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Abstract

Remote and rural areas are a challenge to deploy cost-efficient connectivity solutions. 5G technology needs
lower frequencies, which calls for spectrum sharing for local networks. Spectrum sensing could complement
traditional database approach for spectrum sharing in these areas. This paper studies a windowing based
(WIBA) blind spectrum sensing method and compares its performance to a localization algorithm based on
double-thresholding (LAD). Both methods are based on energy detection and can be used in any band for
detecting rather narrowband signals. Probabilities of detection and false alarm, relative mean square error,
number of detected signals and detection distances were evaluated in multipath, multi-signal and rural area
channel conditions. The simulation results show tha the WIBA method is suitable for 5G remote areas, due
to its good detection performance in low signal-to-noise ratios (SNR) with low complexity. Results also show
importance of the detection window selection.
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1. Introduction
5th generation (5G) mobile communication networks
present an evolution in the cellular network develop-
ment bringing enhanced mobile broadband connectiv-
ity like discussed in CROWNCOM 2019 [1]. 5G net-
works target higher spectrum efficiency, lower latency,
improved scalability and new application areas in dig-
italizing different sectors. One important application
area is to connect a large number of objects, such as
sensors and machines, to the Internet of Things (IoT)
[2]. Spectrum is the critical resource for the deploy-
ment of 5G networks. In the first stage, 5G networks
are planned to be deployed in higher carrier frequen-
cies compared to existing cellular networks including
3.5 GHz and 26/28 GHz bands. Traditionally, cellular
networks have been deployed in exclusively licensed
bands where existing spectrum users have been moved
to other bands, thus clearing the bands for cellular
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networks. In 5G, different spectrum access models are
considered in different countries including nation-wide
licenses, local licenses and license-exempt operations.
In some cases, the incumbent primary users (PU) are
protected from harmful interference from the cellular
networks when clearing the band has turned out to be
difficult.

5G deployments are primarily targeting urban areas
especially since operations in the higher carrier fre-
quencies restrict the propagation distances signifi-
cantly. Remote and rural areas present a challenge for
deployment and the low population densities restrict
investments. 5G-RANGE project [3] has proposed alter-
native deployment models especially for remote and
rural areas where different stakeholders could deploy a
regional network through shared spectrum access. The
primary user must no be interfered by the entrant sec-
ondary users (SU). Spectrum sharing could be possible
in areas where the incumbent users are not using the
band which could particularly be the case in remote
and rural areas. Typically, databases and spectrum

1

EAI Endorsed Transactions  
on Wireless Spectrum Research Article

EAI Endorsed Transactions on 
Wireless Spectrum 

12 2017 - 04 2020 | Volume 4 | Issue 13 | e6

http://creativecommons.org/licenses/by/3.0/
mailto:<johanna.vartiainen@oulu.fi>


J. Vartiainen et al.

sensing techniques are proposed to be used to protect
the existing spectrum users from harmful interference,
see e.g. [4–7]. Databases are typically used to collect
and store information about licensed users, such as
TV and program making and special events (PMSE)
signals (e.g. wireless microphone signals) for TV White
Space (TVWS) access in some geographical areas [8, 9].
Spectrum sensing can be used to find out (detect) which
frequency bands are being used by observing the radio
environment. Approaches to combine databases with
spectrum sensing exist where the sensing results are
used to detect specific primary users [10], or make
sensing results available through a database [11].

In 5G scenarios, database-driven spectrum sharing
approaches have been proposed [5, 12]. Spectrum sens-
ing could be used to enhance the traditional database
approach by bringing more accurate information about
the actual spectrum usage and thus increase the poten-
tial and reliability of shared spectrum access. 5G net-
work related application areas for spectrum sensing
include, e.g., mobile cellular systems [13], device-to-
device (D2D) communication [14], and IoT [15]. Spec-
trum sensing can be used when the information in
database or from geolocation method (like GPS) is
inaccurate, or there is no connection to the database at
all, like in disaster-related events or in remote areas.
One important application area for spectrum sensing
is when multiple SUs share the spectrum. In that case
they could use sensing to determine if other SUs are
present [16]. 5G can be tailored to be used for remote
area connectivity where the use of TVWS, i.e., Very High
Frequency (VHF) and Ultra High Frequency (UHF)
bands, with database can be enhanced with spectrum
sensing. In rural and remote areas the challenge is that
distances are long and, thus, signal-to-noise ratio (SNR)
levels are low, which makes their detection difficult.

5G networks aim at connecting a large number
of devices, especially in IoT scenarios, while keeping
design complexity and costs in a reasonable level.
Energy detection (ED) is a cost-efficient sensing
technique that is recommended to be used especially
in cooperative sensing, where users collaborate and
exchange their sensing information [17]. 5G cooperative
sensing based on ED methods has been studied, for
example, in [18]. The problem is that conventional ED
does not perform well at low SNR values.

In this paper, the performance of an efficient and
blind ED-based spectrum sensing method, namely
the windowing based (WIBA) signal detection method
[19], is studied. The WIBA method uses overlapping
blocks in spectrum sampling to increase its detection
performance. The widely studied localization algorithm
based on double-thresholding (LAD) method [20],
which has been found to outperform conventional ED
methods [21], is used as a point of comparison. In [19],
probability of detection vs. SNR as well as the number

of detected signals in one-signal case were studied in
an Additive White Gaussian Noise (AWGN) channel.
In [1], AWGN and multipath sensing were considered,
and the effect of the detection window length M to the
detection performance in different channel situations
was studied. In addition, relative mean squared error
(RMSE) for the bandwidth estimation, as well as
detection probability over multipath channels, were
considered. Single and cooperative sensing detection
distances in a rural channel were studied in [22] and
[23], respectively. Detection distance is the maximum
distance between the transmitter and the receiver on
which the signal can be detected. Here, paper [1]
is extended to cover also false rate alarm analysis
of the WIBA and the LAD methods. In addition,
detection distance results in Free Space Path Loss
(FSPL) AWGN channel are presented and compared
with those achieved using rural channel model.

This paper is organised as follows. In Section 2,
system model including 5G rural area channel model
is presented. Section 3 considers spectrum sensing, the
WIBA and the LAD methods, as well as false alarm rate
analysis. Numerical results are presented in Section 4
and conclusions are drawn in Section 5.

2. Rural area scenario
2.1. Motivation
Connectivity in rural and remote areas is a true
challenge because most of today’s technologies are
restricted to coverage areas whose radius is below 10
km. In a sparsely populated area, a cell with 10 km
radius will only cover a small number of subscribers,
resulting in very high fees per user. Another problem
for realizing remote connectivity today is the high
cost of the spectrum licenses, which restricts who can
obtain a license to deploy a cellular network. At the
same time, it increases the investments to deploy a
mobile network and hinders its economic feasibility.
5G in remote areas requires the use of lower frequency
bands to reach wider area coverage, e.g., 50-100 km.
Figure 1 illustrates example use case scenarios for
remote area networks. Remote area network could be
used to provide wireless broadband connection, e.g.,
to a remote village residents, rural smart farms and
mining locations, by using a large cell with 50 km cell
radius. In addition, long-range links could be used as
a wireless backhaul to provide connection to remote
locations which does not have a fiber available. Due
to long-range links, the upcoming 5G millimeter wave
bands are not the first options for connectivity in
remote areas. Instead, the use of TVWS or other bands
below 1 GHz have the potential to be used by 5G
networks for providing cost-efficient solution in remote
areas. While TVWS research peaked about a decade ago,
their deployments are still limited.
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Figure 1. Example remote area scenarios.

Administrations have developed rules for the use of
TVWSs and typically selected a geolocation database
approach as the means to protect the incumbent TV
broadcasting usage, see e.g. [24]. In these approaches,
devices wishing to access the TVWS need to inquire a
database and report their location to be allowed to use a
channel. The database is in charge of ensuring that the
incumbents are protected. While there is some research
on the use of spectrum sensing to complement database
approach in TVWS, it has not been adopted so far.

One example of the shared spectrum access is
the Citizen Broadband Radio Service (CBRS) by the
Federal Communications Commission (FCC) for the
3.5 GHz band. CBRS introduces locally licensed
or license-exempt operations while protecting the
incumbent spectrum users, such as the incumbent
military radars and fixed satellite stations [10]. The
CBRS system is based on a database approach and it
additionally includes the use of spectrum sensing to
avoid interference to/from military radar systems.

The opportunistic use of the TVWS or any other
spectrum sharing arrangement typically requires that
the incumbent spectrum users are protected. While
there are standards that employ cognitive radio
approaches based on geolocation database to inform the
base station (BS) about the spectrum opportunities in a
given region, spectrum sensing techniques can be used
in conjunction with the database approach to enhance
the reliability and increase shared spectrum access
opportunities. In fact, the presence of unofficial TV
transmitters is a reality in some countries where remote
area connectivity is a challenge. Pirate TV stations are
unlikely to be included in the geolocation database and
it can hinder the operation of the secondary network
assigned to operate by the geolocation database in
a frequency band occupied by an unauthorized TV
broadcaster. Database information may be inaccurate
due to software based propagation estimation, which
can lead to erroneous results in varying terrain shapes
that are present in remote area scenarios. Spectrum

Figure 2. System model for spectrum sensing to complement
database approach.

sensing will be used also to detect other SUs at the
same region. In addition, there are situations where the
use of spectrum sensing can provide benefits such as in
the presence of unauthorized transmissions (e.g., pirate
TV transmissions). Figure 2 summarizes the high-
level system model for the combined spectrum sensing
and database approach. In the 5G-RANGE project [3],
this approach is proposed specifically for rural and
remote areas to dynamically exploit free spectrum holes
available at TV bands.

2.2. System model
In our system model, it is considered a remote area
comprising a single cell with 50 km of radius. Due to
large cell size, it can include various different terrains
and vegetation. On the other hand, rural areas do not
have tall buildings that would block or reflect the
signal transmissions. In any case, rural and remote area
communication system development and performance
estimation requires a dedicated channel model. In this
work, a rural area channel model, which is developed
based on the real measurements [25], is used when
evaluating the performance of spectrum sensing. Delay
spread and path loss measurements were done in rural
areas of Australia in four different scenarios with link
distance until 200 km to include the effect of varying
terrains. Based on the measurement results, a rural
channel model has been developed including path loss
and multi-path fading characteristics. The path loss
model for 50 km cell radius was defined to be [26]

PL(d, f ) = PFS(d, f ) + K, (1)

where d is the distance, f is the central frequency,
PFS(·) is the free space path loss model, and K = 29.38
is an offset which minimizes the mean squared error
(MSE) e(K) between the proposed path loss in (1) and
the measured path loss samples in [25]. The minimum
value for e(K), i.e., e(29.38) provides the standard
deviation σSF which is equal to 4.47 dB [27].
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To include the small scale fading parameters to
the channel model, the recommendations from [28],
the measured delay spread in [25], and the 3rd
Generation Partnership Project (3GPP) Clustered Delay
Line (CDL)-A model [29] were used [27]. Finally, a
detailed description of the channel model used in this
paper can be found in [27].

3. Spectrum Sensing
Mobile user equipment (UE) are expected to perform
sensing to find out free spectrum opportunities.
Therefore, in this work, ED-based spectrum sensing
method is selected to enable feasible implementation
complexity in the UEs. This section describes the
studied WIBA energy detection method, which is
considered to be used for rural area spectrum sensing.
In the performance evaluation, a well-known LAD
method [20, 21] is used as a reference for comparison
and it will also be introduced shortly in this section.

Both the methods are blind spectrum sensing
algorithms that are able to estimate the noise level
iteratively by using adaptive thresholds. They can be
applied to a wide set of situations since ED method does
not require a priori knowledge of the characteristics
of the signal to be detected. However, a downside
of the simplicity is that the signals to be detected
must be narrowband with respect to the analyzed
bandwidth (BW). The narrower the signal, the better the
methods will perform, hence it is reasonable to make an
assumption that the signal’s BW has to be at most 50%
of the analyzed BW [19, 21]. According to [21], as the
signal’s BW gets wider, SNR must be higher in order to
achieve an acceptable sensing performance. Note, that
the methods are not frequency dependent, i.e., they can
be used in any frequency band (kHz-GHz).

The signal detection is based on the estimated noise
level, therefore information about the noise level or
present signal(s) are not needed. The noise is assumed
to be a white Gaussian process. Even though the
assumption is that the noise is Gaussian, it has been
shown that the signal can be found even if the noise
is not purely Gaussian [21]. A detection threshold is
used to divide received samples into two sets: one set
contains estimated noise-only samples, and another set
contains estimated signal samples and noise. Threshold
selection is addressed by the constant false alarm
rate (CFAR) principle, which means that the used
detection threshold parameter is calculated a priori
using a predefined desired false alarm rate Pf a and the
statistical properties of the noise [30, 31].

In this paper, it is assumed that the samples xi , taken
in the frequency-domain are zero mean, independent
and identically distributed (i.i.d.) Gaussian complex
random variables. The energy of sample xi is yi = |xi |2,
which follows a chi-squared distribution. By assuming

Table 1. Threshold parameter values T for different Pf a and M
values.

Pf a M = 1 M = 4 M = 10 M = 100
0.1 2.303 1.670 1.512 1.130
0.01 4.605 2.511 1.878 1.247
0.001 6.908 3.266 2.266 1.338

Figure 3. Illustration of 50% overlapping when there are L
overlapping blocks and the length of one block is M .

chi-squared distributed variables with 2M degrees of
freedom, the threshold parameter T can be found by
solving [32–34]

Pf a = e−TM
M−1∑
k=0

1
k!

(TM)k , (2)

where Pf a is the pre-selected false alarm rate. Note
that (2) does not depend on the noise variance. When
M = 1, variables follow chi-squared distribution with
two degrees of freedom, and (2) leads to a threshold
parameter

T = − ln(Pf a), (3)

which corresponds to LAD method case. Example
threshold parameter values T for different values of Pf a
and M are presented in Table 1. Note that the threshold
parameter is constant for specificM and Pf a, and can be
calculated beforehand.

3.1. The WIBA Method
In the WIBA method, overlapping is used in spectrum
sampling. Assume that N energy samples y are
obtained during the channel sensing. The observed
samples are divided into L overlapping blocks (i.e.
detection windows) with length M. An example case,
where the degree of overlapping between two blocks is
50%, is illustrated in Figure 3. Samples in each block
are summed up among themselves, so each block Yi(l),
l = 1, · · · ,M consists of samples kM

2 + 1, · · · , kM2 +M,
k = 0, · · · , L − 1. The signal detection threshold is [19]

Th = T
1
L

L∑
i=1

Zi , (4)

where T comes from (2) and Zi is the total energy in ith
block, i.e., Zi =

∑M
l=1 Yi(l) when i = 1, 2, ..., L.
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3.2. The LAD Method
The LAD method [20, 21] utilizes iterative forward
consecutive mean excision (FCME) threshold setting
process. In the FCME process, energy samples y are
rearranged into an ascending order according to their
sample energy. After that, n = 10% of the smallest
samples in energy are selected to form the initial
set Q. The used threshold is calculated using Th =
T y, where threshold parameter T = − ln(Pf a) comes
from (3), Pf a is the pre-selected false alarm rate and
y is the mean of energy samples. In the first iteration,
mean is calculated from the initial set Q. The samples
below the threshold are added to the initial set, and this
iterative process continues until there are no samples
below the threshold. After the last iteration, samples
below the threshold are from noise and samples above
the threshold are detected signal samples. Threshold
setting procedure is described in more details, e.g., in
[33].

The LAD method uses two FCME thresholds, namely
the upper (Th,up) and the lower (Th,low) ones. The lower
threshold helps avoiding separating a signal as the
upper threshold is used to avoiding false detections.
After calculating the upper and lower a thresholds
using two different threshold parameters, Tu and Tl , the
LAD method uses clustering to group adjacent samples
assumed to be from the same signal. The LAD method
clusters together adjacent samples above the lower
threshold Th,low. The cluster is accepted to be caused by
a signal if at least one of the samples is also above the
upper threshold Th,up (so called detection threshold).
The performance of the LAD method can be improved
using an adjacent cluster combining (ACC) parameter
that allows p (usually p = 3) samples to be below the
lower threshold between two accepted clusters [21].

3.3. False Alarm Rate Analysis
Probability of false alarm (i.e. false alarm rate) is a
probability of incorrectly detecting that the signal is
present even though there is no signal present. In other
words, channel is found to be occupied even though it
is not, and then possibility to use a vacant channel is
lost. The larger the false alarm probability is the higher
is the number of lost spectrum opportunities.

The LAD and WIBA methods are CFAR methods
which use predetermined, constant false alarm rate
in the threshold setting process. This predetermined
false alarm rate is called as a desired false alarm rate
(Pf a,des). As introduced above, the LAD uses two and the
WIBA method uses only one threshold. In the case of
the LAD method, commonly used typical desired false
alarm probability for the detection (upper) threshold
is Pf a,desLAD = 10−6 [21], and in the case of the WIBA
method, it is Pf a,desW IBA = 0.01 = 10−2 [19]. The reason
why the methods use different false alarm probabilities

is caused by the different operating principles of the
methods. As the resulting threshold for the LAD ACC
method is fixed, the resulting threshold for the WIBA
method depends on the length of the block M. In
addition, the LAD ACC method uses two desired false
alarm probability values to get two detection thresholds
as the WIBA method uses only one desired false
alarm probability value and, thus, only one detection
threshold. When using those values, the results are
not fully comparable with each others. For accurate
comparison of the LAD and WIBA methods, equal
Pf a,des values are defined next to enable performance
difference evaluation.

Let us assume that we have a one signal experiment
with length of N samples. The experiment consists of K
threshold comparisons (tests). Total false alarm rate PFA
is the desired false alarm rate multiplied by he number
of tests, i.e.,

PFA = Pf a,desK. (5)

The LAD method compares every sample to the
threshold. Thus, length of one test is one, and one
experiment consists of K = N tests (Figure 4). If
Pf a,desLAD = 10−6 is the desired false alarm rate in one
test andN = 1024, it follows from (5) that the total false
alarm rate for the LAD method is

PFA,LAD = Pf a,desLADN = 10−61024 ≈ (10)−3. (6)

The WIBA method divides signal into L overlapping
blocks with length M and sums up samples in
each block so that each block produces one value
that is compared to the threshold. Each test can
be seen as the energy of M samples. Therefore,
in one experiment there are K = L tests. Without
overlapping, L = N/M. With 50% overlapping, there
are approximately L = 2(N/M) tests, because 50%
overlapping approximately doubles the number of
blocks (Figure 4). If Pf a,desW IBA = 10−2 is desired false
alarm rate in one test, it follows from (5) that the total
false alarm rate for the WIBA method is

PFA,WIBA = Pf a,desW IBAL = 10−2L. (7)

Because PFA,LAD = PFA,WIBA, PFA,LAD = Pf a,desW IBAL,
and it follows that desired false alarm rate in one test
for the WIBA method is

Pf a,desW IBAnew = Pf a,desW IBA = PFA,LAD /L = 10−3/L. (8)

Therefore, in the simulations, (8) is used to have an
accurate comparison. False alarm rate Pf a,desW IBAnew
depends on the number of the overlapping blocks L.
Corresponding values for some signals are presented
in Table 2. For example, when M = 102 and L = 20,
Pf a,desW IBAnew = 10−3/20 = 5 × 10−5.
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Figure 4. Tests in one experiment.

Table 2. Corresponding LAD false alarm rate values
Pf a,desW IBAnew for the WIBA method for different values
of L.

M L Pf a,desW IBAnew

52 39 2.5 × 10−5

102 20 5 × 10−5

204 10 10−4

4. Simulation Results
In the computer simulations, the WIBA method was
studied and compared to the well-studied LAD method
with ACC parameter (LAD ACC) which has been found
to outperform general ED methods [20, 21, 33]. In
detection performance simulations, it is desired that
the detection probability Pd is as large as possible.
Here, typical requirement that Pd ≥ 0.9 is used [3]. The
probability of detection Pd is defined so that the signal
is defined to be detected if threshold is crossed at its
center frequency. The measured signal, occupying 5 −
30% of the channel BW, was based on binary phase-
shift keying (BPSK) modulation. The BPSK signal was
band-limited by a raised-cosine (RC) filter with a roll-
of factor of 0.22. The BPSK signal is used as a general
signal, because modulation methods etc. have no effect
to the detection probability of the WIBA and LAD
ACC methods [21]. In Figure 5, there are two measured
WLAN signals at 2.45 GHz, as an example. As can be
seen, both the methods find the signals. The number of
frequency domain samples N = 1024. SNR was defined
as a total signal power per total noise power, i.e.,
over N samples. The amount of Monte Carlo iterations
was 1000. The WIBA method used PFA = 0.01, 50%
overlapping, M varied, and L ≈ 2NM , unless otherwise
stated. The used threshold parameter T depends on
M as shown in Table 1. Detection window length M
was defined to be optimal when it equals to the signal
bandwidth. Table 3 shows optimal detection window

Figure 5. Measured WLAN signals detected using the LAD ACC
and WIBA methods.

lengths M for signals with different bandwidths. For
example, window length M = 52 samples is optimal for
signal with 5% BW (= 52 samples). The LAD threshold
parameters were 13.81 (upper; PFA = 10−6) and 2.66
(lower; PFA = 0.07) [21], and M = 1 (=no windowing).
An adjacent version of the LAD method with ACC
parameter p = 3 was used.

At first, detection performance vs. SNR was studied
in an AWGN and multipath channels [1]. The
effect of the detection window length M to the
detection performance in different channel situations
was studied. RMSE for the bandwidth estimation
was evaluated, as well as detection probability over
multipath channels in multi-signal situations. Results
are presented in Sections 4.1-4.3. Secondly, detection
performance vs. detection distance in kilometers [km]
was studied in a FSPL AWGN and 5G rural area
channels. Detection distance is the maximum distance
between the transmitter and the receiver on which the
signal can be detected, i.e., Pd ≥ 0.9 is achieved. Results
of the detection distance are presented in Section 4.4.
Finally, the effect of false alarm rate is studied in Section
4.5.

4.1. One Signal Scenario

In [19], an initial performance evaluation of WIBA was
done by studying the probability of detection and the
number of detected signals in one-signal case. Based
on those results it was concluded that a very long
window is preferred instead of the very short one when
considering performance in terms of Pd .

In this paper, BW estimation accuracy is studied.
Relative mean square error (or root mean squared
relative error, RMSRE) of BW estimation is defined to
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Table 3. Optimal detection window lengths M for signals with
different bandwidths (samples / %].

Detection window length M signal BW samples / %
10 samples BW 10 samples / 1%
40 samples BW 40 samples / 4%
52 samples BW 52 samples / 5%

102 samples BW 102 samples /10%
204 samples BW 204 samples / 20%
306 samples BW 306 samples / 30%

Table 4. Relative Mean Square Error (RMSE) [%] in the one
signal scenario for 10, 20, and 30% bandwidth when M = 52,
102, 204 and 306.

WIBA, M = LAD ACC
BW % (samples) 52 102 204 306
BW 10% (102) 58 100 300 500 8
BW 20% (204) 15 50 100 198 6
BW 30% (306) 7 15 33 100 13

be

RMSEγ =

√√√
1
N

N∑
i=1

(
γi − γ̂i
γi

)2

, (9)

where γi is the BW and γ̂i is the estimated BW.
Table 4 shows the results when there is one signal

with 10, 20 or 30% BW, and M = 52, 102, 204 and
306. Results for optimal window lengths are in bold.
For example, when the signal BW is 10% and M =
102, RMSE is 100% for WIBA method. On the other
hand, RMSE for LAD ACC method is only 8%. It
can be noticed that using WIBA method, too long
window degrades the BW estimation accuracy because
in that case, the detected signal does not cover the
whole window. For example, when BW= 10% and
the detection window length M = 306, the detected
signal covers only one third of the WIBA detection
window. The LAD ACC method has better BW detection
accuracy than the WIBA method because in the LAD
ACC method, there is no detection window but the
detection is performed one sample at a time.

In Figure 6, RMSE vs. SNR is presented for a
signal occupying 10% of the overall BW (corresponding
to the first line in Table 4). It can be seen that
the WIBA method with optimal window length (M =
102) operates well, and the larger the SNR, the
better the LAD ACC method performs. Figure 6 also
shows at which SNR values each method achieve Pd =
0.9. Note that the WIBA method has Pd = 0.9 when

Figure 6. RMSE vs. SNR results for the case when bandwidth
of the signal is 10%.

−13 dB ≤ SNR ≤ −11 dB, depending on the M, while
the LAD ACC method achieves Pd = 0.9 when SNR
= 5 dB. That is, the performance difference is 16 −
18 dB. Because the WIBA method is able to operate
in low SNR region (SNR < −10 dB), it is feasible for
remote area scenarios, where long distance propagation
makes received signal’s strength weak. However, the
LAD method has better BW estimation accuracy. It can
be seen that, for the WIBA method, RMSE rises with
the SNR when M is large. This is because the fact
that as the detection performance of the LAD method
depends on the bandwidth of the detected signal, the
detection performance of the WIBA method depends
also on the length of the used detection window. For
example, when M = 204 and M = 306, they are two
(three) times wider than the optimal window (M =
102), so the bandwidth has been estimated to be much
wider than it is.

4.2. Multi-Signal Scenario
In this scenario, it is assumed that two RC-BPSK signals
are present in the channel. The results are presented
in Table 5, considering that there are one or two
signals occupying 10% and 5% of the channel’s BW,
respectively. For example, when M = 102 and there are
two signals with BWs corresponding to 10% and 5%, the
performance of the WIBA method is at most 1 dB worse
when compared to the one signal scenario. Optimal
values for M are 102 for 10% BW signal and 52 for 5%
BW signal. Note that M does not affect the LAD ACC
performance because there is no windowing. Based on
Table 5, multi-signal situation has only slight effect to
the performance of the methods.

In Figure 7, the number of detected signals vs. SNR
is presented. There are two signals with 5% and 10%
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Table 5. Required SNR [dB] for Pd = 0.9 when there is one or
two signals present.

Window # of Signal WIBA LAD ACC
length signals BW method method
M Pd = 0.9 Pd = 0.9

M = 102 Two 10% −13 dB 3 dB
5% −13 dB −1 dB

M = 102 One 10% −13 dB 1 dB
5% −14 dB −2 dB

M = 52 Two 10% −12 dB 3 dB
5% −14 dB −1 dB

M = 40 Two 10% −11 dB 3 dB
5% −14 dB −1 dB

M = 10 Two 10% −5 dB 3 dB
5% −10 dB −1 dB

M = 10 One 10% −5 dB 1 dB
5% −11 dB −2 dB

BWs, and M = 10, 40, 52, 102 and 204. The results are
the average of a thousand tests (Monte Carlo trials).
The LAD ACC method starts to operate properly when
SNR> −5 dB. The LAD ACC method and the WIBA
method with too short window (M = 10) overestimate
the number of signals when SNR is close to their
sensitivity limit. Therein, the rising sidelobes can cause
falsely detected signals. However, with SNR higher than
that, the methods start to operate properly again. In
the case of the WIBA method, the optimal window
size gives correct estimates for the number of signals
most of the time. This figure also shows at which SNR
each approach achieves Pd = 0.9. For example, when
M = 52, Pd = 0.9 when SNR = −12 dB. The window is
very short when M = 10 and M = 40. Optimal window
lengths are M = 52 for 5% BW signal and M = 102 for
10% BW signal. When M = 40, 52 and 102, the WIBA
method estimated the number of signals correctly when
Pd = 0.9. It can be seen that too short window (M =
10) estimates the number of detected signals correctly
only when SNR is larger: when Pd = 0.9 (SNR = −5 dB),
the number of detected signals is 2.7 on average, and
achieves 2 when SNR = 1 dB. This corresponds the
behaviour of the LAD ACC method. When using the
LAD ACC method, the number of detected signals is
about 2.2 on average at its best, assuming the SNR range
analyzed in Figure 7. As can be seen from Figure 8, the
BW estimation accuracy of the WIBA method may suffer
if the window is too wide (M = 204, for instance). Too
large M leads to that closely spaced signals can be seen
as one signal by the sensing technique.

Figure 7. Number of detected signals vs. SNR results. There are
two signals with 10% and 5% bandwidths to be detected.

Figure 8. One snapshot of two simulated signals with 5% and
10% bandwidth. M = 52 (optimal for 5% BW signal), 102
(optimal for 10% BW signal), and 204.

4.3. Multipath Channel Scenario
Multipath channel can be a very challenging environ-
ment for spectrum sensing since it includes LOS and
scattered components (Rician channel) or only scattered
components (Rayleigh channel). Let ai , i = 1, · · · , K be
the average amplitude of each signal component. The
total energy of signal components is E =

∑K
i=1 a

2
i . In the

case of Rician channel, a1 is a LOS component and
a2, · · · , aK are scattered components. In the Rayleigh
channel, there is no LOS (NLOS) component, so all
components ai are scattered components with some
delays.

In the simulations, there were either LOS component
and two scattered components (Rician channel, K =
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Figure 9. Probability of detection vs. SNR in multipath channel
case. Signal bandwidth is 10% and M = 102. AWGN, Rician
(LOS) and Rayleigh (NLOS) channels.

Figure 10. RMSE vs. SNR results in the presence of multipath
components. BW of the signal is 10% and M = 102.

3), or only two scattered components (Rayleigh
channel, K = 2). SNR includes only the energy of first
component. In the Rician channel, SNR included the
energy of LOS component, first scattered component
had energy 3 dB below SNR (i.e. the LOS component),
while the second scattered component had energy
6 dB below the SNR (i.e. the LOS component). In
the Rayleigh channel, SNR included the energy of
first scattered component, and the second scattered
component had energy 3 dB below the SNR. Used
delays were 2, 20 and 100 samples for the first scattered
component, and 10, 40, 70 and 200 for the second
scattered component.

In Figure 9, detection probability vs. SNR in
Rician and Rayleigh multipath (mp) channel case is
considered. Signal BW is 10%, M = 102 (optimal).
It can be seen that the multipath enhances the

detection performance by 1 − 2 dB, regardless of the
sample delays. This is because constructive summation
increases the energy of the signal, and this affects
the detection when using ED based methods. In the
Rayleigh channel case, there is one component less,
so the total energy is less than in the Rician case.
Here, SNR is defined to include only the energy of first
component. If SNR includes energy of all components,
the performance is 1 − 2 dB worse, and the performance
equals to the non-multipath performance.

Next, the bandwidth estimation accuracy is studied.
In Figure 10, RMSE vs. SNR is presented in the presence
of multipath. Here, signal BW is 10% of the channel
bandwidth and M = 102 (optimal). This figure also
shows the minimum SNR values when the Pd ≥ 0.9
is achieved. For example, when there is no multipath
and the WIBA method is used, a SNR = −13 dB is
required to achieve Pd = 0.9. As a comparison, the LAD
ACC method requires SNR = 1 dB to achieve Pd = 0.9.
The difference between the WIBA and the LAD ACC
methods is 14 dB. However, it can be noticed that
the LAD method has better BW estimation accuracy.
The multipath has about 1 − 3 dB effect to the RMSE
performance. The higher SNR is, the better the LAD
ACC method finds the signal, and the smaller its RMSE
is. Instead, in the case of the WIBA method, the length
of the detection window limits RMSE values. As can
be seen from the Table 4, RMSE= 100 when detection
window length is optimal.

4.4. Rural Area Channel Scenario
The performance of the WIBA energy detector in a
challenging rural area channel model for 5G networks
was studied in [22]. The results were compared to that
of the LAD method. However, there were no results
for FSPL AWGN (FSPL) channel case to be used as
a comparison point. Here, detection distance in FSPL
is studied, and a comparison between rural area and
FSPL channels are presented. FSPL is used so that it
will be seen what the maximum detection distances
are and how much they weaken in the rural channel.
That is, FSPL is used to see the upper limit of the
detection distance. In the rural area channel model,
total bandwidth was 23.4 MHz and carrier frequency
was 700 MHz. Path loss model is defined in Section 2.2.
Again, signal detection performance target is Pd ≥ 0.9.

In Figure 11, assumed transmit power value of the
signal is 30 dBm. When signal BW is 2, 4 or 6 MHz
corresponding 8.6%, 17.1% and 25.6% sensing BW,
detection distance for the WIBA method is 80, 46 or
32 km in the FSPL channel, respectively. In a rural
area channel case, corresponding detection distances
are only 2, 1 and 1 km. It means that the detection
difference is even 78 km. For the LAD ACC method,
corresponding detection distances are 16, 6 and 2 km,
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Figure 11. Pd vs. detection distance when transmit power of the
signal is 30 dBm. FSPL and rural channel.

assuming FSPL. In the case of the rural area channel,
LAD ACC has Pd = 0.45 at its best.

In Figure 12, assumed transmit power value is 20
dBm. When signal BW is 2, 4 or 6 MHz, detection
distance for the WIBA method is 25, 15 or 10 km in the
FSPL channel case. In a rural area channel case, signal
detection probability is 0.85 at its best, i.e., when signal
BW was 2 MHz. For that detection probability, detection
distance for the WIBA method is only 1 km. For the
LAD ACC method, detection distances are 5, 2 and 0
km in the FSPL channel. In the rural channel, LAD ACC
has Pd = 0.28 at its best.

In Figure 13, a transmit power of 10 dBm is assumed.
In the FSPL channel case, detection distance is about
3-8 km, depending on BW of the signal. Instead, in a
rural area channel case, signal detection probability of
the WIBA method is 0.45 as its best.

4.5. The Effect of False Alarm Rate
Next, the effect of the false alarm rate to the WIBA
method performance is studied when corresponding
LAD false alarm rate values for the WIBA method are
used. In Figure 14, probability of detection vs. SNR
is presented in an AWGN channel. There are three
signals with 5% (M = 52), 10% (M = 102) and 20%
(M = 204) BWs. The values for the variables M, L and
Pf a,desW IBAnew can be seen from Table 2. It can be
noticed that when the WIBA and LAD ACC methods
have equal false alarm rate values, the performance
degradation of the WIBA method is around 2 dB.

In Figure 15, probability of detection vs. distance
[km] is presented in rural area channel. There is one
signal with transmit power 53 or 30 dBm. Bandwidth
of the signal is 2 and 6 MHz, and both the WIBA
and LAD ACC methods are used. The values for the

Figure 12. Pd vs. detection distance when transmit power of the
signal is 20 dBm. FSPL and rural channel.

Figure 13. Pd vs. detection distance when transmit power of the
signal is 10 dBm. FSPL and rural channel.

variables M, L and Pf a,desW IBAnew can be seen from
Table 2. When transmit power is 53 dBm, signal BW is
2 or 6 MHz and the WIBA and LAD ACC methods have
equal PFA values, signal can be detected using the WIBA
method (final detection probability Pd,i = 0.9) when Tx-
Rx distance is at most 24 or 11 km, respectively. That
is, the detection distance is 11 km and 4 km less when
compared to results for WIBA Pf a = 0.01, respectively.
When transmit power is 30 dBm, signal BW is 6 MHz
and the WIBA and LAD ACC methods have equal
PFA values, signal can be detected (final detection
probability Pd,i = 0.85 because 0.9 is not possible to be
achieved) when Tx-Rx distance is at most 1 km. The
detection distance is < 1 km when compared to results

10 EAI Endorsed Transactions on 
Wireless Spectrum 

12 2017 - 04 2020 | Volume 4 | Issue 13 | e6



Energy Detection Based Spectrum Sensing for Rural Area Networks

Figure 14. Probability of detection vs. SNR [dB] in AWGN
channel. The signal bandwidth is 5% (L = 39), 10% (L = 20)
and 20% (L = 10).

Figure 15. Probability of detection vs. distance [km] results.
Transmit power of the detected signal is 53 and 30 dBm.

for WIBA Pf a = 0.01. In any case, the WIBA method still
outperforms the LAD ACC method.

5. Conclusions
Remote and rural area connectivity is a true challenge
that can be solved by using lower frequency bands
that are made available through shared spectrum
access. This would enable cost-efficient solutions for
low user density areas. Traditional database-based
approach for spectrum sharing can be enhanced
by introducing spectrum sensing to more accurately
characterize the current spectrum usage in order to
identify more opportunities for shared spectrum access.
It can enhance the detection of existing spectrum users

as well as the detection of other newly introduced
spectrum users. In this work, the performance of a
spectrum windowing based energy detection method
WIBA was studied, and comparison was made with
the well-studied LAD ACC method. Probability of
detection, relative mean square error for the bandwidth
estimation, and the number of detected signals as
well as detection distances were evaluated. In addition,
false alarm rate analysis was also presented. It can be
concluded that the WIBA method has better detection
probability than the LAD ACC method. The WIBA
method is able to operate with SNR below −10
dB, depending on the signal and window lengths.
The WIBA method is suitable for 5G applications
especially for rural and remote areas due to its
good detection performance in low SNR areas. It can
enhance the accuracy of spectrum usage information to
complement the database approach. The effect of the
detection window length to the detection performance
in different channel situations was also studied. Too
long detection window degrades the performance of
the WIBA method. The LAD ACC method outperforms
the WIBA method in terms of bandwidth estimation
accuracy. Therefore it can be concluded that if signal
detection at a given frequency band is enough for the
system, the WIBA method is preferred. If bandwidth
estimation accuracy is important, the LAD ACC could
be used after the WIBA method to improve the
bandwidth estimation.
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