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Almost periodic functionals and
finite-dimensional representations

by

M. Filali (Oulu) and M. Sangani Monfared (Windsor, ON)

Abstract. We show that if A is a C∗-algebra and λ ∈ A∗ is a nonzero almost peri-
odic functional which is a coordinate functional of a topologically irreducible involutive
representation π, then dimπ <∞. We introduce the RFD transform αA : A→ U(A) of a
Banach algebra A and establish its universal property. We show that if A has a bounded
two-sided approximate identity, then almost periodic functionals on A which are limits of
coordinate functionals of finite-dimensional representations have lifts to almost periodic
functionals on U(A). Other connections with almost periodicity and harmonic analysis
are also discussed.

1. Introduction and preliminaries. Let A be a Banach algebra and
A∗ be its dual space. Then A∗ carries a natural two-sided Banach A-module
structure as follows: given a ∈ A, f ∈ A∗, the product a·f ∈ A∗ is defined by
the duality 〈a · f, b〉 = 〈f, ba〉 for all b ∈ A (the product f · a ∈ A∗ is defined
similarly). A functional λ ∈ A∗ is called almost periodic if the map A→ A∗,
a 7→ a · λ, is a compact linear operator. The space of all almost periodic
functionals on A, denoted by AP(A), is a closed two-sided submodule of A∗.
If G is a locally compact group and L1(G) is the group algebra of G (under
the convolution product), then AP(L1(G)) coincides with the C∗-algebra of
all continuous almost periodic functions on G, which we denote by AP(G).
Among the extensive literature on almost periodic functionals, we can men-
tion Dunkl and Ramirez [11], Young [26], Granirer [17], Lau and Wong [21],
Duncan and Ülger [9], Dales and Lau [6].

We denote by L (E) the space of all continuous linear operators on
a Banach space E. If A is a Banach algebra, then by a continuous rep-
resentation π of A on E, we mean a continuous algebra homomorphism
π : A → L (E). Given x ∈ E, φ ∈ E∗, the coordinate functional πx,φ ∈ A∗
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is defined by πx,φ(a) = 〈π(a)x, φ〉 (a ∈ A). Perhaps the simplest connection
between almost periodic functionals and representation theory is that every
coordinate functional of a continuous finite-dimensional representation is
almost periodic (Filali and Monfared [15, Lemma 2.3]).

In this paper we discuss several additional results related to almost peri-
odic functionals and finite-dimensional representations. In Theorem 2.1 we
show that if A is an involutive Banach algebra, π : A→ L (H) is an involu-
tive representation, and ξ, η ∈ H are algebraically cyclic vectors such that
πξ,η ∈ AP(A), then dimH <∞. In the remaining part of Section 2, several
corollaries of this theorem are given. We show that if A is a C∗-algebra and
λ ∈ AP(A) is a nonzero coordinate functional of a topologically irreducible
involutive representation π, then dimπ < ∞ (Corollary 2.2). Furthermore,
if A is a unital C∗-algebra, then every pure state λ ∈ AP(A) is a coordinate
function of a finite-dimensional representation (Corollary 2.3). We will also
show that if G is a compact group, then every algebraically cyclic involutive
representation of L1(G) is finite-dimensional (Corollary 2.4).

In Section 3 we introduce and study the properties of a canonical ho-
momorphism αA : A→ U(A), where U(A) is a residually finite-dimensional
(RFD) Banach algebra. We call αA the RFD transform of A. We prove a uni-
versal property for the pair (αA, U(A)), and show the existence of a bijection
between finite-dimensional representations of A and U(A) (Theorem 3.4).
The pair (αA, U(A)) may thus be viewed as a Banach algebra analogue of
the Bohr compactification of topological groups.

In analogy with the group case, one may ask whether almost periodic
functionals on A can be lifted to almost periodic functionals on the universal
object U(A). Theorem 4.4 shows that if A has a bounded two-sided approx-
imate identity, then this question has a positive answer for a large class of
almost periodic functionals on A (i.e., those which are limits of coordinate
functionals of finite-dimensional representations). In Theorem 4.5 we show
that α∗A (the adjoint of αA) can be used to obtain almost periodic func-
tionals on A. The connection between these ideas and harmonic analysis is
briefly discussed in Theorem 4.6 and Example 4.7.

Now we review some notation and terminology. Throughout this paper,
G denotes a locally compact Hausdorff topological group equipped with a
fixed left Haar measure, which we denote by ds, dt, etc. (When G is compact,
the Haar measure is normalized.) For the standard terminology on repre-

sentation theory we refer to Dixmier [7] or Palmer [23]. We denote by Ĝ
the set of all (equivalence classes of) continuous, topologically irreducible,
unitary representations of G on Hilbert spaces. To simplify the notation we
shall identify each equivalence class [π] in Ĝ with its representative π (sim-
ilar remark holds when we deal with representations of Banach algebras).
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If π ∈ Ĝ, then we can define an involutive topologically irreducible repre-
sentation π′ of L1(G) by π′(f) =

	
G f(s)π(s) ds, f ∈ L1(G). We call π′ the

representation of L1(G) associated with π. Conversely, every nonzero topo-
logically irreducible involutive representation of L1(G) is associated with

some π ∈ Ĝ.

2. AP(A) and involutive representations

Theorem 2.1. Let A be an involutive Banach algebra and π : A→L (H)
be an involutive representation of A on a Hilbert space H. If ξ, η ∈ H are
algebraically cyclic vectors for π such that πξ,η ∈ AP(A), then dimH <∞.

Proof. Let λ = πξ,η and let BA denote the closed unit ball of A. Since λ
is almost periodic, the set {a ·λ : a ∈ BA} is relatively norm compact in A∗.
The idea of the proof is to show that the set W = {π(a)ξ : a ∈ BA} is a
relatively norm compact neighborhood of 0 in H. This will imply that H is
finite-dimensional (Dunford and Schwartz [10, Theorem IV.3.5]). It is easy
to see that W is a neighborhood of 0 in H. In fact, since ξ is algebraically
cyclic, we have π(A)ξ = H and hence the map Γ : A → H, a 7→ π(a)ξ, is
a continuous linear surjection. By the open mapping theorem, Γ (BA) = W
contains an open neighborhood of 0 in H.

It remains to show that W is relatively norm compact in H. This is
equivalent to showing that for every sequence {an} in BA, the sequence
{π(an)ξ} in W has a cluster point in H. Identifying {an} with its natural
image in A∗∗, let Φ ∈ A∗∗ be a w∗-cluster point of {an}, and {aα} be a
subnet such that aα → Φ in the w∗-topology of A∗∗. Let π̃ be the normal
representation of A∗∗ on H extending π (Filali, Neufang, and Monfared [14,
Theorem 3.3]). We shall show that for a suitable subnet {aαβ} of {aα}, we
have

(1) ‖π(aαβ )ξ − π̃(Φ)ξ‖ → 0.

Since λ ∈ AP(A), the set BA · λ
‖·‖A∗ is compact, and the net {aα · λ} has

a cluster point in A∗. Thus there exists some f ∈ A∗ and a subnet {aαβ}
of {aα} such that ‖aαβ · λ − f‖A∗ → 0. It is easy to check that aαβ · λ =
aαβ · πξ,η = ππ(aαβ )ξ,η, hence

‖aαβ · λ− f‖A∗ = sup{|〈aαβ · λ, b〉 − 〈f, b〉| : b ∈ BA}(2)

= sup{|〈ππ(aαβ )ξ,η, b〉 − 〈f, b〉| : b ∈ BA}

= sup{|(π(b)(π(aαβ )ξ) | η)− 〈f, b〉| : b ∈ BA} → 0.

However, for given b ∈ BA,

(3) (π(b)(π(aαβ )ξ) | η) = (π(aαβ )ξ |π(b)∗η)

= (π̃(aαβ )ξ |π(b∗)η)→ (π̃(Φ)ξ |π(b∗)η).
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It follows from (2) and (3) that for every b ∈ BA,

(4) 〈f, b〉 = (π̃(Φ)ξ |π(b∗)η).

Thus using (2) and (4) we can write

(5) sup{|(π(aαβ )ξ |π(b∗)η)− (π̃(Φ)ξ |π(b∗)η)| : b ∈ BA} → 0.

Since BA is stable under involution, we can rewrite (5) as

(6) sup{|(π(aαβ )ξ − π̃(Φ)ξ |π(b)η)| : b ∈ BA} → 0.

Let W ′ = {π(b)η : b ∈ BA}. As we saw for W , since η is algebraically cyclic,
the open mapping theorem implies that W ′ contains an open neighborhood
of 0 in H, say Br(0). It follows that

‖π(aαβ )ξ − π̃(Φ)ξ‖ = sup
ζ∈H, ‖ζ‖≤1

| (π(aαβ )ξ − π̃(Φ)ξ | ζ)|

=
2

r
sup

ζ∈H, ‖ζ‖≤1

∣∣(π(aαβ )ξ − π̃(Φ)ξ | rζ/2)
∣∣

=
2

r
sup

ζ′∈H, ‖ζ′‖≤r/2
|(π(aαβ )ξ − π̃(Φ)ξ | ζ ′)|

≤ 2

r
sup

ζ∈H, ‖ζ‖<r
|(π(aαβ )ξ − π̃(Φ)ξ | ζ)|

(since Br(0) ⊂W ′) ≤ 2

r
sup
ζ∈W ′

|(π(aαβ )ξ − π̃(Φ)ξ | ζ)|

(by (6)) =
2

r
sup{|(π(aαβ )ξ − π̃(Φ)ξ |π(b)η)| : b ∈ BA} → 0.

This proves (1), and hence completes the proof.

Corollary 2.2. Let A be a C∗-algebra and λ ∈ AP(A) be nonzero. If λ
is a coordinate functional of a topologically irreducible involutive represen-
tation π : A→ L (H), then dimH <∞.

Proof. Let λ = πξ,η, with ξ, η ∈ H. By Kadison’s irreducibility theo-
rem (see Dixmier [7, Corollaire 2.8.4]), π is algebraically irreducible, and
hence, both ξ, η are algebraically cyclic vectors for π. By Theorem 2.1,
dimH <∞.

Let A be unital C∗-algebra. The set S of all states on A is a w∗-compact
convex subset of the unit ball of A∗. The extreme points of S (which exist
by the Krein–Milman theorem) are called the pure states on A.

Corollary 2.3. If A is a unital C∗-algebra, then every pure state
λ ∈ AP(A) is a coordinate functional of a finite-dimensional involutive rep-
resentation of A.
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Proof. Since λ is positive, by the GNS construction there exists an in-
volutive representation π : A → L (H) such that λ = πξ,ξ for some ξ ∈ H.
Since λ is a pure state, π is topologically irreducible (Dixmier [7, Proposition
2.5.4]). The result follows from Corollary 2.2.

We recall that if G is a compact group, then every topologically irre-
ducible involutive representation of L1(G) is finite-dimensional. As our final
corollary of Theorem 2.1, we state the following.

Corollary 2.4. If G is a compact group, then every algebraically cyclic
involutive representation of L1(G) is finite-dimensional.

Proof. Let π : L1(G) → L (H) be an involutive representation with an
algebraically cyclic vector ξ ∈ H. Then πξ,ξ ∈ C(G) = AP(G) = AP(L1(G)).
The result follows from Theorem 2.1.

3. The RFD transform. Let G be a locally compact group. It is
well-known that the Bohr (or almost periodic) compactification of G, de-
noted by b(G), can be obtained using finite-dimensional unitary represen-
tations of G (see for example, Dixmier [7, Théorème 16.1.1]). The com-
pact group b(G) has several properties of interest, among which we can
mention the following: (i) b(G) has sufficiently many finite-dimensional uni-
tary representations, (ii) there exists a canonical continuous homomorphism
α : G → b(G) such that given a compact group H and a continuous homo-
morphism α′ : G → H, one can find a unique continuous homomorphism
β : b(G) → H with α′ = β ◦ α (universal property), (iii) there exists a bi-
jection between the (equivalence classes of) finite-dimensional unitary rep-
resentations of G and b(G), (iv) a bounded continuous function f on G is
almost periodic if and only if there exists a continuous function g on b(G)
such that f = g ◦ α.

The Bohr compactification is a powerful tool in harmonic analysis and its
applications. In this section we discuss an analogous construction in the cat-
egory of Banach algebras. The relevance of this construction to the study of
almost periodic functionals will be discussed in the next section. For our pur-
poses, the property that will play the role of ‘compactness’ for Banach alge-
bras is the existence of sufficiently many finite-dimensional representations.
This property has been studied extensively for C∗-algebras (though perhaps
not with a view toward almost periodic functionals), and C∗-algebras having
this property are called residually finite-dimensional (RFD). From the rele-
vant literature we can mention Choi [3], Goodearl and Menal [16], Exel and
Loring [12], Pestov [24], Archbold [1], Dadarlat [4], and Lin [22]. Since in
this paper we are interested in both involutive and noninvolutive algebras,
we shall make precise our meaning of an RFD Banach algebra (here and
below, the phrases pertaining to the involutive case appear in brackets [ ]).
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Definition 3.1. An [involutive] Banach algebra A is residually finite-
dimensional (RFD) if for every a ∈ A we have ‖a‖ = supπ ‖π(a)‖, where
the supremum is taken over all [irreducible involutive] finite-dimensional
representations π of A with ‖π‖ ≤ 1.

If X is a locally compact space, then every closed subalgebra A of
C0(X) is RFD, since for each f ∈ A, ‖f‖ = supx∈X |f(x)|. The C∗-algebra
C0(X,Mn(C)) is also RFD (cf. Blackadar [2, IV.1.4.1]). Choi [3, Theorem 7]
has shown that the full C∗-algebra C∗(F ) of any free group F with a count-
able set of generators is RFD. In general, the RFD property is preserved
under the formation of direct sums and passage to closed subalgebras. The
group algebra L1(G) and the Fourier algebra A(G) (Eymard [13]) are, in
general, not RFD (see Remark 3.3).

Let us note that in the definition of an involutive RFD Banach alge-
bra, the condition of irreducibility of involutive representations is not an
additional restriction, since finite-dimensional involutive representations are
direct sums of irreducible ones (Dixmier [7, (2.3.5)]). It follows that, if A
is a C∗-algebra, then A is RFD if and only if A has a separating family of
finite-dimensional involutive representations (the equivalence follows easily
from Takesaki [25, Proposition I.5.3]). This shows that for C∗-algebras, Defi-
nition 3.1 agrees with the one usually found in the literature on C∗-algebras.

To every Banach algebra we can associate an RFD Banach algebra as
follows. Let A be an [involutive] Banach algebra and let {(πi, Hi)}i∈I be the
family of all [irreducible involutive] finite-dimensional representations of A
with ‖πi‖ ≤ 1. We call the continuous homomorphism

(7) αA : A→ `∞-
⊕
i∈I

L (Hi), αA(a) = (πi(a))i∈I ,

the RFD transform of A (the Banach algebra direct sum `∞-
⊕

i∈I L (Hi)
has coordinatewise operations and is equipped with the supremum norm).
We denote the closure of αA(A) in `∞-

⊕
i∈I L (Hi) by U(A), and call it the

RFD Banach algebra associated with A (see Theorem 3.4). If A does not
have any nonzero finite-dimensional representations, then U(A) = {0}.

Example 3.2. Let G be either a compact group or a locally compact
abelian group, and let L1(G) be the group algebra ofG under the convolution
product. Then the set of nonzero finite-dimensional irreducible involutive
representations of L1(G) can be written as {(π′, Hπ)}

π∈Ĝ (where π is the

representation of G conjugate to π, and π′ is the representation of L1(G)

associated with π). Then for f ∈ L1(G) and π ∈ Ĝ, we have

(8) αL1(f)(π) = π′(f) =
�

G

f(s)π(s) ds = f̂(π),

where f̂ is the Fourier transform of f [18, (28.34)]. Thus αL1(f)|
Ĝ

= f̂ and
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‖αL1(f)‖∞ = ‖f̂‖∞ for all f ∈ L1(G). At the end of this section, U(L1(G))
will be characterized when G is either abelian or compact.

Remark 3.3. If A is RFD, then the homomorphism αA is an isomet-
ric isomorphism onto its image. In particular, an RFD Banach algebra is
Arens regular (Duncan and Hosseiniun [8], Dales [5]), and an involutive RFD
Banach algebra is a C∗-algebra.

We now state the main result of this section.

Theorem 3.4. Let A be an [involutive] Banach algebra. Then U(A) is
an [involutive] RFD Banach algebra with the following properties:

(i) If B is an [involutive] RFD Banach algebra and α′ : A → B is an
[involutive] homomorphism with ‖α′‖ ≤ 1, then there exists a unique
[involutive] homomorphism β : U(A) → B such that ‖β‖ ≤ 1 and α′ =
β ◦ αA (universal property).

(ii) Let C and Č be the sets of all [irreducible involutive] finite-dimensional
representations of A and U(A) respectively, with norms ≤ 1. Then the
map

Č → C , π̌ 7→ π := π̌ ◦ αA,
is a bijection between Č and C . Moreover, π is irreducible if and only
if π̌ is irreducible.

Up to isometric isomorphism, the pair (αA, U(A)) is uniquely determined
by the universal property (i).

Proof. We will give the proof for involutive algebras (the proof for the
noninvolutive case is similar). Let {(πi, Hi)}i∈I denote the family of all ir-
reducible involutive finite-dimensional representations of A. For each i ∈ I,
let pri : U(A) → L (Hi) be the projection onto the ith coordinate. Then
pri is an involutive finite-dimensional representation of U(A). Since πi is
irreducible and pri(αA(a)) = πi(a) for all a ∈ A, it follows that pri is also
irreducible. Moreover, by the definition of U(A), if T = (Ti)i∈I ∈ U(A), then
‖T‖ = supi∈I ‖pri(T )‖, and thus U(A) is RFD.

(i) Let {(θj , H ′j)}j∈J be the family of all irreducible involutive finite-
dimensional representations of B. For each j ∈ J , the map

(9) ρj := θj ◦ α′

is an involutive finite-dimensional representation of A on H ′j . Let

ρj =
Nj⊕
k=1

⊕njk ρjk

be a decomposition of ρj into involutive irreducible representations of A
(where

⊕njk ρjk = ρjk ⊕ · · · ⊕ ρjk , njk summands). Each ρjk must then be
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unitarily equivalent to one of the representations in {(πi, Hi)}i∈I , say πijk .
Hence

ρj ∼=
Nj⊕
k=1

⊕njk πijk .

Let Ij = {ijk : k = 1, . . . , Nj}, and prIj : U(A) →
⊕Nj

k=1 L (Hijk
) be the

projection of U(A) onto its Ijth component. Let σj be the ‘amplification’
map defined by

σj :
Nj⊕
k=1

L (Hijk
)→

Nj⊕
k=1

⊕njk L (Hijk
),

Nj⊕
k=1

Tk 7→
Nj⊕
k=1

⊕njk Tk.

Next, let

γj :
Nj⊕
k=1

⊕njk L (Hijk
)→ L (H ′j)

be the isometric involutive homomorphism such that

ρj = γj ◦
Nj⊕
k=1

⊕njk πijk ,

and define

β′j = γj ◦ σj ◦ prIj .

Then β′j : U(A) → L (H ′j) is an involutive homomorphism, and for every
a ∈ A,

(10) (β′j ◦ αA)(a) = γj ◦ σj
(
prIj (αA(a))

)
= γj

( Nj⊕
k=1

⊕njk πijk (a)
)

= ρj(a).

Consider the involutive homomorphism

β′ = (β′j)j∈J : U(A)→ `∞-
⊕
j∈J

L (H ′j), T 7→ (β′j(T ))j∈J .

Since B is RFD, it follows from the definition that αB is an involutive
isometric isomorphism of B onto αB(B), and thus B ∼= αB(B) = U(B).
Therefore by (9), (10), and the density of αA(A) in U(A), we can write
β′(U(A)) ⊂ αB(B). We claim that the map β defined by

(11) β := α−1B ◦ β
′ : U(A)→ B

is the required involutive homomorphism satisfying α′ = β ◦αA. In fact, for
every a ∈ A, using (9) and (10) we can write

β′(αA(a)) = (β′j(αA(a)))j∈J = (ρj(a))j∈J = (θj(α
′(a)))j∈J = αB(α′(a)).

In other words, (α−1B ◦ β′)(αA(a)) = α′(a) for all a ∈ A, thus by (11),
β ◦ αA = α′. The uniqueness of β is immediate because αA(A) is dense
in U(A).
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(ii) It is easy to verify that the map π̌ 7→ π preserves the equivalence
classes and is well-defined. To prove surjectivity, let (π,H) ∈ C . Keeping the
notation as in the proof of (i), we must have (π,H) = (πi, Hi) for some i ∈ I.
Since the ith projection pri : U(A)→ L (Hi) belongs to Č , by letting π̌ = pri
we obtain π̌◦αA = π. To prove injectivity, suppose π̌1, π̌2 ∈ Č and π̌1◦αA ∼=
π̌2 ◦αA. Then for a unitary operator V , π̌2(αA(a)) = V −1π̌1(αA(a))V for all
a ∈ A. Since αA(A) is norm dense in U(A), it follows that π̌1 ∼= π̌2. The fact
that irreducibility of π and of π̌ are equivalent follows immediately from the
density of αA(A) in U(A).

The uniqueness of (αA, U(A)) (up to isometric isomorphism) is an easy
consequence of its universal property (i); the details are left to the reader.

We recall that an involutive Banach algebra A is called symmetric if the
Gelfand transform of A is an involutive homomorphism. Examples include
group algebras and C∗-algebras. The following result (whose proof is left
to the reader) gives an alternative description of (αA, U(A)) when A is a
commutative symmetric Banach algebra.

Theorem 3.5. Let A be a commutative symmetric Banach algebra with
nonempty spectrum, and let G : A → C0(σ(A)) be the Gelfand transform.
Then there exists an isometric involutive isomorphism Ψ : G (A) → U(A),
such that αA = Ψ ◦ G .

Corollary 3.6.

(i) If A is a commutative C∗-algebra, then U(A) ∼= C0(σ(A)) ∼= A, with αA
being the Gelfand transform.

(ii) If G is a locally compact abelian group, then U(L1(G)) ∼= C0(Ĝ), with
αL1 being the Fourier transform.

Let G be an arbitrary compact group and let c0-
⊕

π∈Ĝ L (Hπ) be the

space of all (Tπ)
π∈Ĝ ∈ `∞-

⊕
π∈Ĝ L (Hπ) such that {π ∈ Ĝ : ‖Tπ‖ ≥ ε} is

finite for all ε > 0.

Theorem 3.7. If G is a compact group, then

U(L1(G)) ∼= c0-
⊕
π∈Ĝ

L (Hπ).

Proof. Consider the isometric linear function Φ(αL1(f)) = f̂ , mapping
αL1(L1(G)) to c0-

⊕
π∈Ĝ L (Hπ) (see Example 3.2). Since αL1(L1(G)) is

dense in U(L1(G)), this map has a unique extension to an isometric linear

function Φ from U(L1(G)) to c0-
⊕

π∈Ĝ L (Hπ). Furthermore, since L̂1(G) is

norm dense in c0-
⊕

π∈Ĝ L (Hπ) [18, Theorem 28.40] and the image of Φ

must be complete, it follows that Φ maps U(L1(G)) isometrically onto
c0-
⊕

π∈Ĝ L (Hπ), as we wanted to show.
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4. RFD transform and almost periodicity. In this section we dis-
cuss how the RFD transform αA can be used in the study of almost periodic
functionals. We start with a simple but interesting result which shows that
almost periodic functionals on an RFD Banach algebra determine the norm
of the algebra.

Theorem 4.1. If A is an RFD Banach algebra, then for all a ∈ A,

‖a‖ = sup{|λ(a)| : λ ∈ AP(A), ‖λ‖ ≤ 1}.
Proof. Given a ∈ A and ε > 0, there exists a finite-dimensional repre-

sentation (π,H) of A with ‖π‖ ≤ 1 such that ‖π(a)‖ > ‖a‖−ε. Thus we can
find ξ, η ∈ H with ‖ξ‖, ‖η‖ ≤ 1 such that |πξ,η(a)| = |(π(a)ξ | η)| ≥ ‖a‖ − ε.
Since πξ,η ∈ AP(A) (Filali–Monfared [15, Theorem 2.3]) and ‖πξ,η‖ ≤ 1, the
result follows.

We recall from Section 3 that if α : G→ b(G) is the Bohr compactifica-
tion of a topological group G, then a bounded continuous function f on G
is almost periodic exactly when f can be ‘lifted’ to a continuous function
g on b(G) (i.e., f = g ◦ α). Note that such a function g is automatically
almost periodic since b(G) is compact. This raises a natural question: if
αA : A → U(A) is the RFD transform of a Banach algebra A, is a func-
tional f ∈ A∗ almost periodic if and only if there exists an almost periodic
functional g ∈ U(A)∗ such that f = g ◦ αA?

The ‘if’ part of this question has a positive answer which follows from
the following result of Duncan and Ülger:

Lemma 4.2. If A and B are Banach algebras and φ : A → B is a con-
tinuous homomorphism, then φ∗(AP(B)) ⊂ AP(A), where φ∗ is the adjoint
of φ.

The lemma follows from [9, proof of Proposition 4.2, first part] (where
φ need not be surjective). Thus if f ∈ A∗ and g ∈ AP(U(A)) are such that
g ◦ αA = f , then f = α∗A(g) ∈ AP(A).

Remark 4.3. Unlike the group case, where every continuous function
on b(G) is almost periodic, the set of almost periodic functionals on U(A) is
in general a proper subspace of U(A)∗. As an example, let X be an infinite
compact space and C(X) be the space of all continuous functions on X.
By Corollary 3.6, U(C(X)) ∼= C(X), and the RFD transform of C(X)
can be identified with the identity map. Duncan and Ülger [9, Proposi-
tion 3.5] have shown that AP(C(X)) = `1(X), which is a proper subspace
of C(X)∗ = M(X).

In the following we will show that the ‘only if’ part of the above question
has a positive answer at least in the case of AP-functionals which are limits
of coordinate functionals of continuous finite-dimensional representations.
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We denote by F(A∗) the linear subspace of A∗ consisting of all coordinate
functionals of continuous finite-dimensional representations of A, and F(A∗)
its closure in the norm topology of A∗.

Theorem 4.4. Let A be a Banach algebra with a bounded two-sided ap-
proximate identity. If f ∈ F(A∗), then there exists a unique almost periodic
functional g on U(A) such that f = g ◦ αA.

Proof. Let {fn}n be a sequence in F(A∗) such that ‖fn− f‖A∗ → 0. Let
Xn be the linear subspace of A∗ generated by the set A · f1 ∪ · · · ∪ A · fn.
Since each A · fj is finite-dimensional, so is Xn. Let X =

⋃∞
n=1Xn, where

the closure is in the norm topology of A∗, and let {eα} be a bounded two-
sided approximate identity of A. Then for each n, fn ∈ Xn. In fact, on the
one hand we have limα eα · fn = fn in the w∗-topology of A∗, and on the
other hand, since fn ∈ AP(A), there exist g ∈ A∗ and a subnet {eαβ · fn}
such that limβ eαβ · fn = g in the norm topology of A∗. Thus fn = g, and
because Xn is closed in the norm topology of A∗, we obtain fn ∈ Xn. It
follows that f ∈ X.

Let L : A → L (A∗) be the continuous representation of A on A∗ de-
fined by L(a)h = a · h, where a ∈ A, h ∈ A∗. Since each Xn is an invari-
ant subspace of L, so is X, and hence we can define the Banach algebra
B = {L(a)|X : a ∈ A} ⊂ L (X), where the closure is in the norm topol-
ogy of L (X). Since each operator T ∈ B is a norm limit of a sequence
{L(ak)|X}k∈N of operators, it follows that for x ∈ Xn, Tx = limk L(ak)x
∈ Xn. Thus for each n ≥ 1, the mapping πn : B → L (Xn), T 7→ T |Xn ,
is a finite-dimensional representation of B with ‖πn‖ ≤ 1. We claim that
B is RFD. To prove this it suffices to show that ‖T‖ ≤ supn ‖πn(T )‖ for
every T ∈ B. Since

⋃∞
n=1Xn is dense in X, we have ‖T‖ = ‖T |⋃∞

n=1Xn
‖. If

x ∈
⋃∞
n=1Xn, then x ∈ Xn for some n, and therefore

‖T |⋃∞
n=1Xn

(x)‖ = ‖T |Xnx‖ = ‖πn(T )x‖ ≤ ‖πn(T )‖ ‖x‖ ≤ sup
n
‖πn(T )‖ ‖x‖.

It follows that ‖T‖ = ‖T |⋃∞
n=1Xn

‖ ≤ supn ‖πn(T )‖; thus B is RFD. Since

the mapping L′ : A→ B, L′(a) = L(a)|X is a homomorphism with ‖L′‖ ≤ 1,
it follows from the universal property of the pair (αA, U(A)) (Theorem 3.4)
that there exists a homomorphism β : U(A) → B, ‖β‖ ≤ 1, such that
β ◦ αA = L′.

Now let Ψ ∈ A∗∗ be a w∗-cluster point of {eα} in A∗∗ and define
f⊗Ψ ∈ B∗ by 〈f⊗Ψ , T 〉 = 〈Ψ, Tf〉 (T ∈ B). Define g = β∗(f⊗Ψ) ∈ U(A)∗.
Then g is a lift of f , since for all a ∈ A,

g ◦ αA(a) = 〈β∗(f ⊗ Ψ), αA(a)〉 = 〈f ⊗ Ψ,L′(a)〉
= 〈Ψ, a · f〉 = 〈Ψ · a, f〉 = 〈a, f〉,



340 M. Filali and M. Sangani Monfared

where to obtain the last identity we used the fact that Ψ is a mixed identity
in A∗∗. To complete the proof it remains to show that g is almost periodic.
But since β is a continuous homomorphism, it suffices to show that f ⊗ Ψ
is almost periodic on B (Lemma 4.2). However, since

‖fn ⊗ Ψ − f ⊗ Ψ‖B∗ = ‖(fn − f)⊗ Ψ‖B∗ ≤ ‖fn − f‖A∗‖Ψ‖ → 0,

it suffices to show that each fn ⊗ Ψ is almost periodic. If Ψn = Ψ |Xn , then
it is easy to check that fn ⊗ Ψ = (πn)fn,Ψn , that is, fn ⊗ Ψ is a coordinate
functional of πn and hence fn ⊗ Ψ ∈ AP(B). The uniqueness of g follows
from the density of αA(A) in U(A).

In the remainder of this section we discuss our final application of the
RFD transform αA : A→ U(A) to the study of almost periodic functionals.
We begin by explaining the required terminology. Let A be a Banach algebra
and {(πi, Hi)}i∈I be the family of all finite-dimensional representations of A
with ‖πi‖ ≤ 1 (as before, if A is involutive, the representations are assumed
to be irreducible and involutive). If T is a square matrix, then we let |T | =
(TT ∗)1/2 and ‖T‖1 = tr(|T |). For each i ∈ I, letting di = dimHi, we can
define the space

E1(I) =
{
ψ ∈

∏
i∈I

L (Hi) :
∑
i∈I

di‖ψ(i)‖1 <∞
}
.

Then with the pointwise operations of addition and multiplication, and
the norm ‖ψ‖1 =

∑
i∈I di‖ψ(i)‖1, the space E1(I) is a Banach algebra.

Moreover, we have E1(I)∗ ∼= E∞(I) := `∞-
⊕

i∈I L (Hi) under the duality
〈ψ,ϕ〉 =

∑
i∈I di tr(ψ(i)ϕ(i)) (Hewitt and Ross [18, Theorem 28.31]).

Theorem 4.5. Let {(πi, Hi)}i∈I be as above, α∗A : U(A)∗ → A∗ be the
adjoint of αA, and ψ ∈ E1(I). Then

(12) α∗A(ψ) =
∑
i∈I

di tr(ψ(i)πi) ∈ AP(A)

where the series is absolutely convergent.

Proof. First we prove that
∑

i∈I di tr(ψ(i)πi) ∈ AP(A). Since for every
i ∈ I, πi is a continuous finite-dimensional representation of A, we have
tr(ψ(i)πi) ∈ AP(A) [15, Lemma 2.3]. For every b ∈ A we have

|〈tr(ψ(i)πi), b〉| = |tr(ψ(i)πi(b))| ≤ ‖πi(b)‖ ‖ψ(i)‖1 ≤ ‖b‖ ‖ψ(i)‖1
(for the first inequality, see [18, Theorem D.39(ii)]). By taking the supremum
of the left hand side over all b in the closed unit ball of A, it follows that
‖tr(ψ(i)πi)‖A∗ ≤ ‖ψ(i)‖1. Thus

(13)
∑
i∈I

di‖tr(ψ(i)πi)‖A∗ ≤
∑
i∈I

di‖ψ(i)‖1 = ‖ψ‖1 <∞,
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thus the series in (12) is absolutely convergent, and
∑

i∈I di tr(ψ(i)πi) ∈
AP(A). It remains to prove the equality in (12). Since ψ ∈ E1(I) ⊂ (E∞(I))∗,
restricting ψ to U(A) defines an element in U(A)∗; we denote it by ψ as well.
Now for every a ∈ A,

〈α∗A(ψ), a〉A∗,A = 〈ψ, αA(a)〉 =
∑
i∈I

di tr(ψ(i)αA(a)(i)) =
∑
i∈I

di tr(ψ(i)πi(a))

=
∑
i∈I

di〈tr(ψ(i)πi), a〉 =
〈∑
i∈I

di tr(ψ(i)πi), a
〉
,

which proves the equality in (12).

Let A0(A) be the subalgebra of A consisting of all a ∈ A such that
αA(a) ∈ E1(I), that is, A0(A) is the set of all a ∈ A such that ‖αA(a)‖1 =∑

i∈I di‖πi(a)‖1 < ∞. Let κ : E1(I) → U(A)∗ be the linear mapping that
sends each element of E1(I) canonically into (E∞(I))∗ and subsequently
restricts it to U(A). In view of Theorem 4.5, we can define a linear map

η0 = α∗A ◦ κ ◦ αA : A0(A)→ AP(A), η0(a) =
∑
i∈I

di tr(πi(a)πi),

where the sum is absolutely convergent. Let J = {a ∈ A0(A) : αA(a) = 0}.
Then J is an ideal of A0(A) and J ⊂ ker η0, therefore η0 induces a linear
map from the quotient algebra A0(A)/J into A∗ which we denote by η:

η : A0(A)/J → A∗, a+ J 7→
∑
i∈I

di tr(πi(a)πi).

If we equip the algebra A0(A)/J with the norm

(14) ‖a+ J‖ = ‖αA(a)‖1 =
∑
i∈I

di‖πi(a)‖1,

then by (13),

‖η(a+ J)‖A∗ ≤
∑
i∈I

di‖tr(πi(a)πi)‖A∗ ≤ ‖αA(a)‖1 = ‖a+ J‖,

which shows that ‖η‖ ≤ 1. Hence η has a continuous linear extension (with
the same norm) from the Banach algebra completion of A0(A)/J into A∗.
Let us denote the completion of A0(A)/J by A (A), and the extended map
by η again. We can summarize the above arguments in the following theorem.

Theorem 4.6. If A is a Banach algebra, then there exists a linear map-
ping

(15) η : A (A)→ AP(A), a+ J 7→
∑
i∈I

di tr(πi(a)πi),

with ‖η‖ ≤ 1.
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We conclude by considering the important case of the group al-
gebra L1(G), for which the map η in (15) can be related to the Fourier series.
For details of harmonic analysis on compact groups we refer the readers to
[18, §34].

Example 4.7. Let G be a compact group and L1(G) be the group
algebra of G under the convolution product. As we saw in Example 3.2,
the set of all nonzero finite-dimensional irreducible involutive representa-
tions of L1(G) can be written as {(π′, Hπ)}

π∈Ĝ. Furthermore, by (8), if

f ∈ L1(G) and π ∈ Ĝ, then αL1(f)(π) = f̂(π), and thus A0(L
1(G)) is the

set of all functions f ∈ L1(G) such that ‖αL1(f)‖1 =
∑

π∈Ĝ dπ‖f̂(π)‖1 <∞.
It follows from the injectivity of the Fourier transform that the RFD trans-
form αL1 is injective. In addition, it is known that the space A0(L

1(G)) is
complete under the norm ‖f‖ = ‖αL1(f)‖1 [18, Corollary 34.7], and hence
A (L1(G)) = A0(L

1(G)). An important result in harmonic analysis states
that every f ∈ A (L1(G)) is equal (almost everywhere) to its Fourier series,

i.e., to the continuous function S(f) =
∑

π∈Ĝ dπ tr(f̂(π)tπ) [18, Corollary

34.6], where by (13) we have
∑

π∈Ĝ dπ‖tr(f̂(π)tπ)‖∞ <∞. Thus A (L1(G))

is the Banach algebra (under convolution) of functions in L1(G) with ab-
solutely convergent Fourier series. The mapping η defined in (15) can be
characterized as follows. For f ∈ L1(G), let f̌ ∈ L1(G) be defined as

f̌(x) = f(x−1) (x ∈ G). Since a representation π ∈ Ĝ and its associated
representation π′ have the same coordinate functions, it follows that

tr(π′(f̌)π′) = tr(π′(f∗)π′) = tr(π′(f)∗π′) = tr(π′(f)tπ) = tr(f̂(π)tπ).

Therefore

η(f̌) =
∑
π∈Ĝ

dπ tr(π′(f̌)π′) =
∑
π∈Ĝ

dπ tr(f̂(π)tπ) = S(f).

Thus η(f̌) is the Fourier series of f and η(f̌) = f for all f ∈ A (L1(G)).

Remark 4.8. In recent years, a great interest in the space A (L1(G))
has arisen from the fact that upon identifying each f ∈ A (L1(G)) with its
Fourier series S(f), the space A (L1(G)) forms a Banach algebra of continu-
ous functions under pointwise operations of addition and multiplication, and
the norm ‖f‖ = ‖αL1(f)‖1 (a fact first proved by Krein [20] for G compact).
This Banach algebra is usually denoted by A(G) and called the Fourier al-
gebra of G. The analogue of this algebra for general locally compact groups
was introduced by Eymard [13], and has been studied extensively by many
authors. For a survey on Fourier algebras we refer the readers to a forth-
coming book by Kaniuth and Lau [19].
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