Establishing Interaction between Machine and Medaka
using Deep Q-Network

Ryo Nishimura
Department of Engineering
Hokkaido University
North14 West9, Sapporo,
060-0814, Japan

Hiroyuki lizuka
Graduate School of
Information Science and
Technology
Hokkaido University
North14 West9, Sapporo,
060-0814, Japan

Masahito Yamamoto
Graduate School of
Information Science and
Technology
Hokkaido University
North14 West9, Sapporo,
060-0814, Japan

{nishimura,iizuka,masahito}@complex.ist.hnokudai.ac.jp

ABSTRACT

Social interaction is the basic ability for animals to survive.
It is difficult for a machine to interact with human or other
animals because it is not clear how the machine should inter-
act. This paper examines whether an artificial dot controlled
by a machine can interact with a medaka and induce a de-
sired behavior. The dot is displayed on a monitor. We use
deep Q network (DQN) to learn how to move the dot. As a
result, the DQN could learn some basic elements to interact
with the medaka and the desired behavior could be induced.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
machine animal interaction, deep Q network, real time,
medaka

1. INTRODUCTION

Social interaction is the basic ability to communicate with
other individuals to survive a world for any animals includ-
ing human. For us, it is easy to understand what happens
when interacting with others because we are the actual enti-
ties that perform communication. The social interaction can
be cooperative or uncooperative. It becomes very difficult
to understand what happens and what they communicate
when the entities that perform communication are not hu-
man but animals. We can speculate it to some extent but
it is usually limited to static information like the relation
of two or their emotional states, i.e. anger or happy. The

best way for this is that we develop an interface somehow
to communicate with animals. The simplest interface is a
common language. However, there is no such a language
invented so far. Another approach is to develop a machine
to communicate with animals instead of humans. In other
words, it is to develop an animal model of the entity that
can communicate with others as we develop the artificial in-
telligence for human. To build a model of animal or human
intelligence is equivalent to understanding the animal itself
and the social interaction of them.

Recently, many engineers are working on developing robots
or software agents that establishes smooth communication
or interaction with human. However, it is still far from hu-
man communication because it requires high human intelli-
gence.

On the other hand, there are studies to attempt to build
an internal model of lower animals, that is small fish. The
advantage to use fish is that it is easy to take care of them
and to build an experimental environment. Matsunaga and
Watanabe investigated what kind of models can generate
life-like behaviors, especially plankton-like behaviors that
attracts medaka [1]. In their experiments, small white dots
are displayed to medaka by a monitor attached on a tank and
a variety of motions that have different power spectrums are
shown. Their results show that pink noise motion (a den-
sity proportional to the inverse of its frequency) induce more
predatory behaviors. It means that the white dots moving
in a pink noise manner looks food for medaka and the pink
noise movements are somehow more related to the life-like
behaviors than the others.

Takayasu and Watanabe examined if medaka tries to form
a shoaling behaviors with a biological motion of medaka in
which the body structure from head to tail of medaka is rep-
resented by only isolated small number of dots [2]. The dots
moves in a coordinated manner as if they are attached on
a real medaka but only dots are visible. It is known that
human can tell even gender correctly from human biologi-
cal motion. The dots are recognized as just points without
moving however when the dots move in a coordinated man-
ner, e.g. walking, the artificial points can induce the feeling
of the life presence for human. To investigate if the feeling
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Figure 1: Cycle of our experiment.

of life can also be induced to medaka by medaka biological
motion, they see whether medaka forms a shoaling behaviors
with the biological motion. Their results show that the arti-
ficial points can induce more shoaling behaviors than other
control stimulus of dots.

These two studies show that there is a certain mechanism
in medaka to feel life from artificial dots movements and the
mechanism must work when medaka recognizes the other
presence, i.e. friend or food. It is successful to establish a
certain form of interaction between a real life and a machine.
However, those approaches are rather passive in a sense that
the real-time medaka motion is not taken into account. Just
predefined motions calculated from a model or recorded bio-
logical motions are shown to medaka and they moves regard-
less of real-time medaka motions. The recorded motions are
not same as the motions for the immediate response to the
partner’s motion. The recorded motions can break down
the social interaction in human and animals [3-5]. What
we tried in this paper is more active in a sense that the
artificial movements, i.e. white dots movements, shown to
medaka can respond the realtime medaka motions and we
investigate whether it is possible to control or induce their
motions as what we desire through the interaction with them
or to see the establishment of communication between a real
life, medaka here and a machine.

2. METHOD

In order to obtain the artificial movements that can re-
spond to medaka and control or induce medaka behaviors
autonomously, we use deep Q network (DQN) as one of the
successful reinforcement learning method. DQN is proposed
by [6] and they show that DQN can learn sequential behav-
iors that can get good scores in computer games [7]. Those
behaviors were gradually obtained through try and errors as
human game player does. The advantages of reinforcement
learning is that they can learn the good behaviors without
any teaching signals. When a good behavior is generated,
e.g. eating food or achieving a subgoal, the state and ac-
tion are rewarded and connected states and behaviors with
them are indirectly evaluated by propagating the rewards.
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Figure 2: Experimental set-up
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Figure 3: Structure of deep Q network.

The reinforcement learning is combined with a deep neural
network in DQN. Therefore, DQN can receive the high di-
mension input and can decide which action should be taken.
We use DQN to create a motion controller of an artificial
dot that decides how to move while receiving the visual im-
ages of real-time medaka movements. The whole cycle of
our experiment is shown in Fig. 1.

2.1 Experimental Conditions

A single medaka participated in the experiment. The medaka
is released in a tank. The experimental environment is
shown in Fig. 2. The size of the tank is 160x350x240
mm but the space where the medaka can swim is restricted
160x85x60 mm. The experimental space is covered by black
boards on the sides of tank is to shut out the external en-
vironment except for the single side where a monitor is at-
tached to show an artificial movement of a white dot. The
bottom of the space is cover with white gravel. There is no
ceiling on the tank and a camera is placed over the tank to
capture the real-time images of the medaka movements. An
air pump is placed in the tank but not in the experimental
area.

The camera captures the images of the medaka from the
top. The images are converted to binary 84x84 images and
then the images are shifted in response to the position of
the white dot in order to give the relative position of the
medaka from the dot to DQN. Therefore, DQN can learn
how to move the white dot depending on the relation to the
medaka from the dot point of view.

A small white dot whose diameter is 1.47 mm on the mon-
itor is shown to the medaka. The movement of the white
dot is decided by DQN outputs every 200 ms. One of 9
movements, i.e., 8 directions and no-op, is chosen. The po-
sition is updated to move with a constant velocity, 4.9mm/s,
to the chosen direction every 20 ms along with the monitor
frequency. The area where the white dot can move is 176.4
mm X 64.68 mm. The space form a torus. When the white
dot moves out of the space, it appears from the opposite
side. Every 1,000 learning steps, the white dot position is
reset to the center of monitor area.

In another condition experiment, the facing direction of med-
aka is considered. The direction dicision needs the regression
line of white pexels in the image and the vector from the cen-
ter of the bounding box to the average point of white pixels.
The closer to the vector of the regression line direction is
regarded as the facing direction of medaka. The learning
mechanism works only when medaka is facings to the moni-
tor, i.e. the facing direction is in the range from -90 to +90
degree, in the all four input images. In this condition, the
tank bottom is covered by black boards, and DQN output
every 100 ms.

2.2 Deep Q Network

Here, we explain how to learn DQN as a controller through
try and error. Firstly, DQN decides an action followed by a
current policy, which is formed by output Q-values of DQN,
at the current input state and execute the action. Secondly,
DQN receives a reward and the next input state and stores
the transition in a replay memory in which the past transi-



Algorithm 1 Deep Q-learning with Experience Replay [6]

Initialize replay memory D to capacity N
Initialize action-value function ) with random weights 6
for episode = 1, M do
input sequence s1 = {x1}
Preprocessed sequenced ¢1 = ¢(s1)
fort=1,T7 do
With probability e select a random action a¢
otherwise select a; = arg max, Q" (¢p(s¢), a; 0)
Execute action a;
Observe reward r; and image ;41
Set St+1 = St,Qt, Ti41
Preprocess ¢i+1 = ¢(St+1)
Store transition (¢¢, at, r¢, pe+1) in D

Sample random minibatch of transitions
(63, a5,75, $j41) from D
Set y; = T if terminal ¢j41
J rj +ymaxy Q' (¢pj41,a’;0") else

Perform a
2
(yj — Q(¢5,a5;0))
rameter 6
end for
end for
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Figure 4: Reward during learning

tions are stored. Lastly, DQN weights are updated to reduce
errors of output Q-values in terms of the transitions in the
replay memory. A single step consists of these processes. A
good behavior is gradually obtained by repeating the steps.
The detail procedures are shown in Algorithm 1 and de-
scribed in [6].

In this work, the DQN receives the last four images captured
by a camera as the inputs. The camera sends the pictures
to the DQN every 0.2 sec. It means the four input images
are taken 0, 0.2, 0.4, and 0.6 seconds ago. The input images
are binary 84 x 84 images shifted to make the dot be at the
center. The input images are sent to DQN. The deep net-
work of DQN consists of a convolutional neural network [6,8]
whose architecture is shown in Fig. 3. The first convolution
layer has 16 filters whose size is 8 x 8. The 84 x 84 input
images are convolved with the filters. The second convolu-
tion layer has 32 filters whose size is 4 x 4. The outputs
are converted to 9 outputs through 256 hidden units by the
last fully-connected layer. The rectified linear unit (ReLU)
is used as the activation functions. The DQN outputs are 9
Q-values for 8 directions and no move. The action is chosen
with e-greedy. The initial value of € is set to 1 and then
minus 0.1 every 1,000 steps. After 9,000 steps, it is kept 0.1.

For the sake of simplicity, the task of this paper is set to
attracting the medaka and moving it to the monitor, which
means that the best state is that the medaka always stay
close to the monitor. To evaluate such a state, the reward
r¢ at step t is gven every step as follows.

Zt
Tt:l—

(1)

Zmazx

where, z; is a distance from the center of the medaka to the
monitor at step t. The lateral posiiton is ignored. zmqz in-
dicates the maximum distance from the monitor. Our DQN
is implemented with Caffe, deep learning library [9]. DQN
learning parameters are set as follows, discount rate = 0.95,
batch size = 32, base learning rate = 0.2, gamma = 0.1,
stepsize=10000, learning rate is updated by Ada delta, mo-
mentum = 0.95.

3. RESULT

DQN is trained for 3 hours and 36 minutes which corre-
sponds to 65,000 steps, at each of which action decision and
an update of DQN weights are performed. In addition, DQN
is trained for 2 hours and 46 minutes which corresponds to
100,000 steps in the facing direction considered condition.

Figure 4(a) shows the average rewards every 1000 steps (=
200 s) during training. The improvements of the rewards
is not clear but there are periods of high and low rewards.
Therefore, we pick up the DQN weights obtained during
high and low reward periods and the DQN weights at the
end of experiment (= at 65,000 steps), whose reward is the
third best actually. Then, we test how the medaka behaves
towards the white dot controlled by the DQNs for 18,000
steps (= an hour). We call DQN weights during high and
low reward periods high- and low-controller, respectively.
The DQN weights at 65,000 steps is called last-controller.
Those three controllers are also compared with a random
controller as a control condition. It should be noted that
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Figure 5: (a) distance from the medaka to the monitor. (b) lateral position of the medaka. (c) lateral position
of the white dot. (d) relative lateral position from the white dot to the medaka.

the DQN weights of all controllers do not change during the
test.

Figure 5(a) shows the histogram of the distances from the
monitor to the medaka during the test. The lateral positions
are ignored. Basically, the medaka spends a lot of time near
the monitor in all cases, which is consistent to the known
fact that the white dot can attract the medaka [1]. The
last-controller can attract the medaka the most in all con-
trollers. The high-controller cannot attract the medaka very
close to the monitor however the medaka does not move far
away, which means that it is less frequent that the medaka
lose interest completely. The low-controller can also attract
the medaka more than the random-controller. Therefore,
the improvement of the rewards during training is not clear
but the obtained DQN must have learned something that
attracts the medaka.

Figure 5(b) and 5(c) shows the histograms of absolute lateral
positions of the medaka and the white dot, respectively. The
tendencies of the medaka positions are almost same except
for the high-controller, which attracts the medaka at certain
position. The white dot controlled by a trained DQN often
stays at the edge of the monitor. It is not clear why they
prefer the edge but it might be curious for the medaka be-
cause the white dots sometimes disappear because it moves
out of the monitor (it appears from the opposite edge). Fig-
ure 5(d) shows the histogram of the relative position of the
medaka from the white dot. Medaka tends to be in front of
the white dots in the case of the random controller. How-
ever, interestingly, the medaka stays in about 3 cm away

from the dot. It is salient in all 3 controllers except for the
random controller. The distance 3 cm is not far but not close
either. The distance might be attractive for the medaka.

Figure 6 show the white dot movement in each case during
the test. Trained DQN show crossing the boundary over and
over. The movements of the white dot and the medaka in
a short timescale are shown in Fig. 7. The white dot and
the medaka movements looks synchronized sometimes. The
white dot cannot control the speed continuously, however, it
moves together with the medaka using 9 different motions.

Figure 4(b) shows the average rewards every 1,000 steps
(= 100 s) during training in the facing direction considered
condition. This result seems DQN could learn successfully
around 10,000 steps. When the medaka is regarded to the
medaka is watching the white dot, the rewards are high and
stable. Therefore, the facing direction is efficient to learn,
because it often occurs that the medaka does not watch the
white dot. Even if the white dots moves in a very attractive
manner, it does not affect the medaka behavior at all when
the dot is not invisible.

4. DISCUSSION

As already described, it is known that medaka is attracted
to the white dot displayed on a monitor. In our experiment,
the white dot controlled by the trained DQN attracted the
medaka more than the random controller. It means that the
white dots by DQN were somehow more attractive to the
medaka. The characteristics of the white dot movements are
staying at the edge and moving to a same lateral direction.
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Figure 6: White dot movements in the lateral direction.

The advantage of staying at the edge is to avoid or decrease
the situations where the medaka loses visual contacts. The
space forms a torus. Therefore if the dot stays near the edge
of the monitor, it can appear immediately at both sides. If
the medaka is far away, it can cross the edge. The strategy
can increase the chances of visual contacts. The movements
to a same lateral direction might be related to more commu-
nication, not for simple visual contacts but for contents of
the interactions. The further analysis of movements of the
medaka and the dot can clarify which one leads the interac-
tion, e.g. the medaka chases the dot first and the dot runs
away, or the dot attracts the medaka and drags.

5. CONCLUSIONS

In this paper, we could induce the movements of a real life,
medaka. The task is simple, but a machine could learn
some basic elements of communication through the inter-
action with a real life. The deep neural network technology
combined with Q-learning was used and it can receive the
visual live images captured by a camera. Therefore, this
method can be applied to any tasks if the reward function is
defined properly. Our further work would be applying this
method to more complex communication task to understand
communication by animals.
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