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EXTREME AND PERIODIC L2 DISCREPANCY OF PLANE

POINT SETS

AICKE HINRICHS, RALPH KRITZINGER, AND FRIEDRICH PILLICHSHAMMER

Abstract. In this paper we study the extreme and the periodic L2

discrepancy of plane point sets. The extreme discrepancy is based on
arbitrary rectangles as test sets whereas the periodic discrepancy uses
“periodic intervals”, which can be seen as intervals on the torus. The
periodic L2 discrepancy is, up to a multiplicative factor, also known
as diaphony. The main results are exact formulas for these kinds of
discrepancies for the Hammersley point set and for rational lattices.

We also prove a general lower bound on the extreme L2 discrepancy
for arbitrary point sets in dimension d, which is of order of magnitude
(logN)(d−1)/2, like the standard and periodic L2 discrepancies, respec-
tively. Our results confirm that the extreme and periodic L2 discrepan-
cies of the Hammersley point set are of best possible asymptotic order
of magnitude. This is in contrast to the standard L2 discrepancy of the
Hammersley point set. Furthermore our exact formulas show that also
the L2 discrepancies of the Fibonacci lattice are of the optimal order.

We also prove that the extreme L2 discrepancy is always dominated
by the standard L2 discrepancy, a result that was already conjectured
by Morokoff and Caflisch when they introduced the notion of extreme
L2 discrepancy in 1994.

1. Introduction

We study several discrepancy notions of two well-known instances of
plane point sets, namely the Hammersley point set and rational lattices. The
discrepancies are considered with respect to the L2 norm and a variety of test
sets. We define the (standard) L2 discrepancy, the extreme L2 discrepancy
and the periodic L2 discrepancy.

Let P = {x0,x1, . . . ,xN−1} be an arbitrary N -element point set in the
unit square [0, 1)2. For any measurable subset B of [0, 1]2 we define the
counting function

A(B,P) := |{n ∈ {0, 1, . . . , N − 1} : xn ∈ B}|,
i.e., the number of elements from P that belong to the set B. By the lo-
cal discrepancy of P with respect to a given measurable “test set” B one
understands the expression

A(B,P)−Nλ(B),
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where λ denotes the Lebesgue measure of B. A global discrepancy measure
is then obtained by considering a norm of the local discrepancy with respect
to a fixed class of test sets. Here we restrict ourselves to the L2 norm, but
we variegate the class of test sets.

The (standard) L2 discrepancy uses the class of axis-parallel squares an-
chored at the origin as test sets. The formal definition is

L2,N (P) :=

(∫

[0,1]2
|A([0, t),P)−Nλ([0, t))|2 dt

) 1
2

,

where for t = (t1, t2) ∈ [0, 1]2 we set [0, t) = [0, t1) × [0, t2) with area
λ([0, t)) = t1t2.

The extreme L2 discrepancy uses arbitrary axis-parallel rectangles con-
tained in the unit square as test sets. For x = (x1, x2) and y = (y2, y2) in
[0, 1]2 and x ≤ y let [x,y) = [x1, y1)× [x2, y2), where x ≤ y means x1 ≤ y1
and x2 ≤ y2. The extreme L2 discrepancy of P is then defined as

Lextr
2,N (P) :=

(∫

[0,1]2

∫

[0,1]2,x≤y

|A([x,y),P)−Nλ([x,y))|2 dx dy

) 1
2

.

Note that the only difference between standard and extreme L2 discrep-
ancy is the use of anchored and arbitrary rectangles in [0, 1]2, respectively.
The term “extreme” is used in order to distinguish this notion of L2 dis-
crepancy from the standard L2 discrepancy and refers to the corresponding
nomenclature for L∞ discrepancies (see, e.g., [25, Definition 2.1 and 2.2]).

The periodic L2 discrepancy uses periodic rectangles as test sets, which
are defined as follows: For x, y ∈ [0, 1] set

I(x, y) =

{
[x, y) if x ≤ y,

[0, y) ∪ [x, 1) if x > y,

and for x,y as above we set B(x,y) = I(x1, y1)× I(x2, y2). We define the
periodic L2 discrepancy of P as

Lper
2,N(P) :=

(∫

[0,1]2

∫

[0,1]2
|A(B(x,y),P)−Nλ(B(x,y))|2 dx dy

) 1
2

.

These discrepancy notions can also be defined for point sets in the d-
dimensional unit cube [0, 1)d in an obvious way.

The standard L2 discrepancy is a well known measure for the irregularity
of distribution of point sets in the unit square with a close relation to the
integration error of quasi-Monte Carlo rules via a Koksma-Hlawka type in-
equality (see, for example, [9, 26]). In contrast, the extreme and the periodic
L2 discrepancies are often not so familiar. For this reason we summarize a
few facts about these discrepancy notions in the following.

According to [26], the extreme L2 discrepancy was first considered by
Morokoff and Caflisch in [23] since it is more symmetric than the standard
L2 discrepancy, which prefers the lower left vertex of the unit square. Mo-
rokoff and Caflisch could not state a Koksma-Hlawka type inequality for the
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extreme L2 discrepancy, but later it has been shown that this quantity is
the worst-case integration error of a certain space of periodic functions with
a boundary condition (see [26] and the proof of Theorem 5 in Section 2).

The notion of periodic L2 discrepancy is known from a paper by Lev [22],
but as a matter of fact, it is just a geometric interpretation of the diaphony
according to Zinterhof [31] (see Proposition 3 in Section 2). Its relation to
the integration error of quasi-Monte Carlo rules is well-known, see, e.g., [16].

The celebrated lower bound of Roth [28] states that there exists a c >
0 such that for every N -element point set P in [0, 1)2 the standard L2

discrepancy satisfies L2,N(P) ≥ c
√
1 + logN . A general lower bound of

the same order of magnitude also holds for the periodic L2 discrepancy
(see Corollary 2 in Section 2). In the present paper we adapt the proof of
Roth to show that also the extreme L2 discrepancy satisfies a lower bound
Lextr
2,N (P) ≥ c

√
1 + logN (see Theorem 6 in Section 2).

For every P it is obviously true that

(1) Lper
2,N(P) ≥ Lextr

2,N (P).

This is because when restricting the range of integration in the definition of
periodic L2 discrepancy to x ≤ y, then the test sets are exactly those used
for the extreme discrepancy. In [23] the authors further conjectured that
the extreme L2 discrepancy is smaller than the standard L2 discrepancy.
They could not prove a result in this direction, but their conjecture was
supported by numerical experiments. We will show that this order relation
indeed holds true (see Theorem 5 in Section 2).

We mention some further results about extreme and periodic L2 discrep-
ancy: The exact asymptotic behaviour of the average of standard, extreme
and periodic L2 discrepancy of random point sets is given in [14] and [17].
See also [12] for an upper bound in case of extreme L2 discrepancy. Bounds
on the periodic L2 discrepancy for certain multi-dimensional point sets (Ko-
robov’s p-sets) can be found in [7]. There the dependence of the bounds on
the dimension d is of particular interest.

In the present paper we prove exact formulas of the aforementioned L2

discrepancies for Hammersley point sets and for rational lattices. In the next
section we present some further information and new results about periodic
and extreme L2 discrepancy. There we also prove the already mentioned
“Roth-type” lower bound on extreme L2 discrepancy and the order relation
between standard and extreme L2 discrepancy that was already conjectured
by Morokoff and Caflisch. The exact discrepancy formulas for Hammersley
point sets (Theorem 8) and for rational lattices (Theorem 10) will then be
presented in Section 3. Their proofs are given in Sections 4-7.

2. More results about periodic- and extreme L2 discrepancy

For a point set P = {x0,x1, . . . ,xN−1} and a real vector δ ∈ [0, 1]d the
shifted point set P + δ is defined as P + δ = {{x0 + δ}, . . . , {xN−1 + δ}},
where {xj + δ} means that the fractional-part-function {x} = x − ⌊x⌋ for
non-negative real numbers x is applied component-wise to the vector xj+δ.
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We call this kind of shift a geometric shift - in contrast to the digital shift
as explained in Section 3. The root-mean-square L2 discrepancy of a shifted
(and weighted) point set P with respect to all uniformly distributed shift
vectors δ ∈ [0, 1]d is

(2)
√
Eδ[(L2,N (P + δ))2] =

(∫

[0,1]d
(L2,N(P + δ))2 dδ

) 1
2

.

The following relation between periodic L2 discrepancy and root-mean-
square L2 discrepancy of a shifted point set P holds (see [7, 22] for proofs):

Proposition 1. For every N-element point set P in [0, 1)d we have

Lper
2,N(P) =

√
Eδ[(L2,N (P + δ))2].

From this relation we can deduce the following general lower bound on
the periodic L2 discrepancy of point sets in [0, 1)d:

Corollary 2. For every dimension d there exists a quantity cd > 0 such
that every N-element point set P in the unit cube [0, 1)d has periodic L2

discrepancy bounded by

Lper
2,N(P) ≥ cd (1 + logN)

d−1
2 .

Proof. Let P be an arbitrary N -element point sets P in [0, 1)d. Then we
have

Lper
2,N (P) =

√
Eδ[(L2,N(P + δ))2] ≥ inf

δ∈[0,1]d
L2,N (P + δ) ≥ cd (1 + logN)

d−1
2 ,

where we used Roth’s lower bound on the standard L2 discrepancy. �

Another important fact is that the periodic L2 discrepancy can be ex-
pressed in terms of exponential sums.

Proposition 3. For P = {x0,x1, . . . ,xN−1} in [0, 1)d we have

(Lper
2,N (P))2 =

1

3d

∑

k∈Zd\{0}

1

r(k)2

∣∣∣∣∣

N−1∑

h=0

exp(2πik · xh)

∣∣∣∣∣

2

,

where i =
√
−1 and where for k = (k1, . . . , kd) ∈ Z

d we set

(3) r(k) =
d∏

j=1

r(kj) and r(kj) =

{
1 if kj = 0,
2π|kj |√

6
if kj 6= 0.

Proof. See [16, p. 390]. �

The above formula shows that the periodic L2 discrepancy is - up to a
multiplicative factor - exactly the diaphony which is a well-known measure
for the irregularity of distribution of point sets and which was introduced
by Zinterhof [31] in 1976 (see also [10]).

From this view point we immediately find an order relation between the
standard and the periodic L2 discrepancy in the one-dimensional case.
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Corollary 4. For every N-element point set P in the unit interval [0, 1)
we have

Lper
2,N (P) ≤

√
2L2,N (P).

We have equality if N is even and P is symmetric, i.e., with every xn also
1− xn belongs to P.

Proof. In the one-dimensional case the well-known formula of Koksma (see
[21, p. 110]) establishes a connection between L2 discrepancy and diaphony.
This formula follows easily from an application of Parseval’s identity to the
local discrepancy. From this we have

(L2,N (P))2 =

(
N−1∑

n=0

(
1

2
− xn

))2

+
1

2π2

∞∑

k=1

1

k2

∣∣∣∣∣

N−1∑

h=0

exp(2πikxh)

∣∣∣∣∣

2

≥ 1

2π2

∞∑

k=1

1

k2

∣∣∣∣∣

N−1∑

h=0

exp(2πikxh)

∣∣∣∣∣

2

(4)

=
1

2
(Lper

2,N(P))2,

where we used Proposition 3 in the last step. The result follows from multi-
plying by two and taking the square root. For symmetric P we have equality
in (4), because then

∑N−1
n=0

(
1
2
− xn

)
equals 0. �

We now show that the extreme L2 discrepancy is indeed always smaller
than the standard L2 discrepancy as conjectured in [23]. This is actually
implied by the known relationships of the extreme and the standard L2

discrepancy to worst-case errors of quasi-Monte Carlo rules for numerical
integration.

Theorem 5. For every N-element point set P in [0, 1)d we have

Lextr
2,N (P) ≤ L2,N (P).

Proof. As already mentioned, we need the relationship between the ex-
treme and the standard L2 discrepancy, respectively, and worst-case errors
of quasi-Monte Carlo rules for numerical integration. The quoted facts can
all be found in [26].

Recall that the worst-case error e(I, Q,H(Kd)) of the quasi-Monte Carlo
rule

Q(f) =
1

N

N−1∑

k=0

f(xk)

for the integration problem

I(f) =

∫

[0,1]d
f(x) dx

of functions f : [0, 1]d → R in a reproducing kernel Hilbert space H(Kd)
with kernel Kd : [0, 1]

d × [0, 1]d → R is given as

e
(
I, Q,H(Kd)

)
= sup

‖f‖H(Kd)
≤1

|I(f)−Q(f)|.
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A closed formula involving the kernel and the Riesz representer hd ∈ H(Kd)
of the integration functional I is

e
(
I, Q,H(Kd)

)2
= ‖hd‖2H(Kd)

− 2

N

N−1∑

k=0

hd(xk) +
1

N2

N−1∑

k,ℓ=0

K(xk,xℓ),

see [26, (9.31)].
We now introduce the relevant reproducing kernel Hilbert spaces. They

are Hilbert space tensor products of Sobolev spaces of univariate functions.
Let W 1

2 ([0, 1]) be the Sobolev space of absolutely continuous functions f :
[0, 1] → R with weak first derivative f ′ ∈ L2([0, 1]). Let H be the subspace
of all functions f ∈ W 1

2 ([0, 1]) satisfying the boundary condition f(1) = 0
equipped with the norm ‖f‖H = ‖f ′‖L2 . Let Hextr be the subspace of all
functions f ∈ W 1

2 ([0, 1]) satisfying the boundary conditions f(0) = f(1) = 0
equipped with the norm ‖f‖Hextr = ‖f ′‖L2. Obviously, Hextr is the subspace
of the 1-periodic functions in H . Both H and Hextr are reproducing kernel
Hilbert spaces. The kernels are given as K(x, y) = min{1− x, 1− y} for H
and Kextr(x, y) = min{x, y}− xy for Hextr. Denote the d-fold Hilbert space
tensor products of these spaces by Hd and Hextr

d , respectively. Their kernels
Kd and Kextr

d are the d-fold tensor products of the corresponding univariate
kernels.

Now, using the above formula for the worst-case error of the integration
problem and comparing to the formulas of the standard and extreme L2

discrepancy in Proposition 13 in Section 4 below shows that

N e
(
I, Q,Hd

)
= L2,N (P) and N e

(
I, Q,Hextr

d

)
= Lextr

2,N (P),

where P = {x0,x1, . . . ,xN−1} is the point set used by the quasi-Monte
Carlo rule Q. A complete derivation of the first equation is given in [26,
Section 9.5.1], for the second identity we refer to [26, Section 9.5.5].

But, since Hextr
d is a subspace of Hd (with the induced scalar product

and norm), the inequality e
(
I, Q,Hextr

d ) ≤ e
(
I, Q,Hd

)
is obvious from the

definition of the worst-case error. �

Next, we show how to adapt the proof of Roth’s lower bound for the
extreme L2 discrepancy.

Theorem 6. For every dimension d there exists a quantity cd > 0 such
that every N-element point set P in the unit cube [0, 1)d has extreme L2

discrepancy bounded by

Lextr
2,N (P) ≥ cd (1 + logN)

d−1
2 .

Proof. We assume some familiarity with the proof of Roth in the language
of Haar functions as it can be found, e.g., in [2] or [6]. We only prove the
case d = 2, the extension to general d is done as for Roth’s lower bound.

A dyadic interval in [0, 1] is an interval of the form I =
[
2−mn, 2−m(n+1)

)

with nonnegative integers m,n satisfying 0 ≤ n < 2m. The Haar function
supported on I is the function hI : [0, 1] → R which is +1 on the left and
−1 on the right half of I and 0 outside of I. The Haar functions form an
orthogonal system in L2([0, 1]).
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The Haar functions in [0, 1]2 are tensor products of the univariate Haar
functions. A dyadic rectangle in [0, 1]2 is a product R = I × J of two
dyadic intervals I and J . The Haar function supported on R is the function
hR : [0, 1]2 → R given as hR(x, y) = hI(x)hJ(y). The Haar functions form
an orthogonal system in L2([0, 1]

2).
Roth’s method for proving an order optimal lower bound for the standard

L2 dicrepancy uses the orthogonal expansion of the discrepancy function
into a series of Haar functions. To adapt the proof for the extreme L2

discrepancy, we first fix x ∈ [0, 1/2)2 and consider the discrepancy function

D(y) = A
(
[x,y),P

)
−Nλ

(
[x,y)

)

just as a function of y ∈ [1/2, 1)2. For y ∈ [0, 1]2 \ [1/2, 1)2, we define
D(y) = 0. The crucial point in Roth’s proof as well as in this argument
here is that the scalar product of the discrepancy function D(y) with a
Haar function hR(y) does not depend on the point set P as long as R does
not contain a point of P. In fact, we have

〈D, hR〉 = −2−4Nλ(R)2 if R ⊆ [1/2, 1)2 and P ∩ R = ∅.
We now fix a natural number m satisfying 2m−3 ≤ 2N ≤ 2m−2 and

consider all dyadic rectangles R = I × J of area 2−m. They come in m+ 1
different shapes according to the side length of R, i.e., the lengths of I and
J . There are 2m dyadic rectangles of the same shape tiling the unit square.
There are m − 1 shapes where both side length are at most 1/2, and one
quarter, that is 2m−2, of the dyadic rectangles R of such a shape satisfy
R ⊆ [1/2, 1)2. Since 2N ≤ 2m−2, at least half of those rectangles also satisfy
P ∩R = ∅.

Now Bessel’s inequality implies
∫

[0,1]2
D(y)2 dy ≥

∑

R

〈D, hR〉2
‖hR‖2L2

,

where the sum is taken over all dyadic rectangles R. Using just the dyadic
rectangles with area 2−m and satisfying R ⊆ [1/2, 1)2 as well as P ∩R = ∅,
of which there are at least (m− 1)2m−3, we obtain that

∫

[0,1]2
D(y)2 dy ≥ (m− 1)2m−3 2

−8N22−4m

2−m
= 2−11(m− 1)2−2mN2.

Now using 2−mN ≥ 2−4 and m− 1 ≥ 2 + log2N we arrive at
∫

[0,1]2
D(y)2 dy ≥ 2−19(2 + log2N).

Since this holds for any fixed x ∈ [0, 1/2)2, we can finally integrate over all
these x and obtain

Lextr
2,N (P)2 ≥ 2−21(2 + log2N).

Hence the desired result follows. �
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In dimension one we have the following surprising relationship between
periodic and extreme L2 discrepancy. Whether a corresponding relation also
holds in higher dimensions is an open question (see also the brief discussion
at the end of Section 3).

Theorem 7. For every N-element point set P in the unit interval [0, 1) we
have

(Lper
2,N(P))2 = 2(Lextr

2,N (P))2.

Proof. Let P = {x0, x1, . . . , xN−1}. We may assume that the points are
ordered, i.e., x0 ≤ x1 ≤ . . . ≤ xN−1. Easy computation (see also [20, Eq.
(1.3)]) shows that

(Lextr
2,N (P))2 =

1

12
+

1

2

N−1∑

n,m=0

(
xn − xm − n−m

N

)2

.

From this formula and since
∑N−1

n,m=0(n−m)2 = N2(N2 − 1)/6 we obtain

(Lextr
2,N (P))2 =

1

2

(
N2

6
+

N−1∑

n,m=0

(xn − xm)
2 − 2

N

N−1∑

n,m=0

(xn − xm)(n−m)

)
.

We have
N−1∑

n,m=0

(xn − xm)(n−m) =

N−1∑

n,m=0

(nxn −mxn − nxm +mxm)

= 2N

N−1∑

n=0

nxn −N(N − 1)

N−1∑

n=0

xn

and hence
(5)

(Lextr
2,N (P))2 =

1

2

(
N2

6
+

N−1∑

n,m=0

(xn − xm)
2 − 4

N−1∑

n=0

nxn + 2(N − 1)

N−1∑

n=0

xn

)
.

For the periodic L2 discrepancy in dimension one we know (see, e.g., the
forthcoming Proposition 13 or [16, p. 389-390]) that

(Lper
2,N (P))2 =

N−1∑

n,m=0

B2(|xn − xm|),

where B2(x) = x2 − x+ 1
6
is the second Bernoulli polynomial. Inserting the

formula for B2 we obtain

(Lper
2,N(P))2 =

N2

6
+

N−1∑

n,m=0

(xn − xm)
2 −

N−1∑

n,m=0

|xn − xm|.

We have further
N−1∑

n,m=0

|xn − xm|
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=
N−1∑

n=0

n∑

m=0

(xn − xm) +
N−1∑

n=0

N−1∑

m=n+1

(xm − xn)

=
N−1∑

n=0

xn(n+ 1)−
N−1∑

n=0

n∑

m=0

xm +
N−1∑

n=0

N−1∑

m=n+1

xm −
N−1∑

n=0

xn(N − 1− n)

= 2

N−1∑

n=0

xn(n+ 1)−N

N−1∑

n=0

xn −
N−1∑

m=0

xm

N−1∑

n=m

1

︸ ︷︷ ︸
=N−m

+

N−1∑

m=0

xm

m−1∑

n=0

1

︸ ︷︷ ︸
=m

= 4
N−1∑

n=0

nxn − 2(N − 1)
N−1∑

n=0

xn.

Hence

(6) (Lper
2,N(P))2 =

N2

6
+

N−1∑

n,m=0

(xn − xm)
2 − 4

N−1∑

n=0

nxn + 2(N − 1)

N−1∑

n=0

xn.

A comparison of (5) and (6) shows the result. �

Note that Theorem 7 in combination with Corollary 4 gives another proof
of Theorem 5 for the one-dimensional case.

Summary. In this section we presented a number of inequalities and rela-
tions between the three types of L2 discrepancy. We briefly summarize these
relations here: For every N -element point set P in [0, 1)d we have

Lextr
2,N (P) ≤ Lper

2,N (P) and Lextr
2,N (P) ≤ L2,N(P).

Furthermore, there exists a quantity cd > 0 such that for every N -element
point set P in [0, 1)d we have

cd(1 + logN)
d−1
2 ≤ Lextr

2,N (P).

In the one-dimensional case we even know that

Lper
2,N (P) =

√
2Lextr

2,N (P) and Lper
2,N (P) ≤

√
2L2,N(P).

3. Exact discrepancy formulas

In this section we present exact formulas for the L2 discrepancies of Ham-
mersley point sets and of rational lattices. Both of them are well established
constructions of point sets in discrepancy theory.
Hammersley point set. We calculate the extreme and the periodic L2 dis-
crepancy of the 2-dimensional Hammersley point set in base 2, which for
m ∈ N is given as the set of N = 2m points

Hm =

{(
tm
2

+ · · ·+ t1
2m

,
t1
2
+ · · ·+ tm

2m

)
: t1, . . . , tm ∈ {0, 1}

}
.

The Hammersley point set is the prototype of low-discrepancy point sets
whose construction is based on digit representations. Its elements (xk, yk)
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for k = 0, 1, . . . , 2m − 1 can be also written in the form

xk =
k

2m
and yk = ϕ2(k),

where ϕ2(k) is the van der Corput digit reversal function ϕ2(k) =
κ0

2
+ κ1

22
+

· · ·+ κr

2r+1 whenever k has dyadic expansion k = κ0 + κ12 + · · ·+ κr2
r with

κi ∈ {0, 1}. Note that the Hammersley point set is symmetric with respect
to the main diagonal in R

2. Another view point of Hammersley point sets
as a special instance of digital nets will be used in Section 6.

We have the following exact result on the extreme and the periodic L2

discrepancy of the Hammersley point set. For comparison only we also in-
clude the formula for the standard L2 discrepancy.

Theorem 8. We have

(L2,2m(Hm))
2 =

m2

64
+

29m

192
+

3

8
− m

2m+4
+

1

2m+2
− 1

9 · 22m+3
,

(Lextr
2,2m(Hm))

2 =
m

64
+

1

72
− 1

9 · 4m+2
, and

(Lper
2,2m(Hm))

2 =
m

16
+

1

9
+

1

9 · 4m+1
.

The result for the standard L2 discrepancy is well-known. A proof can
be found, for example, in [13, 27]. The results for the extreme and periodic
L2 discrepancy are new. The proofs of these formulas - along with a new
proof for the standard L2 discrepancy - will be presented in Section 4.

An immediate consequence of Theorem 8 is that - in contrast to the
standard L2 discrepancy - the extreme and periodic L2 discrepancy of the
Hammersley point set are of the optimal order

√
logN , respectively. The

L2 discrepancy of the Hammersley point set is only of order logN , which
is not the optimal order according to the aforementioned lower bound of
Roth [28]. Several modifications such as digital shifts or symmetrization
are necessary to overcome this defect of the Hammersley point set (see
e.g. [11, 13, 15, 19]), which for the other two notions of L2 discrepancy
are not necessary. Considering the fact the periodic L2 discrepancy can be
understood as a root-mean-square L2 discrepancy of shifted point sets (see
Proposition 1 in Section 2) and with inequality (1) in mind, this result does
not come unexpected.

Theorem 8 further demonstrates that the standard and the extreme L2

discrepancy are not equivalent in general. This is in contrast to the L∞
extreme/star discrepancies DN (P) and D∗

N(P), which are defined as

DN(P) = sup
x,y∈[0,1]2,x≤y

|A([x,y),P)−Nλ([x,y))|

and

D∗
N(P) = sup

t∈[0,1]2
|A([0, t),P)−Nλ([0, t))|

for two-dimensional point sets. For these discrepancy notions we have the
almost trivial inequalities D∗

N (P) ≤ DN(P) ≤ 4D∗
N(P).
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Another obvious implication of Theorem 8 in conjunction with Propo-
sition 1 is the fact that there exists a geometric shift δ ∈ [0, 1]2 such that
the point set Hm + δ achieves the optimal order of L2 discrepancy. In fact,
Roth [29] used geometric shifts (but only in one coordinate) to prove for the
first time the existence of point sets in [0, 1)d with the optimal L2 discrep-

ancy rate (logN)
d−1
2 . He could show that the average of the L2 discrepancy

of higher dimensional versions of the Hammersley point set over all possible
shifts achieves this bound; hence it was a probabilistic existence result. In
dimension 2, Roth’s result has later been derandomized by Bilyk [1] who
could find an explicit geometric shift δ = (δ, 0) ∈ [0, 1]2 such that Hm + δ

has the optimal order of L2 discrepancy.

Since the periodic L2 discrepancy equals the root-mean-square discrep-
ancy with respect to geometric shifts, we would like to compare the result
on Lper

2,2m(Hm) with the root-mean-square L2 discrepancy of the Hammers-
ley point set with respect to digital shifts, which are often studied in this
context.

These kind of shifts are based on digit-wise addition modulo 2. In more
detail, for x, y ∈ [0, 1) with dyadic expansions x =

∑∞
i=1

ξi
2i

and y =
∑∞

i=1
ηi
2i

with digits ξi, ηi ∈ {0, 1} for all i, j ≥ 1 we define

x⊕ y :=

∞∑

i=1

ξi + ηi (mod 2)

2i
.

For vectors x,y ∈ [0, 1)d the digit-wise addition x⊕y is defined component-
wise.

For a point set P = {x0,x1, . . . ,xN−1} and a real vector δ ∈ [0, 1]d we
define the digitally shifted point set P ⊕ δ as

P ⊕ δ = {x0 ⊕ δ,x1 ⊕ δ, . . . ,xN−1 ⊕ δ}.
The root-mean-square L2 discrepancy of a digitally shifted point set P

with respect to all uniformly distributed (digital) shift vectors δ ∈ [0, 1)d is

(7)
√

Eδ[(L2,N (P ⊕ δ))2] =

(∫

[0,1]d
(L2,N(P ⊕ δ))2 dδ

) 1
2

.

This is the digital equivalent to the root-mean-square L2 discrepancy of a
geometrically shifted point set P given in (2) and therefore to the periodic
L2 discrepancy.

We compute Eδ[(L2,N (Hm ⊕ δ))2] and obtain the following result:

Theorem 9. For the 2m-element Hammersley point set Hm we have

Eδ[(L2,N (Hm ⊕ δ))2] =
m

24
+

5

36
.

The proof of Theorem 9 will be presented in Section 6. Note that the
root-mean-square L2 discrepancy for digitally shifted Hammersley points is
about a factor

√
2/3 lower than for geometrially shifted Hammersley points.
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Rational lattices. We will also calculate the extreme and the periodic L2

discrepancy of rational lattices. First we introduce irrational lattices. Let
α ∈ R be an irrational number. Then for N ∈ N we define the point set

AN(α) :=

{(
k

N
, {kα}

)
: k = 0, 1, . . . , N − 1

}
,

where {kα} denotes the fractional part of the real kα. Let α = [a0; a1, a2, . . . ]
be the continued fraction expansion of α and pn

qn
for n ∈ N be the nth

convergent of α; i.e. pn
qn

= [a0; a1, . . . , an]. Further we consider the sets

Ln(α) :=

{(
k

qn
,

{
kpn
qn

})
: k = 0, 1, . . . , qn − 1

}
,

which are an approximation of the set AN(α). We call a point set Ln(α)
a rational lattice. A special instance of a rational lattice is the Fibonacci
lattice Fn, which is obtained for α = 1

2
(
√
5 + 1); i.e. the golden ratio. Then

α = [1; 1, 1, . . . ], (pn, qn) = (Fn−1, Fn) and

Fn :=

{(
k

Fn

,

{
kFn−1

Fn

})
: k = 0, 1, . . . , Fn − 1

}
,

where the Fibonacci numbers are defined recursively via F0 = F1 = 1 and
Fn = Fn−1 + Fn−1 for n ≥ 2.

We have the following formula for the L2 discrepancies of rational lat-
tices.

Theorem 10. Let α be given as above. Then we have

(L2,qn(Ln(α))
2 =

1

16q2n

qn−1∑

r=1

1 + 2 cos2
(

πrpn
qn

)

sin2
(

πr
qn

)
sin2

(
πrpn
qn

) +

(
D(pn, qn) +

3

4

)2

+
1

18
− 1

144q2n
,

(Lextr
2,qn(Ln(α)))

2 =
1

16q2n

qn−1∑

r=1

1

sin2
(

πr
qn

)
sin2

(
πrpn
qn

) +
1

72
− 1

144q2n
, and

(Lper
2,qn(Ln(α))

2 =
1

4q2n

qn−1∑

r=1

1

sin2
(

πr
qn

)
sin2

(
πrpn
qn

) +
1

9
+

1

36q2n
,

where in the first formula D(p, q) is the inhomogeneous Dedekind sum

D(p, q) =

q−1∑

k=1

ρ

(
k

q

)
ρ

(
kp

q

)
where ρ(x) =

1

2
− {x}.

The first formula for the L2 discrepancy is [3, Theorem 6]. The proofs of
the formulas for the extreme and periodic L2 discrepancy will be given in
Section 7.

The case of Fibonacci lattices is a matter of particular interest. Hin-
richs and Oetters-hagen [16] minimized the periodic L2 discrepancy over
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N -element point sets in the unit square for small values of N . If N ∈
{1, 2, 3, 5, 8, 13} (all of them Fibonacci numbers), then the obtained unique
global minimizer of the periodic L2 discrepancy (modulo geometric shifts
and other torus symmetries; see [16, Section 3.2]) are Fibonacci lattices.

One can show that the term

1

F 2
n

Fn−1∑

r=1

1

sin2
(

πr
Fn

)
sin2

(
πrFn−1

Fn

)

is of order n. Numerical experiments in [3] indicate that

(8)
1

F 2
n

Fn−1∑

r=1

1

sin2
(

πr
Fn

)
sin2

(
πrFn−1

Fn

) ≈ 0.119257n.

A few years later the involved constant on the right hand side of (8) was
identified to have the explicit expression 4

15
√
5
(see [5]). Furthermore, it is

well-known that logFn is of order of magnitude n, i.e., logFn ≍ n. This
shows that all considered L2 discrepancies of the Fibonacci lattice are of
optimal order of magnitude with respect to the corresponding Roth-type
lower bounds. In fact it follows from [4, Lemma 7] that in case of extreme and
periodic L2 discrepancy the same is true for all irrational α = [a0; a1, a2, ...]
with bounded partial quotients (i.e. ak ≤ M for some constant M and for
all k ≥ 0). Therefore every rational lattice connected to such an α can be
shifted geometrically in a way such that the resulting point set achieves the
optimal order of L2 discrepancy. From the same paper it is known that the
unshifted lattice Ln(α) has the optimal order of L2 discrepancy if and only
if
∑n

k=0(−1)kak ≤ c
√
n for a constant c > 0.

Remark 11. It follows from Theorem 10 and (8) that

lim inf
N→∞

inf
#P=N

Lextr
2,N (P)√
logN

≤ η :=

√
1

60
√
5 log(

√
5+1
2

)
= 0.124455 . . . ,

and

lim inf
N→∞

inf
#P=N

Lper
2,N (P)√
logN

≤ 2η = 0.248910 . . . .

Note that the corresponding constants one can derive from the results on
the Hammersley point set in Theorem 8 are larger. For the standard L2

discrepancy we have

lim inf
N→∞

inf
#P=N

L2,N(P)√
logN

≤
√
2η = 0.176006 . . . ,

where this constant is attained by symmetrized Fibonacci lattices; see [3].

Brief discussion of possible relationships between L2 discrepan-

cies. We point out the following peculiarity, which follows from Theorems 8
and 10:
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Remark 12. If P is either the Hammersley point set Hm or a rational
lattice Ln(α), then we have the relation

(9) (Lper
2,N (P)2 = 4(Lextr

2,N (P))2 +
1

18
+

1

18N2
,

where N = 2m or N = qn, respectively.

From Remark 12 and other observations (e.g. the one-element point set
P = {(0, 0)} satisfies (9) because, as easily checked, (Lper

2,N (P)2 = 5/36 and

(Lextr
2,N (P))2 = 1/144) one might conjecture that (9) holds for arbitrary N -

element point sets in the unit square.
However, let us consider the regular grid

Γm,d =

{
0,

1

m
, . . . ,

m− 1

m

}d

consisting of N = md points in [0, 1)d, where m ∈ N. For this point set the
L2 discrepancies are easily computed using formulas which were introduced
by Koksma [18] and Warnock [30] (see the forthcoming Proposition 13). As
a result one obtains

(Lper
2,md(Γm,d))

2 =

(
m2

3
+

1

6

)d

−
(
m2

3

)d

and

(Lextr
2,md(Γm,d))

2 =
m2d − (m2 − 1)d

12d
.

For d = 1 we have

(Lper
2,m(Γm,1))

2 =
1

6
and (Lextr

2,m(Γm,1))
2 =

1

12

and hence we nicely observe the relation from Theorem 7.
For d = 2 we have

(Lextr
2,m2(Γm,2))

2 =
2m2 − 1

144
and (Lper

2,m2(Γm,2))
2 =

m2

9
+

1

36
.

If m = 1, then Γ1,2 = {(0, 0)} and (9) is still satisfied. But if m > 1, then the
relation (9) does not hold anymore for Γm,2. Not even the implied multiplier
4 complies, because

lim
m→∞

(Lper
2,m2(Γm,2))

2

(Lextr
2,m2(Γm,2))2

= 8.

These observations raise some interesting questions about relationships
between periodic and extreme L2 discrepancy. In particular: Which plane
point sets satisfy relation (9)? Are the periodic and extreme L2 discrepancies
in arbitrary dimension d equivalent (like for d = 1 according to Theorem 7)?
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4. The proof of Theorem 8

We use the following well known formulas for the standard, extreme
and periodic L2 discrepancy of point sets. Although we only need the two-
dimensional versions of these formulas in our proofs, we state the results for
arbitrary dimension d.

Proposition 13. Let P = {x0,x1, . . . ,xN−1} be a point set in [0, 1)d, where
we write xk = (xk,1, . . . , xk,d) for k ∈ {0, 1, . . . , N − 1}. Then we have

(L2,N(P))2 =
N2

3d
− N

2d−1

N−1∑

k=0

d∏

i=1

(1− x2
k,i) +

N−1∑

k,l=0

d∏

i=1

min(1− xk,i, 1− xl,i),

(10)

(Lextr
2,N (P))2 =

N2

12d
− N

2d−1

N−1∑

k=0

d∏

i=1

xk,i(1− xk,i)(11)

+
N−1∑

k,l=0

d∏

i=1

(min(xk,i, xl,i)− xk,ixl,i) .

and

(Lper
2,N (P))2 = −N2

3d
+

N−1∑

k,l=0

d∏

i=1

(
1

2
− |xk,i − xl,i|+ (xk,i − xl,i)

2

)
.(12)

Proof. The first formula is well known and easily proved by direct integra-
tion (see [18, 30]). Sometimes this formula is referred to Warnock [30] what
is historically not entirely correct, since it was already provided by Koksma
[18] in 1942 for d = 1, but using the same proof method as later Warnock
[30] for arbitrary dimension (see also [24]). Also the second formula follows
by simple direct integration and can be found in [30] and [23, 26], respec-
tively. The last formula can be found in [16, 26], where it was derived in
the context of the worst-case error in a certain reproducing kernel Hilbert
space. This formula can also be derived more directly from Proposition 1
and Equation (10). To this end, we observe that for x, y ∈ [0, 1] we have

∫ 1

0

{x+ δ} dδ = 1

2
,

∫ 1

0

{x+ δ}2 dδ =
1

3
,

and ∫ 1

0

max{{x+ δ}, {y + δ}} dδ = 1

2
+ |y − x| − (y − x)2.

This is easy calculation. We just show the third formula. Assume without
loss of generality that 0 ≤ x ≤ y ≤ 1. Then we have

∫ 1

0

max{{x+ δ}, {y + δ}} dδ

=

∫ 1−y

0

{y + δ} dδ +
∫ 1−x

1−y

{x+ δ} dδ +
∫ 1

1−x

{y + δ} dδ
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=

∫ 1

y

u du+

∫ 1

1−(y−x)

u du+

∫ 1+y

1+(y−x)

(u− 1) du.

Now the result follows from evaluating the elementary integrals. The for-
mula (12) follows as well. �

Remark 14. Using the formulas (10), (11) and (12) and regarding the fact
that min{x, y} = 1

2
(x + y − |x − y|) for x, y ∈ R, we find that for the

standard L2 discrepancy of a two-dimensional point set P = {(xk, yk) : k =
0, 1, . . . , N − 1} we have

(L2,N (P))2 =
N2

9
− N

2

N−1∑

k=0

(1− x2
k)(1− y2k)

+
1

4

N−1∑

k,l=0

(2− xk − xl − |xk − xl|)(2− yk − yl − |yk − yl|),

for its extreme L2 discrepancy we have

(Lextr
2,N (P))2

=
N2

144
− N

2

N−1∑

k=0

xk(1− xk)yk(1− yk)

+
1

4

N−1∑

k,l=0

(xk + xl − 2xkxl − |xk − xl|)(yk + yl − 2ykyl − |yk − yl|)

and for its periodic L2 discrepancy we have

(Lper
2,N(P))2 =− N2

9

+
N−1∑

k,l=0

(
1
2
− |xk − xl|+ (xk − xl)

2
) (

1
2
− |yk − yl|+ (yk − yl)

2
)
.

The following lemma giving the exact values of various sums involving
the components of the Hammersley point set is crucial.

Lemma 15. Let Hm = {(xk, yk) : k = 0, 1, . . . , 2m − 1} be the Hammersley
point set. Then we have

S1 :=

2m−1∑

k=0

xk =

2m−1∑

k=0

yk =
2m − 1

2
,

S2 :=

2m−1∑

k=0

x2
k =

2m−1∑

k=0

y2k =
(2m − 1)(2m+1 − 1)

6 · 2m ,

S3 :=
2m−1∑

k=0

xkyk = 2m−2 +
m

8
− 1

2
+

1

2m+2
,

S4 :=
2m−1∑

k=0

xky
2
k =

2m−1∑

k=0

x2
kyk =

(2m − 1)(4m+1 + 3 · 2m(m− 2) + 2)

3 · 22m+3
,
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S5 :=

2m−1∑

k=0

x2
ky

2
k

=
8(22m+1 − 3 · 2m + 1)2 + 9m2m(4m+1 + 2m(m− 9) + 4)

9 · 23m+5
,

S6 :=
2m−1∑

k,l=0

|xk − xl| =
2m−1∑

k,l=0

|yk − yl| =
4m − 1

3
,

S7 :=
2m−1∑

k,l=0

xk|yk − yl| =
2m−1∑

k,l=0

yk|xk − xl| =
(2m − 1)2(2m + 1)

6 · 2m ,

S8 :=
2m−1∑

k,l=0

x2
k|yk − yl| =

2m−1∑

k,l=0

y2k|xk − xl|

=
16(2m − 1)2(22m+1 + 2m − 1) + 9m(m− 1)4m

9 · 22m+5
,

S9 :=

2m−1∑

k,l=0

xkxl|yk − yl| =
2m−1∑

k,l=0

ykyl|xk − xl|

=
8(3 · 16m − 4m − 6 · 8m + 3 · 2m+1 − 2)− 3m4m(3m+ 1))

9 · 22m+5
,

S10 :=

2m−1∑

k,l=0

|xk − xl||yk − yl| =
8(4m − 1) + 9m2 + 3m

72
.

We defer the technical proofs of these formulas to the next section. We
are ready to prove the discrepancy formulas for the Hammersley point set:

Proof of Theorem 8. We expand the formulas for (L2,2m(Hm))
2, (Lextr

2,2m(Hm))
2

and (Lper
2,2m(Hm))

2 as given in Remark 14 and express them in terms of the
sums which appear in Lemma 15. We obtain

(L2,N(Hm))
2 =

11 · 4m
18

− 2m

2
(S5 − 2S2)

+
1

4
(−2m+3S1 + 2m+1S3 + 2S2

1 − 4S6 + 4S7 + S10),

(Lextr
2,N (Hm))

2 =
4m

144
− 2m

2
(S3 − 2S4 + S5)

+
1

4
(2m+1S3 + 2S2

1 − 8S1S3 + 4S2
3 − 4S7 + 4S9 + S10).

and

(Lper
2,N (Hm))

2 =
5 · 4m
36

− 4S8 + 4S9 − S6 + 2m+1S2 − 2S2
1

+ 2m+1S5 − 8S1S4 + 4S2
3 + 2S2

2 + S10.

The remaining trivial task is to insert the expressions for the sums Si,
1 ≤ i ≤ 10, as given in Lemma 2. �
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5. The proof of Lemma 15

Calculation of S1, S2 and S6. We have

S1 =

2m−1∑

k=0

k

2m

and

S2 =

2m−1∑

k=0

(
k

2m

)2

as well as

S6 =
2

2m

2m−1∑

k=1

k−1∑

l=0

(k − l),

which yields the results for these sums.
Calculation of S3, S4 and S5. Since the proofs for the formulas of these
sums are very similar, we only sketch the proof of the evaluation of the most
complicated sum S5. We have

S5 =

1∑

t1,...,tm=0

(
m∑

j1=1

tj1
2m+1−j1

)2( m∑

j2=1

tj2
2j2

)2

=

m∑

a,b,c,d=1

1

22m+2−a−b+c+d

1∑

t1,...,tm=0

tatbtctd

=

m∑

a,b,c,d=1, p.d.

2m−4

22m+2−a−b+c+d
+

m∑

a,c,d=1, p.d.
a=b

2m−3

22m+2−2a+c+d

+ 4
m∑

a,b,d=1, p.d.
a=c

2m−3

22m+2−b+d
+

m∑

a,b,c=1, p.d.
c=d

2m−3

22m+2−a−b+2c

+
m∑

a,b=1, p.d.
a=b,c=d

2m−2

22m+2−2a+2c
+ 2

m∑

a,b=1, p.d.
a=c,b=d

2m−2

22m+2

+ 4
m∑

a,d=1, p.d.
a=b=c

2m−2

22m+2−a+d
+

m∑

a=1
a=b=c=d

2m−1

22m+2
,

where “p.d.” stands for “pairwise different”. For the first sum in the last
expression we obtain

m∑

a,b,c,d=1, p.d.

2m−4

22m+2−a−b+c+d

=
1

2m+6

( 1∑

a,b,c,d=0

2a+b−c−d −
m∑

a,c,d=1 p.d.
a=b

22a−c−d
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−
m∑

a,b,c=1 p.d.
c=d

2a+b−2c − 4

m∑

a,b,d=1 p.d.
a=c

2b−d −
m∑

a,c=1 p.d.
a=b,c=d

22a−2c

−2
m∑

a,b=1 p.d.
a=c,b=d

1− 4
m∑

a,d=1 p.d.
a=b=c

2a−d −
m∑

a=1
a=b=c=d

1

)
.

The calculation of these sums is straight-forward. The remaining summands
in the expression for S5 can be computed analogously. This leads to the final
result.
Calculation of S7, S8 and S9. These sums can be treated simililarly.
Therefore we will only show how to evaluate the probably most complicated
sum S9. We write this sum in the following way:

S9 =

1∑

t
(k)
1 ,...,t

(k)
m ,t

(l)
1 ,...,t

(l)
m =0

(
m∑

j1=1

t
(k)
j1

2m+1−j1

)(
m∑

j2=1

t
(l)
j2

2m+1−j2

) ∣∣∣∣∣

m∑

j3=1

t
(k)
j3

− t
(l)
j3

2j3

∣∣∣∣∣

=
m−1∑

r=0

1∑

t
(k)
1 ,...,t

(k)
m ,t

(l)
1 ,...,t

(l)
m =0

t
(k)
i =t

(l)
i ∀i=1,...,r, t

(k)
r+1 6=t

(l)
r+1

(
m∑

j1=1

t
(k)
j1

2m+1−j1

)(
m∑

j2=1

t
(l)
j2

2m+1−j2

)

×
∣∣∣∣∣

m∑

j3=r+1

t
(k)
j3

− t
(l)
j3

2j3

∣∣∣∣∣ .

We define

P0(t
(k)
r+1) :=

m∑

j1=1
j1 6=r+1

t
(k)
j1

2m+1−j1
+

t
(k)
r+1

2m−r
, T :=

m∑

j3=r+2

t
(k)
j3

− t
(l)
j3

2j3

P1(t
(l)
r+1) :=

r∑

j1=1

t
(k)
j1

2m+1−j1
+

t
(l)
r+1

2m−r
+

m∑

j1=r+2

t
(l)
j1

2m+1−j1

to write (after summation over the indices t
(k)
r+1 and t

(l)
r+1 with t

(k)
r+1 6= t

(l)
r+1)

S9 =

m−1∑

r=0

1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

(
P0(1)P1(0) + P0(0)P1(1)

2r+1

+ T (P0(1)P1(0)− P0(0)P1(1))

)
.

Since

P0(1)P1(0)− P0(0)P1(1) = − 1

2m−r

m∑

j=r+2

t
(k)
j − t

(l)
j

2m+1−j
,
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we obtain
1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

T (P0(1)P1(0)− P0(0)P1(1)

=− 1

2m−r

m∑

j1,j3=r+2

1

2m+1−j1

1

2j3

×
1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

(t
(k)
j1

− t
(l)
j1
)(t

(k)
j3

− t
(l)
j3
)

︸ ︷︷ ︸
= 0 for j1 6= j3

=− 1

2m−r

m∑

j=r+2

1

2m+1
22m−r−3

=− m− r − 1

16
.

Observe that

P0(1)P1(0) + P0(0)P1(1)

= 2




m∑

j1=1
j1 6=r+1

t
(k)
j1

2m+1−j1







m∑

j2=1
j2 6=r+1

t
(l)
j2

2m+1−j2




+
1

2m−r

m∑

j1=1
j1 6=r+1

t
(k)
j1

2m+1−j1
+

1

2m−r

m∑

j2=1
j2 6=r+1

t
(l)
j2

2m+1−j2

=: A +B + C.

It is straight-forward to prove

1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

B =

1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

C =
1

16

m∑

j=1
j 6=r+1

2j.

Further we have
1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

A =
2

4m+1

m∑

j1,j2=1
j1 6=r+1, j2≤r

2j1+j2

1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

t
(k)
j1
t
(k)
j2

+
2

4m+1

m∑

j1,j2=1
j1 6=r+1, j2≥r+2

2j1+j2

1∑

t
(k)
1 ,...,t

(k)
r ,t

(k)
r+2,...,t

(k)
m ,

t
(l)
r+2,...,t

(l)
m =0

t
(k)
j1
t
(l)
j2
.
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The second sum is easily computed to equal

2

4m+1
22m−r−4

m∑

j1,j2=1
j1 6=r+1, j2≥r+2

2j1+j2 =
1

2r+4

m∑

j2=r+2

2j2

(
m∑

j1=1

2j1 − 2r+1

)
,

while in the first sum it is necessary to distinguish between the cases j1 = j2
and j1 6= j2. We obtain for this sum the result

2

4m+1
2m−r−1

(
2m−3

m∑

j1=r+2

r∑

j2=1

2j1+j2

+ 2m−3

(
r∑

j1,j2=1

2j1+j2 −
r∑

j=1

22j

)
+ 2m−2

r∑

j1=1

22j1

)
.

We put everything together to find the claimed result for S9.
Calculation of S10. We have

S10 =

1∑

t
(k)
1 ,...,t

(k)
m ,t

(l)
1 ,...,t

(l)
m =0

∣∣∣∣∣

m∑

j1=1

t
(k)
j1

− t
(l)
j1

2j1

∣∣∣∣∣

∣∣∣∣∣

m∑

j2=1

t
(k)
j2

− t
(l)
j2

2m+1−j2

∣∣∣∣∣

=

m−1∑

r=0

m−r−1∑

s=0

1∑

t
(k)
r+1,...,t

(k)
m−s,t

(l)
r+1,...,t

(l)
m−s=0

t
(k)
i =t

(l)
i ∀i=1,...,r, t

(k)
r+1 6=t

(l)
r+1

t
(k)
m+1−i=t

(l)
m+1−i∀i=1,...,s, t

(k)
m−s 6=t

(l)
m−s

∣∣∣∣∣

m−s∑

j1=r+1

t
(k)
j1

− t
(l)
j1

2j1

∣∣∣∣∣

×
∣∣∣∣∣

m−s∑

j2=r+1

t
(k)
j2

− t
(l)
j2

2m+1−j2

∣∣∣∣∣

=
m−1∑

r=0

m−r−1∑

s=0

2r+s

1∑

t
(k)
r+1,...,t

(k)
m−s,t

(l)
r+1,...,t

(l)
m−s=0

t
(k)
r+1 6=t

(l)
r+1, t

(k)
m−s 6=t

(l)
m−s

∣∣∣∣∣

m−s∑

j1=r+1

t
(k)
j1

− t
(l)
j1

2j1

∣∣∣∣∣

×
∣∣∣∣∣

m−s∑

j2=r+1

t
(k)
j2

− t
(l)
j2

2m+1−j2

∣∣∣∣∣ .

We write S10 = P1+P2, where P1 is the part of the last expression where
s = m− r − 1 and P2 is the part where s ≤ m− r − 2. For P1 we have

P1 =
m−1∑

r=0

2m−1
1∑

t
(k)
r+1=0

∑

t
(l)
r+1=1−t

(k)
r+1

∣∣∣∣∣
t
(k)
r+1 − t

(l)
r+1

2r+1

∣∣∣∣∣

∣∣∣∣∣
t
(k)
r+1 − t

(l)
r+1

2m−r

∣∣∣∣∣ =
m−1∑

r=0

1

2
=

m

2
.

For the evaluation of P2 we abbreviate

T1 :=
m−s−1∑

j1=r+2

t
(k)
j1

− t
(l)
j1

2j1
and T2 :=

m−s−1∑

j2=r+2

t
(k)
j2

− t
(l)
j2

2m+1−j2

(which are empty sums for s = m − r − 2). Then we sum the expression

over t
(k)
r+1, t

(l)
r+1, t

(k)
m−s and t

(l)
m−s, where the first and the latter two must be
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different, respectively. We get

P2 =
m−1∑

r=0

m−r−2∑

s=0

2r+s

1∑

t
(k)
r+1,...,t

(k)
m−s,

t
(l)
r+1,...,t

(l)
m−s=0

∣∣∣∣∣
t
(k)
r+1 − t

(l)
r+1

2r+1
+ T1 +

t
(k)
m−s − t

(l)
m−s

2m−s

∣∣∣∣∣

×
∣∣∣∣∣
t
(k)
m−s − t

(l)
m−s

2s+1
+ T2 +

t
(k)
r+1 − t

(l)
r+1

2r+1

∣∣∣∣∣

=
m−1∑

r=0

m−r−2∑

s=0

2r+s

×
1∑

t
(k)
r+2,...,t

(k)
m−s−1,

t
(l)
r+2,...,t

(l)
m−s−1=0

{(
1

2r+1
+ T1 +

1

2m−s

)(
1

2s+1
+ T2 +

1

2m−r

)

+

(
1

2r+1
+ T1 −

1

2m−s

)(
1

2s+1
− T2 −

1

2m−r

)

+

(
1

2r+1
− T1 −

1

2m−s

)(
1

2s+1
+ T2 −

1

2m−r

)

+

(
1

2r+1
− T1 +

1

2m−s

)(
1

2s+1
− T2 +

1

2m−r

)}
.

The expression in curled brackets simplifies very nicely and we get

P2 =4

m−1∑

r=0

m−r−2∑

s=0

2r+s

1∑

t
(k)
r+2,...,t

(k)
m−s−1,

t
(l)
r+2,...,t

(l)
m−s−1=0

(
1

2r+s+2
+

1

22m−r−s

)

=4m−1
m−1∑

r=0

m−r−2∑

s=0

2−r−s

(
1

2r+s+2
+

1

22m−r−s

)

=
8(4m − 1) + 9m2 − 33m

72
.

The formula for S10 follows.

6. The proof of Theorem 9

In this proof we consider the Hammersley point set as digital net with
generating matrices

C1 =




1 0 · · · 0 0
0 1 · · · 0 0
. . . . . . . . . . . . . . .
0 0 · · · 1 0
0 0 · · · 0 1




and C2 =




0 0 · · · 0 1
0 0 · · · 1 0
. . . . . . . . . . . . . . .
0 1 · · · 0 0
1 0 · · · 0 0




.

Let k ∈ {0, 1, . . . , 2m − 1} with dyadic expansion k = κ0 + κ12 + · · · +
κm−12

m−1 and corresponding digit vector ~k = (κ0, κ1, . . . , κm−1)
⊤ over Z2.
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Then the kth element (xk, yk) of the Hammersley point set is given by xk =
ξk,1
2

+
ξk,2
22

+ · · ·+ ξk,m
2m

and yk =
ηk,1
2

+
ηk,2
22

+ · · ·+ ηk,m
2m

, where

(ξk,1, ξk,2, . . . , ξk,m)
⊤ = C1

~k and (ηk,1, ηk,2, . . . , ηk,m)
⊤ = C2

~k.

Proof of Theorem 9. In [8] the analogous quantity, but for digital shifts of
depth m was computed. The present case can be interpreted as digital shifts
of depth m = ∞. Let (xk, yk) for k = 0, 1, . . . , 2m−1 denote the elements of
the Hammersley point set. A slight modification1 of the proof in [8] shows
that

Eδ[(L2,N(Hm ⊕ δ))2]

= −1

4

∞∑

k=1

τ(k)
2m−1∑

n,h=0

walk(xn ⊕ xh)−
1

4

∞∑

l=1

τ(l)
2m−1∑

n,h=0

wall(yn ⊕ yh)

+
1

4

∞∑

k,l=0
(k,l) 6=(0,0)

τ(k)τ(l)
2m−1∑

n,h=0

walk(xn ⊕ xh)wall(yn ⊕ yh),

where walk denotes the kth dyadic Walsh function which is given by

walk(x) = (−1)κ0ξ1+κ1ξ2+···+κr−1ξr

whenever k ∈ N0 and x ∈ [0, 1) have dyadic expansions k = κ0 + κ12 +
· · · + κr−12

r−1 and x = ξ1
2
+ ξ2

22
+ · · · , respectively. Further τ(0) = 1

3
and

τ(k) = − 1
6·4r(k) for k > 0, where r(k) denotes the unique integer r such that

2r ≤ k < 2r+1.
We have

2m−1∑

n,h=0

walk(xn ⊕ xh) =

∣∣∣∣∣

2m−1∑

n=0

walk(xn)

∣∣∣∣∣

2

=

{
4m if C⊤

1
~k = ~0,

0 otherwise,

where we used a well-known relation between digital nets andWalsh-functions
(see, for example, [9, Lemma 4.75] or [8, Lemma 2]). Although this relation
is only stated for 0 ≤ k ≤ 2m − 1, it also holds for k ≥ 2m with dyadic

expansion k =
∑s

i=0 κi2
i, where s ≥ m, if we set ~k = (κ0, . . . , κm−1)

⊤. Since

C1 is regular the condition C⊤
1
~k = ~0 is equivalent to k = 2mk′ with k′ ∈ N.

Therefore we obtain

∞∑

k=1

τ(k)

2m−1∑

n,h=0

walk(xn ⊕ xh) = 4m
∞∑

k′=1

τ(2mk′) =

∞∑

u=0

(
− 1

6 · 4u
)
2u = −1

3
.

Likewise we have

∞∑

l=1

τ(l)

2m−1∑

n,h=0

wall(yn ⊕ yh) = −1

3
.

1Set m = ∞ in [8, Lemma 3] and take care of the resulting consequences.
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Furthermore,

2m−1∑

n,h=0

walk(xn ⊕ xh)wall(yn ⊕ yh) =

∣∣∣∣∣

2m−1∑

n=0

walk(xn)wall(yn)

∣∣∣∣∣

2

=

{
4m if C⊤

1
~k + C⊤

2
~l = ~0,

0 otherwise,

where we used [9, Lemma 4.75] (or [8, Lemma 2]) again. Hence

Eδ[(L2,N (P ⊕ δ))2] =
1

6
+ 4m−1

∞∑

k,l=0
(k,l) 6=(0,0)

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l).

We have
∞∑

k,l=0
(k,l) 6=(0,0)

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l) =

∞∑

k=1
C⊤
1

~k=~0

τ(k)τ(0) +

∞∑

l=1
C⊤
2

~l=~0

τ(0)τ(l) +

∞∑

k,l=1

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l)

=− 2

9 · 4m +
∞∑

k,l=1

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l).

Hence

Eδ[(L2,N (P ⊕ δ))2] =
1

9
+ 4m−1

∞∑

k,l=1

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l).

We have

Σ :=
∞∑

k,l=1

C⊤
1

~k+C⊤
2

~l=~0

τ(k)τ(l) =
1

36

∞∑

u,v=0

1

4u+v

2u+1−1∑

k=2u

2v+1−1∑

l=2v︸ ︷︷ ︸
C⊤

1
~k+C⊤

2
~l=~0

1.

Denote by e1, . . . , em the row vectors of C1 and by d1, . . . , dm the row vectors

of C2. Set ei = di = ~0 for i ≥ m+ 1. The condition C⊤
1
~k + C⊤

2
~l = ~0 can be

rewritten as

e1κ0 + · · ·+ euκu−1 + eu+1 + d1λ0 + · · ·+ dvλv−1 + dv+1 = ~0,

where k = κ0+κ12+· · ·+κu−12
u−1+2u and l = λ0+λ1p+· · ·+λv−12

v−1+2v.
Since e1, . . . , eu+1, d1, . . . , dv+1 are linearly independent as long as u+1+

v + 1 ≤ m we must have u+ v ≥ m− 1. Hence

Σ =
1

36

∞∑

u,v=0
u+v≥m−1

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1.
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Now we split the range of summation over u and v. We have

Σ =
1

36

m−1∑

u,v=0
u+v≥m−1

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

+
1

36

∞∑

u=m

m−1∑

v=0

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

+
1

36

m−1∑

u=0

∞∑

v=m

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

1

36

∞∑

u,v=m

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1.

We consider the first sum where u, v ∈ {0, 1, . . . , m−1} and τ := u+v ≥
m− 1. Then we have

e1κ0 + · · ·+ eu+1κu + d1λ0 + · · ·+ dv+1λv = ~0

iff



κ0
...
κm−τ+u−2

κm−τ+u−1
...
κu = 1
0
...
0




+




0
...
0
λτ−u = 1
...
λm−u−1

λm−u−2
...
λ0




= ~0,

i.e., iff τ = m− 1 and

• κ0 = . . . = κu−1 = 0 and
• κu = λv = 1 and
• λ0 = . . . = λv−1 = 0,

or τ ∈ {m, . . . , 2m− 2} and

• κ0 = · · · = κm−τ+u−2 = 0, κm−τ+u−2 = 1 and
• λ0 = · · · = λm−u−2 = 0, λm−u−1 = 1 and
• κi = λm−1−i for i = m− τ + u, . . . , u− 1.
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Therefore we have

1

36

m−1∑

u,v=0
u+v≥m−1

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

=
1

36




1

4m−1

m−1∑

u,v=0
u+v=m−1

1 +
2m−2∑

τ=m

2τ−m

4τ

m−1∑

u,v=0
u+v=τ

1




For m− 1 ≤ τ ≤ 2m− 2 we have

m−1∑

u,v=0
u+v=τ

1 = 2m− τ − 1.

Hence

1

36

m−1∑

u,v=0
u+v≥m−1

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

=
1

36

[
m

4m−1
+

1

2m

2m−2∑

τ=m

2m− τ − 1

2τ

]
.

Now we use

2m−2∑

τ=m

2m− τ − 1

2τ
=

2m

2m
+

4(1− 2m)

4m

and hence

1

36

m−1∑

u,v=0
u+v≥m−1

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1

=
1

36

[
m

4m−1
+

2m

4m
+

4(1− 2m)

8m

]

=
m

6 · 4m +
1

9 · 8m − 1

9 · 4m .

Next we consider the second sum where u ∈ {m,m + 1, . . .} and v ∈
{0, 1, . . . , m− 1}. Then we have

e1κ0 + · · ·+ eu+1κu + d1λ0 + · · ·+ dv+1λv = ~0
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iff 


κ0
...
κm−v−2

κm−v−1

κm−v

...
κm−1




+




0
...
0
λv = 1
λv−1
...
λ0




= ~0,

i.e., iff

• κ0 = . . . = κm−v−2 = 0, κm−v−1 = 1, and
• κm−v = λv−1, . . . , κm−1 = λ0.

The digits κm, . . . , κu−1 are arbitrary. Hence

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1 = 2u−m2v = 2u+v−m.

This yields for the second sum

1

36

∞∑

u=m

m−1∑

v=0

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1 =
1

36

∞∑

u=m

m−1∑

v=0

1

4u+v
2u+v−m

=
1

36 · 2m
∞∑

u=m

1

2u

m−1∑

v=0

1

2v

=
1

9 · 4m − 1

9 · 8m .

In the same way we can calculate the third sum and obtain

1

36

m−1∑

u=0

∞∑

v=m

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1 =
1

9 · 4m − 1

9 · 8m .

It remains to evaluate the last sum where u, v ∈ {m,m + 1, . . .}. Then
we have

e1κ0 + · · ·+ eu+1κu + d1λ0 + · · ·+ dv+1λv = ~0

iff



κ0
...
κm−1


 +




λm−1
...
λ0


 = ~0,
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i.e., iff κi = λm−i−1 for i = 0, . . . , m − 1. The digits κm, . . . , κu−1 and
λm, . . . , λv−1 are arbitrary. Hence

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1 = 2m2u−m2v−m = 2u+v−m.

This yields for the last sum

1

36

∞∑

u,v=m

1

4u+v

1∑

κu−1,...,κ0=0

1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

1 =
1

36

∞∑

u,v=m

1

4u+v
2u+v−m

=
1

36 · 2m

( ∞∑

u=m

1

2u

)2

=
1

9 · 8m .

Putting all four sums together we obtain

Σ =
m

6 · 4m +
1

9 · 8m − 1

9 · 4m +
1

9 · 4m − 1

9 · 8m +
1

9 · 4m − 1

9 · 8m +
1

9 · 8m

=
m

6 · 4m +
1

9 · 4m .

Finally this yields

Eδ[(L2,N (P ⊕ δ))2] =
1

9
+ 4m−1Σ =

m

24
+

5

36
.

�

Remark 16. If we restrict to the average over all digital m-bit shifts

δ = δ(1)

2
+ δ(2)

22
+ · · · + δ(m)

2m
per coordinate, then it follows easily from [19,

Theorem 1] that

Eδm [(L2,N (P ⊕ δm))
2] =

m

24
+

3

8
+

1

4 · 2m − 1

72 · 4m .

Remark 17. It can be shown that Theorem 9 does not only hold for the
Hammersley point set, but for all (0, m, 2)-nets over F2. The proof is similar,
but a bit more involved than for Hm.

7. The proof of Theorem 10

We need the following lemma, which has essentially been proven in [3, 4]
already. Since this result is crucial for the computation of the periodic and
extreme L2 discrepancy of rational lattices, we would like to repeat the short
proof. Let Z∗ := Z \ {0}.
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Lemma 18. With the notation explained in the lines before Theorem 10,
we have

∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

1

k2
1k

2
2

=
π4

q4n

qn−1∑

r=1

1

sin2
(

πr
qn

)
sin2

(
πrpn
qn

) .

Proof. We make use of the formula

∑

k∈Z

1

(k + x)2
=

π2

sin2 (πx)
for x ∈ R \ Z.

For k1, k2 ∈ Z
∗ with k1, k2 6≡ 0 (mod qn) and k1 + k2pn ≡ 0 (mod qn)

we write k1 + k2pn = lqn with l ∈ Z, and k2 = mqn + r for m ∈ Z and
r ∈ {1, . . . , qn − 1}. Then

∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

1

k2
1k

2
2

=
∑

k2∈Z
k2 6≡0 (mod qn)

1

k2
2

∑

l∈Z
k1=lqn−k2pn

1

(lqn − k2pn)2

=
1

q2n

∑

k2∈Z
k2 6≡0 (mod qn)

1

k2
2

∑

l∈Z

1
(
l − k2pn

qn

)2

=
1

q4n

qn−1∑

r=1

∑

m∈Z

1
(
m+ r

qn

)2
π2

sin2
(

πrpn
qn

)

=
π4

q4n

qn−1∑

r=1

1

sin2
(

πr
qn

)
sin2

(
πrpn
qn

) .

�

Proof of Theorem 10. First we prove the result on the periodic L2 discrep-
ancy of Ln(α). To this end we use the representation of the periodic L2

discrepancy in terms of exponential sums as given in Proposition 3. Writing

Ln(α) = {x0, . . . ,xqn−1}, where xh =
(

h
qn
,
{

hpn
qn

})
for h = 0, 1, . . . , qn − 1,

we have

(13) (Lper
2,qn(Ln(α)))

2 =
1

9

∑

k∈Z2\{0}

1

r(k)2

∣∣∣∣∣

qn−1∑

h=0

exp(2πik · xh)

∣∣∣∣∣

2

,

where the r(k) are defined according to (3). Note that the following argu-
ments are similar to those used in the proof of [4, Theorem 3]. In order
to study the sum (13) we need to distinguish different instances for the
vector k.
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• The case k = (k, 0), k 6= 0. Then we have

∞∑

k=1
k=(k,0)

1

r(k)2

∣∣∣∣∣

qn−1∑

h=0

exp

(
2πik

h

qn

)∣∣∣∣∣

2

+

∞∑

k=1
k=(−k,0)

1

r(k)2

∣∣∣∣∣

qn−1∑

h=0

exp

(
−2πik

h

qn

)∣∣∣∣∣

2

=2

∞∑

k=1
qn|k

q2n
r(k)2

= 2
6

4π2

∞∑

l=1

q2n
(lqn)2

=
1

2
,

where we used the the well known identity
∑∞

k=1
1
k2

= π2

6
and the

fact that
qn−1∑

h=0

exp

(
±2πik

h

qn

)
=

{
qn if k ≡ 0 (mod qn),

0 otherwise.

• The case k = (0, k), k 6= 0. This case can be treated analogously
as the previous one and yields the same result. One has to use that
gcd(pn, qn) = 1, which is a well known fact from the theory of con-
tinued fractions. Therefore

qn−1∑

h=0

exp

(
±2πik

hpn
qn

)
=

{
qn if k ≡ 0 (mod qn),

0 otherwise.

• The case k = (k1, k2), where k1, k2 6= 0 and k1 ≡ 0 (mod qn), but
k2 6≡ 0 (mod qn). In this case we find

∞∑

k=(k1,k2)∈Z2\{0}
k1≡0 (mod qn)
k2 6≡0 (mod qn)

1

r(k)2

∣∣∣∣∣

qn−1∑

h=0

exp

(
2πik2

hpn
qn

)∣∣∣∣∣

2

︸ ︷︷ ︸
=0

= 0.

• The case k = (k1, k2), where k1, k2 6= 0 and k2 ≡ 0 (mod qn), but
k1 6≡ 0 (mod qn) can be treated analogously as the previous one and
yields the same result.

• The case k = (k1, k2), where k1, k2 6= 0 and k1 ≡ 0 (mod qn) as well
as k2 ≡ 0 (mod qn). In this case we find

∞∑

k=(k1,k2)∈Z2\{0}
k1≡0 (mod qn)
k2≡0 (mod qn)

q2n
r(k)2

=q2n

(
6

4π2

)2 ∑

l1,l2∈Z∗

1

(qnl1)2(qnl2)2

=
1

q2n

(
6

4π2

)2(
2
π2

6

)2

=
1

4q2n
.

• The case k = (k1, k2), where k1, k2 6= 0 and k1 6≡ 0 (mod qn) as well
as k2 6≡ 0 (mod qn). In this case we have to evaluate the sum

q2n
∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

1

r(k)2
,
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which equals

q2n

(
6

4π2

)2 ∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

1

k2
1k

2
2

=
9

4q2n

qn−1∑

r=1

1

sin2
(

πr
qn

)
sin2

(
πrpn
qn

)

by Lemma 18.

The result on (Lper
2,qn(Ln(α)))

2 follows.

Finally it remains to prove the result for the extreme L2 discrepancy of
Ln(α). Recall from Remark 14 that the extreme L2 discrepancy of a point
set P = {(xh, yh) : h = 0, 1, . . . , N − 1} can be calculated via the formula

(Lextr
2,N (P))2 =

N2

144
− N

2

N−1∑

h=0

f(xh)f(yh) +
1

4

N−1∑

h,l=0

g(xh, xl)g(yh, yl),(14)

where we define f(x) := x(1 − x) and g(x, y) = x + y − 2xy − |x − y|. We

compute the Fourier series of these two functions. Let f̂(k) and ĝ(k1, k2) for
k, k1, k2 ∈ Z be the Fourier coefficients of f and g; i.e.

f̂(k) =

∫ 1

0

f(x) exp(−2πikx) dx

and

ĝ(k1, k2) =

∫ 1

0

∫ 1

0

g(x, y) exp(−2πi(k1x+ k2y)) dx dy.

It is not difficult to find that f̂(0) = 1
6
and f̂(k) = − 1

2π2k2
for k ∈ Z

∗.
Therefore

f(x) =
1

6
−
∑

k∈Z∗

exp(−2πikx)

2π2k2
=
∑

k∈Z∗

1− exp(−2πikx)

2π2k2
.

For the function g we find

ĝ(k1, k2) =





1
6

if k1 = k2 = 0,

− 1
2π2k21

if k1 ∈ Z
∗ and k2 = 0,

− 1
2π2k22

if k1 = 0 and k2 ∈ Z
∗,

1
2π2k21

if k1 ∈ Z
∗ and k2 = −k1,

0 otherwise.

Therefore

g(x, y) =
1

6
−
∑

k1∈Z∗

exp(−2πik1x)

2π2k2
1

−
∑

k2∈Z∗

exp(−2πik2y)

2π2k2
2

+
∑

k1∈Z∗

exp(−2πik1x) exp(2πik1y)

2π2k2
1

=
∑

k∈Z∗

1

2π2k2
−
∑

k∈Z∗

exp(−2πikx)

2π2k2
−
∑

k∈Z∗

exp(2πiky)

2π2k2
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+
∑

k∈Z∗

exp(−2πikx) exp(2πiky)

2π2k2

=
∑

k∈Z∗

(1− exp(−2πikx))(1 − exp(2πiky))

2π2k2
.

We insert the Fourier expansions of f and g into equation (14) and obtain
after some simplifications

(Lextr
2,N (P))2

=
N2

144

−N

2

∑

k1,k2∈Z∗

1

4π4k2
1k

2
2

N−1∑

h=0

(1− exp(−2πik1xh))(1− exp(−2πik2yh))

+
1

4

∑

k1,k2∈Z∗

1

4π4k2
1k

2
2

∣∣∣∣∣

N−1∑

h=0

(1− exp(−2πik1xh))(1− exp(−2πik2yh))

∣∣∣∣∣

2

.

In order to find the exact formula for Lextr
2,qn(Ln(α)), we need to investigate

the expression

Σk1,k2 :=

qn−1∑

h=0

(
1− exp

(
−2πik1

h

qn

))(
1− exp

(
−2πik2

hpn
qn

))

for non-zero integers k1 and k2. We observe that Σk1,k2 can have the following
values:

Σk1,k2 =





qn if k1, k2 6≡ 0 (mod qn) and k1 + k2pn 6≡ 0 (mod qn),

2qn if k1, k2 6≡ 0 (mod qn) and k1 + k2pn ≡ 0 (mod qn),

0 otherwise.

This leads to

(Lextr
2,qn(Ln(α)))

2

=
q2n
144

−qn
2




∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn 6≡0 (mod qn)

qn
4π4k2

1k
2
2

+
∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

2qn
4π4k2

1k
2
2




+
1

4




∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn 6≡0 (mod qn)

q2n
4π4k2

1k
2
2

+
∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

4q2n
4π4k2

1k
2
2



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=
q2n
144

− q2n
16π4

∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn 6≡0 (mod qn)

1

k2
1k

2
2

.

We have
(15) ∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn 6≡0 (mod qn)

1

k2
1k

2
2

=
∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)

1

k2
1k

2
2

−
∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)
k1+k2pn≡0 (mod qn)

1

k2
1k

2
2

.

For the first sum on the right hand side we find

∑

k1,k2∈Z∗

k1,k2 6≡0 (mod qn)

1

k2
1k

2
2

=




∑

k∈Z∗

k 6≡0 (mod qn)

1

k2




2

=

(
∑

k∈Z∗

1

k2
−
∑

k∈Z∗

1

(kqn)2

)2

=
π4

9

(
1− 1

q2n

)2

.

The value of the second sum in (15) is known by Lemma 18. Now the result
follows. �
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