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§0. Introduction

For constrained differential equation of the form

(0.l)
x=f(x, y)

0 =g(x, y)

x e Rm, y E Rn, the equation

(0.2)

is considered in singular perturbation theory. As an attempt to globalize 

the local product structure Rm•~Rn, Takens [15] considered fiber bundle 

structures. For the generalization of equation (0.2), it is natural to con

sider the vector field X+(1/e) Y. To the equation 0=g(x, y) of (0.1), corre

spond the set, ~Y, of the equilibria of Y.

In this paper, we study the generic properties of Y on the neighborhood 

of 2. Let 19M, F) be the space of all Cr vector fields Y tangent to F 
with Whitney Cr topology. In section 1, properties G0, G1, and G2 are de

fi ned (Definition 1.3), and it is shown that there is an open dense subset of 
Y E Jr(M, F) which satisfies G0, G1, and G2 (Theorem A).

In section 2, the singularity theory of Thom-Boardman is translated 
into, so called situation, jet spaces modulo foliation F of mappings from a 

manifold into M. This jet is defined by contant of mappings modulo leaves 
(definition 2.1).

In section 3, we show the genericity in Jr(M, F) of vector fields Y such 
that the jet of the injection ~: ~Y- M is transverse to the Thom-Boardman 
submanifolds with respect to jets modulo F. (Theorem B and Theorem C).

In Definition 1.3 of G2, a stratification s of ~Y is defined. Another 
stratification S of ~Y is induced from Thom-Boardam stratification of order 
two, if Y has the property GB2: the jet of IYc_~M is transverse to Tohm

* Dedicated to Professor Itiro Tamura on his 60-th birthday.
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Boardman submanifolds of length one and length 2.

Saddle-node bifurcation and Hopf bifurcation are well known as typical 
codimension one bifurcations of equilibria (e.g. [6]). Theorem D in §4 shows 
how these bifurcations arise in our global situation with respect to the strati
fi cations S and S. S is defined by using only the first derivatives of Y. 
But, saddle-node bifurcation does not occur under the condition stated only 
in terms of the first derivatives. As another condition we take the second 

derivatives modulo F of the inclusion map while J. Guckenheimer
- P. Holmes [6, Theorem 3.4.1] has taken the assumption for the second deriva

tive of the vector field Y. For this purpose, we use the stratification ~. In 
the study of constrained equations or constraint systems, it is natural to 
consider Thom-Boardman singularities, (e.g. [17], [15], or [8]).

Let Y be the normally stable domain in ~Y. Theorem E determines the 

qualitative structure of Y near point p e a~Y at which Y has a saddle-node 
bifurcation. Especially, the unstable set W u(p) of p is the image of an in

jective immersion of the half line [0, oo). This property is used in the study 
of singular perturbations in higher dimensional spaces [8].

§1. Generic properties

In this paper M is a smooth (C°°) manifold with dimension m+n, and F 
is a smooth foliation on M with codimension m. F is a disjoint decomposi
tion of M into n dimensional injectively immersed connected smooth sub

manifolds (leaves) such that M is covered by C°° charts (foliation boxes)

(1.1)

and (a1Xa2)-1({x} X Dn)c the leaf through (a1Xa2)-1(x, y), y e Dn, where Dm, 
Dn are open sets in Rm, Rn, respectively, and a1Xa2 is a smooth diffeomor
phism. We call (a1Xa2)-1({x} X Dn) a plaque.

Let r: TF -±M be the subbundle of the tangent bundle TMM such 
that the fiber v(x) is n-dimensional vector space which is tangent to the leaf 

of F through x. A natural vector bundle chart on z is a triple (a, a1Xa2, U) 
where (a1Xa2, U) is a C~ chart on (M, F), a: z-1(U)-~(a1Xa2)(U)XRn is a 
bijection (C°° diffeomorphism), and the diagram

commutes. Here, the right-hand map is the natural projection. We some
times denote z-1(x) by TxF.



Vector fields tangent to foliations 97

Let Y: MTF be a Cr section of the vector bundle r. Y is also a Cr

section of the tangent bundle TMM. We call such a section a Cr vector 
fi eld on M tangent to the foliation °P . Denote by q/r(1If, F) the space of all 
Cr vector fields on M tangent to F with the Whitney Cr topology; if M is 
compact it is equivalent to the Cr topology. (See e.g. [14].) For the vector 
bundle chart (a, a1Xa2, U) the local representative of Y

has the form

for x E (a1Xa2)(U). The map Ya: (a1Xa2)(U)Rn is called the principal part 
of the local representative of Y.

Let ~Y be a subset of M such that every x E X is an equilibrium point 
of a vector field Y E q?/r(M, F). For x E X let

(1.2)

be the differential of the principal part of Ya of the local representative of Y.

DEFINITION 1.1. We say that Y is regular at p e ~Y if the dimension of 

the image of (D Ya)(x) is n, where x=(a1Xa2)(p).
Since (DYa)(x) is linear, this mapping is devided as (DYa)(x)=((DYa)1(x), 

(DYa)2(x));

(1.3)

DEFINITION 1.2. We say that Y is normally hyperbolic at p, if (DYa)2(x) 
has no eigenvalue with real part zero. If all the eigenvalues have negative 
real part, Y is said to be normally stable at p. (These do not depend on the 
choice of the vector bundle chart (a, a1Xa2, U).)

A stratification s of a topological space N is a partition of N into sub
sets, which will be called the strata of s, such that the following conditions 
are satisfied:

(a) Each stratum S is locally closed, i.e. each point s e S has a neigh
borhood U such that U (1 S is closed in U.

(b) s is locally finite.
(c) If S1 and S2 are strata and S1fl S2 ~i5, then S2 C S1.
The relation S2<S1 defined by S2 c S1, S2~S1, is an order on S. It is 

transitive and one cannot have both S2<S1 and S1<S2 ([12, p. 200]).
Let N be a C1 manifold, let N c N, and let S be a stratification of N.
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We will say that S is a Whitney stratification if each stratum is a C1 sub
- manifold, and if S1, S2 are two strata with S2<S1, then for all x e S2 the triple 

(S1, S2, x) satisfies the following Whitney's regularity condition (b).
Condition (b): For any sequences {xi} of points in S2 and {yi} of points 

in S1, such that xix, yix, x1~y2, segment xiyi converges (in projective 
space), and the tangent space TxiS1 converges (in Grassmanian of (dim S1)

-plane in Rn, n=dim N), we have l C T,, where l=lim xiyi and T.=lim TxiS1.
Condition (b) implies the following condition (a), (see e.g. Wall [16] or 

Mather [12, p. 203]).
Condition (a): If xi is a sequence of points in S1 such that xix E S2 

and TxiS1 converges to T~, then TxS2 C T~.
Let Si denote the substratification of stratification S such that 51 con

sists of all strata of dimension •…i of S. 51 is called the i-skeleton (or codim 

(n-i) skeleton) of S. Here, n=max {dim S: S E S}. Let . Y be the set of all 

points of ~Y, where Y is normally hyperbolic. Let a~Y be the set of all fron

tiers of . ;a~=~Y  ~Y.

DEFINITION 1.3. What follows are the properties of the vector field 

Y E 2(r(M, F).
Go: The set of all equilibrium points of Y is, if nonempty, an m 

dimensional Cr manifold.

G1: Y is regular at every equilibrium point of Y.

G2: Y has the property G0 and there is a Whitney stratification S on 

~Y having the following properties:

(i) If the differential (DYa)2(x) at x=(a1 X c2)(p) (see Definition 1.2) has 
l eigenvalues of zero and 2(k-1) non-zero pure imaginary eigenvalues

0,•c, 0, ibl, -ib1,•c, ibk-l, -ibk-l,

then the point p is contained in the (m-k) skeleton

(ii) The union of all (m-1) dimensional strata U 5m-1 is a dense sub
set of a~.

(iii) U Sm-1 is divided into two parts, (a~ )o and (aG y)img, of unions of 
strata such that

p E (a~'Y)o=0 is an eigenvalue of (DYa)2(x),
P E (a~y)img~' the eigenvalues of (DYa)2(x) include a pair of non-zero 

pure imaginary numbers.

THEOREM A. Let M be a smooth manifold of dimension m+n and F be 
a smooth foliation on M with codimension m. Let ?Jr(M, F) be the space of 
all Cr vector fields on M tangent to F. Let ' denote the set of all Y E 
gr(M, F) satisfying the property Gj, j=0, 1, 2, respectively. Then,
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(i) ~o is open dense in (/.?/r(M, F), if 1<r<_oo.
(ii) ~i is open dense in (r(M, F), if 2<r<oo.
(iii) ~2 is open dense in (r(M, F), i f 3r<<oo .

Denote by Pr) the space of all Cr sections of a vector bundle ir with 
the Cr topology. Pr(7r) is a separable Banach space. Especially for the bun
dle r: TFM the space P (r) has been denoted by ~r(M, F).

Let 1, 2: UTUF be partial sections of z where TUF=2-1(U) C TF. 
Let (a, a1Xa2i U) be a vector bundle chart on z and x1, x2 e U. Let 1a~ 2a 
a(U)-aRn be the principal parts of local representatives of 1,2 respectively. 
We denote (1, x1) ̂• 0(2, x2) if x1=x2 and ia(xi)=2a(x2). We denote (1, x1) 

1(2, x2) if x1=x2, eia(xl)=e2a(x2), and Deia(xi)=Deza(x2). Here Deia is the de
rivative of eia which is a mapping (a1 X a2)(U)L(Rm+n, Rn), where Rn) 
is the set of all linear mappings Rm+nRn. This definition of ^r ° and ^r 1 is 
independent of the choice of vector bundle chart (a, a1Xa2, U). ° and 1 
are equivalent relations. The equivalence classes of the pair (, x) are de
noted by j°(x) and j1e(x), respectively. Let J°(z) and J1(z) be the sets of all 

j° (x) and j1 (x), respectively. For each Cr section Y: MTF the map jiY: 
M-*Ji(v) given by xjiY(x) is called the i-jet extension (or i-jet section) of 
Y, i=0,1. The map

given by r1(ji (x))=x is a C~ vector bundle, which is called the i-jet bundle of 
sections o f z, i=0, 1. For each vector bundle chart (a, a1Xa2, U) on z the 
natural i jet chart on vi, i=0, 1, is given by

(1.4)

where y=(a1 X a2)(x).
Let

(1.5)

be a mapping defined by zo(j1 (x))=j°(x) for every j1 (x) e J1(r). Then 
z° o zo= z1: J1(z)M and za are vector bundle projections.

LEMMA 1.4 (Abraham-Robbin [l, Theorem 12, 4]). Suppose M is compact, 

r•†1, and i=0, 1. Let
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be given by evi (Y, x)=ji Y(x). Then, (i) evi is of class Cr-i; and (ii) evi is a 
submersion, if r-i>O.

LEMMA 1.5. Let q=min {m, n} and LrCL(Rm, Rn) be the set of all linear 

mappings with rank r, r=0,•c, q. Then, Lr is a submanifold of L(Rm, Rn) 

with codimension (m-r) (n-r), and the subdivision {Lr} of L(Rm, Rn) induces 

a Whitney stratification of L(Rm, Rn) such that each point of Lr is a frontier 

of every Lr+1,•c, Lq.

Proof is given in the same manner as that of Golubitsky-Guillemin [5, 

p. 60 Proposition 5.3].
Let R(k) be the set of all elements (c1,•c, cn) e Cn such that (i) there are 

h factors of zeros; cj1=•c=cjh=0, 0•…h•…k; and (ii) there are 2(k-h) fac

tors of non-zero pure imaginary numbers;

LEMMA 1.6. Let K be the set of all elements of L(Rn, Rn) having at least 
one eigenvalue with real part zero. Then, K is a closed semialgebraic set. 
Furthermore, there is a Whitney stratification ( of K satisfying the following:

(i) If the set of eigenvalues (A1i • • •, An) of A e L(Rn, Rn) is contained in 
R(k), then A is contained in the codim (k-1) skeleton, Xk-1, of X'.

(ii) The union U Sma of all strata with maximal dimension is dense in 
K.

(iii) U Smax is divided into two parts, U So and U Simg, consisting of un
ions of strata denoted by S0 and Simg where

A e S=O is an eigenvalue of A,

A E Slmg~' the eigenvalues of A includes a pair of non-zero pure imagi
nary numbers.

PROOF. By Abraham-Robbin [1, §30], K is a closed semialgebraic set, 

and is a union of submanifolds of L(Rn, Rn) with codimension •†1. Let v: 

CnCn be the Newton map. It is an algebraic map defined by v(c1,•c, cn)=

(a1,•c, an), where a1,•c, an are the coefficients of the unique monic polyno

mial a1+a2z+•c+anzn-1+zn whose roots are c1,•c, cn. Let 1: L(Rn, Rn)

Rn be the map which assigns to a linear map A the coefficients of the charac

teristic polynomial of A, i.e. Y(A)=(a1,•c, an) where

det (Ix-A)=a1+a2x+•c+anxn-1+xn.

Let c: RnC n be the embedding obtained by
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Since R(h) is a semialgebraic set, by Tarski-Seidenberg theorem Hh=

(T)-1v(R(h)) is a closed semialgebraic set in L(Rn, Rn), and thus, Hh is a finite 

union of submanifolds (see Abraham-Robbin [l, §30]). Hence, we have a 

sequence of semialgebraic sets K=H1 D H2: • • • H,. Since, by an arbi

trarily small perturbation, any linear map in Hh can be changed into one 

contained in Hh-1(h>0), Hh must have local codimension •†1 in Hh-1; i.e. if 

a point x E Hh is contained in a submanifold Sh c Hh, then x is contained in 

the frontier of some submanifold Sh-1 in Hh-1 with dim Sh<dim Sh-1.

Next, we construct a Whitney stratification of K similar to that given by 

Mather [12, Theorem (4.9)]. (He uses the word "prestratification" meaning 

our stratification.) Let m=dim K, i.e. the maximal dimension of manifolds 

which constitute K is m. We construct, by decreasing induction, a sequence 

Km, Km-1, •cof semialgebraic subset of K, closed in K, where dim Kk•…k, 

such that Kk-Kk-1 is an algebraic manifold and that Kk :DHm  k+1• Here, we 

recall that Hj=0 if j>n.

We begin with Km=K=H1. We suppose inductively that Kk has been 

constructed. Let Kk-1 be the closure in K of the set of points x in Kk such 

that one of the following conditions holds:

(0) x € Hm-2+2•
(1) x is not a regular point of Kk or the local dimension of Kk at x is 

smaller than k. (A regular point of a subset Z of an algebraic manifold N is 
a point which has a neighborhood N such that N (1 Z is a closed algebraic 
submanifold of N.)

(2) x is a regular point of Kk and the local dimension of Kk at x is k, 
but there exists l>k scuh that the triple (Kl-Kl-1, Kk,reg, x) does not satisfy 
Whitney's regularity condition (b).

As mentioned before, Hm-k+2 is a finite union of submanifolds. Moreover 

the dimensions of these submanifolds are •…(k-1), since dim H1•…m and the 

local codimension of Hk in Hk-1 is •†1, (see the following diagram).

From (1), it follows that Kk-Kk-1 is an algebraic manifold and 

dim (Kk-Kk-1)=k everywhere. Each of the sets defined by one of the con

ditions (i) or (ii) is semialgebraic and its dimension is •…k-1 ([12, Proof of 

Theorem (4.9)]). Since dim Hm-k+2•…k-1, it follows that Kk-1 is a semialge

braic set with dimension •…k-i.

Let ( denote the collection of connected components of the Kk-Kk-1,

 k=0, •c, m. By Mather [12, Proof of Theorem (4.9) and Addendum (4.10)], 

'( is a Whitney stratification of K satisfying (i).
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Next, we show that f satisfies (ii). Suppose that there exists a stratum 

S of . ( such that there is no stratum T of i' satisfying SC T and such that 

dim S<m. Since codim K<1 in L(Rn, Rn), then codim S•…2 in L(Rn, Rn). 

Since K=H1 and Hk-1-Hk is dense in Hk-1 for all k•†1, it follows that any 

element of S is approximated by A E S fl (H1-H2). One of the following holds 

for such A.

(a) One eigenvalue of A is zero and the real part of every other eigen
value is non-zero.

(b) Two eigenvalues of A are ib and -ib (0*b E R) and the real part 
of every other eigenvalue of A is non-zero.

Element A satisfies (a) if and only if corank A=1. By Lemma 1.5, the 

set of all such elements is a codimension one submanifold Ln-1 of L(Rn, Rn). 

This contradicts the assumption that codimension of S is •…2.

In case of (b), let 21=ib, 22=-ib, and 23, ... , 2n be all the other eigen

values of A. We take disjoint open sets N1, N2, N+, and N_ in the plane c 
such that N1 and N2 do not intersect with the real line, N+ and N_ do not 
intersect with the pure imaginary line, and such that

Since the characteristic polynomial det (Ix-A) of A is holomorphic, there 
is a neighborhood U of A in L(Rn, Rn) such that, if B € U, then 21(B) E N1, 
22(B) E N2i and 23(B), ... , an(B) E N+ U N_, where 21(B), ... , 2n(B) denote the 
eigenvalues of B. Let 2 be the real part of A. There are Ao and Al in U 
such that

and

Since codim S•…2 in U, there is an arc A7, 0<T< 1, connecting A0 and Al in 

U-S=U-K. By the assumptions for N1, N2, N+, N_ and U, it holds that 

the arc 21(A7), 0<_ r_<1, is included in N1. Since P4(21(A0))>0 and (21(A1))<0, 

there is c such that (21(A))=0. This contradicts the assumption that 

Ar K for each r. Therefore . " satisfies (ii).

Finally, we show that satisfies (iii). By the above, it is clear that the 
subset Ka (Kb, resp.) of all the elements in K-Km-1 satisfying the condition 

(a) ((b), respectively) is open in K-Km-1. Hence, for an m-dimensional
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stratum S, both Ka (1 S and Kb (1 S are open in S. Assuming S connected, 

we have S-Ka (1 S=S° or S-Kb (1 S=Simg. El

For an element C e L(Rm X Rn, Rn), let C=(A, B) e L(Rm, Rn)XL(Rn, Rn).

DEFINITION 1.7. We define subsets EC J°(z), V C J1(z), and WC J1(r) as 

follows: In some (and hence every) natural vector bundle chart (a, a1Xa2, U) 

with r(a) e U (i=0 or 1),

a e E4==a°(a)=(x, 0) e (DmXDn)XRn

a e V 4 a1(a)=(x, 0, C) and the rank of C E L(RmXRn, Rn)•…n-1,

a E W 4 a1(a)_(x, 0, (A, B)) and B E L(Rn, Rn) has at least one eigen

value with real part zero.

LEMMA 1.8. (i) E is a closed submanifold of J°(z) of codimension n.

(ii) V is a closed subset of J1(r). Furthermore, V V° U V1 U• • U Vn-1 

where V0,•c, Vn-1 are submanifolds of J1(r) of codimension •†m+n+1.

(iii) W is a closed subset of J1(z). Furthermore, there is a Whitney strati

fi cation V of W such that (a) the union U Smax of all strata with maximal 

dimension is a dense subset of W; (b) if a1(a)=(x, 0, (A, B)) and the set of 

eigenvalues of B is contained in R(k), then a is contained in the codim (k-1)

- skeleton; and (c) U Smax is divided into two parts, U S° and U Simg of unions 

of strata such that, for a'(a)=(x, 0, (A, B))

a E S°=0 is an eigenvalue of B

a E Simg the eigenvalues of B includes a pair of non-zero pure imagi

nary numbers.

PROOF. (i) is trivial. (ii) and (iii) are obtained from Lemma 1.5 and 

Lemma 1.6, respectively, by choosing a vector bundle atlas on z1. • 

For a section Y E fr(M, F)=r (v), define a map 4: MJi(z), i=0,1, by 

4(x)=ji Y(x), x E M. Then, the map

given by Y'-~pY for Y E I r(r) is a Cr-i representation of mappings by Lemma 
1.4 (i).

LEMMA 1.9. (i) If p°Y is transverse to E in J°(z) then condition GO is 

satisfied.

(ii) If py is transverse to V=V° U ... U Vn -1 C J1(r) (i.e. 4 ffi V r for 

r=0,•c, n-1), then condition G1 is satisfied.

(iii) If 4 is of calss C2 and transverse to the stratification '#' (i.e, trans

verse to each stratum of 'W"'), then condition G2 is satisfied.
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PROOF. (i) If Cr map 4 is transverse to E, in symbol: 4 ffi E, then 
(4)_ 1(E)-_ ~Y is a Cr submanifold of M and the codimension of ~y is (dim M)
+(dim E)-(dim J°(z))=m, by [1, Corollary of 17.2]. Hence, GO is satisfied.

(ii) Since codim Vr•†m+n+1 and codim (pY) -1(Vr)•†m+n+1>dim M, 

it follows that 4(M) (1 Vr=q if and only if 4 Vr. Hence, Gl is satisfied.

(iii) Let 4 be of class C2 and 4 fi V'. By Mather [11, Corollary (8.8) 
and the proof], (4)* V _ S is a Whitney stratification of (4)1(W)c'. 
Here, (4)* V is the stratification which consists of strata {(4)-1(W1)} for 
every strata {Wi} of V. Then, by Lemma 1.8, s is the desired stratification 
in G2.

PROOF OF THEOREM A. (i) Put 'E={Y E T (r); pY ffi E}. We only 
need, by Lemma 1.9, to show ' E is open dense in I'r(r). Since p°: I'r(v)--~ 
Pr(z°) is a Cr representation of mappings and E is a closed manifold in J°(z), 
the openness of &E is obtained by Abraham-Robbin [1, Theorem 18.2]. To 

prove the density of !JE, we consider the evaluation map

defined by (Y, x)j0Y(x). It is of class Cr and transverse to any submanifold 

of J0(t), and hence to E, by Lemma 1.4. By [1, Theorem 18.2], ?E is residual 

if r>max (0, dim M-q) where q=(codimension of E in J0(z)). Since q=n in 

our case, ?E is residual if r•†m. Even if i•…r<m+1 we can prove the dens

ity of E by the same argument of [l. p. 98, Proof of 30.1] using the densities 

of 'E in l m+l(2) and l m+l(r) in f r(T).

(ii) We recall that V=V° U V, _ 1 by Lemma 1.8. Put'={Y e 

4 ffi V5, j=0, , n --1}. We only need, by Lemma 1.9, to show Q!I Y is 

open dense in I'r(z). The evaluation map ev1: pr(r) X M--J1(v) is Cr-1 and 

transversal to any submanifold of J1(z). We have codim V0m+n+1 in 

J1(r). Hence, we can show the density of ~v in Jr(r) as above if r-1>

max (0, m+n-codim V), i.e. r•†2. Since V is closed and j(M) (1 V=¢ if and 

only if j(M) V, then the openness of ~y holds by [l, Theorem 18.1].

(iii) Let' be the Whitney stratification on W obtained by Lemma 1.8

 (iii). Put I,,,={Y E c(r(M; F): 4 *}. Since r•†3 is assumed, we have 

by Lemma 1.9, (iii). Now we prove that JW is open dense in Jr. 

Since the strata of *• are submanifolds of J1(v) with codimension •†(codim E)

+1=n+1 we can show as above that cYJ ~ is residual in ~Jr if r-1>

max (0, m-i), i. e. r•†m+1. Even if 3•…r•…m ~W is residual as above.

To show the openness of QI/~, let Y E ~w. For x e M, either of the fol

lowing is satisfied.

(1) j1 Y(x) c W,
(2) j1 Y(x) e Wand 4 ft W2 at p=j1 Y(x), where Wi is the stratum of V
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containing a. Let Y•L be an element of ~r which is sufficiently close to Y. 

If case (1) is satisfied then j1 Y'(x) e W, since W is a closed subset of r by 

Lemma 1.8 (iii). In case (2), let W2 be the stratum of ',V containing a. Let 

j 1 Y'(x)=a'. Then we may assume that a' e W2 or a'€ W1 where W1 is a stra

tum such that W2<W1. If a' E W2, then pY, ffi W2 at a' since W2 is a manifold 

and Y' is sufficiently Cr close to Y. In case of a' E W1, let a E W,C W1. For 

an open neighborhood U of a in W1 let

TU is a subset of Grassmanian of (dim W2)-planes. If U1 U2 • • • Uz 
 a is a sequence converging to a, then T U1 T U2 • . • T U,  • • . 

The set fl i TUi is nonempty since for a sequence {a,},=1,2, „ with ai E U, (hence 
a,--a) there is a subsequence {a} ~such that {T,W,} Qconverges to a plane. 
Let T be any element in (12 T U,. By Whitney's Condition (a) the plane T 
includes the tangent plane TQ W2 of W2 at a. It follows that, if pr ffi 142 at a 
and Y' is sufficiently close to Y, then p1 ffi W1 at a'=j1 Y'(x), where W1 is the 
stratum containing a'. Therefore, if j1Y(x) satisfies (1) or (2) then j'Y'(x) 
does also.

By the well known argument (e.g. [1, 18.21), the openness of Qi,, is shown 

if M is compact. We can extend this to noncompact case by the argument 
of Peixoto [14, §5].

§2. Thom-Boardman singularities modulo foliation

In this section, we will define a jet space modulo foliation. After this 

we will explain Thom-Boardman's singularities by the translation into our 

jet spaces modulo foliations.

DEFINITION 2.1. Let F be a smooth foliation on M. Suppose f, g: LM 

are Ck maps with f(p)=g(p)=q. f is said to have kth order contact modulo 

F with g at p if, for some (and hence for any) chart (U, aiXa2) of F with 

q E U given by (1,1), a1 o f: L-±Dm has kth order contact with ai o g at p. This 

is written as f' kg mod F at p. Let Jk(L, M; F)p,q, k•†1, denote the set of 

equivalence classes under "  k mod F at p" of mappings f: L-~M where 

f(p)=q. Let

Let

(disjoint union). We call Jk(L, M; F) a jet space modulo F. An element a
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in Jk(L, M; F) is called a k-jet modulo F of mapping from L to M. Let a be 
a k-jet modulo F, then a e Jk(L, M; F)p,q for a (p, q) E LXM.

For manifolds L, M and a foliation F on M, Jk(L, M; F) has a smooth 

manifold structure. Moreover, the mapping

(2.1)

defined by Ira (a)=(source of a, target of a) is a smooth fiber bundle.
Let 2rL: LXML and lrM: LXMM be natural projections. Then rrkL=

7rL o it and ire=?rM o ~co are bundle projections;

If k•†h, we have the canonical bundle projection

(2.2)

by restricting the order of jets.
The bundle atlas for a jet space modulo foliation is essentially same as 

the usual jet space of mappings (see [5]). In fact, a jet space modulo folia

tion is locally same as a usual jet space of mappings in the following sense. 

Let Jk(U, V, Fy) be a local subbundle of Jk(L, M; F) and 8: VDm•~Dn a 

foliation chart. For a point (x, y) e DmXDn, let vm=p-1(Dmx{y}) and Vn=
-1({x} X Dn)

. V n is a plaque of F and V=Vm•~Vn. Recall that Jk(L, N)=

U (x, y) E L X N Jk(L, N)x, and Jk(L, M; F)=U (x, y) E L X M J' (L, M; )x, y. There is 

a bijection, Jk(U, V;Jk(U, Vm)x,p(y). Here, the latter jet space is the 

space of jet of the mappings U-}V composed by the projection p: V=

Vm•~VnVm. Furthermore, this is a bundle isomorphism between the fol

lowing bundles

or (naturally defined)

This remark indicates that our jet spaces modulo foliations follow the 
J. M. Boardman's theory [2] on the usual jet spaces of mappings, because the 
essential part of [2] is the discussion on the local jet bundles. [2] is a gener

alization of Levine [10].
We will translate the definitions and the main theorems of [2] into our 

situation.
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Let ih be the bundle projection of (2.2). We have the inverse limit of 
the finite jet spaces

and the projection

We give J(L, M; F) the inverse limit topology, which has (2rh)(U)-1as the 
basis, where h is finite and U is open in Jh(L, M; F). We give Jh(L, M; ) 
the limit differential structure as follows:

A function b: UR, where U is open in J(L, M; F), is called smooth if 
it is locally of the form ?IT 0 1rh, where P is a smooth function on some open 
subset of Jh(L, M; F). By this definition of smoothness we have a differ
ential manifold structure on J(L, M; F), (see Chevalley [3, Chap. III, §1]).

For a Ch mapping f: LM, a jet extension (or jet section)

is defined by stipulating that jn f (x) is the h-jet mod F of f at x e L. The 

mapping

is naturally defined and is smooth, if f is smooth.

Let f: LM, and let U be an open neighborhood of f(p) e U such that 

a1Xa2: UDm•~Dn is a chart of F. We define the kernel of 1-jet, j1 f (p) e 

J1(L, M; F), by

where dp(a1 of) is the differential of the mapping a1 of: VDm from a neigh
borhood V of p in L. Kerj1 f (p) does not depend on the choice of chart 

(a1Xa2, U)•
Let Q be a submanifold of Jh(L, M; F) and h be finite. The only sub

manifold of J(L, M; F) we consider are those of the form rcnl(Q). These 
submanifolds have finite codimensions. The transversality of a jet section jf 
to such a submanifold means that of ihf to Q.

We take fixed manifolds LL, Mm+n of dimensions 1, m+n respectively 

and a foliation F on M of codimension m.

PROPOSITION 2.2 (J. M. Boardman [2, Theorem (6.1)]). For each sequence 

I=(i1, i2,•c, ik) of integers, the submanifold (not necessarily closed) 2I of the 

N jet space modulo foliation J(L, M; F) is defined. 2' has codimension vI,
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where the number vl is defined below (2.3). In fact 2' is the inverse image of 
a submanifold of Jk(L, M; F) having codimension vl. The set 2' is empty 
unless I satisfies

a) it•†i2•†•c•†ik-1•†ik•†0,

b) l•†il•†l-m,

c) if i1=l-m, then i1=i2=•c=ik.

PROPOSITION 2.3 (J. M. Boardman [2, Theorem (6.2)]). If f: LM is a 

map whose jet section jf: LJ(L, M; F) is transverse to 2I, then which 
is defined as (jf)-1(21), is a submanifold of L having codimension vI. If I, j 

denotes the extended sequence (i1, i2,•c, ik, j), we have

Also, when I=cii, 2'(f)={p e L: dim Kerj1 f (p)=j}.

PROPOSITION 2.4 (J. M. Boardman [2, Theorem (6.3)]). Any map f: LM 
may be approximated in the C°° sense by a map g: LM, whose jet section jg: 
LJ(L, M; F) is transverse to all the submanifolds 2I.

This proposition can be slightly modified as follows by observing the 

proof of [2, Theorem (6.3)].

PROPOSITION 2.4•L. Any map f: LM of class Cr+1 may be Cr+1 approxi

mated in the Cr+1 sense by a map g: LM whose r-jet section jrg: L

Jr(L, M; F) is transverse to all the submanifolds 2il'"''1s, 1•…s•…r.

The number vI is defined in [2] as follows for the sequence I=(i1, i2, •c, ik) 

satisfying i1•†i2•†•c•†ik•†0. (We need consider only this case, by a) of 

Proposition 2.2) Define a(I) as the number of sequences (j1, j2•c, jk) of 

integers that satisfy

 a) jl•†j2•†•c•†jk>0

b) ir•†jr•†0 for all r (1•…<r•…k), and j1>0; 

then define

(2.3)

For example, in the case k=1 we have ,u(i)=i and hence the codimen
sion of 2z in J(L, M; F) is (m-l+i)i, which agrees with the codimension of 
Lm-i in L(Rl, Rm) obtained in Lemma 1.5, In the case k=2 we have da(i, j)=
i(j+1)-j(j-1)/2, so the codimension of Vii, in J(L, M; F) is given by
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We call 2' the Thom-Boardman submanifold of J(L, M; F) associated 
with Thom-Boardman symbol I.

Let ~r(L, M) be the space of all smooth mappings with Whitney Cr 
topology.

PROPOSITION 2.5. The maps f: LM whose jet section if: LJ(L, M; F) 

is transverse to all the submanifolds 2, , l-m•…i•…1, make up an open and 

dense subset of cr(L, M), 2<rc oo.

PROOF. If r=00 the density is mentioned in Proposition 2.4. Since 
N) is embedded in cr(L, M) as a dense subset, the density holds for all 

2<r~oo. Let

By the definition of 2' ([2, (2.7)]), we see that 2i is defined by 2=('r1)2. By 

Lemma 1.5 the subdivision of J1(L, M; F) by 2i induces a Whitney stratifica

tion S. Then, by a similar argument as (iii) in the proof of Theorem A, we 

see that the set off with f f ~~ S is open dense in Cr(L, M). • 

§3. Another generic property

In this section we will show that the property of X having a fine posi
tion in the sense of Thom-Boardman is generic in fr(M, F).

Let (M, F) be the pair consisting of a manifold and a foliation on it as 
before. Let ~Y be the set of all equilibrium points of Y and c: ~'-~M be the 
inclusion map.

DEFINITION 3.1. The following is a property for Y E ~r(M, F).

G2•L: The vector field Y has the property G0, and the 1-jet section fit: 
 ' -*J'

, l(M; F) is transverse to (ir1)1 for all Thom-Boardman submani

folds 2i of length 1 symbol. Here, irk: J(EY, M; F )-J1(E , M; F) is the 

natural projection.

THEOREM B. Let be the set of all Cr vector fields tangent to F satis

fying G2•L. Then, &' is an open subset of (&Ir(M, ), if 2•…r•…oo.

We will show a lemma for the proof of Theorem B.

Let M and N be smooth manifolds with finite dimensions, and W a 

closed submanifold of N. Let f: MN be of class Cr, r•†1, satisfying f ffi W. 

Then W f=f-1(W) is a closed Cr submanifold of M. There is a total tubular 

neighborhood of class Cr of Wf in M by Munkres [13, Theorem 5.5] and Lang 

[9, IV §5, VII §3, 4]; this implies that we have an open neighborhood T of 

Wf in M, a surjective Cr map ~: TWf, and a vector bundle structure on ~.
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LEMMA 3.2. There is an open neighborhood K of f in ~fr(M, N),1•…r•…oo, 

such that, for g E 'V, Wg=g-1(W) is the image of a Cr section Eg of r; i.e., 

Wg=eg(W f). Moreover, eg depends Cr continuously on g. That is, if g•Lg 

in ~i r(M, N), then eg,-*eg in the section space f r().

PROOF. The first statement is included in a lemma of Abraham-Robbin 

[1, Lemma 20.3], in case of compact M; but the non-compact case follows 

from the proof of [1]. For the last statement, we recall the proof of this 

lemma: Let ||•E|| be the Finsler of T associated with a Riemannian metric on 

z. There is an atlas of i which consists of vector bundle charts {(a, ao, U)} 

of i where U is an open subset of Wf and a: i-1(U)-+ao(U) X Fa (Fa is a 

normed space with the norm ||•E||) such that l v i { H i a(v) { i a for v E i -1(U). Let 

t: MR be a real valued function such that t(x)>0 for every x E M. Define

and define B0(U)=Bt f i-1(U). We may assume that U is closure compact, 
then there is a real number d>0 such that the set

is included in Bt(U). Then, for the above chart (a, ao, U), we have a(Bd(U))=

a0(U)XBad, where Bad is the open ball in Fa about the origin with radius d. 

Choose a chart (V, p) in the manifold N at f(x) such that f(x) E V, ~(V)=

V1•~V2 where V1 and V2 are open neighborhoods of the origin in Banach 

spaces Fl and F2 respectively, 13(f (x))=(0, 0), and p(V (1 W)=V1X{0}. Sup

pose f (U) C V. Let iV be a sufficiently small neighborhood of f in c (M, N). 

For g E iV we define a map

by

for u E ao(U), e E Bad, where pr is the projection V1•~V2V2 on the second 

factor. Since f ffi W, the differential Dcp f(u, e) is surjective. Hence for each 

g E "V, Dcpg(u, e) is surjective. Define

by cDg(u, e)=(u, cpg(u, e)) for u E a0(U) and v E Bad. Then Dcbg(u, e) is a linear 
isomorphism. By the inverse function theorem (Lang [9, p.12]), we have an 
inverse map ~g 1: image g-~ao(U)XBad of ~g (making a0(U) and Bad smaller 
if necessary). For (w, v) E image bg C ao(U)XV2 let b (w, v)_(h1(w, v),
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h2(w, v)) E a°(U)XBad. Since cbg(u, e) e a°(U)X{0} if and only if g o c 1(u, e) E 
W, we may assume that the image of h2(w, .) contains the origin of Bad for 
each w E a°(U). Define h: a°(U)-Bad by h(w)=h2(w, 0), for w e a°(U). Then 
);1(w, 0)=(w, h(w)). Define eg: WfE by

for sufficiently small vector bundle chart (a, a°i U) with x e U. ,eg is the de
sired section.

If g•Lg in ~r(M, N), the bg,-±~g and g1--}fig 1. Therefore we have 

,eg, g. 

PROOF OF THEOREM B. Let*(, M; F) denote the subset of M) 

which consists of all mappings f: ?-M such that f f 2z for the Thom
- Boardman manifold 2i for every symbol i of length one. Let E C J°(z) be the 

submanifold of Definition 1.7. By Theorem A and the proof, the set

is open and dense in fr(M; F), and if Y E °i then ~y=(4)-1(E) is a closed 
smooth submanifold of M. Suppose Y e°. If Y' converges to Y in 
~r(M; F), then 4, converges to 4 in P (v0) which is the space of the sec
tions of r°: J°(z)M. It implies that 4 converges to 4 as mappings M-
J°(z). Let z: T-~Ey be a tubular neighborhood of .~yCM. By Lemma 3.2, 
there is an open neighborhood 4' of p° in f'r(z°) such that if 4, e 4', then 
~y, is the image of a Cr section y, of i. Suppose Y e 13. Since M; F ) 
is open in r(~y, M) by Proposition 2.5, and the inclusion map ~: JM is 
contained in *(~y, M; F), then we have a neighborhood la' of Yin "(M; F) 
such that, if Y' E Qa', then y, E T~ C(~y, M; F), by the last statement of Lemma 
3.2. This implies that the maps,: ~'y-M satisfies j1Y(~ 2i for every i. 
Since images _ ~'y,, then by the construction of 2i in [2], we see that the 

N inclusion map t': Ly,--M satisfies j1~'.~j 2i if r•†2, and we have Y' E ~Y2,. 

Therefore, ~J2' is open.

We consider another property for Y.

DEFINITION 3.3. GB: Y has the property Go, and the k-jet section jkc: 
~y-Jk(G y, M; F) is transverse to (?rk)-12I for all Thom-Boardman submani

fold 2' of length k symbol I, where Jrk is the natural projection of J(Ey, M; F) 

onto Jk(~'y, M; F ), k=1,•c, s.

THEOREM C (Density theorem). Let CBs be the set of all Cr vector fields 

tangent to F satisfying GB. Then, q$S is a dense subset of r(M, F) for 

s+1•…r<oo. Especially &' 2, is a dense subset for 2<r<oo.
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For the proof, we show a lemma. Let Pr(M) be the space of all Cr 

diffeomorphisms on M with Whitney Cr topology.

LEMMA 3.4. Let W be a closed submanifold of M and let z: TW be a 

tubular neighborhood of class Cr of Win M,1•…r•…co. For any neighborhood 

,iV of the identity in r(M) there exists a neighborhood K0 of the zero section 

of z in .rr(Z) and a continuous mapping: JY 0---~ iV such that b(f) I W=f and 

ti(f)=id on M-T for every section f in iV'0.

PROOF. Let {(a, a0i U)} be the atlas of z, associated with the Finsler, 

defined in the proof of Lemma 3.2. Let z*: T*W be an open disk bundle 
such that T* C T and r* i ( T*. Moreover we assume that

(3.1)

where B(tax) is the open ball in Fa about the origin with radius tax and that 
the mapping x-+tax is of class Cr. We take a continuous function s: TR 
such that c(x)>O if x e T * and (x)=0 if x T*. Let g: TT be a bundle 
map such that i o g=i. We can take e such that it satisfies the following: If

for every chart (a, a0, U) and every x with i(x) e U, where Ii' hr is the Cr norm 
of a0(U)XFa, then the trivially extended map g is contained in K. Here, g 
is defined by g(x)=g(x) if x e T and, =x if x e T. For a continuous function 

5 : WR with 5(x)>0 for any x e W, we define 4/'(S) c l r(Z) to be the set of 
all Cr sections f: WT satisfying

for every chart (a, a0, U) and every x e U, where pr is the natural projection 
a0(U)XFa ±Fa and II Ihr is the Cr norm of the sections of a0(U)XFa-±aa(U).

Let co: RR be a bump function such that

(1) 0<co(t)<_1,dteR,
(p(O)=1; co(t)=0 if t e (-1,1)

(2) co is of class Cr, l<r<oo, and there is a constant b>0 such that

(If r=oo, there is no such bump function.)
We define b as follows. For a chart (a, a0, U), let x e U and y e v 1(x). 

For f e .K (o), we have

a o f(x)=(a0(x), vx), where vx=pro a ° f(x) e Fa,

a(y)=(a0(x), v), v e Fa.
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Let tax be the radius of aQ *)-1(x)) in (3.1). Then, li is defined by

0(f) is well-defined and of class Cr, since cp(s) v 1 tax)=0 for every v E T-T*. 
Since the derivatives of ~o are bounded, we can take o such that, for any x, y 
with y=z(x), if

then

This implies that if f e 47(o), then 0(f) e K. Obviously, if f•L e f(v) is a Cr 

approximation of f, then 0(f') is a Cr approximation of 0(f); so that 0 is con

tinuous. Therefore, K0='V0(o) is the desired one.

PROOF OF THEOREM C. Let Y e ~r(M, F). Y is Cr approximated by Y 
of class C°°. Then, ~T is a C°° manifold. By Proposition 2.4, the inclusion 
map c: ~ M is C°° approximated by f: ~YM such that the jet section if: 

J(, M; F) is transverse to all the Thong-Boardman submanifolds ~'. 
By the lemma 3.4, there is a Cr+1 diffeomorphism F: MM such that 
F t ~Y =-f and that, if fc in Cr+l(2 ?, M), then Fidentity in ~r+l(M). Let 
?rF: TMTF be the orthogonal projection. We define a vector field Y' e 
q/r(lJ F) by

Let c': 2? ,-M be the inclusion map. Since I=f(?), ~'then jc' ffi ~I for all 

Thom-Boardman manifolds 2I. Hence, by the definition of this transversality 

in section 2, Y' satisfies GB. Clearly, we can take Y•L arbitrarily Cr near to 

Y. • 

§4. Boundaries of normally hyperbolic domains

Let (M, F) be as before. We define a Whitney stratification of the jet 
bundle J1(r) of sections of r: T(F)M, as follows. Let (x1, a1Xa2, U) be a 
i-jet chart on r1: Ji(z)M given by (1.4), i=0, 1. For each a e J1(r ), let

(4.1) 
and
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similarly as the representation of (1.4). Define

(4.2) rank

By Lemma 1.5 we have; ~z is a submanifold of J1(z) with codimension n+i2, 

and {2}, z2_o...,n induces a Whitney stratification of J1(z).
Denote 2(Y)=(j1 Y)-1(2z) and 2I(Y)=(j1c)-1(21) for Thom-Boardman 

symbol I.

THEOREM 4.1. Let Y E fr(M, F), r•†2, and c:~'1M be the inclusion 

map. Then, we have the following.

(i) Under GO and G1, ~'z( Y)=~i(Y).
(ii) Let p e 21°°(Y). Under BG2, there exist coordinates of class Cr-i 

x1,•c, xm centered at p in ~Y and yi,•c, ym, z1,•c, zn centered at p in M, 

such that (a) z1,•c, zn is the coordinates of a leaf of F, (b) in these coordi

nates c: X M is given by

yi=x1,•c, ym-1=xm-1, ym=x2m

, zi=xm, z2=•c=zn=0.

PROOF. (i) Let p e ~'. Since dim ~Y=codim F by GO, the condition 
G1 implies

Let B E L(Rn, Rn) be the one given by (3.1). Then we have

Therefore, p e ~ (Y) if and only if p e ~J'(Y).

(ii) Since j1c ff11 and j1(c 1) has full rank at p by Proposition 2.3, then 

p is a fold point (Golubitsky-Guillemin [5, p. 87 Definition 4.1]). Then, by [5, 

p. 88 Theorem 4.5], we have (iii) obviously. • 

Next, we study the bifurcations of Y at Suppose that dim M=

m+n, codim F=m, and Y is class Cr, r•†3. Let p be a point in the boundary 

61 of 1. . Assume that there is a neighborhood N of p in a~Y such that N 

is an (m-1) dimensional manifold. Let a1Xa2: UDm•~Dn be a chart of F 

such that (a1•~a2)(p)=(0, 0), (see (1.1)). Let I be a segment in Dm parame

trized by p such that p=0 indicates the origin of Dm.

Assumption: L (a1Xa2)-1(IXDn) is transverse to both 1 and N in M.
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DEFINITION 4.2. Under the above assumption we say that Y has saddle

node bifurcation at p e if there is an segment I as above satisfying the 

following: The smooth curve L f ~Y is tangent to Lo at p, ~Y (1 L~ _ q if 4a<0, 

and ~Y (1 L consists of two points, p~ and p if p>0. Furthermore, Y is hy

perbolic at p and p~. The dimensions of the stable manifolds at p~ and pµ 

are k and k-1, respectively, 1•…k•…m. See Figure 1.

Figure 1.

DEFINITION 4.3. Under the above assumption we say that Y has Hop f 

bifurcation at p e if the following holds for every segment I C Dm as 
above: There is a unique 3-dimensional center manifold C (see Guckenheimer

- Holmes [6, p. 127]) containing L f ~Y=( U L) f ~Y and a system of coordi
nates (x, y, p) on C (with (x, y, p) e L for a fixed p) for which the Taylor 

expansion of degree 3 of Y on C is given by

which is expressed in polar coordinates as

See Figure 2. Consequently, if a~0, there is a surface of periodic solutions 
in C which has quadratic tangency with the eigenspace of A(0), ~(0) agreeing 
to second order with the paraboloid p_(a/d)(x2 -F y2). If a<0, then these 
solutions are stable limit cycles, while if a>0, these are repelling. (See [6, 
Theorem 3.4.2].)
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Figure 2.

We want to see how these bifurcations arise in our global situation with 

respect to the stratifications which we have defined.

Let Sk be the k-skeleton of the stratification S defined in G2. Let sk 

be the k-skeleton of the stratification S on ~Y induced from Thom-Boardman 

singularities 2i(Y)_(j~)-1(2i), i=0, 1,•c, m. We have Sk=2m-k(Y) U 

2m-1(Y) U U 2m(Y). Under Gi, we have sk D S k and a1h by Theorem 

4.1 (i) and the definition of s. Moreover, we have that an (m-1) dimen

sional stratum of S'° is included in an (m-1) dimensional stratum of S. For 

the sets defined in G2, we observe

and

Denote by (a) f the set of fold points in

THEOREM D. Let Y E r(F), r•†3. Under G1, G2, and GB2, there is an 

open dense subset (aXY)f U (0)img of the boundary a~Y of the normally hyper

bolic domain ~Y such that Y has saddle-node bifurcation at each point of 

(a~)f and has Hop f bifurcation at each point o f (a~Y)img

PROOF. By definition of (a~Y)0, we have (aE )0C 2z(Y). By Theorem 4.1. 

(i), we have 2(Y)=21(Y). Since 21,0 is open dense in 21 by Proposition 2.2 
and (2.3), then (aIY)f is open dense in (aE)0.

Let p e (a~7)f. Let (x1,•c, xm) and (y1,•c, ym, z1,•c, zn) be the coordi

nate systems centered at p for ~Y and M, respectively, given by Theorem 4.1.
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(iii). For an interval I c R containing 0, let p e I. We define

(4.3)

L=U pe i Lp is coordinated by (p, z1,•c, zn), and for these coordinates, we have

(4.4)

Hence, L (1 ~7 is tangent to Lo at p, ~Y (1 L~ _ ~i if p<0, and ~Y (1 L~ consists 
of two points, pi and P2 if p>0. Y~ =Y I L is hyperbolic at both of Pi and p2, 
since these points are contained in . By the definition of 2z and the trans
versality of 71 Y with 2, , it is ovbious that the difference of the stable dimen
sions of pi and P2 is just one. Therefore, Y has saddle-node bifurcation at 
any point of (d), f which is open dense in (dE)0.

Let p E (aL)jg mand Lo be the leaf of F containing p. Since the differ

ential of YILo at p does not have zero eigenvalue by the definition of 

(a~1)img in G2, it follows that p 2(Y)=2i(Y) (Theorem 4.1) for any i*0. 

Hence, for a small neighborhood U of p in ~Y, the composition (pr) o (aiXa2): 

UDm•~DnDm is a diffeomorphism. This implies that we can take a seg

ment I in U instead of a segment I c Dm (in Definition 4.3). Point p is con

tained in an (m-1) dimensional stratum Simg c (a~Y)img of S. Let I c ~Y be 

an open segment which is transverse to Simg at p. Let p be a parameter of I 

such that p=0 at p. Let L,. be the leaf of F U passing through p E I. The 

derivative of Y I L0 at p has a smiple pair of pure imaginary eigenvalues and 

no other eigenvalues with zero real parts. Let ,(p), ~(u) be the eigenvalues 

of the differential of YIL at p E I which are pure imaginary at p=0. 2(p), 

gy(p) vary smoothly with p. Moreover,

by the transversality I Simg and the definition of (aG p)img, (cf. the proof of 
Lemma 1.6). Then, by Guckenheimer-Holmes [6, Theorem 3.4.2], Y has Hopf 
bifurcation at p.

Since (a~) f U (a~ )img is open dense in a~Y, the theorem is proved. • 

Let X be a Cr vector field on an open set U in Rn, let co be the flow of X, 
and let p E U be an equilibrium point of X. Suppose that the eigenvalues 

~n-1 of DX(p) satisfy that 20=0, • • •, 2n _i<0. Let Ec and ES be 
the generalized eigen spaces of 20 and 2, , • • • , 2_i, respectively. By center 
manifold theorem (Chow-Hale [4, Theorem 2.2] and Guckenheimer-Holmes 

[6, Theorem 3.2.1]), there are an invariant Cr manifold WS(p) (called the 
stable manifold) tangent to Es at p and a Cr manifold Wc(p) (called the (local)
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center manifold) tangent to Ec at p. Wc is locally invariant in the sense that, 
if q e Wc and ~ot(q) E U, then ~t(q) e Wc. Ws is unique, but Wc need not be. 
Wc is asymptotically stable in the sense that if t>0 and ~L9t(q) remains defined 
in Ufor all t>0, then as too (Chow-Hale [4, Theorem 2.13]).

Let cot be the flow associated to a vector field on a manifold. The subsets

and asas

are called the stable set and the unstable set of p, respectively.

Let ~Y denote the normally stable domain of ~Y (see Definition 1.4). Letand

THEOREM E. Suppose a vector field Y E fr(M, F) satisfies Gi, G2 and 

GB2. Let p e (aE f. Then, there is an open neighborhood U of p in M, and, 

denoting by Lp the connected component of a leaf of F U containing p (i.e. a 

plaque of F), there is a Cr embedding hp: LpR1•~Rn-1 such that the follow

in are satisfied.

(i) Wt(p) fl Lp c hp 1({0}•~Rn 1) and Wc(p) fl Lp c hp 1(Rtx{0}), where 

W 8(p) and Wc(p) are the stable and center manifolds of Y restricted in a leaf, 

respectively.

(ii) V s(p) (1 Lp c hp 1([0, oo) X Rn 1) and V u(p) (1 Lp c h;'((-oo, 0]X{0})
c Wc(p), where Vs(p) and Vu(p) are the stable and unstable sets of p, respec

tively (Figure 3).

(iii) The Cr embedding hp depends Cr-1 continuously on p So 
that, the unstable set

is an injectively Cr-1 immersed submanifold of M, where Vu(p) is an injectively 
Cr immersed submanifold of M.

Figure 3.
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PROOF. (i) is obtained easily from center manifold theorem. To show 

(ii) let L be the plaque defined by (4.3) and let I be an interval with 0 e I C R. 
Then, L=U 51L is a Cr-1 manifold. By center manifold theorem, we have 
a two-dimensional center manifold Wc(p) at p of YIL. Let U be a small 

neighborhood of p in L. Let h: UR1•~Rn-1•~I be an embedding such that 

h(q)=h(q)•~{0} if q e L0 (=L) and h(q) e R1•~Rn-1•~{p} if q e L y.

Since YIL has saddle-node bifurcation at p, there are two hyperbolic 

points pu and p~ of YL near p. We assert here that these points are con
tained in Wc(p). In fact, let cot be the flow of Y. Since Wc(p) is asymp
totically stable, we have 1(q)-Wt(p) as too, if cpt(q) e U for any t>0. 
Especially, if q e L, then cpt(q) ~Wc(p) (1 L. Let W(p) and Wu(p) be the 
stable and unstable manifolds at p of Y L, respectively. If p W c(p), then 
we have 1(p)-Wt(p) (1 L, for t0. Since p is a fixed point of cot, this is a 
contradiction. Therefore, we have i e Wt(a). and similarly for ps,.

We identify U by h with an open set of R1•~Rn-1•~I containing the 

origin. Let E, and E, be the generalized eigenspaces of the eigenvalues 

with negative real parts and zero of (DY)p, respectively. Since Ep={0}•~

Rn-1•~{0} and Ep R1•~{0} X {0}, we have W t(p) L for each E I by taking I 

smaller if necessary. Hence. Wt() (1 L is a Y-invariant Cr curve.

The unstable manifold T (p) of Y L is included locally in W t(p) (1 L~. 
In fact, this is obtained from the fact that the Y-invariant 1-dimensional 
manifold Wc(p) (1 L~ is transverse to the (n-1) dimensional stable manifold 
W'(p) of Y L at p~. We can easily see that p is a sink in. W t(p) (1 L5.

For each point q in one component Wc+(p) of Wc(p)-{p}, we have cpt(q)p 
as too; and for each point q in the other component Wc-(p), we have co(q)p 
as t=oo. This is shown as follows. The 2-dimensional manifold Wc(p) is 
cot-invariant. If p>0, there are only two equilibrium points p~ and p in

Figure 4.
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Wc(p) (1 L~ such that p~ is a sink and p is a source of Y T (p) fl L~. If p<0, 
there is no equilibrium. By the continuity of cot the above facts are obtained. 

(See Figure 4.) Hence, by Chow-Hale [4, p. 324], we have the property (iii) 
of the lemma.

For (iv), we recall that (aEY)t is a manifold of class Cr-l. Then, the Cr-1 

dependence of Wc(p) on p is obvious by Chow-Hale [4, Theorem 2.1]. • 
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