the snub disphenoid and denoted by the symbol s_{2}. From the square antiprism there can be derived in a similar
manner the snub square antiprism sS_{4}, whose faces consist of 24 triangles and 2 squares. (Since $S_{3}=\{3,4\}=\left\{\begin{array}{l}3 \\ 3\end{array}\right\}, \mathrm{sS}_{3}=\mathrm{s}\left\{\begin{array}{l}3 \\ 3\end{array}\right\}=\{3,5\}$.)

Snub disphenoid

Snub square antiprism
Figure 2
Four other convex polyhedra all of whose faces are $\{3\}$'s and $\{4\}$'s are the sphenocorona $\mathrm{V}_{2} \mathrm{~N}_{2}$, the sphenomegacorona $\mathrm{V}_{2} \mathrm{M}_{2}$, the hebesphenomegacorona $\mathrm{U}_{2} \mathrm{M}_{2}$, and the disphenocingulum $\mathrm{V}_{2}{ }^{2} \mathrm{G}_{2}$. If we define a lune as a complex consisting of two triangles attached to opposite sides of a square, the prefix spheno- refers to a wedgelike complex formed by two adjacent lines. The prefix dispheno- denotes two such complexes, while hebespheno- indicates a blunter complex of two lunes separated by a third lune. The suffix -corona refers to a crownlike complex of 8 triangles, and -megacorona, to a larger such complex of 12 triangles. The suffix-cingulum indicates a belt of 12 triangles.

Two polyhedra whose faces include pentagons are the bilunabirotunda $\mathrm{L}_{2}{ }^{2} \mathrm{R}_{2}{ }^{2}$ and the triangular hebesphenorotunda $\mathrm{U}_{3} \mathrm{R}_{3}$. The former is regarded as being composed of two lunes and two rotundas-a rotunda here being the complex of faces surrounding a vertex of type $(3 \cdot 5 \cdot 3 \cdot 5)$. The latter is the union of a complex consisting of three lunes separated by a hexagon with

Sphenocorona

Sphenomegacorona

Hebesphenomegacorona

Disphenocingulum

Figure 3
triangles attached to its alternate sides and a complex of three triangles and three pentagons surrounding another triangle.
Top and bottom, or front and back, views of each of the polyhedra

$$
\mathrm{sS}_{2}, \quad \mathrm{~s} \mathrm{~S}_{4}, \quad \mathrm{~V}_{2} \mathrm{~N}_{2}, \quad \mathrm{~V}_{2} \mathrm{M}_{2}, \quad \mathrm{U}_{2} \mathrm{M}_{2}, \quad \mathrm{~V}_{2}{ }^{2} \mathrm{G}_{2}, \quad \mathrm{~L}_{2}{ }^{2} \mathrm{R}_{2}{ }^{2}, \quad \mathrm{U}_{3} \mathrm{R}_{3}
$$

are shown in Figures 2, 3, and 4. These solids are all elementary, bringing the number of such non-uniform regular-faced polyhedra up to seventeen. In addition, a non-elementary solid, the augmented sphenocorona $\mathrm{Y}_{4} \mathrm{~V}_{2} \mathrm{~N}_{2}$, can be formed by placing a pyramid on one of the square faces of $V_{2} N_{2}$.

Bilunabirotunda

Triangular hebesphenorotunda
Figure 4
5. Symmetry groups. Coxeter and Moser (6, pp. 33-40, 135) have given abstract definitions for each of the finite groups of isometries in E^{3}. The following is a description of the individual groups, especially as they relate to polyhedra.

The bilateral group [], of order 2, is generated by a single reflection R, satisfying the relation

$$
R^{2}=E
$$

The kaleidoscopic group $[n] \cong \mathfrak{D}_{n}(n \geqslant 2)$, of order $2 n$, is generated by two reflections, R_{1} and R_{2}, satisfying the relations

$$
R_{1}^{2}=R_{2}^{2}=\left(R_{1} R_{2}\right)^{n}=E
$$

The cyclic group $[n]^{+} \cong \mathfrak{C}_{n}(n \geqslant 2)$, of order n, is a subgroup of index 2 in $[n]$. It is generated by the rotation $S=R_{1} R_{2}$, satisfying the relation

$$
S^{n}=E
$$

When $n=1$, the above relations imply that $R_{1}=R_{2}$ and that $S=E$; thus the kaleidoscopic group of order 2 is the bilateral group [] $\cong \mathfrak{D}_{1}$, and the cyclic subgroup is the identity group [$]^{+} \cong \mathfrak{C}_{1}$. When $n=2$, the kaleidoscopic group is the direct product of two bilateral groups:

$$
[2] \cong[] \times[]
$$

For $n \geqslant 3,[n]^{+}$is the rotation group of a right regular n-gonal pyramid (other than a regular tetrahedron), and $[n]$ is the complete symmetry group (including reflections).

For integers m and $n, 2 \leqslant m \leqslant n,(m-2)(n-2)<4$, the group [m, n], of order

$$
4 N_{1}=\frac{8 m n}{4-(m-2)(n-2)}
$$

is generated by three reflections, R_{1}, R_{2}, R_{3}, satisfying the relations

$$
R_{1}^{2}=R_{2}^{2}=R_{3}^{2}=\left(R_{1} R_{2}\right)^{m}=\left(R_{2} R_{3}\right)^{n}=\left(R_{1} R_{3}\right)^{2}=E .
$$

For $m=2, N_{1}=n$; for $m=3, N_{1}=6 n /(6-n)$. The group $[m, n]^{+}$, of order $2 N_{1}$, is a subgroup of index 2 in $[m, n$]. It is generated by the rotations $S_{12}=R_{1} R_{2}$ and $S_{23}=R_{2} R_{3}$, satisfying the relations

$$
S_{12}{ }^{m}=S_{23}{ }^{n}=\left(S_{12} S_{23}\right)^{2}=E .
$$

The group $[2,2] \cong[] \times[] \times[]$, of order 8 , is generated by reflections R_{1}, R_{2}, R_{3} in three mutually perpendicular planes. Each reflection generates a subgroup [], and each pair of reflections generates a subgroup [2]. Each half-turn about a line of intersection of two planes generates a subgroup [2]+. The rotational subgroup $[2,2]^{+} \cong[2]^{+} \times[2]^{+}$is generated by any two of the three half-turns. A subgroup $\left[2,2^{+}\right] \cong[] \times[2]^{+}$is generated by each reflection together with the orthogonal half-turn, e.g., the reflection R_{1} and the half-turn $S_{23}=R_{2} R_{3}$, satisfying the relations

$$
R_{1}{ }^{2}=S_{23}{ }^{2}=\left(R_{1} S_{23}\right)^{2}=E .
$$

The subgroups [2], $\left[2,2^{+}\right]$, and $[2,2]^{+}$are isomorphic, and the whole group can be obtained by adjoining to any of them one of the missing reflections:

$$
[2,2] \cong[] \times[2] \cong[] \times\left[2,2^{+}\right] \cong[] \times[2,2]^{+}
$$

The rotatory reflection $Z=R_{1} R_{2} R_{3}$ is the central inversion, i.e., the "reflection" in the point of intersection of the three planes. The subgroup of [2, 2] generated by Z is the central group $\left[2^{+}, 2^{+}\right] \cong \mathfrak{C}_{2}$, defined by

$$
Z^{2}=E .
$$

This gives two other ways of expressing [2,2] as a direct product:

$$
[2,2] \cong\left[2^{+}, 2^{+}\right] \times[2] \cong\left[2^{+}, 2^{+}\right] \times[2,2]^{+} .
$$

Since $R_{1} S_{23}=R_{1} R_{2} R_{3}$, the group [2, 2^{+}] also contains the central inversion, and

$$
\left[2,2^{+}\right] \cong\left[2^{+}, 2^{+}\right] \times[] \cong\left[2^{+}, 2^{+}\right] \times[2]^{+}
$$

Note that the three groups [], [2] ${ }^{+}$, and $\left[2^{+}, 2^{+}\right]$, respectively generated by a reflection, a half-turn, and the central inversion, are merely three different geometric representations of the single abstract group of order 2, for which \mathfrak{D}_{1} and \mathfrak{C}_{2} are alternative symbols.

The dihedral group $[2, n]^{+} \cong \mathfrak{D}_{n}$, of order $2 n$, and the extended dihedral group

$$
[2, n] \cong[] \times[n] \cong[] \times[2, n]^{+}
$$

of order $4 n$, are respectively the rotation group and the complete symmetry group of a regular n-gonal prism (other than a cube) for $n \geqslant 3$. When n is even, the group $[2, n]$ contains the central inversion in the form $Z=R_{1}\left(R_{2} R_{3}\right)^{n / 2}$, so that

$$
[2, n] \cong\left[2^{+}, 2^{+}\right] \times[n] \cong\left[2^{+}, 2^{+}\right] \times[2, n]^{+} \quad(n \text { even })
$$

The group [2, n] contains a subgroup of index 2 generated by the reflection R_{1} and the rotation $S_{23}=R_{2} R_{3}$, satisfying the relations

$$
R_{1}{ }^{2}=S_{23}{ }^{n}=E, \quad R_{1} S_{23}=S_{23} R_{1} .
$$

This is the extended cyclic group $\left[2, n^{+}\right] \cong[] \times[n]^{+}$, of order $2 n$. The rotational subgroup, generated by S_{23}, is the cyclic group [$\left.n\right]^{+}$. When n is even, the group $\left[2, n^{+}\right]$contains the central inversion in the form $Z=R_{1} S_{23}{ }^{n / 2}$, and

$$
\left[2, n^{+}\right] \cong\left[2^{+}, 2^{+}\right] \times[n]^{+} \quad(n \text { even })
$$

The group $[2,2 n]$ contains a subgroup of index 2 generated by the halfturn $S_{12}=R_{1} R_{2}$ and the reflection R_{3}, satisfying the relations

$$
S_{12}{ }^{2}=R_{3}{ }^{2}=\left(S_{12} R_{3}\right)^{2 n}=E .
$$

This is the group $\left[2^{+}, 2 n\right] \cong \mathfrak{D}_{2 n}$, of order $4 n$, the complete symmetry group of a regular n-gonal antiprism (other than a regular octahedron) for $n \geqslant 3$. The rotational subgroup, generated by S_{12} and $R_{3} S_{12} R_{3}$, is [2,n] ${ }^{+}$. When n is odd, $\left(S_{12} R_{3}\right)^{n}$ is the central inversion Z, and

$$
\left[2^{+}, 2 n\right] \cong\left[2^{+}, 2^{+}\right] \times[n] \cong\left[2^{+}, 2^{+}\right] \times[2, n]^{+} \quad(n \text { odd })
$$

The groups $\left[2^{+}, 2 n\right]$ and $\left[2,2 n^{+}\right.$] have a common subgroup of index 2 , a subgroup of index 4 in $[2,2 n]$, generated by the rotatory reflection

$$
T=S_{12} R_{3}=R_{1} S_{23}=R_{1} R_{2} R_{3},
$$

satisfying the relation

$$
T^{2 n}=E .
$$

This is the group $\left[2^{+}, 2 n^{+}\right] \cong \mathfrak{C}_{2 n}$, of order $2 n$. The rotational subgroup, generated by T^{2}, is $[n]^{+}$. When n is odd, T^{n} is the central inversion Z, and

$$
\left[2^{+}, 2 n^{+}\right] \cong\left[2^{+}, 2^{+}\right] \times[n]^{+} \quad(n \text { odd })
$$

The groups $[3,3]^{+},[3,4]^{+}$, and $[3,5]^{+}$, of orders 12,24 , and 60 , being the rotation groups of the regular polyhedra, are known as the tetrahedral, octahedral, and icosahedral groups. They are isomorphic to symmetric or alternating groups of degree 4 or 5 (4, pp. 48-50):

$$
\begin{aligned}
& {[3,3]^{+} \cong \mathfrak{U}_{4}} \\
& {[3,4]^{+} \cong \Im_{4}} \\
& {[3,5]^{+} \cong \mathfrak{A}_{5}}
\end{aligned}
$$

The extended polyhedral groups $[3,3],[3,4]$, and $[3,5]$, of orders 24,48 , and 120 , are the complete symmetry groups of the regular polyhedra. The extended tetrahedral group is the symmetric group of degree 4:

$$
[3,3] \cong \Im_{4}
$$

The extended octahedral group contains the central inversion in the form $Z=\left(R_{1} R_{2} R_{3}\right)^{3}$ and is obtained by adjoining this operation to either of the isomorphic groups [3, 3] and [3, 4] ${ }^{+}$:

$$
[3,4] \cong\left[2^{+}, 2^{+}\right] \times[3,3] \cong\left[2^{+}, 2^{+}\right] \times[3,4]^{+}
$$

In the extended icosahedral group the central inversion occurs as $Z=\left(R_{1} R_{2} R_{3}\right)^{5}$, and

$$
[3,5] \cong\left[2^{+}, 2^{+}\right] \times[3,5]^{+}
$$

The group [3, 4] contains a subgroup of index 2 generated by the rotation $S_{12}=R_{1} R_{2}$ and the reflection R_{3}, satisfying the relations

$$
S_{12}{ }^{3}=R_{3}^{2}=\left(S_{12}^{-1} R_{3} S_{12} R_{3}\right)^{2}=E .
$$

This is the pyritohedral group [$3^{+}, 4$], of order 24 , the complete symmetry group of the crystallographic pyritohedron or of the figure consisting of a cube inscribed in a regular dodecahedron. The central inversion occurs in the form $Z=\left(S_{12} R_{3}\right)^{3}$, while the rotational subgroup, generated by S_{12} and
$R_{3} S_{12} R_{3}$, is [3, 3] ${ }^{+}$, so that

$$
\left[3^{+}, 4\right] \cong\left[2^{+}, 2^{+}\right] \times[3,3]^{+}
$$

The pyritohedral group is also a subgroup of index 5 in [3,5], generated by the rotation $R_{3} R_{1} R_{2} R_{3}$ and the reflection R_{2}.

All the finite three-dimensional symmetry groups are listed in Table I.
TABLE I
Finite Groups of Isometries in E^{3}

Rotation groups			Extended groups		
Group	Structure	Order	Group	Structure	Order
[] ${ }^{+}$	\mathfrak{E}_{1}	1	$\begin{gathered} {[]} \\ {\left[2^{+}, 2^{+}\right]} \end{gathered}$	$\begin{aligned} & \mathfrak{D}_{1} \\ & \mathfrak{C}_{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
$[n]^{+}, n \geqslant 2$	\mathfrak{C}_{n}	n	$[n]$ $\left[2^{+}, 2 n^{+}\right]$ $\left[2, n^{+}\right]$	\mathfrak{D}_{n} $\mathfrak{C}_{2 n}$ $\mathfrak{D}_{1} \times{ }^{\times} \times \mathfrak{C}_{n}$	$2 n$ $2 n$ $2 n$
$[2, n]^{+}, n \geqslant 2$	\mathfrak{D}_{n}	$2 n$	$\left[2^{+}, 2 n\right]$ $[2, n]$	$\stackrel{\mathfrak{D}_{2 n}}{\mathfrak{D}_{1} \times \mathfrak{D}_{n}}$	$\begin{aligned} & 4 n \\ & 4 n \end{aligned}$
$[3,3]^{+}$	\mathfrak{H}_{4}	12	$[3,3]$ $\left[3^{+}, 4\right]$	$\stackrel{\mathfrak{S}_{4}}{\mathfrak{E}_{2} \times \mathfrak{A}_{4}}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$
$[3,4]^{+}$	\mathfrak{S}_{4}	24	[3, 4]	$\mathfrak{E}_{2} \times \mathfrak{S}_{4}$	48
$[3,5]^{+}$	$\mathfrak{\mu}_{5}$	60	[3, 5]	$\mathfrak{E}_{2} \times \mathfrak{U}_{5}$	120

Every rotation, other than the identity, that transforms a solid into itself leaves invariant a unique line, called an axis of symmetry of the solid. If the greatest period of any rotation about a given axis is n, the axis is said to be an n-fold one. A solid whose rotation group is the identity has no axes. Otherwise, the number of axes of symmetry for each finite rotation group is as follows:

$$
\begin{aligned}
& {[n]^{+}: 1 n \text {-fold; }} \\
& {[2, n]^{+}: n \text { twofold, } 1 n \text {-fold; }} \\
& \text { [3, 3] }{ }^{+} \text {: } 3 \text { twofold, } 4 \text { threefold; } \\
& \text { [3, 4] }{ }^{+} \text {: } 6 \text { twofold, } 4 \text { threefold, } 3 \text { fourfold; } \\
& {[3,5]^{+}: 15 \text { twofold, } 10 \text { threefold, } 6 \text { fivefold. }}
\end{aligned}
$$

Since these are the only finite rotation groups, it follows that a polyhedron that has more than one threefold, fourfold, or fivefold axis must have tetrahedral, octahedral, or icosahedral symmetry and that no polyhedron can have more than one n-fold axis for $n \geqslant 6$.

Of the convex polyhedra with regular faces, the only ones that have tetrahedral, octahedral, or icosahedral symmetry are the Platonic and Archimedean
solids. The only ones having an axis other than twofold, threefold, fourfold, or fivefold are the n-gonal prisms and antiprisms $(n \geqslant 6)$. Thus the rotation group of a non-uniform regular-faced polyhedron is either the identity group or one of the groups $[n]^{+}$or $[2, n]^{+}(n=2,3,4,5)$.

If any of the symmetry operations of a solid are reflections or rotatory reflections, then exactly half of them are, and the rotation group of the solid is a subgroup of index 2 in its complete symmetry group. If not, the rotation group is the whole group, and the solid occurs in two enantiomorphous forms, mirror images of each other. There are seven regular-faced polyhedra of this kind: the Archimedean snub cuboctahedron and snub icosidodecahedron and the non-uniform figures

$$
Q_{3}{ }^{2} S_{6}, \quad Q_{4}{ }^{2} S_{8}, \quad Q_{5}{ }^{2} S_{10}, \quad Q_{5} R_{5} S_{10}, \quad R_{5}{ }^{2} S_{10} .
$$

On the other hand, four polyhedra have only bilateral symmetry:

$$
m-g Q_{5}^{-1} E_{5}, \quad g^{2} Q_{5}^{-1} E_{5}, \quad g Q_{5}{ }^{-2} E_{5}, \quad Y_{4} V_{2} N_{2}
$$

The complete symmetry group of each of the remaining non-uniform solids is one of the groups $[n],[2, n]$, or $\left[2^{+}, 2 n\right](n=2,3,4,5)$. It is remarkable that none of the known convex polyhedra with regular faces is completely asymmetric, i.e., has a symmetry group consisting of the identity alone.

The vertices, edges, and faces of any symmetric polyhedron fall into various equivalence classes. Two vertices, edges, or faces belong to the same equivalence class if there is a symmetry operation of the polyhedron that takes one into the other. The order of the equivalence class to which a particular vertex, edge, or face belongs is equal to the index of the subgroup of the complete symmetry group of the polyhedron that leaves the particular vertex, edge, or face invariant.

The uniform polyhedra are just those regular-faced solids whose vertices all belong to a single equivalence class. Besides the Platonic solids, the only convex polyhedra with regular faces that have all their edges equivalent are the cuboctahedron and the icosidodecahedron, and the only ones whose faces are all equivalent are the triangular and pentagonal dipyramids.

Tables II and III list the different types of faces, edges, and vertices to be found in each convex polyhedron with regular faces. Those edges or vertices that are locally congruent, i.e., edges or vertices of the same type that form equal dihedral angles, are grouped together. In each case the number of faces, edges, or vertices in each equivalence class is indicated in roman type and the number of equivalence classes of the same order in italic type.

Dihedral angles are given to the nearest second. Where minutes and seconds are not shown, the given value is exact.

Some of the following references were supplied by Branko Grünbaum, for whose interest and encouragement I am most grateful. I am also indebted to the referee for several helpful suggestions.
TABLE II
Convex Uniform Polyhedra

Name	Symbol	Faces	Edges and di	hedral angles	Vertices	Group
Tetrahedron	$\{3,3\}$	$4\{3\}$	$6\langle 3 \cdot 3\rangle$	$70^{\circ} 31^{\prime} 44^{\prime \prime}$	$4\left(3^{3}\right)$	[3, 3]
Octahedron	$\{3,4\}$	$8\{3\}$	12 〈3.3>	$109^{\circ} 28^{\prime} 16^{\prime \prime}$	6 (34)	[3, 4]
Cube	$\{4,3\}$	$6\{4\}$	$12\langle 4 \cdot 4\rangle$	90°	$8\left(4^{3}\right)$	$[3,4]$
Icosahedron	$\{3,5\}$	$20\{3\}$	$30\langle 3 \cdot 3\rangle$	$138^{\circ} 11^{\prime} 23^{\prime \prime}$	$12\left(3^{5}\right)$	[3, 5]
Dodecahedron	$\{5,3\}$	12 \{5\}	$30\langle 5 \cdot 5\rangle$	$116^{\circ} 33^{\prime} 54^{\prime \prime}$	$20\left(5^{3}\right)$	[3,5]
Cuboctahedron	$\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$	$\begin{aligned} & 8\{3\} \\ & 6\{4\} \end{aligned}$	$24\langle 3 \cdot 4\rangle$	$125^{\circ} 15^{\prime} 52^{\prime \prime}$	$12(3 \cdot 4 \cdot 3 \cdot 4)$	[3, 4]
Icosidodecahedron	$\left\{\begin{array}{c} 3 \\ 5 \end{array}\right\}$	$\begin{aligned} & 20\{3\} \\ & 12\{5\} \end{aligned}$	$60\langle 3 \cdot 5\rangle$	$142^{\circ} 37^{\prime} 21^{\prime \prime}$	$30(3 \cdot 5 \cdot 3 \cdot 5)$	[3, 5]
Truncated tetrahedron	t $\{3,3\}$	$\begin{aligned} & 4\{3\} \\ & 4\{6\} \end{aligned}$	$\begin{array}{r} 12\langle 3 \cdot 6\rangle \\ 6\langle 6 \cdot 6\rangle \end{array}$	$\begin{gathered} 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ 70^{\circ} 31^{\prime} 44^{\prime \prime} \end{gathered}$	$12\left(3 \cdot 6^{2}\right)$	[3, 3]
Truncated octahedron	$\mathrm{t}\{3,4\}$	$\begin{aligned} & 6\{4\} \\ & 8\{6\} \end{aligned}$	$\begin{aligned} & 24\langle 4 \cdot 6\rangle \\ & 12\langle 6 \cdot 6\rangle \end{aligned}$	$\begin{aligned} & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \end{aligned}$	$24\left(4 \cdot 6^{2}\right)$	[3, 4]
Truncated cube	$\mathrm{t}\{4,3\}$	$\begin{aligned} & 8\{3\} \\ & 6\{8\} \end{aligned}$	$\begin{aligned} & 24\langle 3 \cdot 8\rangle \\ & 12\langle 8 \cdot 8\rangle \end{aligned}$	$\begin{aligned} & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$24\left(3 \cdot 8^{2}\right)$	[3, 4]
Truncated icosahedron	t $\{3,5\}$	$\begin{aligned} & 12\{5\} \\ & 20\{6\} \end{aligned}$	$\begin{aligned} & 60\langle 5 \cdot 6\rangle \\ & 30\langle 6 \cdot 6\rangle \end{aligned}$	$\begin{aligned} & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 138^{\circ} 11^{\prime} 23^{\prime \prime} \end{aligned}$	$60\left(5 \cdot 6^{2}\right)$	[3, 5]
Truncated dodecahedron	$\mathrm{t}\{5,3\}$	$\begin{aligned} & 20\{3\} \\ & 12 \end{aligned}$	$\begin{aligned} & 60\langle 3 \cdot 10\rangle \\ & 30\langle 10 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$60\left(3 \cdot 10^{2}\right)$	[3, 5]

TABLE II-concluded

Name	Symbol	Faces	Edges and dihedral angles		Vertices	Group
Rhombicuboctahedron	$\mathrm{r}\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$	$\begin{array}{r} 8\{3\} \\ 12+6\{4\} \end{array}$	$\begin{aligned} & 24\langle 3 \cdot 4\rangle \\ & 24\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 135^{\circ} \end{aligned}$	$24\left(3 \cdot 4^{3}\right)$	[3, 4]
Rhombicosidodecahedron	$\mathrm{r}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$	$20\{3\}$ $30\{4\}$ $12\{5\}$	$\begin{aligned} & 60\langle 3 \cdot 4\rangle \\ & 60\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{array}{lr} 159^{\circ} & 5^{\prime} 41^{\prime \prime} \\ 148^{\circ} & 16^{\prime} \\ 57^{\prime \prime} \end{array}$	$60(3 \cdot 4 \cdot 5 \cdot 4)$	[3, 5]
Truncated cuboctahedron	$t\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$	$\begin{array}{r} 12\{4\} \\ 8\{6\} \\ 6\{8\} \end{array}$		$\begin{aligned} & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 135^{\circ} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \end{aligned}$	$48(4 \cdot 6 \cdot 8)$	$[3,4]$
Truncated icosidodecahedron	$\mathrm{t}\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$	$30\{4\}$ $20\{6\}$ $12\{10\}$	$\begin{aligned} & 60\langle 4 \cdot 6\rangle \\ & 60\langle 4 \cdot 10\rangle \\ & 60\langle 6 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \end{aligned}$	$120(4 \cdot 6 \cdot 10)$	$[3,5]$
Snub cuboctahedron	$s\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$	$\begin{array}{r} 24+8\{3\} \\ 6\{4\} \end{array}$	$\begin{array}{r} 12+24\langle 3 \cdot 3\rangle \\ 24\langle 3 \cdot 4\rangle \end{array}$	$\begin{array}{ll} 153^{\circ} 14^{\prime} & 5^{\prime \prime} \\ 142^{\circ} 59^{\prime} & 0^{\prime \prime} \end{array}$	$24\left(3^{4} \cdot 4\right)$	$[3,4]^{+}$
Snub icosidodecahedron	$s\left\{\begin{array}{l}3 \\ 5\end{array}\right\}$	$\begin{array}{r} 60+20\{3\} \\ 12\{5\} \end{array}$	$\begin{array}{r} 30+60\langle 3 \cdot 3\rangle \\ 60\langle 3 \cdot 5\rangle \end{array}$	$\begin{aligned} & 164^{\circ} 10^{\prime} 31^{\prime \prime} \\ & 152^{\circ} 55^{\prime} 48^{\prime \prime} \end{aligned}$	$60\left(3^{4} \cdot 5\right)$	$[3,5]^{+}$
n-gonal prism $(n=3,5,6, \ldots)$	$\} \times\{n\}$	$\begin{aligned} & n\{4\} \\ & 2\{n\} \end{aligned}$	$\begin{gathered} n\langle 4 \cdot 4\rangle \\ 2 n\langle 4 \cdot n\rangle \end{gathered}$	$\begin{aligned} & 180^{\circ} \cdot(n-2) / n \\ & 90^{\circ} \end{aligned}$	$2 n\left(4^{2} \cdot n\right)$	$[2, n]$
n-gonal antiprism $(n=4,5,6, \ldots)$	$\mathrm{h}\} \mathrm{s}\{n\}$	$\begin{array}{r} 2 n\{3\} \\ 2\{n\} \end{array}$	$\begin{aligned} & 2 n\langle 3 \cdot 3\rangle \\ & 2 n\langle 3 \cdot n\rangle \end{aligned}$	$\begin{aligned} & 2 \tan ^{-1} \frac{1}{2} a_{n}^{*} \\ & 180^{\circ}-\tan ^{-1} a_{n} \end{aligned}$	$2 n\left(3^{3} \cdot n\right)$	$\left[2^{+}, 2 n\right]$

[^0]TABLE III
Non-uniform Convex Polyhedra with Regular Faces

No.	Name	Symbol	Faces	Edges and di	hedral angles	Vertices	Group
1	Square pyramid	Y_{4}	$\begin{aligned} & 4\{3\} \\ & 1\{4\} \end{aligned}$	$\begin{aligned} & 4\langle 3 \cdot 3\rangle \\ & 4\langle 3 \cdot 4\rangle \end{aligned}$	$\begin{array}{r} 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ 54^{\circ} 44^{\prime} \quad 8^{\prime \prime} \end{array}$	$\begin{aligned} & 4\left(3^{2} \cdot 4\right) \\ & 1\left(3^{4}\right) \end{aligned}$	[4]
2	Pentagonal pyramid	Y_{5}	$\begin{aligned} & 5\{3\} \\ & 1\{5\} \end{aligned}$	$\begin{aligned} & 5\langle 3 \cdot 3\rangle \\ & 5\langle 3 \cdot 5\rangle \end{aligned}$	$\begin{array}{r} 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ 37^{\circ} 22^{\prime} 39^{\prime \prime} \end{array}$	$\begin{aligned} & 5\left(3^{2} \cdot 5\right) \\ & 1\left(3^{5}\right) \end{aligned}$	[5]
3	Triangular cupola	Q3	$\begin{array}{r} 1+3\{3\} \\ 3\{4\} \\ 1\{6\} \end{array}$	$\begin{array}{r} 3+6\langle 3 \cdot 4\rangle \\ 3\langle 3 \cdot 6\rangle \\ 3\langle 4 \cdot 6\rangle \end{array}$	$\begin{array}{r} 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ 70^{\circ} 31^{\prime} 44^{\prime \prime} \\ 54^{\circ} 44^{\prime} 8^{\prime \prime} \end{array}$	$\begin{aligned} & 6(3 \cdot 4 \cdot 6) \\ & 3(3 \cdot 4 \cdot 3 \cdot 4) \end{aligned}$	[3]
4	Square cupola	Q4	$\begin{array}{r} 4\{3\} \\ 1+4\{4\} \\ 1\{8\} \end{array}$	$\begin{aligned} & 8\langle 3 \cdot 4\rangle \\ & 4\langle 4 \cdot 4\rangle \\ & 4\langle 3 \cdot 8\rangle \\ & 4\langle 4 \cdot 8\rangle \end{aligned}$	$\begin{array}{cl} 144^{\circ} 44^{\prime} & 8^{\prime \prime} \\ 135^{\circ} & \\ 54^{\circ} 44^{\prime} & 8^{\prime \prime} \\ 45^{\circ} & \end{array}$	$\begin{aligned} & 8(3 \cdot 4 \cdot 8) \\ & 4\left(3 \cdot 4^{3}\right) \end{aligned}$	[4]
5	Pentagonal cupola	Q5	$\begin{aligned} & 5\{3\} \\ & 5\{4\} \\ & 1\{5\} \\ & 1\{10\} \end{aligned}$	$\begin{aligned} 10 & \langle 3 \cdot 4\rangle \\ 5 & \langle 4 \cdot 5\rangle \\ 5 & \langle 3 \cdot 10\rangle \\ 5 & \langle 4 \cdot 10\rangle \end{aligned}$	$\begin{array}{r} 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ 37^{\circ} 22^{\prime} 39^{\prime \prime} \\ 31^{\circ} 43^{\prime} \quad 3^{\prime \prime} \end{array}$	$\begin{aligned} & 10(3 \cdot 4 \cdot 10) \\ & 5(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[5]
6	Pentagonal rotunda	R_{5}	$\begin{aligned} 2 \cdot 5 & \{3\} \\ 1+5 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} 5+2 \cdot 10 & \langle 3 \cdot 5\rangle \\ 5 & \langle 3 \cdot 10\rangle \\ 5 & \langle 5 \cdot 10\rangle \end{aligned}$	$\begin{gathered} 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ 79^{\circ} 11^{\prime} 16^{\prime \prime} \\ 63^{\circ} 26^{\prime} \quad 6^{\prime \prime} \end{gathered}$	$\begin{gathered} 10(3 \cdot 5 \cdot 10) \\ 2 \cdot 5(3 \cdot 5 \cdot 3 \cdot 5) \end{gathered}$	[5]
7	Elongated triangular pyramid	$\mathrm{Y}_{3} \mathrm{P}_{3}$	$\begin{array}{r} 1+3\{3\} \\ 3\{4\} \end{array}$	$\begin{aligned} & 3\langle 3 \cdot 3\rangle \\ & 3\langle 3 \cdot 4\rangle \\ & 3\langle 3 \cdot 4\rangle \\ & 3\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 70^{\circ} 31^{\prime} 44^{\prime \prime} \\ & 160^{\circ} 31^{\prime} 44^{\prime \prime} \\ & 90^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{aligned} & 1\left(3^{3}\right) \\ & 3\left(3 \cdot 4^{2}\right) \\ & 3\left(3^{2} \cdot 4^{2}\right) \end{aligned}$	[3]
8	Elongated square pyramid	$\mathrm{Y}_{4} \mathrm{P}_{4}$	$\begin{array}{r} 4\{3\} \\ 1+4\{4\} \end{array}$	$\begin{array}{r} 4\langle 3 \cdot 3\rangle \\ 4\langle 3 \cdot 4\rangle \\ 2 \cdot 4\langle 4 \cdot 4\rangle \end{array}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 4\left(4^{3}\right) \\ & 1\left(3^{4}\right) \\ & 4\left(3^{2} \cdot 4^{2}\right) \end{aligned}$	[4]

TABLE III-continued

No.	Name	Symbol	Faces	Edges and	dihedral angles	Vertices	Group
9	Elongated pentagonal pyramid	$\mathrm{Y}_{5} \mathrm{P}_{5}$	$\begin{aligned} & 5\{3\} \\ & 5\{4\} \\ & 1\{5\} \end{aligned}$	$\begin{aligned} & 5\langle 3 \cdot 3\rangle \\ & 5\langle 3 \cdot 4\rangle \\ & 5\langle 4 \cdot 4\rangle \\ & 5\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ & 127^{\circ} 22^{\prime} 39^{\prime \prime} \\ & 108^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 5\left(4^{2} \cdot 5\right) \\ & 5\left(3^{2} \cdot 4^{2}\right) \end{aligned}$	[5]
10	Gyroelongated square pyramid	$\mathrm{Y}_{4} \mathrm{~S}_{4}$	$\begin{array}{r} 3 \cdot 4\{3\} \\ 1\{4\} \end{array}$	$\begin{aligned} & 4\langle 3 \cdot 3\rangle \\ & 8\langle 3 \cdot 3\rangle \\ & 4\langle 3 \cdot 3\rangle \\ & 4\langle 3 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 158^{\circ} 34^{\prime} 18^{\prime \prime} \\ & 127^{\circ} 33^{\prime} 6^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 13^{\circ} 50^{\prime} 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1\left(3^{4}\right) \\ & 4\left(3^{3} \cdot 4\right) \\ & 4\left(3^{5}\right) \end{aligned}$	[4]
11	Gyroelongated pentagonal pyramid	$\mathrm{Y}_{5} \mathrm{~S}_{5}$	$\begin{array}{r} 3 \cdot 5\{3\} \\ 1\{5\} \end{array}$	$\begin{aligned} 2 \cdot 5+10 & \langle 3 \cdot 3\rangle \\ 5 & \langle 3 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ & 100^{\circ} 48^{\prime} 44^{\prime \prime} \end{aligned}$	$\begin{array}{r} 5\left(3^{3} \cdot 5\right) \\ 1+5\left(3^{5}\right) \end{array}$	[5]
12	Triangular dipyramid	$\mathrm{Y}_{3}{ }^{2}$	6 \{3\}	$\begin{aligned} & 3\langle 3 \cdot 3\rangle \\ & 6\langle 3 \cdot 3\rangle \end{aligned}$	$\begin{gathered} 141^{\circ} \quad 3^{\prime} 27^{\prime \prime} \\ 70^{\circ} 31^{\prime} 44^{\prime \prime} \end{gathered}$	$\begin{aligned} & 2\left(3^{3}\right) \\ & 3\left(3^{4}\right) \end{aligned}$	[2, 3]
13	Pentagonal dipyramid	$\mathrm{Y}_{5}{ }^{2}$	10 \{3\}	$\begin{array}{r} 10\langle 3 \cdot 3\rangle \\ 5\langle 3 \cdot 3\rangle \end{array}$	$\begin{array}{r} 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ 74^{\circ} 45^{\prime} 17^{\prime \prime} \end{array}$	$\begin{aligned} & 5\left(3^{4}\right) \\ & 2\left(3^{5}\right) \end{aligned}$	[2, 5]
14	Elongated triangular dipyramid	$\mathrm{Y}_{3}{ }^{2} \mathrm{P}$	$\begin{aligned} & 6\{3\} \\ & 3\{4\} \end{aligned}$	$\begin{aligned} & 6\langle 3 \cdot 3\rangle \\ & 6\langle 3 \cdot 4\rangle \\ & 3\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 70^{\circ} 31^{\prime} 44^{\prime \prime} \\ & 160^{\circ} 31^{\prime} 44^{\prime \prime} \\ & 60^{\circ} \end{aligned}$	$\begin{aligned} & 2\left(3^{3}\right) \\ & 6\left(3^{2} \cdot 4^{2}\right) \end{aligned}$	[2, 3]
15	Elongated square dipyramid	$\mathrm{Y}_{4}{ }^{2} \mathrm{P} 4$	$\begin{aligned} & 8\{3\} \\ & 4\{4\} \end{aligned}$	$\begin{aligned} & 8\langle 3 \cdot 3\rangle \\ & 8\langle 3 \cdot 4\rangle \\ & 4\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 2\left(3^{4}\right) \\ & 8\left(3^{2} \cdot 4^{2}\right) \end{aligned}$	[2, 4]
16	Elongated pentagonal dipyramid	$\mathrm{Y}_{5}{ }^{2} \mathrm{P}_{5}$	$\begin{array}{r} 10\{3\} \\ 5\{4\} \end{array}$	$\begin{aligned} 10\langle 3 \cdot 3\rangle \\ 10\langle 3 \cdot 4\rangle \\ 5\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ & 127^{\circ} 22^{\prime} 39^{\prime \prime} \\ & 108^{\circ} \end{aligned}$	$\begin{gathered} 10\left(3^{2} \cdot 4^{2}\right) \\ 2\left(3^{5}\right) \end{gathered}$	[2, 5]
17	Gyroelongated square dipyramid	$\mathrm{Y}_{4}{ }^{2} \mathrm{~S}_{4}$	2. 8 \{3\}	$\begin{aligned} & 8\langle 3 \cdot 3\rangle \\ & 8\langle 3 \cdot 3\rangle \\ & 8\langle 3 \cdot 3\rangle \end{aligned}$	$\begin{aligned} & 158^{\circ} 34^{\prime} 18^{\prime \prime} \\ & 127^{\circ} 33^{\prime} 6^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2\left(3^{4}\right) \\ & 8\left(3^{6}\right) \end{aligned}$	[$\left.2^{+}, 8\right]$

\bigcirc	Ψ	$\underline{12}$	$\sqrt{20}$	\bigcirc	\pm
¢		¢	20	\bigcirc	
－$\overbrace{}^{\circ}$		$\bigcirc{ }^{2}$		$\dot{\square}$	
¢ ${ }^{\circ}$	∞	\cdots－	\cdots	$\dot{+}$	\％
氙 \times ¢	㴎	氙 \times ¢	蝺	ツ ${ }_{0}^{0}$	ற10
－๓	$\infty \underset{+}{\infty}$		$\bigcirc \bigcirc \bigcirc$	$\infty \underset{\sim}{\infty}$	$\begin{array}{r} 40 \\ \dot{Q} \end{array}$

进边	－				
动识妆	尔	is ते			ios
				Oif io io io	$\stackrel{\circ}{\circ}$
$\widehat{\text { ¢ }} \widehat{\text { ¢ }} \widehat{\hat{+}}$	$\widehat{\text { ¢ }}$ ¢			－	क
	象示边	家乐过过过还	边过边过过		
$\infty \underset{\infty}{\infty} \infty$	$\begin{gathered} \infty \\ +\infty \\ + \\ + \\ + \\ + \\ \dot{\alpha} \end{gathered}$	$0 \text { O }$		$\begin{array}{cc} \infty & 0 \\ \dot{\alpha} & \infty+\infty \\ +\infty \\ \infty \end{array}$	$\underset{\alpha}{\infty}+\infty+H \infty$

$\because \sim 0$	$\sim \sim \sim$	¢～～～0	¢ \％	¢ $\underset{\sim}{0}$	$\underset{\sim}{\sim}$
$\bigcirc \sim \sim$	ササー	10 0ヶー		－¢－	∞＋ー
$\pm \infty$	$\dot{+}$	∞	Q $\dot{\sim}$		$\pm \pm$
	\pm			$\dot{\sim}$	
				$+$	
				\rightarrow	
			\bigcirc		
0	\sim	2	0	n	$\stackrel{\sim}{2}$
®ٌ	$\underset{\sim}{2}$	$\stackrel{\sim}{2}$	2	\sim_{0}^{∞}	α

18	Elongated triangular cupola
19	Elongated square cupola
20	Elongated pentagonal cupola
21	Elongated pentagonal rotunda
22	Gyroelongated triangular cupola
23	Gyroelongated square cupola

TABLE III-continued

No.	Name	Symbol	Faces	Edges and dih	edral angles	Vertices	Group
24	Gyroelongated pentagonal cupola	$Q_{5} S_{10}$	$\begin{aligned} 3 \cdot 5+10 & \{3\} \\ 5 & \{4\} \\ 1 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} & 2 \cdot 10\langle 3 \cdot 3\rangle \\ & 5\langle 3 \cdot 3\rangle \\ & 10\langle 3 \cdot 4\rangle \\ & 5\langle 3 \cdot 4\rangle \\ & 5\langle 4 \cdot 5\rangle \\ & 10\langle 3 \cdot 10\rangle \end{aligned}$	$\begin{gathered} 159^{\circ} 11^{\prime} 11^{\prime \prime} \\ 132^{\circ} 37^{\prime} 26^{\prime \prime} \\ 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ 126^{\circ} 57^{\prime} 51^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ 95^{\circ} 14^{\prime} 48^{\prime \prime} \end{gathered}$	$\begin{gathered} 5(3 \cdot 4 \cdot 5 \cdot 4) \\ 2 \cdot 5\left(3^{3} \cdot 10\right) \\ 10\left(3^{4} \cdot 4\right) \end{gathered}$	[5]
25	Gyroelongated pentagonal rotunda	$\mathrm{R}_{5} \mathrm{~S}_{10}$	$\begin{aligned} 4 \cdot 5+10 & \{3\} \\ 1+5 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} 5 & \langle 3 \cdot 3\rangle \\ 2 \cdot 10 & \langle 3 \cdot 3\rangle \\ 5 & \langle 3 \cdot 5\rangle \\ 5+2 \cdot 10 & \langle 3 \cdot 5\rangle \\ 10 & \langle 3 \cdot 10\rangle \end{aligned}$	$\begin{array}{r} 174^{\circ} 26^{\prime} 4^{\prime \prime} \\ 159^{\circ} 11^{\prime} 11^{\prime \prime} \\ 158^{\circ} 40^{\prime} 54^{\prime \prime} \\ 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ 95^{\circ} 14^{\prime} 48^{\prime \prime} \end{array}$	$\begin{aligned} & 2 \cdot 5(3 \cdot 5 \cdot 3 \cdot 5) \\ & 2 \cdot 5\left(3^{3} \cdot 10\right) \\ & 10\left(3^{4} \cdot 5\right) \end{aligned}$	[5]
26	Gyrobifastigium	$\mathrm{g} \mathrm{Q} 2^{2}$	$\begin{aligned} & 4\{3\} \\ & 4\{4\} \end{aligned}$	$\begin{aligned} & 4\langle 3 \cdot 4\rangle \\ & 8\langle 3 \cdot 4\rangle \\ & 2\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{array}{r} 150^{\circ} \\ 90^{\circ} \\ 60^{\circ} \end{array}$	$\begin{aligned} & 4\left(3 \cdot 4^{2}\right) \\ & 4(3 \cdot 4 \cdot 3 \cdot 4) \end{aligned}$	$\left[2^{+}, 4\right]$
27	Triangular orthobicupola	$Q_{3}{ }^{2}$	$\begin{array}{r} 2+6\{3\} \\ 6\{4\} \end{array}$	$\begin{aligned} & 3\langle 3 \cdot 3\rangle \\ & 6+12\langle 3 \cdot 4\rangle \\ & 3\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 141^{\circ} \quad 3^{\prime} 27^{\prime \prime} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6\left(3^{2} \cdot 4^{2}\right) \\ & 6(3 \cdot 4 \cdot 3 \cdot 4) \end{aligned}$	$[2,3]$
28	Square orthobicupola	Q4 ${ }^{2}$	$\begin{array}{r} 8\{3\} \\ 2+8\{4\} \end{array}$	$\begin{array}{r} 4\langle 3 \cdot 3\rangle \\ 16\langle 3 \cdot 4\rangle \\ 8\langle 4 \cdot 4\rangle \\ 4\langle 4 \cdot 4\rangle \end{array}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 135^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 8\left(3^{2} \cdot 4^{2}\right) \\ & 8\left(3 \cdot 4^{3}\right) \end{aligned}$	$[2,4]$
29	Square gyrobicupola	$g Q_{4}{ }^{2}$	$\begin{array}{r} 8\{3\} \\ 2+8\{4\} \end{array}$	$\begin{gathered} 16\langle 3 \cdot 4\rangle \\ 8\langle 3 \cdot 4\rangle \\ 8\langle 4 \cdot 4\rangle \end{gathered}$	$\begin{gathered} 144^{\circ} 44^{\prime} \\ 99^{\prime \prime} \\ 94^{\prime \prime} \\ 135^{\circ} \end{gathered}$	$\begin{aligned} & 8(3 \cdot 4 \cdot 3 \cdot 4) \\ & 8\left(3 \cdot 4^{3}\right) \end{aligned}$	$\left[2^{+}, 8\right]$
30	Pentagonal orthobicupola	$Q_{5}{ }^{2}$	$\begin{array}{r} 10\{3\} \\ 10\{4\} \\ 2\{5\} \end{array}$	$\begin{aligned} 5 & \langle 3 \cdot 3\rangle \\ 20 & \langle 3 \cdot 4\rangle \\ 5 & \langle 4 \cdot 4\rangle \\ 10 & \langle 4 \cdot 5\rangle \end{aligned}$	$\begin{array}{r} 74^{\circ} 45^{\prime} 17^{\prime \prime} \\ 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ 63^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{array}$	$\begin{aligned} & 10\left(3^{2} \cdot 4^{2}\right) \\ & 10(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	$[2,5]$

$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\text { Na }}{2} \end{aligned}$	5	$\underline{3}$	$$	∞ \sim \sim	- + +	$\begin{array}{r}\infty \\ + \\ + \\ \hline-\end{array}$	$\begin{array}{r}5 \\ 0 \\ \hline 15\end{array}$
¢7	ค\%®	¢ ${ }^{\circ}$	\bigcirc	$\stackrel{\square}{ }$	ศ		¢
¢ ¢ ¢ ¢	¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	$\stackrel{\square}{\square}$	ค¢	$\dot{\square}$	$\dot{\sim}$		\bigcirc
+	H 40	H゙1	4	+	4	\%	畀
\bigcirc	$\bigcirc \bigcirc \bigcirc$		¢ ¢్ర ¢	ம்ீ	¢ ¢ ¢	$\stackrel{\square}{\circ}$	மค่
	0150	$\bigcirc \mathrm{O}_{120}$		\bigcirc	\bigcirc -		-2)
			$\dot{\sim}$			\ddagger	

31	Pentagonal gyrobicupola	$\mathrm{g} \mathrm{Q}{ }_{5}{ }^{2}$
32	Pentagonal orthocupolarotunda	$Q_{5} \mathrm{R}_{5}$
33	Pentagonal gyrocupolarotunda	$g Q_{5} \mathrm{R}_{5}$
34	Pentagonal orthobirotunda	$\mathrm{R}_{5}{ }^{2}$
35	Elongated triangular orthobicupola	$\mathrm{Q}_{3}{ }^{2} \mathrm{P}_{6}$
36	Elongated triangular gyrobicupola	$\mathrm{g} \mathrm{Q}{ }_{3}{ }^{2} \mathrm{P}_{6}$
37	Elongated square gyrobicupola	$\mathrm{g} \mathrm{Q} 4_{4} \mathrm{P}_{8}$
38	Elongated pentagonal orthobicupola	$Q_{5}{ }^{2} \mathrm{P}_{10}$

TABLE III-continued

No.	Name	Symbol	Faces	Edges and dihe	dral angles	Vertices	Group
39	Elongated pentagonal gyrobicupola	$\mathrm{g} Q_{5}{ }^{2} \mathrm{P}_{10}$	$\begin{array}{r} 10\{3\} \\ 2 \cdot 10\{4\} \\ 2\{5\} \end{array}$	$\begin{aligned} & 20\langle 3 \cdot 4\rangle \\ & 10\langle 3 \cdot 4\rangle \\ & 10\langle 4 \cdot 4\rangle \\ & 10\langle 4 \cdot 4\rangle \\ & 10\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 127^{\circ} 22^{\prime} 39^{\prime \prime} \\ & 144^{\circ} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{aligned} & 20\left(3 \cdot 4^{3}\right) \\ & 10(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	$\left[2^{+}, 10\right]$
40	Elongated pentagonal orthocupolarotunda	$Q_{5} \mathrm{R}_{5} \mathrm{P}_{10}$	$\begin{array}{r} \mathscr{S} \cdot 5\{3\} \\ 3 \cdot 5\{4\} \\ 2+5\{5\} \end{array}$	$\begin{aligned} 5 & \langle 3 \cdot 4\rangle \\ 10 & \langle 3 \cdot 4\rangle \\ 5 & \langle 3 \cdot 4\rangle \\ 10 & \langle 4 \cdot 4\rangle \\ 5 & \langle 4 \cdot 4\rangle \\ 5+2 \cdot 10 & \langle 3 \cdot 5\rangle \\ 5 & \langle 4 \cdot 5\rangle \\ 5 & \langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 169^{\circ} 11^{\prime} 16^{\prime \prime} \\ & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 127^{\circ} 22^{\prime} 39^{\prime \prime} \\ & 144^{\circ} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{gathered} 10\left(3 \cdot 4^{3}\right) \\ 10\left(3 \cdot 4^{2} \cdot 5\right) \\ 5(3 \cdot 4 \cdot 5 \cdot 4) \\ 2 \cdot 5(3 \cdot 5 \cdot 3 \cdot 5) \end{gathered}$	[5]
41	Elongated pentagonal gyrocupolarotunda	$g Q_{5} \mathrm{R}_{5} \mathrm{P}_{10}$	$\begin{array}{r} 3 \cdot 5\{3\} \\ 3 \cdot 5\{4\} \\ 2+5\{5\} \end{array}$	5 $\langle 3 \cdot 4\rangle$ 10 $\langle 3 \cdot 4\rangle$ 5 $\langle 3 \cdot 4\rangle$ 10 $\langle 4 \cdot 4\rangle$ 5 $\langle 4 \cdot 4\rangle$ $5+2 \cdot 10$ $\langle 3 \cdot 5\rangle$ 5 $\langle 4 \cdot 5\rangle$ 5 $\langle 4 \cdot 5\rangle$	$\begin{aligned} & 169^{\circ} 11^{\prime} 16^{\prime \prime} \\ & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 127^{\circ} 22^{\prime} 39^{\prime \prime} \\ & 144^{\circ} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10\left(3 \cdot 4^{3}\right) \\ & 10\left(3 \cdot 4^{2} \cdot 5\right) \\ & 5(3 \cdot 4 \cdot 5 \cdot 4) \\ & 2 \cdot 5(3 \cdot 5 \cdot 3 \cdot 5) \end{aligned}$	[5]
42	Elongated pentagonal orthobirotunda	$\mathrm{R}_{5}{ }^{2} \mathrm{P}_{10}$	$\begin{array}{r} 2 \cdot 10\{3\} \\ 2 \cdot 5\{4\} \\ 2+10\{5\} \end{array}$	$\begin{aligned} 10\langle 3 \cdot 4\rangle \\ 10\langle 4 \cdot 4\rangle \\ 10+2 \cdot 20\langle 3 \cdot 5\rangle \\ 10\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 169^{\circ} 11^{\prime} 16^{\prime \prime} \\ & 144^{\circ} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 153^{\circ} 26^{\prime} 6^{\prime \prime} \end{aligned}$	$\begin{gathered} 20\left(3 \cdot 4^{2} \cdot 5\right) \\ 2 \cdot 10(3 \cdot 5 \cdot 3 \cdot 5) \end{gathered}$	[2, 5]

43	Elongated pentagonal gyrobirotunda	g R $5^{2} \mathrm{P}_{10}$	$\begin{array}{r} 2 \cdot 10\{3\} \\ 10\{4\} \\ 2+10\{5\} \end{array}$	$\begin{aligned} & 10\langle 3 \cdot 4\rangle \\ & 10\langle 4 \cdot 4\rangle \\ & 10+2 \cdot 20\langle 3 \cdot 5\rangle \\ & 10\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 169^{\circ} 11^{\prime} 16^{\prime \prime} \\ & 144^{\circ} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 153^{\circ} 26^{\prime} 6^{\prime \prime} \end{aligned}$	$\begin{gathered} 20\left(3 \cdot 4^{2} \cdot 5\right) \\ 2 \cdot 10(3 \cdot 5 \cdot 3 \cdot 5) \end{gathered}$	$\left[2^{+}, 10\right]$
44	Gyroelongated triangular bicupola	$Q_{3}{ }^{2} \mathrm{~S}_{6}$	$\begin{array}{r} 2+3 \cdot 6\{3\} \\ 6\{4\} \end{array}$	$\begin{aligned} 6 & \langle 3 \cdot 3\rangle \\ 2 \cdot 3+6 & \langle 3 \cdot 3\rangle \\ 6 & \langle 3 \cdot 4\rangle \\ 3 \cdot 6 & \langle 3 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 169^{\circ} 25^{\prime} 42^{\prime \prime} \\ & 145^{\circ} 13^{\prime} 19^{\prime \prime} \\ & 153^{\circ} 38^{\prime} 6^{\prime \prime} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \end{aligned}$	$\begin{aligned} 6(3 \cdot 4 \cdot 3 \cdot 4) \\ \mathcal{Z} \cdot 6\left(3^{4} \cdot 4\right) \end{aligned}$	$[2,3]^{+}$
45	Gyroelongated square bicupola	$\mathrm{Q}_{4} \mathrm{~S}_{8}$	$\begin{array}{r} 3 \cdot 8\{3\} \\ 2+8\{4\} \end{array}$	$\begin{aligned} & 2 \cdot 4+8\langle 3 \cdot 3\rangle \\ & 8\langle 3 \cdot 3\rangle \\ & 2 \cdot 8\langle 3 \cdot 4\rangle \\ & 8\langle 3 \cdot 4\rangle \\ & 8\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 153^{\circ} 57^{\prime} 45^{\prime \prime} \\ & 151^{\circ} 19^{\prime} 48^{\prime \prime} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 141^{\circ} 35^{\prime} 40^{\prime \prime} \\ & 135^{\circ} \end{aligned}$	$\begin{array}{r} 8\left(3 \cdot 4^{3}\right) \\ 2 \cdot 8\left(3^{4} \cdot 4\right) \end{array}$	$[2,4]^{+}$
46	Gyroelongated pentagonal bicupola	$Q_{5}{ }^{2} S_{10}$	$\begin{array}{r} 3 \cdot 10\{3\} \\ 10\{4\} \\ 2\{5\} \end{array}$	$\begin{array}{r} 2 \cdot 5+10\langle 3 \cdot 3\rangle \\ 10\langle 3 \cdot 3\rangle \\ 2 \cdot 10\langle 3 \cdot 4\rangle \\ 10\langle 3 \cdot 4\rangle \\ 10\langle 4 \cdot 5\rangle \end{array}$	$\begin{aligned} & 159^{\circ} 11^{\prime} 11^{\prime \prime} \\ & 132^{\circ} 37^{\prime} 26^{\prime \prime} \\ & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 126^{\circ} 57^{\prime} 51^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10(3 \cdot 4 \cdot 5 \cdot 4) \\ & 2 \cdot 10\left(3^{4} \cdot 4\right) \end{aligned}$	$[2,5]^{+}$
47	Gyroelongated pentagonal cupolarotunda	$Q_{5} \mathrm{R}_{5} \mathrm{~S}_{10}$	$\begin{array}{r} 7 \cdot 5\{3\} \\ 5\{4\} \\ 2+5\{5\} \end{array}$	$\begin{aligned} 5 & \langle 3 \cdot 3\rangle \\ 4 \cdot 5 & \langle 3 \cdot 3\rangle \\ 5 & \langle 3 \cdot 3\rangle \\ 2 \cdot 5 & \langle 3 \cdot 4\rangle \\ 5 & \langle 3 \cdot 4\rangle \\ 5 & \langle 3 \cdot 5\rangle \\ 5 \cdot 5 & \langle 3 \cdot 5\rangle \\ 5 & \langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 174^{\circ} 26^{\prime} \quad 4^{\prime \prime} \\ & 159^{\circ} 11^{\prime} 11^{\prime \prime} \\ & 132^{\circ} 37^{\prime} 26^{\prime \prime} \\ & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 126^{\circ} 57^{\prime} 51^{\prime \prime} \\ & 158^{\circ} 40^{\prime} 54^{\prime \prime} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5(3 \cdot 4 \cdot 5 \cdot 4) \\ & \mathcal{2} \cdot 5(3 \cdot 5 \cdot 3 \cdot 5) \\ & 2 \cdot 5\left(3^{4} \cdot 4\right) \\ & \mathcal{2} \cdot 5\left(3^{4} \cdot 5\right) \end{aligned}$	[5] ${ }^{+}$
48	Gyroelongated pentagonal birotunda	$\mathrm{R}_{5}{ }^{2} \mathrm{~S}_{10}$	$\begin{array}{r} 4 \cdot 10\{3\} \\ 2+10\{5\} \end{array}$	$\begin{array}{r} 10\langle 3 \cdot 3\rangle \\ 2 \cdot 5+10\langle 3 \cdot 3\rangle \\ 10\langle 3 \cdot 5\rangle \\ 5 \cdot 10\langle 3 \cdot 5\rangle \end{array}$	$\begin{aligned} & 174^{\circ} 26^{\prime} 4^{\prime \prime} \\ & 159^{\circ} 11^{\prime} 11^{\prime \prime} \\ & 158^{\circ} 40^{\prime} 54^{\prime \prime} \\ & 142^{\circ} 37^{\prime} 21^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2 \cdot 10(3 \cdot 5 \cdot 3 \cdot 5) \\ & 2 \cdot 10\left(3^{4} \cdot 5\right) \end{aligned}$	[2, 5] ${ }^{+}$

TABLE III-continued

No.	Name	Symbol	Faces	Edges and	ihedral angles	Vertices	Group
49	Augmented triangular prism	$\mathrm{Y}_{4} \mathrm{P}_{3}$	$\begin{array}{r} 3 \cdot 2\{3\} \\ 2\{4\} \end{array}$	$\begin{aligned} & 2\langle 3 \cdot 3\rangle \\ & 4\langle 3 \cdot 3\rangle \\ & 2\langle 3 \cdot 4\rangle \\ & 4\langle 3 \cdot 4\rangle \\ & 1\langle 4 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 114^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 90^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{aligned} & 2\left(3 \cdot 4^{2}\right) \\ & 1\left(3^{4}\right) \\ & 4\left(3^{3} \cdot 4\right) \end{aligned}$	[2]
50	Biaugmented triangular prism	$\mathrm{Y}_{4} \mathrm{P}_{3}$	$\begin{array}{r} 3 \cdot 2+4\{3\} \\ 1\{4\} \end{array}$	$\begin{aligned} & 1\langle 3 \cdot 3\rangle \\ & 4\langle 3 \cdot 3\rangle \\ & 2 \cdot 4\langle 3 \cdot 3\rangle \\ & 2\langle 3 \cdot 4\rangle \\ & 2\langle 3 \cdot 4\rangle \end{aligned}$	$\begin{aligned} & 169^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 114^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 2\left(3^{4}\right) \\ & 4\left(3^{3} \cdot 4\right) \\ & 2\left(3^{5}\right) \end{aligned}$	[2]
51	Triaugmented triangular prism	$\mathrm{Y}_{4}{ }^{3} \mathrm{P}_{3}$	$2+2 \cdot 6\{3\}$	$\begin{array}{r} 3\langle 3 \cdot 3\rangle \\ 6\langle 3 \cdot 3\rangle \\ 12\langle 3 \cdot 3\rangle \end{array}$	$\begin{aligned} & 169^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3\left(3^{4}\right) \\ & 6\left(3^{5}\right) \end{aligned}$	$[2,3]$
52	Augmented pentagonal prism	$Y_{4} \mathrm{P}_{5}$	$\begin{array}{r} 2 \cdot 2\{3\} \\ \mathcal{2} \cdot 2\{4\} \\ 2\{5\} \end{array}$	$\begin{aligned} 4\langle 3 \cdot 3\rangle \\ 2\langle 3 \cdot 4\rangle \\ 1+2\langle 4 \cdot 4\rangle \\ 2\langle 3 \cdot 5\rangle \\ 2 \cdot 4\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 162^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 108^{\circ} \\ & 144^{\circ} 44^{\prime} \\ & 90^{\circ} \\ & 98^{\prime \prime} \end{aligned}$	$\begin{aligned} 2+4 & \left(4^{2} \cdot 5\right) \\ 1 & \left(3^{4}\right) \\ 4 & \left(3^{2} \cdot 4 \cdot 5\right) \end{aligned}$	[2]
53	Biaugmented pentagonal prism	$\mathrm{Y}_{4}{ }^{2} \mathrm{P}_{5}$	$\begin{array}{r} 2 \cdot 2+4\{3\} \\ 1+2\{4\} \\ 2\{5\} \end{array}$	$\begin{array}{r} 2 \cdot 4\langle 3 \cdot 3\rangle \\ 2 \cdot 2\langle 3 \cdot 4\rangle \\ 1\langle 4 \cdot 4\rangle \\ 4\langle 3 \cdot 5\rangle \\ 2+4\langle 4 \cdot 5\rangle \end{array}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 162^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 108^{\circ} \\ & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{gathered} 2\left(4^{2} \cdot 5\right) \\ 2\left(3^{4}\right) \\ 2 \cdot 4\left(3^{2} \cdot 4 \cdot 5\right) \end{gathered}$	[2]
54	Augmented hexagonal prism	$Y_{4} \mathrm{P}_{6}$	$\begin{array}{r} 2 \cdot 2\{3\} \\ 1+2 \cdot 2\{4\} \\ 2\{6\} \end{array}$	$\begin{aligned} & 4\langle 3 \cdot 3\rangle \\ & 2\langle 3 \cdot 4\rangle \\ & 2 \cdot 2\langle 4 \cdot 4\rangle \\ & 2\langle 3 \cdot 6\rangle \\ & 2+2 \cdot 4\langle 4 \cdot 6\rangle \end{aligned}$	$\begin{aligned} & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 174^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 120^{\circ} \\ & 144^{\circ} 44^{\prime} \\ & 98^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} 2 \cdot 4 & \left(4^{2} \cdot 6\right) \\ 1 & \left(3^{4}\right) \\ & 4\left(3^{2} \cdot 4 \cdot 6\right) \end{aligned}$	[2]

TABLE III-continued

No.	Name	Symbol	Faces	Edges and d	hedral angles	Vertices	Group
63	Tridiminished icosahedron	$\mathrm{Y}_{5}{ }^{-3} \mathrm{I}_{5}$	$\begin{array}{r} 2+3\{3\} \\ 3\{5\} \end{array}$	$\begin{aligned} 3 & \langle 3 \cdot 3\rangle \\ 3+6 & \langle 3 \cdot 5\rangle \\ 3 & \langle 5 \cdot 5\rangle \end{aligned}$	$\begin{array}{r} 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ 100^{\circ} 48^{\prime} 44^{\prime \prime} \\ 63^{\circ} 26^{\prime} \quad 6^{\prime \prime} \end{array}$	$\begin{array}{r} 2 \cdot 3\left(3 \cdot 5^{2}\right) \\ 3\left(3^{3} \cdot 5\right) \end{array}$	[3]
64	Augmented tridiminished icosahedron	$\mathrm{Y}_{3} \mathrm{Y}_{5}{ }^{-3} \mathrm{I}_{5}$	$\begin{array}{r} 1+2 \cdot 3\{3\} \\ 3\{5\} \end{array}$	$\begin{aligned} & 3\langle 3 \cdot 3\rangle \\ & 3\langle 3 \cdot 3\rangle \\ & 3\langle 3 \cdot 3\rangle \\ & 6\langle 3 \cdot 5\rangle \\ & 3\langle 5 \cdot 5\rangle \end{aligned}$	$\begin{array}{r} 171^{\circ} 20^{\prime} 28^{\prime \prime} \\ 138^{\circ} 11^{\prime} 23^{\prime \prime} \\ 70^{\circ} 31^{\prime} 44^{\prime \prime} \\ 100^{\circ} 48^{\prime} 44^{\prime \prime} \\ 63^{\circ} 26^{\prime} 6^{\prime \prime} \end{array}$	$\begin{aligned} & 1\left(3^{3}\right) \\ & 3\left(3 \cdot 5^{2}\right) \\ & 3\left(3^{3} \cdot 5\right) \\ & 3\left(3^{2} \cdot 5^{2}\right) \end{aligned}$	[3]
65	Augmented truncated tetrahedron	$Q_{3} T_{3}$	$\begin{array}{r} 2+2 \cdot 3\{3\} \\ 3\{4\} \\ 3\{6\} \end{array}$	$\begin{aligned} & 3\langle 3 \cdot 4\rangle \\ & 3+6\langle 3 \cdot 4\rangle \\ & 3\langle 3 \cdot 6\rangle \\ & 3+6\langle 3 \cdot 6\rangle \\ & 3\langle 6 \cdot 6\rangle \end{aligned}$	$\begin{aligned} & 164^{\circ} 12^{\prime} 25^{\prime \prime} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 141^{\circ} 33^{\prime} 27^{\prime \prime} \\ & 109^{\circ} 28^{\prime} 16^{\prime \prime} \\ & 70^{\circ} 31^{\prime} 44^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2 \cdot 3\left(3 \cdot 6^{2}\right) \\ & 3(3 \cdot 4 \cdot 3 \cdot 4) \\ & 6(3 \cdot 4 \cdot 3 \cdot 6) \end{aligned}$	[3]
66	Augmented truncated cube	$Q_{4} T_{4}$	$\begin{array}{r} 3 \cdot 4\{3\} \\ 1+4\{4\} \\ 1+4\{8\} \end{array}$	$\begin{aligned} & 4\langle 3 \cdot 4\rangle \\ & 8\langle 3 \cdot 4\rangle \\ & 4\langle 4 \cdot 4\rangle \\ & 4\langle 3 \cdot 8\rangle \\ & 4+2 \cdot 8\langle 3 \cdot 8\rangle \\ & 2 \cdot 4\langle 8 \cdot 8\rangle \end{aligned}$	$\begin{aligned} & 170^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 135^{\circ} \\ & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 2 \cdot 4+8\left(3 \cdot 8^{2}\right) \\ & 4\left(3 \cdot 4^{3}\right) \\ & 8(3 \cdot 4 \cdot 3 \cdot 8) \end{aligned}$	[4]
67	Biaugmented truncated cube	$Q_{4}{ }^{2} \mathrm{~T}_{4}$	$\begin{array}{r} 2 \cdot 8\{3\} \\ 2+8\{4\} \\ 4\{8\} \end{array}$	$\begin{aligned} 8\langle 3 \cdot 4\rangle \\ 16\langle 3 \cdot 4\rangle \\ 8\langle 4 \cdot 4\rangle \\ 8\langle 3 \cdot 8\rangle \\ 16\langle 3 \cdot 8\rangle \\ 4\langle 8 \cdot 8\rangle \end{aligned}$	$\begin{aligned} & 170^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 144^{\circ} 44^{\prime} \quad 8^{\prime \prime} \\ & 135^{\circ} \\ & 144^{\circ} 44^{\prime} 8^{\prime \prime} \\ & 125^{\circ} 15^{\prime} 52^{\prime \prime} \\ & 90^{\circ} \end{aligned}$	$\begin{gathered} 8\left(3 \cdot 8^{2}\right) \\ 8\left(3 \cdot 4^{3}\right) \\ 16(3 \cdot 4 \cdot 3 \cdot 8) \end{gathered}$	[2, 4]

5	- $\stackrel{+}{+}$ $\stackrel{\text { ® }}{ }$	N	\cdots	20	- + +- $\stackrel{+}{+}$
¢ \widehat{O}	¢ $\widehat{\square}$	↔○	↔ิ	¢	\bigcirc
® ¢ ¢	¢		¢	3	
$\bigcirc \dot{+}$	$\bigcirc \dot{+}$	$\bigcirc \dot{+}$	웁	\% ${ }_{\square}^{\text {\% }}$	\%
© ¢ ¢ ¢	¢ \because	©	$\bigcirc \times{ }_{\sim}^{\circ}$	\bigcirc	\cdots
$\bigcirc 0^{10}$	웅ํ 순	ササ	$\bigcirc 0$	응	คำ
कs	$+$	$\stackrel{\infty}{\infty}+$	-0	$\dot{0}$	$+$
$+$	\bigcirc	$\stackrel{+}{+}$	-	$+$	\bigcirc
$\stackrel{18}{8}$	Q	$\dot{+}$	$\dot{+}$	$\stackrel{18}{+}$	$\dot{\alpha}$

TABLE III—continued

No.	Name	Symbol	Faces	Edges and dihed	ral angles	Vertices	Group
74	Metabigyrate rhombicosidodecahedron	$m-\mathrm{g}^{2} \mathrm{E}_{5}$	$\begin{array}{r} 4 \cdot 2+3 \cdot 4\{3\} \\ 2+2 \cdot 2+6 \cdot 4\{4\} \\ 4 \cdot 2+4\{5\} \end{array}$	$\begin{array}{r} 3 \cdot 2+11 \cdot 4\langle 3 \cdot 4\rangle \\ 2+2 \cdot 4\langle 4 \cdot 4\rangle \\ 2+2 \cdot 4\langle 3 \cdot 5\rangle \\ 3 \cdot 2+11 \cdot 4\langle 4 \cdot 5\rangle \end{array}$	$\begin{array}{lrl} 159^{\circ} & 5^{\prime} & 41^{\prime \prime} \\ 153^{\circ} 26^{\prime} & 6^{\prime \prime} \\ 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{array}$	$\begin{gathered} 5 \cdot 4\left(3 \cdot 4^{2} \cdot 5\right) \\ 4 \cdot 2+8 \cdot 4(3 \cdot 4 \cdot 5 \cdot 4) \end{gathered}$	[2]
75	Trigyrate rhombicosidodecahedron	$\mathrm{g}^{3} \mathrm{E}_{5}$	$\begin{array}{r} 2+2 \cdot 3+2 \cdot 6\{3\} \\ 4 \cdot 3+3 \cdot 6\{4\} \\ 4 \cdot 3\{5\} \end{array}$	$\begin{aligned} 3 \cdot 3+6 \cdot 6\langle 3 \cdot 4\rangle \\ 3+2 \cdot 6\langle 4 \cdot 4\rangle \\ 3+2 \cdot 6\langle 3 \cdot 5\rangle \\ 3 \cdot 3+6 \cdot 6\langle 4 \cdot 5\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \end{aligned}$	$\begin{gathered} 5 \cdot 6\left(3 \cdot 4^{2} \cdot 5\right) \\ 4 \cdot 3+3 \cdot 6(3 \cdot 4 \cdot 5 \cdot 4) \end{gathered}$	[3]
76	Diminished rhombicosidodecahedron	$Q_{5}{ }^{-1} \mathrm{E}_{5}$	$\begin{aligned} 3 \cdot 5 & \{3\} \\ 3 \cdot 5+10 & \{4\} \\ 1+2 \cdot 5 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} 3 \cdot 5+3 \cdot 10 & \langle 3 \cdot 4\rangle \\ 2 \cdot 5+4 \cdot 10 & \langle 4 \cdot 5\rangle \\ 5 & \langle 4 \cdot 10\rangle \\ 5 & \langle 5 \cdot 10\rangle \end{aligned}$	$\begin{array}{lr} 159^{\circ} & 5^{\prime} 41^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ 121^{\circ} 43^{\prime} \quad 3^{\prime \prime} \\ 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{array}$	$\begin{aligned} 10 & (4 \cdot 5 \cdot 10) \\ 3 \cdot 5+3 \cdot 10 & (3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[5]
77	Paragyrate diminished rhombicosidodecahedron	$p-\mathrm{g} \mathrm{Q}^{-1} \mathrm{E}_{5}$	$\begin{aligned} 3 \cdot 5 & \{3\} \\ 3 \cdot 5+10 & \{4\} \\ 1+2 \cdot 5 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} 2 \cdot 5+3 \cdot 10 & \langle 3 \cdot 4\rangle \\ 5 & \langle 4 \cdot 4\rangle \\ 5 & \langle 3 \cdot 5\rangle \\ 5+4 \cdot 10 & \langle 4 \cdot 5\rangle \\ 5 & \langle 4 \cdot 10\rangle \\ 5 & \langle 5 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ & 153^{\circ} 26^{\prime} 6^{\prime \prime} \\ & 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10(4 \cdot 5 \cdot 10) \\ & 10\left(3 \cdot 4^{2} \cdot 5\right) \\ & 3 \cdot 5+2 \cdot 10(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[5]
78	Metagyrate diminished rhombicosidodecahedron	$m-\mathrm{g} Q_{5}{ }^{-1} \mathrm{E}_{5}$	$\begin{aligned} 3+6 \cdot 2 & \{3\} \\ 3+11 \cdot 2 & \{4\} \\ 3+4 \cdot 2 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} & 2+19 \cdot 2\langle 3 \cdot 4\rangle \\ & 1+2 \cdot 2\langle 4 \cdot 4\rangle \\ & 1+2 \cdot 2\langle 3 \cdot 5\rangle \\ & 1+2 \mathbb{2} \cdot 2\langle 4 \cdot 5\rangle \\ & 1+2 \cdot 2\langle 4 \cdot 10\rangle \\ & 1+\mathbb{Z} \cdot 2\langle 5 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} \quad 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5 \cdot 2(4 \cdot 5 \cdot 10) \\ & 5 \cdot 2\left(3 \cdot 4^{2} \cdot 5\right) \\ & 3+16 \cdot 2(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[]

79	Bigyrate diminished rhombicosidodecahedron	$\mathrm{g}^{2} \mathrm{Q}_{5}{ }^{-1} \mathrm{E}_{5}$	$\begin{aligned} 3+6 \cdot 2 & \{3\} \\ 3+11 \cdot 2 & \{4\} \\ 3+4 \cdot 2 & \{5\} \\ 1 & \{10\} \end{aligned}$	$\begin{aligned} 3+16 \cdot 2 & \langle 3 \cdot 4\rangle \\ 5 \cdot 2 & \langle 4 \cdot 4\rangle \\ 5 \cdot 2 & \langle 3 \cdot 5\rangle \\ 2+19 \cdot 2 & \langle 4 \cdot 5\rangle \\ 1+2 \cdot 2 & \langle 4 \cdot 10\rangle \\ 1+2 \cdot 2 & \langle 5 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} 5^{\prime} 41^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{aligned} 5 \cdot 2 & (4 \cdot 5 \cdot 10) \\ 10 \cdot 2 & \left(3 \cdot 4^{2} \cdot 5\right) \\ 3+11 \cdot 2 & (3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[]
80	Parabidiminished rhombicosidodecahedron	$p-Q_{5}{ }^{-2} \mathrm{E}_{5}$	$\begin{array}{r} 10\{3\} \\ 2 \cdot 10\{4\} \\ 10\{5\} \\ 2\{10\} \end{array}$	$\begin{aligned} 10+20\langle 3 \cdot 4\rangle \\ 2 \cdot 20\langle 4 \cdot 5\rangle \\ 10\langle 4 \cdot 10\rangle \\ 10\langle 5 \cdot 10\rangle \end{aligned}$	$\begin{array}{lr} 159^{\circ} & 5^{\prime} 41^{\prime \prime} \\ 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{array}$	$\begin{gathered} 20(4 \cdot 5 \cdot 10) \\ 10+20(3 \cdot 4 \cdot 5 \cdot 4) \end{gathered}$	$\left[2^{+}, 10\right]$
81	Metabidiminished rhombicosidodecahedron	$m-Q_{5}{ }^{-2} \mathrm{E}_{5}$	$\begin{aligned} 3 \cdot 2+4 & \{3\} \\ 2+2+4 \cdot 4 & \{4\} \\ 3 \cdot 2+4 & \{5\} \\ 2 & \{10\} \end{aligned}$	$\begin{array}{r} 3 \cdot 2+6 \cdot 4\langle 3 \cdot 4\rangle \\ 2 \cdot 2+9 \cdot 4\langle 4 \cdot 5\rangle \\ 2+2 \cdot 4\langle 4 \cdot 10\rangle \\ 2+2 \cdot 4\langle 5 \cdot 10\rangle \end{array}$	$\begin{aligned} & 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{gathered} 5 \cdot 4(4 \cdot 5 \cdot 10) \\ 3 \cdot 2+6 \cdot 4(3 \cdot 4 \cdot 5 \cdot 4) \end{gathered}$	[2]
82	Gyrate bidiminished rhombicosidodecahedron	$g Q_{5}{ }^{-2} E_{5}$	$\begin{array}{r} 4+3 \cdot 2\{3\} \\ 4+8 \cdot 2\{4\} \\ 4+3 \cdot 2\{5\} \\ 2\{10\} \end{array}$	$\begin{aligned} 3+11 \cdot 2 & \langle 3 \cdot 4\rangle \\ 1+2 \cdot 2 & \langle 4 \cdot 4\rangle \\ 1+2 \cdot 2 & \langle 3 \cdot 5\rangle \\ 3+16 \cdot 2 & \langle 4 \cdot 5\rangle \\ 5 \cdot 2 & \langle 4 \cdot 10\rangle \\ 5 \cdot 2 & \langle 5 \cdot 10\rangle \end{aligned}$	$\begin{aligned} & 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ & 153^{\circ} 26^{\prime} \quad 6^{\prime \prime} \\ & 153^{\circ} 56^{\prime} 33^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10 \cdot 2(4 \cdot 5 \cdot 10) \\ & 5 \cdot 2\left(3 \cdot 4^{2} \cdot 5\right) \\ & 4+8 \cdot 2(3 \cdot 4 \cdot 5 \cdot 4) \end{aligned}$	[]
83	Tridiminished rhombicosidodecahedron	Q $5^{-3} \mathrm{E}_{5}$	$\left.\begin{array}{r} 2+3\{3\} \\ 3 \cdot 3+6 \\ 3 \cdot 3\{5\} \\ 3 \end{array}\right\}$	$\begin{gathered} 3 \cdot 3+6\langle 3 \cdot 4\rangle \\ 2 \cdot 3+4 \cdot 6\langle 4 \cdot 5\rangle \\ 3+2 \cdot 6\langle 4 \cdot 10\rangle \\ 3+2 \cdot 6\langle 5 \cdot 10\rangle \end{gathered}$	$\begin{aligned} & 159^{\circ} \quad 5^{\prime} 41^{\prime \prime} \\ & 148^{\circ} 16^{\prime} 57^{\prime \prime} \\ & 121^{\circ} 43^{\prime} 3^{\prime \prime} \\ & 116^{\circ} 33^{\prime} 54^{\prime \prime} \end{aligned}$	$\begin{gathered} 5 \cdot 6(4 \cdot 5 \cdot 10) \\ 3 \cdot 3+6(3 \cdot 4 \cdot 5 \cdot 4) \end{gathered}$	[3]
84	Snub disphenoid	s S 2	$4+8\{3\}$	$\begin{array}{r} 4\langle 3 \cdot 3\rangle \\ 8\langle 3 \cdot 3\rangle \\ 2+4\langle 3 \cdot 3\rangle \end{array}$	$\begin{gathered} 166^{\circ} 26^{\prime} 26^{\prime \prime} \\ 121^{\circ} 44^{\prime} 35^{\prime \prime} \\ 96^{\circ} 11^{\prime} 54^{\prime \prime} \end{gathered}$	$\begin{aligned} & 4\left(3^{4}\right) \\ & 4\left(3^{5}\right) \end{aligned}$	$\left[2^{+}, 4\right]$
85	Snub square antiprism	s S ${ }_{4}$	$\begin{array}{r} 8+16\{3\} \\ 2\{4\} \end{array}$	$\begin{array}{r} 8\langle 3 \cdot 3\rangle \\ 16\langle 3 \cdot 3\rangle \\ 8\langle 3 \cdot 3\rangle \\ 8\langle 3 \cdot 4\rangle \end{array}$	$\begin{aligned} & 164^{\circ} 15^{\prime} 27^{\prime \prime} \\ & 144^{\circ} 88^{\prime} 37^{\prime \prime} \\ & 114^{\circ} 38^{\prime} 43^{\prime \prime} \\ & 145^{\circ} 26^{\prime} 26^{\prime \prime} \end{aligned}$	$\begin{aligned} & 8\left(3^{5}\right) \\ & 8\left(3^{4} \cdot 4\right) \end{aligned}$	$\left[2^{+}, 8\right]$

TABLE III-concluded

No.	Name	Symbol	Faces	Edges and dih	ral angles	Vertices	Group
86	Sphenocorona	$\mathrm{V}_{2} \mathrm{~N}_{2}$	$\begin{array}{r} \mathscr{2} \cdot 2+\mathscr{2} \cdot 4\{3\} \\ 2\{4\} \end{array}$	$2\langle 3 \cdot 3\rangle$	$159^{\circ} 53^{\prime} 33^{\prime \prime}$		[2]
				$4\langle 3 \cdot 3\rangle$	$143^{\circ} 28^{\prime} 43^{\prime \prime}$		
				$4\langle 3 \cdot 3\rangle$	$135^{\circ} 59^{\prime} 30^{\prime \prime}$	4 (3.4)	
				$1\langle 3 \cdot 3\rangle$	$131^{\circ} 26^{\prime} 30^{\prime \prime}$	$2\left(3^{2} \cdot 4^{2}\right)$	
				$4\langle 3 \cdot 3\rangle$	$118^{\circ} 53^{\prime} 32^{\prime \prime}$	$2\left(3^{5}\right)$	
				$4\langle 3 \cdot 4\rangle$	$109^{\circ} 31^{\prime} 27^{\prime \prime}$	$2\left(3^{5}\right)$	
				$2\langle 3 \cdot 4\rangle$	$97^{\circ} 27^{\prime} 20^{\prime \prime}$		
				$1\langle 4 \cdot 4\rangle$	$117^{\circ} 1^{\prime} 8^{\prime \prime}$		
87	Augmented sphenocorona	$\mathrm{Y}_{4} \mathrm{~V}_{2} \mathrm{~N}_{2}$	$\begin{array}{r} 4+6 \cdot 2\{3\} \\ 1\{4\} \end{array}$	$2\langle 3 \cdot 3\rangle$	$164^{\circ} 15^{\prime} 35^{\prime \prime}$	$\begin{aligned} & 1\left(3^{4}\right) \\ & 2\left(3^{3} \cdot 4\right) \\ & 2\left(3^{5}\right) \\ & 2\left(3^{5}\right) \\ & 2\left(3^{5}\right) \\ & 2\left(3^{4} \cdot 4\right) \end{aligned}$	[]
				$2\langle 3 \cdot 3\rangle$	$159^{\circ} 53^{\prime} 33^{\prime \prime}$		
				$1\langle 3 \cdot 3\rangle$	$152^{\circ} 11^{\prime} 28^{\prime \prime}$		
				$2 \cdot 2\langle 3 \cdot 3\rangle$	$143^{\circ} 28^{\prime} 43^{\prime \prime}$		
				$2 \cdot 2\langle 3 \cdot 3\rangle$ $1\langle 3 \cdot 3\rangle$	$135^{\circ} 59^{\prime} 30^{\prime \prime}$ $131^{\circ} 26^{\prime} 30^{\prime \prime}$		
				く3.	$118^{\circ} 53^{\prime} 32^{\prime \prime}$		
				(3.	$109^{\circ} 28^{\prime} 16^{\prime \prime}$		
				1 1 (3.4〉	$171^{\circ} 45^{\prime} 17^{\prime \prime}$		
				$2\langle 3 \cdot 4\rangle$	$109^{\circ} 31^{\prime} 27^{\prime \prime}$		
				$1\langle 3 \cdot 4\rangle$	$97^{\circ} 27^{\prime} 20^{\prime \prime}$		
88	Sphenomegacorona	$\mathrm{V}_{2} \mathrm{M}_{2}$	$\begin{array}{r} 2 \cdot 2+3 \cdot 4\{3\} \\ 2\{4\} \end{array}$	$4\langle 3 \cdot 3\rangle$	$171^{\circ} 38^{\prime} 45^{\prime \prime}$		[2]
				$1\langle 3 \cdot 3\rangle$	$161^{\circ} 28^{\prime} 58^{\prime \prime}$		
				$4\langle 3 \cdot 3\rangle$	$143^{\circ} 44^{\prime} 18^{\prime \prime}$	$2\left(3^{4}\right)$	
				$4\langle 3 \cdot 3\rangle$	$129^{\circ} 26^{\prime} 40^{\prime \prime}$	$2\left(3^{2} \cdot 4^{2}\right)$	
				$4\langle 3 \cdot 3\rangle$	$117^{\circ} 21^{\prime} 20^{\prime \prime}$	2 (3)	
				$2 \cdot 2\langle 3 \cdot 3\rangle$	$86^{\circ} 43^{\prime} 37^{\prime \prime}$	2 (3)	
				$4\langle 3 \cdot 4\rangle$	$154^{\circ} 43^{\prime} 20^{\prime \prime}$	$4\left(3^{4} \cdot 4\right)$	
				$2\langle 3 \cdot 4\rangle$	$137^{\circ} 14^{\prime} 24^{\prime \prime}$		
				$1\langle 4 \cdot 4\rangle$	$72^{\circ} 58^{\prime} 23^{\prime \prime}$		

ㄲ	$\begin{aligned} & \bar{F} \\ & + \\ & \stackrel{y}{~+~} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$	\bigcirc

				$2 \cdot 4\langle 3 \cdot 3\rangle$	$157^{\circ} 8^{\prime} 53^{\prime \prime}$
				$1\langle 3 \cdot 3\rangle$	$149^{\circ} 33^{\prime} 53^{\prime \prime}$
				$4\langle 3 \cdot 3\rangle$	$141^{\circ} 20^{\prime} 28^{\prime \prime}$
8	Hebesphenomegacorona	$\mathrm{U}_{2} \mathrm{M}_{2}$	$3 \cdot 2+3 \cdot 4\{3\}$	$2 \cdot 4\langle 3 \cdot 3\rangle$	$128^{\circ} 29^{\prime} 46^{\prime \prime}$
8	Hebesphenomegacorona	$\mathrm{U}_{2} \mathrm{M}_{2}$	$1+2\{4\}$	$2\langle 3 \cdot 3\rangle$	$111^{\circ} 44^{\prime} 5^{\prime \prime}$
				2 (3.4)	$152^{\circ} 58^{\prime} 32^{\prime \prime}$
				$2+4\langle 3 \cdot 4\rangle$	$133^{\circ} 58^{\prime} 22^{\prime \prime}$
				$2\langle 4 \cdot 4\rangle$	$102^{\circ} 31^{\prime} 25^{\prime \prime}$
				$4\langle 3 \cdot 3\rangle$	$166^{\circ} 48^{\prime} 41^{\prime \prime}$
				$8\langle 3 \cdot 3\rangle$	$148^{\circ} 26^{\prime} 2^{\prime \prime}$
				$8\langle 3 \cdot 3\rangle$	$133^{\circ} 35^{\prime} 28^{\prime \prime}$
9	Disphenocingulum	$\mathrm{V}_{2}{ }^{2} \mathrm{G}_{2}$	$\begin{array}{r} 8\{3\} \\ 4\{4\} \end{array}$	$4\langle 3 \cdot 3\rangle$	$124^{\circ} 42^{\prime} 7^{\prime \prime}$
				$4\langle 3 \cdot 4\rangle$	$154^{\circ} 25^{\prime} 8^{\prime \prime}$
				$8\langle 3 \cdot 4\rangle$	$136^{\circ} 20^{\prime} 9^{\prime \prime}$
				$2\langle 4 \cdot 4\rangle$	$100^{\circ} 11^{\prime} 38^{\prime \prime}$
				$4\langle 3 \cdot 4\rangle$	$159^{\circ} 5^{\prime} 41^{\prime \prime}$
			$2 \cdot 4\{3\}$	$4\langle 3 \cdot 4\rangle$	$110^{\circ} 54^{\prime} 19^{\prime \prime}$
9	Bilunabirotunda	$\mathrm{L}_{2}{ }^{2} \mathrm{R}_{2}{ }^{2}$	$2\{4\}$	$8\langle 3 \cdot 5\rangle$	$142^{\circ} 37^{\prime} 21^{\prime \prime}$
			$4\{5\}$	$8\langle 3 \cdot 5\rangle$	$100^{\circ} 48^{\prime} 44^{\prime \prime}$
				$2\langle 5 \cdot 5\rangle$	$63^{\circ} 26^{\prime} 6^{\prime \prime}$
				$6\langle 3 \cdot 3\rangle$	$138^{\circ} 11^{\prime} 23^{\prime \prime}$
				$6\langle 3 \cdot 4\rangle$	$159^{\circ} 5^{\prime} 41^{\prime \prime}$
92			$\begin{array}{r} 1+2 \cdot 3+6\{3\} \\ 3\{4\} \end{array}$	$3\langle 3 \cdot 4\rangle$	$110^{\circ} 54^{\prime} 19^{\prime \prime}$
	hebesphenorotunda	$\mathrm{U}_{3} \mathrm{R}_{3}$	$3\{5\}$	$3+6\langle 3 \cdot 5\rangle$	$142^{\circ} 37^{\prime} 21^{\prime \prime}$
			$1\{6\}$	$6\langle 3 \cdot 5\rangle$	$100^{\circ} 48^{\prime} 44^{\prime \prime}$
			1 \{6\}	$3\langle 3 \cdot 6\rangle$	$138^{\circ} 11^{\prime} 23^{\prime \prime}$
				$3\langle 4 \cdot 6\rangle$	$110^{\circ} 54^{\prime} 19^{\prime \prime}$

References

1. V. G. Aškinuze, O čisle polupravil'nyh mnogogrannikov, Mat. Prosvešč., 1 (1957), 107-118.
2. W. W. R. Ball, Mathematical recreations and essays, 11 th ed., revised by H. S. M. Coxeter (London, 1939).
3. H. S. M. Coxeter, Regular and semi-regular polytopes, Math. Z., 46 (1940), 380-407.
4. ——_Regular polytopes, 2nd ed. (New York, 1963).
5. H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller, Uniform polyhedra, Philos. Trans. Roy. Soc. London, Ser. A, 246 (1954), 401-450.
6. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 14), 2nd ed. (Berlin, 1963).
7. H. M. Cundy and A. P. Rollett, Mathematical models, 2 nd printing (London, 1954).
8. H. Freudenthal and B. L. van der Waerden, Over een bewering van Euclides, Simon Stevin, 25 (1947), 115-121.
9. B. Grünbaum and N. W. Johnson, The faces of a regular-faced polyhedron, J. London Math. Soc., 40 (1965), 577-586.
10. T. L. Heath, The thirteen books of Euclid's elements, vol. 3 (London, 1908; New York, 1956).
11. N. W. Johnson, Convex polyhedra with regular faces (preliminary report), Abstract 576-157, Notices Amer. Math. Soc., 7 (1960), 952.
12. J. Kepler, Harmonice Mundi, Opera Omnia, vol. 5 (Frankfurt, 1864), 75-334.
13. V. A. Zalgaller, Pravil'nogrannye mnogogranniki, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astron., 18 (1963), No. 7, 5-8.
14. V. A. Zalgaller and others, O pravil'nogrannyh mnogogrannikah, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astron., 20 (1965), No. 1, 150-152.

Michigan State University

[^0]: ${ }^{*} a_{n}=\sqrt{ }\left(3 \cot ^{2} \pi / 2 n-1\right)$.

