Japan. J. Math. Vol. 12, No. 1, 1986

Vector fields tangent to foliations*

By Gikō Ikegami

(Received February 4, 1985)

§0. Introduction

For constrained differential equation of the form

(0.1)
$$\begin{cases} \dot{x} = f(x, y) \\ 0 = g(x, y) \end{cases}$$

 $x \in \mathbb{R}^{m}$, $y \in \mathbb{R}^{n}$, the equation

(0.2)
$$\begin{cases} \dot{x} = f(x, y) \\ \varepsilon y = g(x, y) \end{cases}$$

is considered in singular perturbation theory. As an attempt to globalize the local product structure $\mathbb{R}^m \times \mathbb{R}^n$, Takens [15] considered fiber bundle structures. For the generalization of equation (0.2), it is natural to consider the vector field $X + (1/\varepsilon)Y$. To the equation 0 = g(x, y) of (0.1), correspond the set, Σ_Y , of the equilibria of Y.

In this paper, we study the generic properties of Y on the neighborhood of Σ_{Y} . Let $\mathscr{Y}^{r}(M, \mathscr{F})$ be the space of all C^{r} vector fields Y tangent to \mathscr{F} with Whitney C^{r} topology. In section 1, properties G0, G1, and G2 are defined (Definition 1.3), and it is shown that there is an open dense subset of $Y \in \mathscr{Y}^{r}(M, \mathscr{F})$ which satisfies G0, G1, and G2 (Theorem A).

In section 2, the singularity theory of Thom-Boardman is translated into, so called situation, *jet spaces modulo foliation* \mathscr{F} of mappings from a manifold into M. This jet is defined by contant of mappings modulo leaves (definition 2.1).

In section 3, we show the genericity in $\mathscr{Y}^{r}(M, \mathscr{F})$ of vector fields Y such that the jet of the injection $\iota: \Sigma_{Y} \to M$ is transverse to the Thom-Boardman submanifolds with respect to jets modulo \mathscr{F} . (Theorem B and Theorem C).

In Definition 1.3 of G2, a stratification \tilde{S} of Σ_{Y} is defined. Another stratification \tilde{S} of Σ_{Y} is induced from Thom-Boardam stratification of order two, if Y has the property GB₂: the jet of $\Sigma_{Y} \longrightarrow M$ is transverse to Tohm-

^{*} Dedicated to Professor Itiro Tamura on his 60-th birthday.

Boardman submanifolds of length one and length 2.

Saddle-node bifurcation and Hopf bifurcation are well known as typical codimension one bifurcations of equilibria (e.g. [6]). Theorem D in §4 shows how these bifurcations arise in our global situation with respect to the stratifications S and \tilde{S} . S is defined by using only the first derivatives of Y. But, saddle-node bifurcation does not occur under the condition stated only in terms of the first derivatives. As another condition we take the second derivatives modulo \mathscr{F} of the inclusion map $\Sigma_r \longrightarrow M$: while J. Guckenheimer-P. Holmes [6, Theorem 3.4.1] has taken the assumption for the second derivative of the vector field Y. For this purpose, we use the stratification \tilde{S} . In the study of constrained equations or constraint systems, it is natural to consider Thom-Boardman singularities, (e.g. [17], [15], or [8]).

Let Σ_Y^s be the normally stable domain in Σ_Y^n . Theorem E determines the qualitative structure of Y near point $p \in \partial \Sigma_Y^s$ at which Y has a saddle-node bifurcation. Especially, the unstable set $W^u(p)$ of p is the image of an injective immersion of the half line $[0, \infty)$. This property is used in the study of singular perturbations in higher dimensional spaces [8].

§1. Generic properties

In this paper M is a smooth (C^{∞}) manifold with dimension m+n, and \mathscr{F} is a smooth foliation on M with codimension m. \mathscr{F} is a disjoint decomposition of M into n dimensional injectively immersed connected smooth submanifolds (leaves) such that M is covered by C^{∞} charts (foliation boxes)

$$(1.1) \qquad \qquad \alpha_1 \times \alpha_2: \ U \longrightarrow D^m \times D^n$$

and $(\alpha_1 \times \alpha_2)^{-1}({x} \times D^n) \subset$ the leaf through $(\alpha_1 \times \alpha_2)^{-1}(x, y)$, $y \in D^n$, where D^m , D^n are open sets in \mathbb{R}^m , \mathbb{R}^n , respectively, and $\alpha_1 \times \alpha_2$ is a smooth diffeomorphism. We call $(\alpha_1 \times \alpha_2)^{-1}({x} \times D^n)$ a plaque.

Let $\tau: T\mathscr{F} \to M$ be the subbundle of the tangent bundle $TM \to M$ such that the fiber $\tau^{-1}(x)$ is *n*-dimensional vector space which is tangent to the leaf of \mathscr{F} through x. A natural vector bundle chart on τ is a triple $(\alpha, \alpha_1 \times \alpha_2, U)$ where $(\alpha_1 \times \alpha_2, U)$ is a C^{∞} chart on $(M, \mathscr{F}), \alpha: \tau^{-1}(U) \to (\alpha_1 \times \alpha_2)(U) \times \mathbb{R}^n$ is a bijection $(C^{\infty}$ diffeomorphism), and the diagram

commutes. Here, the right-hand map is the natural projection. We sometimes denote $\tau^{-1}(x)$ by $T_x \mathscr{F}$.

Let $Y: M \to T\mathscr{F}$ be a C^r section of the vector bundle τ . Y is also a C^r section of the tangent bundle $TM \to M$. We call such a section a C^r vector field on *M* tangent to the foliation \mathscr{F} . Denote by $\mathscr{Y}^r(M, \mathscr{F})$ the space of all C^r vector fields on *M* tangent to \mathscr{F} with the Whitney C^r topology; if *M* is compact it is equivalent to the C^r topology. (See e.g. [14].) For the vector bundle chart $(\alpha, \alpha_1 \times \alpha_2, U)$ the local representative of Y

$$\alpha \circ Y \circ (\alpha_1 \times \alpha_2)^{-1} \colon (\alpha_1 \times \alpha_2)(U) \longrightarrow (\alpha_1 \times \alpha_2)(U) \times \mathbb{R}^n$$

has the form

$$\alpha \circ Y \circ (\alpha_1 \times \alpha_2)^{-1}(x) = (x, Y_{\alpha}(x))$$

for $x \in (\alpha_1 \times \alpha_2)(U)$. The map $Y_{\alpha}: (\alpha_1 \times \alpha_2)(U) \to \mathbb{R}^n$ is called the *principal part* of the local representative of Y.

Let Σ_{Y} be a subset of M such that every $x \in \Sigma_{Y}$ is an equilibrium point of a vector field $Y \in \mathscr{Y}^{r}(M, \mathscr{F})$. For $x \in \Sigma_{Y}$ let

$$(1.2) (DY_{\alpha})(x): \mathbf{R}^{m} \times \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$$

be the differential of the principal part of Y_{α} of the local representative of Y.

DEFINITION 1.1. We say that Y is regular at $p \in \Sigma_Y$ if the dimension of the image of $(DY_n)(x)$ is n, where $x = (\alpha_1 \times \alpha_2)(p)$.

Since $(DY_{\alpha})(x)$ is linear, this mapping is devided as $(DY_{\alpha})(x) = ((DY_{\alpha})_{1}(x), (DY_{\alpha})_{2}(x));$

(1.3)
$$(DY_{\alpha})_{1}(x) \colon \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$$
$$(DY_{\alpha})_{2}(x) \colon \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

DEFINITION 1.2. We say that Y is normally hyperbolic at p, if $(DY_{\alpha})_{2}(x)$ has no eigenvalue with real part zero. If all the eigenvalues have negative real part, Y is said to be normally stable at p. (These do not depend on the choice of the vector bundle chart $(\alpha, \alpha_{1} \times \alpha_{2}, U)$.)

A stratification S of a topological space N is a partition of N into subsets, which will be called the *strata* of S, such that the following conditions are satisfied:

(a) Each stratum S is locally closed, i.e. each point $s \in S$ has a neighborhood U such that $U \cap S$ is closed in U.

(b) S is locally finite.

(c) If S_1 and S_2 are strata and $\overline{S}_1 \cap S_2 \neq \phi$, then $S_2 \subset \overline{S}_1$.

The relation $S_2 < S_1$ defined by $S_2 \subset \overline{S}_1$, $S_2 \neq S_1$, is an order on S. It is transitive and one cannot have both $S_2 < S_1$ and $S_1 < S_2$ ([12, p. 200]).

Let \tilde{N} be a C^1 manifold, let $N \subset \tilde{N}$, and let S be a stratification of N.

Gikō Ikegami

We will say that S is a Whitney stratification if each stratum is a C^1 submanifold, and if S_1 , S_2 are two strata with $S_2 < S_1$, then for all $x \in S_2$ the triple (S_1, S_2, x) satisfies the following Whitney's regularity condition (b).

Condition (b): For any sequences $\{x_i\}$ of points in S_2 and $\{y_i\}$ of points in S_1 , such that $x_i \rightarrow x$, $y_i \rightarrow x$, $x_i \neq y_i$, segment $\overline{x_i y_i}$ converges (in projective space), and the tangent space $T_{x_i}S^1$ converges (in Grassmanian of (dim S_1)plane in \mathbb{R}^n , $n = \dim N$), we have $l \subset T_{\infty}$, where $l = \lim \overline{x_i y_i}$ and $T_{\infty} = \lim T_{x_i}S^1$.

Condition (b) implies the following condition (a), (see e.g. Wall [16] or Mather [12, p. 203]).

Condition (a): If x_i is a sequence of points in S_1 such that $x_i \rightarrow x \in S_2$ and $T_{x_i}S_1$ converges to T_{∞} , then $T_xS_2 \subset T_{\infty}$.

Let S^i denote the substratification of stratification S such that S^i consists of all strata of dimension $\leq i$ of S. S^i is called the *i-skeleton* (or codim (n-i) skeleton) of S. Here, $n = \max \{ \dim S : S \in S \}$. Let Σ_Y^h be the set of all points of Σ_Y , where Y is normally hyperbolic. Let $\partial \Sigma_Y^h$ be the set of all frontiers of Σ_Y^h ; $\partial \Sigma_Y^h = \overline{\Sigma_Y^h} - \Sigma_Y^h$.

DEFINITION 1.3. What follows are the properties of the vector field $Y \in \mathcal{Y}^r(M, \mathcal{F})$.

G0: The set Σ_r of all equilibrium points of Y is, if nonempty, an m dimensional C^r manifold.

G1: Y is regular at every equilibrium point of Y.

G2: Y has the property G0 and there is a Whitney stratification S on Σ_{Y} having the following properties:

(i) If the differential $(DY_a)_2(x)$ at $x = (\alpha_1 \times \alpha_2)(p)$ (see Definition 1.2) has l eigenvalues of zero and 2(k-l) non-zero pure imaginary eigenvalues

 $0, \ldots, 0, ib_1, -ib_1, \ldots, ib_{k-l}, -ib_{k-l},$

then the point p is contained in the (m-k) skeleton \mathcal{S}^{m-k} .

(ii) The union of all (m-1) dimensional strata $\bigcup S^{m-1}$ is a dense subset of $\partial \Sigma_{Y}^{h}$.

(iii) $\bigcup S^{m-1}$ is divided into two parts, $(\partial \Sigma_{Y}^{h})_{0}$ and $(\partial \Sigma_{Y}^{h})_{img}$, of unions of strata such that

 $p \in (\partial \Sigma_Y^h)_0 \Rightarrow 0$ is an eigenvalue of $(DY_a)_2(x)$,

 $p \in (\partial \Sigma_Y^n)_{img} \Rightarrow$ the eigenvalues of $(DY_a)_2(x)$ include a pair of non-zero pure imaginary numbers.

THEOREM A. Let M be a smooth manifold of dimension m+n and \mathscr{F} be a smooth foliation on M with codimension m. Let $\mathscr{Y}^r(M, \mathscr{F})$ be the space of all C^r vector fields on M tangent to \mathscr{F} . Let \mathscr{Y}^r_j denote the set of all $Y \in$ $\mathscr{Y}^r(M, \mathscr{F})$ satisfying the property Gj, j=0, 1, 2, respectively. Then,

- (i) \mathscr{Y}_0^r is open dense in $\mathscr{Y}^r(M, \mathscr{F})$, if $1 \leq r \leq \infty$.
- (ii) \mathscr{Y}_1^r is open dense in $\mathscr{Y}^r(M, \mathscr{F})$, if $2 \leq r \leq \infty$.
- (iii) \mathscr{Y}_2^r is open dense in $\mathscr{Y}^r(M, \mathscr{F})$, if $3 \leq r \leq \infty$.

Denote by $\Gamma^{r}(\pi)$ the space of all C^{r} sections of a vector bundle π with the C^{r} topology. $\Gamma^{r}(\pi)$ is a separable Banach space. Especially for the bundle $\tau: T\mathcal{F} \to M$ the space $\Gamma^{r}(\tau)$ has been denoted by $\mathscr{Y}^{r}(M, \mathcal{F})$.

Let $\xi_1, \xi_2: U \to T_U \mathscr{F}$ be partial sections of τ where $T_U \mathscr{F} = \tau^{-1}(U) \subset T \mathscr{F}$. Let $(\alpha, \alpha_1 \times \alpha_2, U)$ be a vector bundle chart on τ and $x_1, x_2 \in U$. Let $\xi_{1a}, \xi_{2a}: \alpha(U) \to \mathbb{R}^n$ be the principal parts of local representatives of ξ_1, ξ_2 respectively. We denote $(\xi_1, x_1) \sim_0(\xi_2, x_2)$ if $x_1 = x_2$ and $\xi_{1a}(x_1) = \xi_{2a}(x_2)$. We denote $(\xi_1, x_1) \sim_1(\xi_2, x_2)$ if $x_1 = x_2, \xi_{1a}(x_1) = \xi_{2a}(x_2)$, and $D\xi_{1a}(x_1) = D\xi_{2a}(x_2)$. Here $D\xi_{ia}$ is the derivative of ξ_{ia} which is a mapping $(\alpha_1 \times \alpha_2)(U) \to L(\mathbb{R}^{m+n}, \mathbb{R}^n)$, where $L(\mathbb{R}^{m+n}, \mathbb{R}^n)$ is the set of all linear mappings $\mathbb{R}^{m+n} \to \mathbb{R}^n$. This definition of \sim_0 and \sim_1 is independent of the choice of vector bundle chart $(\alpha, \alpha_1 \times \alpha_2, U)$. \sim_0 and \sim_1 are equivalent relations. The equivalence classes of the pair (ξ, x) are denoted by $j^0\xi(x)$ and $j^1\xi(x)$, respectively. Let $J^0(\tau)$ and $J^1(\tau)$ be the sets of all $j^0\xi(x)$ and $j^1\xi(x)$, respectively. For each C^r section $Y: M \to T \mathscr{F}$ the map $j^i Y: M \to J^i(\tau)$ given by $x \to j^i Y(x)$ is called the *i-jet extension* (or *i-jet section*) of Y, i=0, 1. The map

$$\tau^i\colon J^i(\tau) \longrightarrow M$$

given by $\tau^i(j^i\xi(x)) = x$ is a C^{∞} vector bundle, which is called the *i*-jet bundle of sections of τ , i=0, 1. For each vector bundle chart $(\alpha, \alpha_1 \times \alpha_2, U)$ on τ the natural *i*-jet chart on τ^i , i=0, 1, is given by

(1.4)
$$\begin{cases} \alpha^{0}(j^{0}\xi(x)) = (y, \xi_{a}(y)) \in (D^{m} \times D^{n}) \times \mathbb{R}^{n}, \\ \alpha^{1}(j^{1}\xi(x)) = (y, \xi_{a}(y), D\xi_{a}(y)) \\ \in (D^{m} \times D^{n}) \times \mathbb{R}^{n} \times L(\mathbb{R}^{m} \times \mathbb{R}^{n}, \mathbb{R}^{n}), \end{cases}$$

where $y = (\alpha_1 \times \alpha_2)(x)$. Let

(1.5)
$$\tau_0^1: J^1(\tau) \longrightarrow J^0(\tau)$$

be a mapping defined by $\tau_0^1(j^1\xi(x)) = j^0\xi(x)$ for every $j^1\xi(x) \in J^1(\tau)$. Then $\tau^0 \circ \tau_0^1 = \tau^1 \colon J^1(\tau) \to M$ and τ_0^1 are vector bundle projections.

LEMMA 1.4 (Abraham-Robbin [1, Theorem 12, 4]). Suppose M is compact, $r \ge 1$, and i=0, 1. Let

$$\operatorname{ev}_i: \, \Gamma^{\,r}(\tau) \times M \longrightarrow J^i(\tau)$$

Gikō Ikegami

be given by $ev_i(Y, x) = j^i Y(x)$. Then, (i) ev_i is of class C^{r-i} ; and (ii) ev_i is a submersion, if r-i>0.

LEMMA 1.5. Let $q = \min\{m, n\}$ and $L_r \subset L(\mathbb{R}^m, \mathbb{R}^n)$ be the set of all linear mappings with rank $r, r=0, \dots, q$. Then, L_r is a submanifold of $L(\mathbb{R}^m, \mathbb{R}^n)$ with codimension (m-r)(n-r), and the subdivision $\{L_r\}$ of $L(\mathbb{R}^m, \mathbb{R}^n)$ induces a Whitney stratification of $L(\mathbb{R}^m, \mathbb{R}^n)$ such that each point of L_r is a frontier of every L_{r+1}, \dots, L_q .

Proof is given in the same manner as that of Golubitsky-Guillemin [5, p. 60 Proposition 5.3].

Let R(k) be the set of all elements $(c_1, \dots, c_n) \in C^n$ such that (i) there are h factors of zeros; $c_{j_1} = \dots = c_{j_h} = 0$, $0 \leq h \leq k$; and (ii) there are 2(k-h) factors of non-zero pure imaginary numbers;

 $\pm ib_{n+1}, \cdots, \pm ib_k \qquad (b_{n+1}, \cdots, b_k \in \mathbf{R}).$

LEMMA 1.6. Let K be the set of all elements of $L(\mathbf{R}^n, \mathbf{R}^n)$ having at least one eigenvalue with real part zero. Then, K is a closed semialgebraic set. Furthermore, there is a Whitney stratification \mathcal{K} of K satisfying the following:

(i) If the set of eigenvalues $(\lambda_1, \dots, \lambda_n)$ of $A \in L(\mathbb{R}^n, \mathbb{R}^n)$ is contained in R(k), then A is contained in the codim (k-1) skeleton, \mathcal{K}^{k-1} , of \mathcal{K} .

(ii) The union $\cup S^{\max}$ of all strata with maximal dimension is dense in K.

(iii) $\cup S^{\max}$ is divided into two parts, $\cup S_0$ and $\cup S_{img}$, consisting of unions of strata denoted by S_0 and S_{img} where

 $A \in S_0 \Rightarrow 0$ is an eigenvalue of A,

 $A \in S_{img}$ the eigenvalues of A includes a pair of non-zero pure imaginary numbers.

PROOF. By Abraham-Robbin [1, § 30], K is a closed semialgebraic set, and is a union of submanifolds of $L(\mathbb{R}^n, \mathbb{R}^n)$ with codimension ≥ 1 . Let ν : $C^n \rightarrow C^n$ be the Newton map. It is an algebraic map defined by $\nu(c_1, \dots, c_n) =$ (a_1, \dots, a_n) , where a_1, \dots, a_n are the coefficients of the unique monic polynomial $a_1 + a_2 z + \dots + a_n z^{n-1} + z^n$ whose roots are c_1, \dots, c_n . Let $\gamma: L(\mathbb{R}^n, \mathbb{R}^n) \rightarrow$ \mathbb{R}^n be the map which assigns to a linear map A the coefficients of the characteristic polynomial of A, i.e. $\gamma(A) = (a_1, \dots, a_n)$ where

$$\det(Ix - A) = a_1 + a_2x + \cdots + a_nx^{n-1} + x^n.$$

Let $\iota: \mathbb{R}^n \to \mathbb{C}^n$ be the embedding obtained by

 $\iota(a_1, \cdots, a_n) = (a_1 + i0, \cdots, a_n + i0) \in \mathbb{C}^n.$

Since R(h) is a semialgebraic set, by Tarski-Seidenberg theorem $H_h = (a^n)^{-1}\nu(R(h))$ is a closed semialgebraic set in $L(\mathbb{R}^n, \mathbb{R}^n)$, and thus, H_h is a finite union of submanifolds (see Abraham-Robbin [1, § 30]). Hence, we have a sequence of semialgebraic sets $K = H_1 \supset H_2 \supset \cdots \supset H_n$. Since, by an arbitrarily small perturbation, any linear map in H_h can be changed into one contained in H_{h-1} (h>0), H_h must have local codimension ≥ 1 in H_{h-1} ; i.e. if a point $x \in H_h$ is contained in a submanifold $S_h \subset H_h$, then x is contained in the frontier of some submanifold S_{h-1} in H_{h-1} with dim $S_h < \dim S_{h-1}$.

Next, we construct a Whitney stratification of K similar to that given by Mather [12, Theorem (4.9)]. (He uses the word "prestratification" meaning our stratification.) Let $m=\dim K$, i.e. the maximal dimension of manifolds which constitute K is m. We construct, by decreasing induction, a sequence K_m, K_{m-1}, \cdots of semialgebraic subset of K, closed in K, where dim $K_k \leq k$, such that $K_k - K_{k-1}$ is an algebraic manifold and that $K_k \supset H_{m-k+1}$. Here, we recall that $H_i = 0$ if j > n.

We begin with $K_m = K = H_1$. We suppose inductively that K_k has been constructed. Let K_{k-1} be the closure in K of the set of points x in K_k such that one of the following conditions holds:

 $(0) \quad x \in H_{m-k+2}.$

(1) x is not a regular point of K_k or the local dimension of K_k at x is smaller than k. (A regular point of a subset Z of an algebraic manifold N is a point which has a neighborhood N such that $N \cap Z$ is a closed algebraic submanifold of N.)

(2) x is a regular point of K_k and the local dimension of K_k at x is k, but there exists l > k scuh that the triple $(K_l - K_{l-1}, K_{k, reg}, x)$ does not satisfy Whitney's regularity condition (b).

As mentioned before, H_{m-k+2} is a finite union of submanifolds. Moreover the dimensions of these submanifolds are $\leq (k-1)$, since dim $H_1 \leq m$ and the local codimension of H_k in H_{k-1} is ≥ 1 , (see the following diagram).

From (1), it follows that $K_k - K_{k-1}$ is an algebraic manifold and $\dim (K_k - K_{k-1}) = k$ everywhere. Each of the sets defined by one of the conditions (i) or (ii) is semialgebraic and its dimension is $\leq k-1$ ([12, Proof of Theorem (4.9)]). Since $\dim H_{m-k+2} \leq k-1$, it follows that K_{k-1} is a semialgebraic set with dimension $\leq k-1$.

Let \mathscr{K} denote the collection of connected components of the $K_k - K_{k-1}$, $k=0, \dots, m$. By Mather [12, Proof of Theorem (4.9) and Addendum (4.10)], \mathscr{K} is a Whitney stratification of K satisfying (i).

Gikō Ikegami

Next, we show that \mathscr{K} satisfies (ii). Suppose that there exists a stratum S of \mathscr{K} such that there is no stratum T of \mathscr{K} satisfying $S \subset \overline{T}$ and such that dim S < m. Since $\operatorname{codim} K \leq 1$ in $L(\mathbb{R}^n, \mathbb{R}^n)$, then $\operatorname{codim} S \leq 2$ in $L(\mathbb{R}^n, \mathbb{R}^n)$. Since $K = H_1$ and $H_{k-1} - H_k$ is dense in H_{k-1} for all $k \geq 1$, it follows that any element of S is approximated by $A \in S \cap (H_1 - H_2)$. One of the following holds for such A.

(a) One eigenvalue of A is zero and the real part of every other eigenvalue is non-zero.

(b) Two eigenvalues of A are *ib* and -ib $(0 \neq b \in \mathbb{R})$ and the real part of every other eigenvalue of A is non-zero.

Element A satisfies (a) if and only if corank A=1. By Lemma 1.5, the set of all such elements is a codimension one submanifold L_{n-1} of $L(\mathbb{R}^n, \mathbb{R}^n)$. This contradicts the assumption that codimension of S is ≤ 2 .

In case of (b), let $\lambda_1 = ib$, $\lambda_2 = -ib$, and $\lambda_3, \dots, \lambda_n$ be all the other eigenvalues of A. We take disjoint open sets N_1, N_2, N_+ , and N_- in the plane C such that N_1 and N_2 do not intersect with the real line, N_+ and N_- do not intersect with the pure imaginary line, and such that

$$egin{aligned} \lambda_1 \in N_1, & \lambda_2 \in N_2, \ \{\lambda_3, \, \cdots, \, \lambda_n\} \subset N_+ \cup N_-. \end{aligned}$$

Since the characteristic polynomial det (Ix - A) of A is holomorphic, there is a neighborhood U of A in $L(\mathbb{R}^n, \mathbb{R}^n)$ such that, if $B \in U$, then $\lambda_1(B) \in N_1$, $\lambda_2(B) \in N_2$, and $\lambda_3(B), \dots, \lambda_n(B) \in N_+ \cup N_-$, where $\lambda_1(B), \dots, \lambda_n(B)$ denote the eigenvalues of B. Let $\Re \lambda$ be the real part of λ . There are A_0 and A_1 in Usuch that

$$egin{aligned} \lambda_1(A_0)&=\lambda_2(A_0), &\lambda_1(A_1)&=\overline{\lambda_2(A_1)},\ \mathscr{R}(\lambda_1(A_0))&=\mathscr{R}(\lambda_2(A_0))>0. \end{aligned}$$

and

$$\mathscr{R}(\lambda_1(A_1)) = \mathscr{R}(\lambda_2(A_1)) < 0.$$

Since codim $S \leq 2$ in U, there is an arc A_{γ} , $0 \leq \gamma \leq 1$, connecting A_0 and A_1 in U-S=U-K. By the assumptions for N_1 , N_2 , N_+ , N_- and U, it holds that the arc $\lambda_1(A_{\gamma})$, $0 \leq \gamma \leq 1$, is included in N_1 . Since $\Re(\lambda_1(A_0)) > 0$ and $\Re(\lambda_1(A_1)) < 0$, there is c such that $\Re(\lambda_1(A_c)) = 0$. This contradicts the assumption that $A_{\gamma} \notin K$ for each γ . Therefore \mathscr{K} satisfies (ii).

Finally, we show that \mathscr{K} satisfies (iii). By the above, it is clear that the subset K_a (K_b , resp.) of all the elements in $K-K_{m-1}$ satisfying the condition (a) ((b), respectively) is open in $K-K_{m-1}$. Hence, for an *m*-dimensional

stratum S, both $K_a \cap S$ and $K_b \cap S$ are open in S. Assuming S connected, we have $S = K_a \cap S = S_0$ or $S = K_b \cap S = S_{img}$.

For an element $C \in L(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^n)$, let $C = (A, B) \in L(\mathbb{R}^m, \mathbb{R}^n) \times L(\mathbb{R}^n, \mathbb{R}^n)$.

DEFINITION 1.7. We define subsets $E \subset J^{0}(\tau)$, $V \subset J^{1}(\tau)$, and $W \subset J^{1}(\tau)$ as follows: In some (and hence every) natural vector bundle chart $(\alpha, \alpha_{1} \times \alpha_{2}, U)$ with $\tau^{i}(\sigma) \in U$ (i=0 or 1),

 $\sigma \in E \iff \alpha^{0}(\sigma) = (x, 0) \in (D^{m} \times D^{n}) \times \mathbb{R}^{n},$

 $\sigma \in V \iff \alpha^{1}(\sigma) = (x, 0, C) \text{ and the rank of } C \in L(\mathbb{R}^{m} \times \mathbb{R}^{n}, \mathbb{R}^{n}) \leq n-1,$

 $\sigma \in W \iff \alpha^1(\sigma) = (x, 0, (A, B))$ and $B \in L(\mathbb{R}^n, \mathbb{R}^n)$ has at least one eigenvalue with real part zero.

LEMMA 1.8. (i) E is a closed submanifold of $J^{0}(\tau)$ of codimension n.

(ii) V is a closed subset of $J^1(\tau)$. Furthermore, $V = V_0 \cup V_1 \cup \cdots \cup V_{n-1}$ where V_0, \dots, V_{n-1} are submanifolds of $J^1(\tau)$ of codimension $\geq m+n+1$.

(iii) W is a closed subset of $J^{1}(\tau)$. Furthermore, there is a Whitney stratification \mathscr{W} of W such that (a) the union $\cup S^{\max}$ of all strata with maximal dimension is a dense subset of W; (b) if $\alpha^{1}(\sigma) = (x, 0, (A, B))$ and the set of eigenvalues of B is contained in R(k), then σ is contained in the codim (k-1)skeleton; and (c) $\cup S^{\max}$ is divided into two parts, $\cup S_{0}$ and $\cup S_{img}$ of unions of strata such that, for $\alpha'(\sigma) = (x, 0, (A, B))$

 $\sigma \in S_0 \Longrightarrow 0$ is an eigenvalue of B

 $\sigma \in S_{img} \Longrightarrow$ the eigenvalues of B includes a pair of non-zero pure imaginary numbers.

PROOF. (i) is trivial. (ii) and (iii) are obtained from Lemma 1.5 and Lemma 1.6, respectively, by choosing a vector bundle atlas on τ^1 .

For a section $Y \in \mathscr{Y}^r(M, \mathscr{F}) = \Gamma^r(\tau)$, define a map $\rho_Y^i \colon M \to J^i(\tau), i = 0, 1$, by $\rho_Y^i(x) = j^i Y(x), x \in M$. Then, the map

 $\rho^i \colon \, \Gamma^r(\tau) \longrightarrow \Gamma^{r-i}(\tau^i)$

given by $Y \mapsto \rho_Y^i$ for $Y \in \Gamma^r(\tau)$ is a C^{r-i} representation of mappings by Lemma 1.4 (i).

LEMMA 1.9. (i) If ρ_Y^0 is transverse to E in $J^0(\tau)$ then condition G0 is satisfied.

(ii) If ρ_Y^1 is transverse to $V = V_0 \cup \cdots \cup V_{n-1} \subset J^1(\tau)$ (i.e. $\rho_Y^1 \bigoplus V_r$ for $r=0, \cdots, n-1$), then condition G1 is satisfied.

(iii) If ρ_Y^1 is of calss C^2 and transverse to the stratification \mathscr{W} (i.e. transverse to each stratum of \mathscr{W}), then condition G2 is satisfied.

GIKŌ IKEGAMI

PROOF. (i) If $C^r \max \rho_Y^0$ is transverse to E, in symbol: $\rho_Y^0 \bigoplus E$, then $(\rho_Y^0)^{-1}(E) = \Sigma_Y$ is a C^r submanifold of M and the codimension of Σ_Y is (dim M) $+(\dim E) - (\dim J^0(\tau)) = m$, by [1, Corollary of 17.2]. Hence, G0 is satisfied.

(ii) Since codim $V_r \ge m+n+1$ and codim $(\rho_r^1)^{-1}(V_r) \ge m+n+1 > \dim M$, it follows that $\rho_r^1(M) \cap V_r = \phi$ if and only if $\rho_r^1 \pitchfork V_r$. Hence, G1 is satisfied.

(iii) Let ρ_Y^1 be of class C^2 and $\rho_Y^1 \not \cap \mathcal{W}$. By Mather [11, Corollary (8.8) and the proof], $(\rho_Y^1)^* \mathcal{W} = S$ is a Whitney stratification of $(\rho_Y^1)^{-1}(W) \subset \Sigma_Y$. Here, $(\rho_Y^1)^* \mathcal{W}$ is the stratification which consists of strata $\{(\rho_Y^1)^{-1}(W_i)\}$ for every strata $\{W_i\}$ of \mathcal{W} . Then, by Lemma 1.8, S is the desired stratification in G2.

PROOF OF THEOREM A. (i) Put $\mathscr{Y}_E = \{Y \in \Gamma^r(\tau); \rho_Y^0 \cap E\}$. We only need, by Lemma 1.9, to show \mathscr{Y}_E is open dense in $\Gamma^r(\tau)$. Since $\rho^0: \Gamma^r(\tau) \to \Gamma^r(\tau^0)$ is a C^r representation of mappings and E is a closed manifold in $J^0(\tau)$, the openness of \mathscr{Y}_E is obtained by Abraham-Robbin [1, Theorem 18.2]. To prove the density of \mathscr{Y}_E , we consider the evaluation map

$$\operatorname{ev}_{0}: \ \Gamma^{r}(\tau) \times M \longrightarrow J^{0}(\tau)$$

defined by $(Y, x) \mapsto j^0 Y(x)$. It is of class C^r and transverse to any submanifold of $J^0(t)$, and hence to E, by Lemma 1.4. By [1, Theorem 18.2], \mathscr{Y}_E is residual if $r > \max(0, \dim M-q)$ where $q = (\text{codimension of } E \text{ in } J^0(\tau))$. Since q = n in our case, \mathscr{Y}_E is residual if $r \ge m$. Even if $1 \le r < m+1$ we can prove the density of \mathscr{Y}_E by the same argument of [1. p. 98, Proof of 30.1] using the densities of \mathscr{Y}_E in $\Gamma^{m+1}(\tau)$ and $\Gamma^{m+1}(\tau)$ in $\Gamma^r(\tau)$.

(ii) We recall that $V = V_0 \cup \cdots \cup V_{n-1}$ by Lemma 1.8. Put $\mathscr{Y}_{V} = \{Y \in \Gamma^{r}(\pi); \rho_{Y}^{1} \bigoplus V_{j}, j=0, \cdots, n-1\}$. We only need, by Lemma 1.9, to show \mathscr{Y}_{V} is open dense in $\Gamma^{r}(\tau)$. The evaluation map $\operatorname{ev}_{1}: \Gamma^{r}(\tau) \times M \to J^{1}(\tau)$ is C^{r-1} and transversal to any submanifold of $J^{1}(\tau)$. We have $\operatorname{codim} V_{0} \ge m+n+1$ in $J^{1}(\tau)$. Hence, we can show the density of \mathscr{Y}_{V} in $J^{r}(\tau)$ as above if $r-1 > \max(0, m+n-\operatorname{codim} V)$, i.e. $r \ge 2$. Since V is closed and $j_{Y}^{1}(M) \cap V = \phi$ if and only if $j_{Y}^{1}(M) \bigoplus V$, then the openness of \mathscr{Y}_{V} holds by [1, Theorem 18.1].

(iii) Let \mathscr{W} be the Whitney stratification on W obtained by Lemma 1.8 (iii). Put $\mathscr{Y}_{\mathscr{W}} = \{Y \in \mathscr{Y}^r(M; \mathscr{F}) : \rho_T^1 \bigcap \mathscr{W}\}$. Since $r \geq 3$ is assumed, we have $\mathscr{Y}_{\mathscr{W}} \subset \mathscr{Y}_2$ by Lemma 1.9, (iii). Now we prove that $\mathscr{Y}_{\mathscr{W}}$ is open dense in \mathscr{Y}^r . Since the strata of \mathscr{W} are submanifolds of $J^1(\tau)$ with codimension \geq (codim E) +1=n+1 we can show as above that $\mathscr{Y}_{\mathscr{W}}$ is residual in \mathscr{Y}^r if r-1>max (0, m-1), i.e. $r \geq m+1$. Even if $3 \leq r \leq m \mathscr{Y}_{\mathscr{W}}$ is residual as above.

To show the openness of \mathscr{Y}_w , let $Y \in \mathscr{Y}_w$. For $x \in M$, either of the following is satisfied.

(1) $j^{1}Y(x) \notin W$,

(2) $j^{1}Y(x) \in W$ and $\rho_{Y} \cap W_{i}$ at $\rho = j^{1}Y(x)$, where W_{i} is the stratum of \mathscr{W}

containing σ . Let Y' be an element of \mathscr{Y}^r which is sufficiently close to Y. If case (1) is satisfied then $j^1Y'(x) \notin W$, since W is a closed subset of \mathscr{Y}^r by Lemma 1.8 (iii). In case (2), let W_2 be the stratum of \mathscr{W} containing σ . Let $j^1Y'(x) = \sigma'$. Then we may assume that $\sigma' \in W_2$ or $\sigma' \in W_1$ where W_1 is a stratum such that $W_2 < W_1$. If $\sigma' \in W_2$, then $\rho_{Y'}^1 \bigcap W_2$ at σ' since W_2 is a manifold and Y' is sufficiently C^r close to Y. In case of $\sigma' \in W_1$, let $\sigma \in W_2 \subset \overline{W_1}$. For an open neighborhood U of σ in $\overline{W_1}$ let

$$TU = \{T_{\sigma'}W_1 \colon \sigma' \in U\}.$$

 T_{σ} is a subset of Grassmanian of $(\dim W_2)$ -planes. If $U_1 \supset U_2 \supset \cdots \supset U_i$ $\supset \cdots \ni \sigma$ is a sequence converging to σ , then $TU_1 \supset TU_2 \supset \cdots \supset TU_i \supset \cdots$. The set $\cap_i TU_i$ is nonempty since for a sequence $\{\sigma_i\}_{i=1,2,\ldots}$ with $\sigma_i \in U_i$ (hence $\sigma_i \rightarrow \sigma$) there is a subsequence $\{\sigma_j\}$ such that $\{T_{\sigma_j}W_i\}$ converges to a plane. Let T be any element in $\cap_i TU_i$. By Whitney's Condition (a) the plane Tincludes the tangent plane $T_{\sigma}W_2$ of W_2 at σ . It follows that, if $\rho_T^1 \cap W_2$ at σ and Y' is sufficiently close to Y, then $\rho_T^1 \cap W_1$ at $\sigma' = j^1 Y'(x)$, where W_1 is the stratum containing σ' . Therefore, if $j^1 Y(x)$ satisfies (1) or (2) then $j^1 Y'(x)$ does also.

By the well known argument (e.g. [1, 18.2]), the openness of \mathscr{Y}_w is shown if M is compact. We can extend this to noncompact case by the argument of Peixoto [14, § 5].

§2. Thom-Boardman singularities modulo foliation

In this section, we will define a jet space modulo foliation. After this we will explain Thom-Boardman's singularities by the translation into our jet spaces modulo foliations.

DEFINITION 2.1. Let \mathscr{F} be a smooth foliation on M. Suppose $f, g: L \to M$ are C^k maps with f(p)=g(p)=q. f is said to have kth order contact modulo \mathscr{F} with g at p if, for some (and hence for any) chart $(U, \alpha_1 \times \alpha_2)$ of \mathscr{F} with $q \in U$ given by (1,1), $\alpha_1 \circ f: L \to D^m$ has kth order contact with $\alpha_1 \circ g$ at p. This is written as $f \sim_k g \mod \mathscr{F}$ at p. Let $J^k(L, M; \mathscr{F})_{p,q}, k \ge 1$, denote the set of equivalence classes under " $\sim_k \mod \mathscr{F}$ at p" of mappings $f: L \to M$ where f(p)=q. Let

$$J^{0}(L, M; \mathscr{F})_{p,q} = J^{0}(L, M)_{p,q} = \{(p, q)\}.$$

Let

$$J^{k}(L, M; \mathscr{F}) = \bigcup_{(p,q) \in L \times M} J^{k}(L, M; \mathscr{F})_{p,q}$$

(disjoint union). We call $J^{k}(L, M; \mathcal{F})$ a jet space modulo \mathcal{F} . An element σ

in $J^{k}(L, M; \mathscr{F})$ is called a *k-jet modulo* \mathscr{F} of mapping from L to M. Let σ be a *k*-jet modulo \mathscr{F} , then $\sigma \in J^{k}(L, M; \mathscr{F})_{p,q}$ for a $(p, q) \in L \times M$.

For manifolds L, M and a foliation \mathcal{F} on M, $J^{k}(L, M; \mathcal{F})$ has a smooth manifold structure. Moreover, the mapping

(2.1)
$$\pi_0^k \colon J^k(L, M; \mathscr{F}) \longrightarrow L \times M = J^0(L, M; \mathscr{F})$$

defined by $\pi_0^k(\sigma) = ($ source of σ , target of σ) is a smooth fiber bundle.

Let $\pi_L: L \times M \to L$ and $\pi_M: L \times M \to M$ be natural projections. Then $\pi_L^k = \pi_L \circ \pi_0^k$ and $\pi_M^k = \pi_M \circ \pi_0^k$ are bundle projections;

$$\pi_L^k: J^k(L, M; \mathscr{F}) \longrightarrow L$$
$$\pi_{\mathcal{H}}^k: J^k(L, M; \mathscr{F}) \longrightarrow M.$$

If $k \ge h$, we have the canonical bundle projection

(2.2) $\pi_{h}^{k}: J^{k}(L, M; \mathscr{F}) \longrightarrow J^{h}(L, M; \mathscr{F})$

by restricting the order of jets.

The bundle atlas for a jet space modulo foliation is essentially same as the usual jet space of mappings (see [5]). In fact, a jet space modulo foliation is locally same as a usual jet space of mappings in the following sense. Let $J^k(U, V, \mathscr{F}_V)$ be a local subbundle of $J^k(L, M; \mathscr{F})$ and $\beta: V \to D^m \times D^n$ a foliation chart. For a point $(x, y) \in D^m \times D^n$, let $v^m = \beta^{-1}(D^m \times \{y\})$ and $V^n = \beta^{-1}(\{x\} \times D^n)$. V^n is a plaque of \mathscr{F} and $V = V^m \times V^n$. Recall that $J^k(L, N) = \bigcup_{(x,y) \in L \times N} J^k(L, N)_{x,y}$ and $J^k(L, M; \mathscr{F}) = \bigcup_{(x,y) \in L \times N} J^k(L, N)_{x,y} \approx J^k(U, V^m)_{x,p(y)}$. Here, the latter jet space is the space of jet of the mappings $U \to V$ composed by the projection $p: V = V^m \times V^n \to V^m$. Furthermore, this is a bundle isomorphism between the following bundles

$$\begin{cases} \pi^k_U \colon J^k(U, \, V; \, \mathscr{F}_v) \longrightarrow U, \\ \pi^k_U \colon J^k(U, \, V^m) \times V^n \longrightarrow U \text{(naturally defined)} \end{cases}$$

or

$$\begin{cases} \pi_{\hbar}^{k} \colon J^{k}(U, \, V; \, \mathscr{F}_{V}) \longrightarrow J^{h}(U, \, V; \, \mathscr{F}_{V}) \\ \pi_{\hbar}^{k} \colon J^{k}(U, \, V^{m}) \times V^{n} \longrightarrow J^{h}(U, \, V^{m}) \times V^{n}. \end{cases}$$

This remark indicates that our *jet spaces modulo foliations follow the* J. M. Boardman's theory [2] on the usual jet spaces of mappings, because the essential part of [2] is the discussion on the local jet bundles. [2] is a generalization of Levine [10].

We will translate the definitions and the main theorems of [2] into our situation.

Let π_{h}^{k} be the bundle projection of (2.2). We have the inverse limit of the finite jet spaces

$$J(L, M; \mathscr{F}) = \underline{\lim} J^{k}(L, M; \mathscr{F})$$

and the projection

$$\pi_{h} \colon J(L, M; \mathscr{F}) \longrightarrow J^{h}(L, M; \mathscr{F}).$$

We give $J(L, M; \mathscr{F})$ the inverse limit topology, which has $(\pi_h)^{-1}(U)$ as the basis, where h is finite and U is open in $J^h(L, M; \mathscr{F})$. We give $J^h(L, M; \mathscr{F})$ the limit differential structure as follows:

A function $\Phi: U \to \mathbf{R}$, where U is open in $J(L, M; \mathscr{F})$, is called smooth if it is locally of the form $\Psi \circ \pi_h$, where Ψ is a smooth function on some open subset of $J^h(L, M; \mathscr{F})$. By this definition of smoothness we have a differential manifold structure on $J(L, M; \mathscr{F})$, (see Chevalley [3, Chap. III, § 1]).

For a C^{h} mapping $f: L \rightarrow M$, a jet extension (or jet section)

$$j^{h}f: L \longrightarrow J^{h}(L, M; \mathscr{F})$$

is defined by stipulating that $j^{h}f(x)$ is the *h*-jet mod \mathscr{F} of f at $x \in L$. The mapping

$$if: L \longrightarrow J(L, M; \mathscr{F})$$

is naturally defined and is smooth, if f is smooth.

Let $f: L \to M$, and let U be an open neighborhood of $f(p) \in U$ such that $\alpha_1 \times \alpha_2: U \to D^m \times D^n$ is a chart of \mathscr{F} . We define the *kernel* of 1-jet, $j^{i}f(p) \in J^{i}(L, M; \mathscr{F})$, by

$$\operatorname{Ker} j^{1} f(p) = \operatorname{Ker} d_{p}(\alpha_{i} \circ f),$$

where $d_p(\alpha_1 \circ f)$ is the differential of the mapping $\alpha_1 \circ f: V \to D^m$ from a neighborhood V of p in L. Ker $j^1 f(p)$ does not depend on the choice of chart $(\alpha_1 \times \alpha_2, U)$.

Let Q be a submanifold of $J^{h}(L, M; \mathscr{F})$ and h be finite. The only submanifold of $J(L, M; \mathscr{F})$ we consider are those of the form $\pi_{h}^{-1}(Q)$. These submanifolds have finite codimensions. The transversality of a jet section jfto such a submanifold means that of $j^{h}f$ to Q.

We take fixed manifolds L^{l} , M^{m+n} of dimensions l, m+n respectively and a foliation \mathcal{F} on M of codimension m.

PROPOSITION 2.2 (J. M. Boardman [2, Theorem (6.1)]). For each sequence $I = (i_1, i_2, \dots, i_k)$ of integers, the submanifold (not necessarily closed) $\tilde{\Sigma}^I$ of the jet space modulo foliation $J(L, M; \mathcal{F})$ is defined. $\tilde{\Sigma}^I$ has codimension ν_I ,

where the number ν_I is defined below (2.3). In fact $\tilde{\Sigma}^I$ is the inverse image of a submanifold of $J^{*}(L, M; \mathscr{F})$ having codimension ν_I . The set $\tilde{\Sigma}^I$ is empty unless I satisfies

- a) $i_1 \geq i_2 \geq \cdots \geq i_{k-1} \geq i_k \geq 0$,
- b) $l \ge i_1 \ge l-m$,
- c) if $i_1 = l m$, then $i_1 = i_2 = \cdots = i_k$.

PROPOSITION 2.3 (J. M. Boardman [2, Theorem (6.2)]). If $f: L \to M$ is a map whose jet section $jf: L \to J(L, M; \mathscr{F})$ is transverse to $\tilde{\Sigma}^{I}$, then $\tilde{\Sigma}^{I}(f)$, which is defined as $(jf)^{-1}(\tilde{\Sigma}^{I})$, is a submanifold of L having codimension ν_{I} . If I, j denotes the extended sequence $(i_{1}, i_{2}, \dots, i_{k}, j)$, we have

$$\tilde{\Sigma}^{I,j}(f) = \tilde{\Sigma}^{j}(f \,|\, \tilde{\Sigma}^{I}(f)).$$

Also, when $I = \phi$, $\tilde{\Sigma}^{j}(f) = \{p \in L : \dim \operatorname{Ker} j^{1}f(p) = j\}.$

PROPOSITION 2.4 (J. M. Boardman [2, Theorem (6.3)]). Any map $f: L \to M$ may be approximated in the C^{∞} sense by a map $g: L \to M$, whose jet section jg: $L \to J(L, M; \mathcal{F})$ is transverse to all the submanifolds $\tilde{\Sigma}^{I}$.

This proposition can be slightly modified as follows by observing the proof of [2, Theorem (6.3)].

PROPOSITION 2.4'. Any map $f: L \to M$ of class C^{r+1} may be C^{r+1} approximated in the C^{r+1} sense by a map $g: L \to M$ whose r-jet section $j^r g: L \to J^r(L, M; \mathcal{F})$ is transverse to all the submanifolds $\tilde{\Sigma}^{i_1, \dots, i_s}, 1 \leq s \leq r$.

The number ν_I is defined in [2] as follows for the sequence $I = (i_1, i_2, \dots, i_k)$ satisfying $i_1 \ge i_2 \ge \dots \ge i_k \ge 0$. (We need consider only this case, by a) of Proposition 2.2) Define $\mu(I)$ as the number of sequences (j_1, j_2, \dots, j_k) of integers that satisfy

a) $j_1 \geq j_2 \geq \cdots \geq j_k \geq 0$

b) $i_r \ge j_r \ge 0$ for all $r (1 \le r \le k)$, and $j_1 > 0$; then define

(2.3)
$$\nu_{I} = (m - l + i_{1})\mu(i_{1}, \cdots, i_{k}) \\ -(i_{1} - i_{2})\mu(i_{2}, \cdots, i_{k}) - \cdots - (i_{k-1} - i_{k})\mu(i_{k}).$$

For example, in the case k=1 we have $\mu(i)=i$ and hence the codimension of $\tilde{\Sigma}^i$ in $J(L, M; \mathscr{F})$ is (m-l+i)i, which agrees with the codimension of L_{m-i} in $L(\mathbb{R}^i, \mathbb{R}^m)$ obtained in Lemma 1.5. In the case k=2 we have $\mu(i, j)=i(j+1)-j(j-1)/2$, so the codimension of $\tilde{\Sigma}^{i,j}$ in $J(L, M; \mathscr{F})$ is given by

$$(m-l+i)i+\frac{j}{2}[(m-l+i)(2i-j+1)-2i+2j].$$

We call $\tilde{\Sigma}^{I}$ the Thom-Boardman submanifold of $J(L, M; \mathscr{F})$ associated with Thom-Boardman symbol I.

Let $\mathscr{C}^{r}(L, M)$ be the space of all smooth mappings with Whitney C^{r} topology.

PROPOSITION 2.5. The maps $f: L \to M$ whose jet section $jf: L \to J(L, M; \mathscr{F})$ is transverse to all the submanifolds $\tilde{\Sigma}^i$, $l-m \leq i \leq l$, make up an open and dense subset of $\mathscr{C}^r(L, M), 2 \leq r \leq \infty$.

PROOF. If $r = \infty$ the density is mentioned in Proposition 2.4. Since $\mathscr{C}^{\infty}(L, N)$ is embedded in $\mathscr{C}^{r}(L, M)$ as a dense subset, the density holds for all $2 \leq r \leq \infty$. Let

$$\tilde{\Sigma}_1^i = \{ \sigma \in J^1(L, M; \mathscr{F}) \colon \dim \operatorname{Ker} \sigma = i \}.$$

By the definition of $\tilde{\Sigma}^{I}$ ([2, (2.7)]), we see that $\tilde{\Sigma}^{i}$ is defined by $\tilde{\Sigma}^{i} = (\pi_{1})^{-1} \tilde{\Sigma}_{1}^{i}$. By Lemma 1.5 the subdivision of $J^{1}(L, M; \mathscr{F})$ by $\tilde{\Sigma}_{1}^{i}$ induces a Whitney stratification \tilde{S} . Then, by a similar argument as (iii) in the proof of Theorem A, we see that the set of f with $j^{i}f \oplus \tilde{S}$ is open dense in $C^{r}(L, M)$.

§ 3. Another generic property

In this section we will show that the property of Σ_{γ} having a fine position in the sense of Thom-Boardman is generic in $\mathscr{Y}^{r}(M, \mathscr{F})$.

Let (M, \mathscr{F}) be the pair consisting of a manifold and a foliation on it as before. Let Σ_{Y} be the set of all equilibrium points of Y and $\iota: \Sigma_{Y} \to M$ be the inclusion map.

DEFINITION 3.1. The following is a property for $Y \in \mathcal{Y}^r(M, \mathcal{F})$.

G2': The vector field Y has the property G0, and the 1-jet section $j^i \iota$: $\Sigma_Y \to J^1(\Sigma_Y, M; \mathscr{F})$ is transverse to $(\pi_1)^{-1}\Sigma^i$ for all Thom-Boardman submanifolds $\tilde{\Sigma}^i$ of length 1 symbol. Here, $\pi_1: J(\Sigma_Y, M; \mathscr{F}) \to J^1(\Sigma_Y, M; \mathscr{F})$ is the natural projection.

THEOREM B. Let $\mathscr{Y}_{2^{r}}^{r}$ be the set of all C^{r} vector fields tangent to \mathscr{F} satisfying G2'. Then, $\mathscr{Y}_{2^{r}}^{r}$ is an open subset of $\mathscr{Y}^{r}(M, \mathscr{F})$, if $2 \leq r \leq \infty$.

We will show a lemma for the proof of Theorem B.

Let M and N be smooth manifolds with finite dimensions, and W a closed submanifold of N. Let $f: M \to N$ be of class C^r , $r \ge 1$, satisfying $f \oiint W$. Then $W_f = f^{-1}(W)$ is a closed C^r submanifold of M. There is a total tubular neighborhood of class C^r of W_f in M by Munkres [13, Theorem 5.5] and Lang [9, IV § 5, VII § 3, 4]; this implies that we have an open neighborhood T of W_f in M, a surjective C^r map $\bar{\tau}: T \to W_f$, and a vector bundle structure on $\bar{\tau}$.

GIKŌ IKEGAMI

LEMMA 3.2. There is an open neighborhood \mathcal{N} of f in $\mathscr{C}^r(M, N)$, $1 \leq r \leq \infty$, such that, for $g \in \mathcal{N}$, $W_g = g^{-1}(W)$ is the image of a C^r section ξ_g of $\overline{\tau}$; i.e., $W_g = \xi_g(W_f)$. Moreover, ξ_g depends C^r continuously on g. That is, if $g' \to g$ in $\mathscr{C}^r(M, N)$, then $\xi_{g'} \to \xi_g$ in the section space $\Gamma^r(\overline{\tau})$.

PROOF. The first statement is included in a lemma of Abraham-Robbin [1, Lemma 20.3], in case of compact M; but the non-compact case follows from the proof of [1]. For the last statement, we recall the proof of this lemma: Let $\|\cdot\|$ be the Finsler of T associated with a Riemannian metric on $\bar{\tau}$. There is an atlas of $\bar{\tau}$ which consists of vector bundle charts $\{(\alpha, \alpha_0, U)\}$ of $\bar{\tau}$ where U is an open subset of W_f and $\alpha: \bar{\tau}^{-1}(U) \rightarrow \alpha_0(U) \times F_{\alpha}$ (F_{α} is a normed space with the norm $\|\cdot\|_{\alpha}$) such that $\|v\| = \|\alpha(v)\|_{\alpha}$ for $v \in \bar{\tau}^{-1}(U)$. Let $t: M \rightarrow R$ be a real valued function such that t(x) > 0 for every $x \in M$. Define

$$B_t = \{e \in E : \|v\| < t(x), x = \bar{\tau}(e)\}$$

and define $B_i(U) = B_i \cap \overline{\tau}^{-1}(U)$. We may assume that U is closure compact, then there is a real number d > 0 such that the set

$$B_{d}(U) = \{e \in E : ||e|| \le d, x = \overline{\tau}(e) \in U\}$$

is included in $B_t(U)$. Then, for the above chart (α, α_0, U) , we have $\alpha(B_d(U)) = \alpha_0(U) \times B_{ad}$, where B_{ad} is the open ball in F_a about the origin with radius d. Choose a chart (V, β) in the manifold N at f(x) such that $f(x) \in V$, $\beta(V) = V_1 \times V_2$ where V_1 and V_2 are open neighborhoods of the origin in Banach spaces F_1 and F_2 respectively, $\beta(f(x)) = (0, 0)$, and $\beta(V \cap W) = V_1 \times \{0\}$. Suppose $f(\overline{U}) \subset V$. Let \mathscr{N} be a sufficiently small neighborhood of f in $\mathscr{C}^{\infty}(M, N)$. For $g \in \mathscr{N}$ we define a map

$$\varphi_g: \alpha_0(U) \times B_{ad} \longrightarrow V_2$$

by

$$\varphi_{e}(u, e) = pr \circ \beta \circ g \circ \alpha^{-1}(u, e)$$

for $u \in \alpha_0(U)$, $e \in B_{ad}$, where pr is the projection $V_1 \times V_2 \rightarrow V_2$ on the second factor. Since $f \oiint W$, the differential $D\varphi_f(u, e)$ is surjective. Hence for each $g \in \mathcal{N}, D\varphi_e(u, e)$ is surjective. Define

$$\Phi_{\alpha}: \alpha_0(U) \times B_{ad} \longrightarrow \alpha_0(U) \times V_2$$

by $\Phi_g(u, e) = (u, \varphi_g(u, e))$ for $u \in \alpha_0(U)$ and $v \in B_{ad}$. Then $D\Phi_g(u, e)$ is a linear isomorphism. By the inverse function theorem (Lang [9, p. 12]), we have an inverse map Φ_g^{-1} : image $\Phi_g \to \alpha_0(U) \times B_{ad}$ of Φ_g (making $\alpha_0(U)$ and B_{ad} smaller if necessary). For $(w, v) \in \text{image } \Phi_g \subset \alpha_0(U) \times V_2$ let $\Phi_g^{-1}(w, v) = (h_1(w, v), v)$

 $h_2(w, v) \in \alpha_0(U) \times B_{ad}$. Since $\Phi_g(u, e) \in \alpha_0(U) \times \{0\}$ if and only if $g \circ \alpha^{-1}(u, e) \in W$, we may assume that the image of $h_2(w, \cdot)$ contains the origin of B_{ad} for each $w \in \alpha_0(U)$. Define $h: \alpha_0(U) \to B_{ad}$ by $h(w) = h_2(w, 0)$, for $w \in \alpha_0(U)$. Then $\Phi_g^{-1}(w, 0) = (w, h(w))$. Define $\xi_g: W_f \to E$ by

$$\xi_{g}(x) = \alpha^{-1}(\alpha_{0}^{-1}(x), h \circ \alpha_{0}^{-1}(x))$$

for sufficiently small vector bundle chart (α, α_0, U) with $x \in U$. ξ_g is the desired section.

If $g' \rightarrow g$ in $\mathscr{C}^{r}(M, N)$, the $\Phi_{g'} \rightarrow \Phi_{g}$ and $\Phi_{g'}^{-1} \rightarrow \Phi_{g}^{-1}$. Therefore we have $\xi_{g'} \rightarrow \xi_{g}$.

PROOF OF THEOREM B. Let $\mathscr{C}^r_*(\Sigma, M; \mathscr{F})$ denote the subset of $\mathscr{C}^r(\Sigma, M)$ which consists of all mappings $f: \Sigma \to M$ such that $j^i f \triangleq \tilde{\Sigma}^i$ for the Thom-Boardman manifold $\tilde{\Sigma}^i$ for every symbol *i* of length one. Let $E \subset J^o(\tau)$ be the submanifold of Definition 1.7. By Theorem A and the proof, the set

$$\mathscr{Y}_0 = \{Y \in \mathscr{Y}^r(M; \mathscr{F}): \rho_Y^0 \oplus E\}$$

is open and dense in $\mathscr{Y}^r(M;\mathscr{F})$, and if $Y \in \mathscr{Y}_0$, then $\Sigma_r = (\rho_r^0)^{-1}(E)$ is a closed smooth submanifold of M. Suppose $Y \in \mathscr{Y}_0$. If Y' converges to Y in $\mathscr{Y}^r(M;\mathscr{F})$, then ρ_Y^0 , converges to ρ_Y^0 in $\Gamma^r(\tau^0)$ which is the space of the sections of $\tau^0: J^0(\tau) \to M$. It implies that $\rho_{Y'}^0$ converges to ρ_Y^0 as mappings $M \to J^0(\tau)$. Let $\bar{\tau}: T \to \Sigma_r$ be a tubular neighborhood of $\Sigma_r \subset M$. By Lemma 3.2, there is an open neighborhood \mathscr{N} of ρ_Y^0 in $\Gamma^r(\tau^0)$ such that if $\rho_{Y'}^0 \in \mathscr{N}$, then $\Sigma_{Y'}$ is the image of a C^r section $\xi_{Y'}$ of $\bar{\tau}$. Suppose $Y \in \mathscr{Y}_3$. Since $\mathscr{C}_3^r(\Sigma_r, M; \mathscr{F})$ is open in $\mathscr{C}^r(\Sigma_r, M)$ by Proposition 2.5, and the inclusion map $\iota: \Sigma_Y \to M$ is contained in $\mathscr{C}_*^r(\Sigma_r, M; \mathscr{F})$, then we have a neighborhood \mathscr{U} of Y in $\mathscr{Y}^r(M; \mathscr{F})$ such that, if $Y' \in \mathscr{U}$, then $\xi_{Y'} \in \mathscr{C}_*^r(\Sigma_r, M; \mathscr{F})$, by the last statement of Lemma 3.2. This implies that the map $\xi_{Y'}: \Sigma_Y \to M$ satisfies $j^1\xi_{Y'} \bigoplus \tilde{\Sigma}^i$ for every i. Since image $\xi_{Y'} = \Sigma_{Y'}$, then by the construction of $\tilde{\Sigma}^i$ in [2], we see that the inclusion map $\iota': \Sigma_{Y'} \to M$ satisfies $j^1\iota' \oiint \tilde{\Sigma}^i$ if $r \ge 2$, and we have $Y' \in \mathscr{Y}_{2'}$. Therefore, $\mathscr{Y}_{2'}$ is open.

We consider another property for Y.

DEFINITION 3.3. **GB**_s: Y has the property G0, and the k-jet section $j^k \iota$: $\Sigma_Y \to J^k(\Sigma_Y, M; \mathscr{F})$ is transverse to $(\pi_k)^{-1} \tilde{\Sigma}^I$ for all Thom-Boardman submanifold $\tilde{\Sigma}^I$ of length k symbol I, where π_k is the natural projection of $J(\Sigma_Y, M; \mathscr{F})$ onto $J^k(\Sigma_Y, M; \mathscr{F})$, $k=1, \dots, s$.

THEOREM C (Density theorem). Let \mathscr{Y}_{Bs}^r be the set of all C^r vector fields tangent to \mathscr{F} satisfying GB_s. Then, \mathscr{Y}_{Bs}^r is a dense subset of $\mathscr{Y}^r(M, \mathscr{F})$ for $s+1 \leq r < \infty$. Especially \mathscr{Y}_{sr}^r is a dense subset for $2 \leq r < \infty$.

GIKŌ IKEGAMI

For the proof, we show a lemma. Let $\mathscr{D}^{r}(M)$ be the space of all C^{r} diffeomorphisms on M with Whitney C^{r} topology.

LEMMA 3.4. Let W be a closed submanifold of M and let $\tau: T \to W$ be a tubular neighborhood of class C^r of W in $M, 1 \leq r < \infty$. For any neighborhood \mathcal{N} of the identity in $\mathcal{D}^r(M)$ there exists a neighborhood \mathcal{N}_0 of the zero section of $\bar{\tau}$ in $\Gamma^r(\bar{\tau})$ and a continuous mapping $\Phi: \mathcal{N}_0 \to \mathcal{N}$ such that $\Phi(f) | W = f$ and $\Phi(f) = id$ on M - T for every section f in \mathcal{N}_0 .

PROOF. Let $\{(\alpha, \alpha_0, U)\}$ be the atlas of $\bar{\tau}$, associated with the Finsler, defined in the proof of Lemma 3.2. Let $\tau^* \colon T^* \to W$ be an open disk bundle such that $T^* \subset T$ and $\tau^* = \bar{\tau} \mid T^*$. Moreover we assume that

$$(3.1) \qquad \qquad \alpha((\tau^*)^{-1}(x)) = \{\alpha_0(x) \times B(t_{\alpha x})\}$$

where $B(t_{ax})$ is the open ball in F_a about the origin with radius t_{ax} and that the mapping $x \mapsto t_{ax}$ is of class C^r . We take a continuous function $\varepsilon: T \to \mathbb{R}$ such that $\varepsilon(x) > 0$ if $x \in T^*$ and $\varepsilon(x) = 0$ if $x \in T^*$. Let $g: T \to T$ be a bundle map such that $\overline{\tau} \circ g = \overline{\tau}$. We can take ε such that it satisfies the following: If

 $\|\alpha \circ g \circ \alpha^{-1}\|_r < \varepsilon(x)$

for every chart (α, α_0, U) and every x with $\overline{\tau}(x) \in U$, where $\|\cdot\|_r$ is the C^r norm of $\alpha_0(U) \times F_{\alpha}$, then the trivially extended map \tilde{g} is contained in \mathcal{N} . Here, \tilde{g} is defined by $\tilde{g}(x) = g(x)$ if $x \in T$ and, =x if $x \notin T$. For a continuous function $\delta: W \to \mathbb{R}$ with $\delta(x) > 0$ for any $x \in W$, we define $\mathcal{N}_0(\delta) \subset \Gamma^r(\overline{\tau})$ to be the set of all C^r sections $f: W \to T$ satisfying

$$\|pr \circ \alpha \circ f \circ \alpha_0^{-1}\|_r < \delta(x)$$

for every chart (α, α_0, U) and every $x \in U$, where *pr* is the natural projection $\alpha_0(U) \times F_a \to F_a$ and $\|\cdot\|_r$ is the C^r norm of the sections of $\alpha_0(U) \times F_a \to \alpha_0(U)$.

Let $\varphi: \mathbf{R} \to \mathbf{R}$ be a bump function such that

(1) $0 \leq \varphi(t) \leq 1, \forall t \in \mathbf{R},$

$$\varphi(0) = 1; \varphi(t) = 0 \text{ if } t \in (-1, 1)$$

(2) φ is of class C^r , $1 \leq r < \infty$, and there is a constant b > 0 such that

$$|\varphi^{(s)}(t)| < b, \qquad 1 \leq s \leq r.$$

(If $r = \infty$, there is no such bump function.)

We define Φ as follows. For a chart (α, α_0, U) , let $x \in U$ and $y \in \tau^{-1}(x)$. For $f \in \mathcal{N}_0(\delta)$, we have

$$lpha \circ f(x) = (lpha_0(x), v_x), \qquad ext{where} \quad v_x = pr \circ lpha \circ f(x) \in F_lpha, \ lpha(y) = (lpha_0(x), v), \qquad v \in F_lpha.$$

Let $t_{\alpha x}$ be the radius of $\alpha((\tau^*)^{-1}(x))$ in (3.1). Then, Φ is defined by

$$arPsi_{x}(f)(y) = egin{cases} lpha^{-1} \Big(lpha_{0}(x), \quad v + arphi \Big(rac{\|v\|}{t_{x}} \Big) v_{x} \Big), \quad y \in T \ y \quad , \quad y
otin T. \end{cases}$$

 $\Phi(f)$ is well-defined and of class C^r , since $\varphi(||v||/t_{\alpha x})=0$ for every $v \in T-T^*$. Since the derivatives of φ are bounded, we can take δ such that, for any x, y with $y = \overline{\tau}(x)$, if

$$\|D^r v_x\| < \delta(x),$$

then

$$\|D^r\varphi(\|v\|/t_{\alpha\tau(y)})v_{\tau(y)}\| < \varepsilon(y).$$

This implies that if $f \in \mathcal{N}_0(\delta)$, then $\Phi(f) \in \mathcal{N}$. Obviously, if $f' \in \Gamma^r(\tau)$ is a C^r approximation of f, then $\Phi(f')$ is a C^r approximation of $\Phi(f)$; so that Φ is continuous. Therefore, $\mathcal{N}_0 = \mathcal{N}_0(\delta)$ is the desired one.

PROOF OF THEOREM C. Let $Y \in \mathscr{Y}^r(M, \mathscr{F})$. Y is C^r approximated by \tilde{Y} of class C^{∞} . Then, $\Sigma_{\tilde{Y}}$ is a C^{∞} manifold. By Proposition 2.4, the inclusion map $\iota: \Sigma_{\tilde{Y}} \to M$ is C^{∞} approximated by $f: \Sigma_{\tilde{Y}} \to M$ such that the jet section jf: $\Sigma_{\tilde{Y}} \to J(\Sigma_{\tilde{Y}}, M; \mathscr{F})$ is transverse to all the Thom-Boardman submanifolds $\tilde{\Sigma}^{T}$. By the lemma 3.4, there is a C^{r+1} diffeomorphism $F: M \to M$ such that $F | \Sigma_{\tilde{Y}} = f$ and that, if $f \to \iota$ in $C^{r+1}(\Sigma_{\tilde{Y}}, M)$, then $F \to \text{identity in } \mathscr{D}^{r+1}(M)$. Let $\pi_{F}: TM \to T\mathscr{F}$ be the orthogonal projection. We define a vector field $Y' \in$ $\mathscr{Y}^{r}(M, \mathscr{F})$ by

$$Y'(x) = \pi_F \circ df \circ Y(f^{-1}(x)).$$

Let $\iota': \Sigma_{Y'} \to M$ be the inclusion map. Since $\Sigma_{Y'} = f(\tilde{\Sigma}_{\bar{Y}})$, then $j\iota' \triangleq \tilde{\Sigma}^I$ for all Thom-Boardman manifolds $\tilde{\Sigma}^I$. Hence, by the definition of this transversality in section 2, Y' satisfies GB_s. Clearly, we can take Y' arbitrarily C^r near to Y.

§4. Boundaries of normally hyperbolic domains

Let (M, \mathscr{F}) be as before. We define a Whitney stratification of the jet bundle $J^{i}(\tau)$ of sections of $\tau: T(\mathscr{F}) \to M$, as follows. Let $(\alpha^{i}, \alpha_{1} \times \alpha_{2}, U)$ be a *i*-jet chart on $\tau^{i}: J^{i}(\tau) \to M$ given by (1.4), i=0, 1. For each $\sigma \in J^{1}(\tau)$, let

(4.1)
$$\begin{cases} \alpha^{1}(\sigma) = (y, v, (A, B)) \in D^{m+n} \times \mathbb{R}^{n} \times L(\mathbb{R}^{m} \times \mathbb{R}^{n}, \mathbb{R}^{n}), \\ A \in L(\mathbb{R}^{m}, \mathbb{R}^{n}) \text{ and } B \in L(\mathbb{R}^{n}, \mathbb{R}^{n}), \end{cases}$$

GIKŌ IKEGAMI

similarly as the representation of (1.4). Define

(4.2)
$$\tilde{\Sigma}^i_{\tau} = \{ \sigma \in J^1(\tau) \colon v = 0, \text{ rank } B = n - i \}.$$

By Lemma 1.5 we have; $\tilde{\Sigma}^i_{\tau}$ is a submanifold of $J^1(\tau)$ with codimension $n+i^2$, and $\{\tilde{\Sigma}^i_{\tau}\}_{i=0,\dots,n}$ induces a Whitney stratification of $J^1(\tau)$.

Denote $\tilde{\Sigma}_{\tau}(Y) = (j^{1}Y)^{-1}(\tilde{\Sigma}_{\tau}^{i})$ and $\tilde{\Sigma}^{I}(Y) = (j^{1}\iota)^{-1}(\tilde{\Sigma}^{I})$ for Thom-Boardman symbol *I*.

THEOREM 4.1. Let $Y \in \mathscr{Y}^r(M, \mathscr{F})$, $r \geq 2$, and $\iota: \Sigma_Y \to M$ be the inclusion map. Then, we have the following.

(i) Under G0 and G1, $\tilde{\Sigma}^{i}_{\tau}(Y) = \tilde{\Sigma}^{i}(Y)$.

(ii) Let $p \in \tilde{\Sigma}^{1,0}(Y)$. Under BG₂, there exist coordinates of class C^{r-1} x_1, \dots, x_m centered at p in Σ_Y and $y_1, \dots, y_m, z_1, \dots, z_n$ centered at p in M, such that (a) z_1, \dots, z_n is the coordinates of a leaf of \mathscr{F} , (b) in these coordinates $\iota: \Sigma_Y \to M$ is given by

PROOF. (i) Let $p \in \Sigma_{Y}$. Since dim $\Sigma_{Y} = \operatorname{codim} \mathscr{F}$ by G0, the condition G1 implies

$$\operatorname{Ker} dY_p = T_p \Sigma_Y.$$

Let $B \in L(\mathbb{R}^n, \mathbb{R}^n)$ be the one given by (3.1). Then we have

$$n-\operatorname{rank} B = \dim (\operatorname{Ker} dY_p) \cap T_p \mathscr{F}$$

= $\dim T_p \Sigma_Y \cap T_p \mathscr{F}$
= $\dim \operatorname{Ker}$ of i^{i}_{ℓ} at p modulo \mathscr{F}

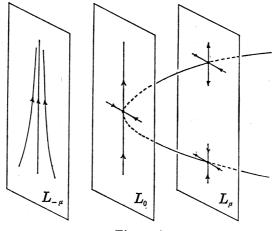
Therefore, $p \in \tilde{\Sigma}_{\tau}(Y)$ if and only if $p \in \tilde{\Sigma}^{i}(Y)$.

(ii) Since $j^{i} \iota \bigcap \tilde{\Sigma}^{1}$ and $j^{i}(\iota | \tilde{\Sigma})$ has full rank at p by Proposition 2.3, then p is a fold point (Golubitsky-Guillemin [5, p. 87 Definition 4.1]). Then, by [5, p. 88 Theorem 4.5], we have (iii) obviously.

Next, we study the bifurcations of Y at $\partial \Sigma_Y^h$. Suppose that dim M = m+n, codim $\mathscr{F} = m$, and Y is class C^r , $r \ge 3$. Let p be a point in the boundary $\partial \Sigma_Y^h$ of Σ_Y^h . Assume that there is a neighborhood N of p in $\partial \Sigma_Y^h$ such that N is an (m-1) dimensional manifold. Let $\alpha_1 \times \alpha_2 \colon U \to D^m \times D^n$ be a chart of \mathscr{F} such that $(\alpha_1 \times \alpha_2)(p) = (0, 0)$, (see (1.1)). Let I be a segment in D^m parametrized by μ such that $\mu = 0$ indicates the origin of D^m .

Assumption: $L \equiv (\alpha_1 \times \alpha_2)^{-1} (I \times D^n)$ is transverse to both Σ_Y and N in M.

DEFINITION 4.2. Under the above assumption we say that Y has saddlenode bifurcation at $p \in \partial \Sigma_Y^h$, if there is an segment I as above satisfying the following: The smooth curve $L \cap \Sigma_Y$ is tangent to L_0 at $p, \Sigma_Y \cap L_\mu = \phi$ if $\mu < 0$, and $\Sigma_Y \cap L_\mu$ consists of two points, p_μ^s and p_μ^u if $\mu > 0$. Furthermore, Y is hyperbolic at p_μ^s and p_μ^u . The dimensions of the stable manifolds at p_μ^s and p_μ^u are k and k-1, respectively, $1 \le k \le m$. See Figure 1.



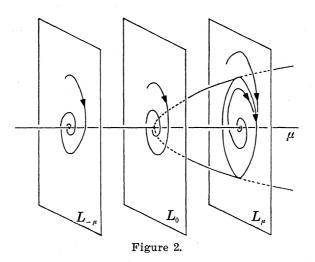
DEFINITION 4.3. Under the above assumption we say that Y has Hopf bifurcation at $p \in \partial \Sigma_Y^h$, if the following holds for every segment $I \subset D^m$ as above: There is a unique 3-dimensional center manifold C (see Guckenheimer-Holmes [6, p. 127]) containing $L \cap \Sigma_Y = (\bigcup_{\mu} L_{\mu}) \cap \Sigma_Y$ and a system of coordinates (x, y, μ) on C (with $(x, y, \mu) \in L_{\mu}$ for a fixed μ) for which the Taylor expansion of degree 3 of Y on C is given by

$$\left\{egin{array}{lll} \dot{x} &= (d\mu\!+\!a(x^2\!+\!y^2))x - (\omega\!+\!c\mu\!+\!b(x^2\!+\!y^2))y \ \dot{y} &= (\omega\!+\!c\mu\!+\!b(x^2\!+\!y^2))x + (d\mu\!+\!a(x^2\!+\!y^2))y, \end{array}
ight.$$

which is expressed in polar coordinates as

$$egin{array}{ll} \dot{r} = (d\mu\!+\!ar^{\scriptscriptstyle 2})r \ \dot{ heta} = (\omega\!+\!c\mu\!+\!br^{\scriptscriptstyle 2}). \end{array}$$

See Figure 2. Consequently, if $a \neq 0$, there is a surface of periodic solutions in C which has quadratic tangency with the eigenspace of $\lambda(0)$, $\bar{\lambda}(0)$ agreeing to second order with the paraboloid $\mu = -(a/d)(x^2 + y^2)$. If a < 0, then these solutions are stable limit cycles, while if a > 0, these are repelling. (See [6, Theorem 3.4.2].)



We want to see how these bifurcations arise in our global situation with respect to the stratifications which we have defined.

Let S^k be the k-skeleton of the stratification S defined in G2. Let \overline{S}^k be the k-skeleton of the stratification \tilde{S} on Σ_Y induced from Thom-Boardman singularities $\tilde{\Sigma}^i(Y) = (ji)^{-1}(\tilde{\Sigma}^i)$, $i = 0, 1, \dots, m$. We have $\tilde{S}^k = \tilde{\Sigma}^{m-k}(Y) \cup \tilde{\Sigma}^{m-k+1}(Y) \cup \dots \cup \tilde{\Sigma}^m(Y)$. Under G1, we have $S^k \supset \tilde{S}^k$ and $\partial \Sigma_h$ by Theorem 4.1 (i) and the definition of S. Moreover, we have that an (m-1) dimensional stratum of \tilde{S} . For the sets defined in G2, we observe

$$(\partial \Sigma_Y^h)_0 \subset \tilde{S}^{m-1}$$

and

$$(\partial \Sigma_Y^h)_{\mathrm{img}} \cap \tilde{S}^{m-1} = \phi.$$

Denote by $(\partial \Sigma_Y^h)_f$ the set of fold points in $\partial \Sigma_Y^h$;

$$(\partial \Sigma_Y^h)_t \equiv (\partial \Sigma_Y^h)_0 \cap \tilde{\Sigma}^{1,0}(Y).$$

THEOREM D. Let $Y \in \mathscr{Y}^r(\mathscr{F})$, $r \geq 3$. Under G1, G2, and GB₂, there is an open dense subset $(\partial \Sigma_Y^h)_f \cup (\partial \Sigma_Y^h)_{img}$ of the boundary $\partial \Sigma_Y^h$ of the normally hyperbolic domain Σ_Y^h such that Y has saddle-node bifurcation at each point of $(\partial \Sigma_Y^h)_f$ and has Hopf bifurcation at each point of $(\partial \Sigma_Y^h)_{img}$.

PROOF. By definition of $(\partial \Sigma_Y^h)_0$, we have $(\partial \Sigma_Y^h)_0 \subset \tilde{\Sigma}_\tau^1(Y)$. By Theorem 4.1. (i), we have $\tilde{\Sigma}_\tau^1(Y) = \tilde{\Sigma}_\tau^1(Y)$. Since $\tilde{\Sigma}_{\tau^{1,0}}$ is open dense in $\tilde{\Sigma}_\tau^1$ by Proposition 2.2 and (2.3), then $(\partial \Sigma_Y^h)_f$ is open dense in $(\partial \Sigma_Y^h)_0$.

Let $p \in (\partial \Sigma_{Y}^{h})_{f}$. Let (x_{1}, \dots, x_{m}) and $(y_{1}, \dots, y_{m}, z_{1}, \dots, z_{n})$ be the coordinate systems centered at p for Σ_{Y} and M, respectively, given by Theorem 4.1.

(iii). For an interval $I \subset R$ containing 0, let $\mu \in I$. We define

$$(4.3) L_{\mu} = \{(y_1, \cdots, y_m, z_1, \cdots, z_n) \in M : y_1 = \cdots = y_{m-1} = 0, y_m = \mu\}.$$

 $L = \bigcup_{\mu \in I} L_{\mu}$ is coordinated by (μ, z_1, \dots, z_n) , and for these coordinates, we have

$$(4.4) L \cap \Sigma_{Y} = \{(\mu, z_{1}, \cdots, z_{n}) \colon \mu = z_{1}^{2}, z_{2} = \cdots = z_{n} = 0\}.$$

Hence, $L \cap \Sigma_Y$ is tangent to L_0 at p, $\Sigma_Y \cap L_\mu = \phi$ if $\mu < 0$, and $\Sigma_Y \cap L_\mu$ consists of two points, p_1 and p_2 if $\mu > 0$. $Y_\mu = Y | L_\mu$ is hyperbolic at both of p_1 and p_2 , since these points are contained in Σ_Y^h . By the definition of $\tilde{\Sigma}_z^1$ and the transversality of $j^1 Y$ with $\tilde{\Sigma}_z^1$, it is ovbious that the difference of the stable dimensions of p_1 and p_2 is just one. Therefore, Y has saddle-node bifurcation at any point of $(\partial \Sigma_Y^h)_j$, which is open dense in $(\partial \Sigma_Y^h)_0$.

Let $p \in (\partial \Sigma_Y^n)_{\text{img}}$ and L_0 be the leaf of \mathscr{F} containing p. Since the differential of $Y | L_0$ at p does not have zero eigenvalue by the definition of $(\partial \Sigma_Y^n)_{\text{img}}$ in G2, it follows that $p \notin \tilde{\Sigma}_\tau^i(Y) = \tilde{\Sigma}^i(Y)$ (Theorem 4.1) for any $i \neq 0$. Hence, for a small neighborhood U of p in Σ_Y , the composition $(pr) \circ (\alpha_1 \times \alpha_2)$: $U \rightarrow D^m \times D^n \rightarrow D^m$ is a diffeomorphism. This implies that we can take a segment I in U instead of a segment $I \subset D^m$ (in Definition 4.3). Point p is contained in an (m-1) dimensional stratum $S_{\text{img}} \subset (\partial \Sigma_Y^h)_{\text{img}}$ of \mathcal{S} . Let $I \subset \Sigma_Y$ be an open segment which is transverse to S_{img} at p. Let μ be a parameter of I such that $\mu=0$ at p. Let L_{μ} be the leaf of $\mathscr{F} | U$ passing through $\mu \in I$. The derivative of $Y | L_0$ at p has a smiple pair of pure imaginary eigenvalues and no other eigenvalues with zero real parts. Let $\lambda(\mu)$, $\bar{\lambda}(\mu)$ be the eigenvalues of the differential of $Y | L_{\mu}$ at $\mu \in I$ which are pure imaginary at $\mu=0$. $\lambda(\mu)$, $\bar{\lambda}(\mu)$ vary smoothly with μ . Moreover,

$$rac{d}{d\mu}(\mathscr{R}\lambda(\mu))|_{\mu=0}
eq 0$$

by the transversality $I \oiint S_{img}$ and the definition of $(\partial \Sigma_Y^h)_{img}$, (cf. the proof of Lemma 1.6). Then, by Guckenheimer-Holmes [6, Theorem 3.4.2], Y has Hopf bifurcation at p.

Since $(\partial \Sigma_Y^h)_f \cup (\partial \Sigma_Y^h)_{img}$ is open dense in $\partial \Sigma_Y^h$, the theorem is proved. \Box

Let X be a C^r vector field on an open set U in \mathbb{R}^n , let φ_i be the flow of X, and let $p \in U$ be an equilibrium point of X. Suppose that the eigenvalues $\lambda_0, \dots, \lambda_{n-1}$ of DX(p) satisfy that $\lambda_0=0, \mathscr{R}\lambda_1, \dots, \mathscr{R}\lambda_{n-1}<0$. Let E^c and E^s be the generalized eigen spaces of λ_0 and $\lambda_1, \dots, \lambda_{n-1}$, respectively. By center manifold theorem (Chow-Hale [4, Theorem 2.2] and Guckenheimer-Holmes [6, Theorem 3.2.1]), there are an invariant C^r manifold $W^s(p)$ (called the stable manifold) tangent to E^s at p and a C^r manifold $W^c(p)$ (called the (local)

Gikō Ikegami

center manifold) tangent to E^c at p. W^c is locally invariant in the sense that, if $q \in W^c$ and $\varphi_t(q) \in U$, then $\varphi_t(q) \in W^c$. W^s is unique, but W^c need not be. W^c is asymptotically stable in the sense that if t>0 and $\varphi_t(q)$ remains defined in U for all t>0, then $\varphi_t(q) \to W^c$ as $t\to\infty$ (Chow-Hale [4, Theorem 2.13]).

Let φ_t be the flow associated to a vector field on a manifold. The subsets

$$V^{s}(p) = \{q: \varphi_{t}(q) \rightarrow p \text{ as } t \rightarrow \infty\},\$$

and

$$V^{u}(p) = \{q: \varphi_{t}(q) \rightarrow P \text{ as } t \rightarrow -\infty\}$$

are called the *stable set* and the *unstable set* of *p*, respectively.

Let Σ_Y^s denote the normally stable domain of Σ_Y (see Definition 1.4). Let

$$(\partial \Sigma_Y^s)_f \equiv (\partial \Sigma_Y^h)_f \cap (\partial \Sigma_Y^s) \text{ and } (\partial \Sigma_Y^s)_{\mathrm{img}} \equiv (\partial \Sigma_Y^h)_{\mathrm{img}} \cap (\partial \Sigma_Y^s).$$

THEOREM E. Suppose a vector field $Y \in \mathscr{Y}^r(M, \mathscr{F})$ satisfies G1, G2 and GB₂. Let $p \in (\partial \Sigma_Y^s)_f$. Then, there is an open neighborhood U of p in M, and, denoting by L_p the connected component of a leaf of $\mathscr{F} \mid U$ containing p (i.e. a plaque of \mathscr{F}), there is a C^r embedding $h_p: L_p \to \mathbb{R}^1 \times \mathbb{R}^{n-1}$ such that the following are satisfied.

(i) $W^s(p) \cap L_p \subset h_p^{-1}(\{0\} \times \mathbb{R}^{n-1})$ and $W^c(p) \cap L_p \subset h_p^{-1}(\mathbb{R}^1 \times \{0\})$, where $W^s(p)$ and $W^c(p)$ are the stable and center manifolds of Y restricted in a leaf, respectively.

(ii) $V^s(p) \cap L_p \subset h_p^{-1}([0, \infty) \times \mathbb{R}^{n-1})$ and $V^u(p) \cap L_p \subset h_p^{-1}((-\infty, 0] \times \{0\})$ $\subset W^c(p)$, where $V^s(p)$ and $V^u(p)$ are the stable and unstable sets of p, respectively (Figure 3).

(iii) The C^r embedding h_p depends C^{r-1} continuously on $p \in (\partial \Sigma_Y^s)_f$. So that, the unstable set

$$V^{u} = \{q \in V^{u}(p) \colon p \in (\partial \Sigma_{Y}^{s})_{f} \cap U\}$$

is an injectively C^{r-1} immersed submanifold of M, where $V^u(p)$ is an injectively C^r immersed submanifold of M.

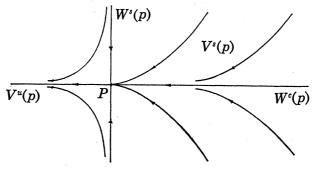


Figure 3.

PROOF. (i) is obtained easily from center manifold theorem. To show (ii) let L_{μ} be the plaque defined by (4.3) and let I be an interval with $0 \in I \subset \mathbb{R}$. Then, $L = \bigcup_{\mu \in I} L_{\mu}$ is a C^{r-1} manifold. By center manifold theorem, we have a two-dimensional center manifold $\tilde{W}^c(p)$ at p of Y | L. Let \tilde{U} be a small neighborhood of p in L. Let $\tilde{h} \colon \tilde{U} \to \mathbb{R}^1 \times \mathbb{R}^{n-1} \times I$ be an embedding such that $\tilde{h}(q) = h(q) \times \{0\}$ if $q \in L_0$ $(=L_p)$ and $\tilde{h}(q) \in \mathbb{R}^1 \times \mathbb{R}^{n-1} \times \{\mu\}$ if $q \in L_{\mu}$.

Since Y|L has saddle-node bifurcation at p, there are two hyperbolic points p_{μ}^{s} and p_{μ}^{u} of Y|L near p. We assert here that these points are contained in $\tilde{W}^{c}(p)$. In fact, let φ_{t} be the flow of Y. Since $\tilde{W}^{c}(p)$ is asymptotically stable, we have $\varphi_{t}(q) \rightarrow \tilde{W}^{c}(p)$ as $t \rightarrow \infty$, if $\varphi_{t}(q) \in \tilde{U}$ for any t > 0. Especially, if $q \in L_{\mu}$, then $\varphi_{t}(q) \rightarrow \tilde{W}^{c}(p) \cap L_{\mu}$. Let $\tilde{W}^{s}(p_{\mu}^{u})$ and $\tilde{W}^{u}(p_{\mu}^{u})$ be the stable and unstable manifolds at p_{μ}^{u} of $Y|L_{\mu}$, respectively. If $p_{\mu}^{u} \notin \tilde{W}^{c}(p)$, then we have $\varphi_{t}(p_{\mu}^{u}) \rightarrow \tilde{W}^{c}(p) \cap L_{\mu}$ for $t \rightarrow 0$. Since p_{μ}^{u} is a fixed point of φ_{t} , this is a contradiction. Therefore, we have $p_{\mu}^{u} \in \tilde{W}^{c}(q)$, and similarly for p_{π}^{s} .

We identify \tilde{U} by \tilde{h} with an open set of $\mathbb{R}^1 \times \mathbb{R}^{n-1} \times I$ containing the origin. Let E_p^s and E_p^c be the generalized eigenspaces of the eigenvalues with negative real parts and zero of $(DY)_p$, respectively. Since $E_p^s = \{0\} \times \mathbb{R}^{n-1} \times \{0\}$ and $E_p^c \supset \mathbb{R}^1 \times \{0\} \times \{0\}$, we have $\tilde{W}^c(p) \bigoplus L_{\mu}$ for each $\mu \in I$ by taking I smaller if necessary. Hence, $\tilde{W}^c(p) \cap L$ is a Y-invariant C^r curve.

The unstable manifold $\tilde{W}^{u}(p_{\mu}^{u})$ of $Y|L_{\mu}$ is included locally in $\tilde{W}^{c}(p) \cap L_{\mu}$. In fact, this is obtained from the fact that the Y-invariant 1-dimensional manifold $\tilde{W}^{c}(p) \cap L_{\mu}$ is transverse to the (n-1) dimensional stable manifold $\tilde{W}^{s}(p_{\mu}^{u})$ of Y|L at p_{μ}^{u} . We can easily see that p_{μ}^{s} is a sink in $\tilde{W}^{c}(p) \cap L_{\mu}$.

For each point q in one component $W^c_+(p)$ of $W^c(p) - \{p\}$, we have $\varphi_t(q) \rightarrow p$ as $t \rightarrow \infty$; and for each point q in the other component $W^c_-(p)$, we have $\varphi_t(q) \rightarrow p$ as $t \rightarrow -\infty$. This is shown as follows. The 2-dimensional manifold $\tilde{W}^c(p)$ is φ_t -invariant. If $\mu > 0$, there are only two equilibrium points p^s_{μ} and p^u_{μ} in

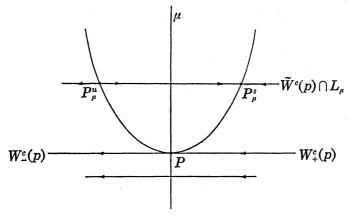


Figure 4.

Gikö Ikegami

 $\tilde{W}^{c}(p) \cap L_{\mu}$ such that p_{μ}^{s} is a sink and p_{μ}^{u} is a source of $Y | \tilde{W}^{c}(p) \cap L_{\mu}$. If $\mu < 0$, there is no equilibrium. By the continuity of φ_{t} the above facts are obtained. (See Figure 4.) Hence, by Chow-Hale [4, p. 324], we have the property (iii) of the lemma.

For (iv), we recall that $(\partial \Sigma_Y^s)_t$ is a manifold of class C^{r-1} . Then, the C^{r-1} dependence of $W^c(p)$ on p is obvious by Chow-Hale [4, Theorem 2.1].

References

- R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, Inc., 1967.
- [2] J. M. Boardman, Singularities of differentiable maps, Publ. I.H.E.S., No. 33 (1967), 21-57.
- [3] C. Chevalley, Theory of Lie Groups, Princeton Univ. Press, 1946.
- [4] S. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, 1982.
- [5] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, 1973.
- [6] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.
- [7] G. Ikegami, On network perturbations of electrical circuits and singular perturbation of dynamical systems, Chaos, Fractals, and Dynamics, Marcel Dekker, New York, 1985.
- [8] G. Ikegami, Singular perturbations for constraint systems, Dynamical Systems and Non-linear Oscillations, World Sci. Publ., 1986.
- [9] S. Lang. Introduction to differentiable Manifolds, Interscience, New York, 1962.
- [10] H. I. Levine, Singularities of differentiable mappings, Springer Lecture Notes in Math., No. 192 (1971).
- [11] J. E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications, Springer-Verlag, 1976.
- [12] J. N. Mather, Stratifications and mappings, Dynamical Systems, Academic Press Inc., 1973, 195-232.
- [13] J. R. Munkres, Elementary Differential Topology, Ann. of Math. Studies, No. 54, Princeton Univ. Press, 1963.
- [14] M. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Differential Equations, 3 (1966), 214-227.
- [15] F. Takens, Constrained equations: a study of implicit differential equations and their discontinuous solutions, Lecture Notes in Math., No. 525 (1975), Springer-Verlag, 144-234.
- [16] C. T. C. Wall, Regular stratifications, Dynamical Systems, Warwick 1974, Springer Lecture Notes in Math., No. 468 (1973), 232-344.
- [17] E. C. Zeeman, Differential equations for the heatbeat and nerve impulse, Dynamical Systems, Salvador 1971, Acad. Press, 1973, 683-741.

DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION NAGOYA UNIVERSITY CHIKUSA-KU, NAGOYA 464 JAPAN