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Constructive Diophantine approximation
in generalized continued fraction Cantor sets

by

Kalle Leppälä (Aarhus) and Topi Törmä (Oulu)

1. Introduction. By an irrationality exponent of a real number τ we
mean any exponent µ for which there exist positive constants c and q0 such
that the inequality ∣∣∣∣τ − p

q

∣∣∣∣ ≥ c

qµ

holds for all p, q ∈ Z, q ≥ q0. The asymptotic irrationality exponent µI(τ)
is then defined as the infimum of all such exponents µ, with the convention
that the infimum of the empty set is ∞. If µI(τ) = ∞, then τ is called a
Liouville number, and if µI(τ) > 2, it is called very well approximable.

The set of all possible asymptotic irrationality exponents is

{µI(τ) : τ ∈ R} = {1} ∪ [2,∞].

It is an easy application of the triangle inequality and b-ary expansion of τ to
see that µI(τ) = 1 for τ ∈ Q. For τ ∈ R\Q we have µI(τ) ≥ 2 by Dirichlet’s
theorem on Diophantine approximation [S]. One way to see that all the
values in [2,∞] actually occur is constructing explicit examples using the
theory of simple continued fractions and Lemma 2.1. In the metrical sense
the typical asymptotic irrationality exponent is 2: by Khinchin’s theorem [S]
the set of very well approximable numbers has Lebesgue measure zero.

Which values of µI(τ) are possible if we replace R with some interesting
smaller set?

Mahler [M] asked this question for the middle-third Cantor set

C =

{ ∞∑
n=1

cn
3n

: cn ∈ {0, 2} for all n

}
.
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All the exponents µI(τ) ∈ {1} ∪ [2,∞] are still possible, as was shown by
Levesley, Salp and Velani [LSV] for µI(τ) ∈ {1} ∪ ((3 +

√
5)/2,∞] and

Bugeaud [B] for the trickier part µI(τ) ∈ [2, (3 +
√

5)/2], using the folding
lemma.

We ask the question on the generalized continued fraction Cantor sets

EAB =

{
a1

b1 +
a2

b2 + · · ·
: an ∈ A, bn ∈ B for all n

}
,

where A and B are some given finite sets of positive integers. In [HLMT] we
took the first steps in studying this problem and saw that not everything is
always possible. We proved:

Theorem 1.1. Let α1 and α2 be the least and greatest elements of A,
respectively, and β1 the least element of B. If α2 ≤ β1, then

µI(τ) ≤ 2 +
logα2

log(β1 +
√
β21 + 4α1)− log(2α2)

for all τ ∈ EAB .

In fact, in [HLMT] we gave a bit more complicated condition which turns
out to be equivalent to α2 ≤ β1.

At this point it still was thinkable that the generalized continued fraction
Cantor sets only contain elements with the metrically typical asymptotic ir-
rationality exponent 2, as is the case with the simple continued fraction
Cantor sets (i.e. the case A = {1}), which only contain badly approximable
numbers [S]. However, in [HLMT] we also constructed explicit examples

τ ∈ E
{1,2}
{1} with any prescribed µI(τ) ∈ {1} ∪ [2,∞]. In the present work

we will prove a more general result giving sufficient conditions under which
the set EAB contains elements with any prescribed asymptotic irrationality
exponent. Our method is inspired by Raney’s algorithm on linear fractional
transformations of simple continued fractions [R]. Furthermore, we show
that there exist sets with this property and arbitrarily small Hausdorff di-
mension.

One might speculate that perhaps the generalized continued fraction
Cantor sets fall into two categories: wild Cantor sets like the case A = {1, 2},
B = {1}, containing elements with any prescribed asymptotic irrationality
exponent from {1} ∪ [2,∞], and non-wild Cantor sets, like the simple con-
tinued fraction Cantor sets, which only contain elements with the metrically
typical asymptotic irrationality exponent 2. In this work, we show that the
answer is more complicated than that: a generalized continued fraction Can-
tor set might contain very well approximable numbers even if it does not
contain Liouville numbers.
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2. Basics about continued fractions. The generalized continued frac-
tion

τ = b0 +
a1

b1 +
a2

b2 + · · ·
= b0 +

a1
b1 +

a2
b2 + · · ·

is defined as the limit of the nth convergent

b0 +
a1

b1 +
a2

b2 + · · ·+ an
bn

= b0 +
a1
b1 +

a2
b2 + · · ·+

an
bn

as n tends to infinity. This limit does not necessarily exist, but it does when
an and bn are positive bounded integers.

The numerators An and the denominators Bn of the nth convergent can
be calculated with the recurrence formulae{

An+1 = bn+1An + an+1An−1,

Bn+1 = bn+1Bn + an+1Bn−1,

{
A0 = b0,

B0 = 1,

{
A1 = b0b1 + a1,

B1 = b1.

The numbers An and Bn might have a non-trivial common factor, with size
bounded by a1 · · · an as can be seen from the determinant formula

(2.1) An+1Bn −AnBn+1 = (−1)n
n+1∏
k=1

ak.

When an = 1 for all n, the continued fraction is called simple. Every
irrational number has a unique simple continued fraction expansion. For
clarity, we will use different letters bn = dn, An = Cn and Bn = Dn to
indicate when we are talking about the simple expansion. By (2.1), Cn and
Dn are coprime, and telescoping gives

Cn
Dn
− d0 =

n−1∑
k=0

(
Ck+1

Dk+1
− Ck
Dk

)
=

n−1∑
k=0

(−1)k

DkDk+1
,

so

Cn
Dn

= d0 +

n−1∑
k=0

(−1)k

DkDk+1
and τ = d0 +

∞∑
k=0

(−1)k

DkDk+1
.

The usual error estimate of an alternating series together with the recursion
formulae now give

1

(dn+1 + 2)D2
n

<

∣∣∣∣τ − Cn
Dn

∣∣∣∣ < 1

dn+1D2
n

.

On the other hand, it can be shown [S] that if |τ − p/q| < 1/(2q2), then p/q
must be a convergent of the simple continued fraction expansion of τ . Com-
bined, these facts give a formula for calculating the asymptotic irrationality
exponent:
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Lemma 2.1. Let

τ = d0 +
1

d1 +

1

d2 + · · ·
.

Then

µI(τ) = 2 + lim sup
n→∞

log dn+1

logDn
.

To obtain the asymptotic irrationality exponent of a number τ , we ideally
need the simple continued fraction expansion of τ in order to use Lemma 2.1.
Our strategy is to transform the generalized continued fraction expansion
into a simple one with infinitely many applications of Raney’s algorithm [R]
on linear fractional transformations of simple continued fractions.

3. Word play. Using matrix products to derive results on continued
fractions is a natural idea and dates back to at least Kolden [K]. The re-
currence formulae can be interpreted as matrix products in at least two
(equivalent) ways; we will follow the notation used by Raney in [R].

Let

L =

(
1 0

1 1

)
, R =

(
1 1

0 1

)
and Ma =

(
a 0

0 1

)
for any a ∈ Z≥1. The powers of the matrices L and R are simply

Lz =

(
1 0

z 1

)
and Rz =

(
1 z

0 1

)
,

a notation which we will use for any z ∈ R (consistent with defining the
non-integral matrix powers using the binomial series). The transpose (·)T
and the false transpose (·)′ of a matrix are defined in the usual way as(

w x

y z

)T
=

(
w y

x z

)
and

(
w x

y z

)′
=

(
z x

y w

)
.

Taking both the transpose and the false transpose (in any order) will be
referred to as taking the double transpose. Note that LT = R.

Given a continued fraction expansion

b0 +
a1
b1 +

a2
b2 + · · ·

,

we adopt the shorthand notation{
E2n = Rb0Ma1L

b1M ′a2R
b2Ma3L

b3 · · ·M ′a2nR
b2n ,

E2n+1 = Rb0Ma1L
b1M ′a2R

b2Ma3L
b3 · · ·Ma2n+1L

b2n+1 .

As with the convergents, when an = 1 and bn = dn for all n, we will write
En = Fn to indicate that the expansion is simple.
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The recurrence formulae of the convergents can be imitated with matrix
products:

Lemma 3.1. With the convention A−1 = 1, B−1 = 0, we have

E2n =

(
A2n−1 A2n

B2n−1 B2n

)
, E2n+1 =

(
A2n+1 A2n

B2n+1 B2n

)
.

Proof. First,

E0 = Rb0 =

(
1 b0

0 1

)
=

(
A−1 A0

B−1 B0

)
.

Now if

E2k =

(
A2k−1 A2k

B2k−1 B2k

)
,

then

E2k+1 = E2kMa2k+1
Lb2k+1 =

(
A2k−1 A2k

B2k−1 B2k

)(
a2k+1 0

b2k+1 1

)

=

(
a2k+1A2k−1 + b2k+1A2k A2k

a2k+1B2k−1 + b2k+1B2k B2k

)
=

(
A2k+1 A2k

B2k+1 B2k

)
,

and if

E2k−1 =

(
A2k−1 A2k−2

B2k−1 B2k−2

)
,

then

E2k = E2k−1M
′
a2k
Rb2k =

(
A2k−1 A2k−2

B2k−1 B2k−2

)(
1 b2k

0 a2k

)

=

(
A2k−1 a2kA2k−2 + b2kA2k−1

B2k−1 a2kB2k−2 + b2kB2k−1

)
=

(
A2k−1 A2k

B2k−1 B2k

)
,

and so the claim follows by induction.

By Sp(x) = {tx : t ∈ R} we mean the span of a vector in a real vector
space. Now suitable matrix products might help us transform a generalized
continued fraction expansion into a simple one:

Lemma 3.2. Consider the continued fraction expansions

τ = b0 +
a1
b1 +

a2
b2 + · · ·

and σ = d0 +
1

d1 +

1

d2 + · · ·
.

If E2m ∈ Sp(F2n) or E2m+1 ∈ Sp(F2n+1) for infinitely many values of m
and n, then τ = σ.
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Proof. By Lemma 3.1 the continued fractions τ and σ have infinitely
many common convergents:

A2m−1
B2m−1

=
C2n−1
D2n−1

and
A2m

B2m
=
C2n

D2n

or
A2m

B2m
=
C2n

D2n
and

A2m+1

B2m+1
=
C2n+1

D2n+1
.

Then the values of the continued fractions coincide too, as they are the limits
of the two convergent sequences.

The matrix products Em and Fn can be interpreted as words over the
alphabets {Lb, Rb,Ma,M

′
a : a ∈ A, b ∈ B} and {L,R} respectively. Lem-

mas 3.1 and 3.2 motivate the definition of the legal word set

Lw(A,B) = {Em : m ∈ Z≥0, τ ∈ EAB }.
On the other hand, define the Kleene star of all the finite products of L
and R by

{L,R}∗ =
⋃
n≥0
{L,R}n.

Suppose we have infinitely many Em ∈ Sp(Fn), where all Em ∈ Lw(A,B) are
prefixes of the same infinite word W ∈ {Lb, Rb,Ma,M

′
a : a ∈ A, b ∈ B}∞,

and all Fn ∈ {L,R}∗ are prefixes of the same infinite word V ∈ {L,R}∞, cut
where the last letter of the prefix and the first letter of the tail are different.
The word W can be interpreted as a generalized continued fraction expan-
sion in EAB , the word V can be interpreted as a simple continued fraction,
and by Lemma 3.2 they represent the same number. In fact, for this idea
to work, it is not even necessary to require that infinitely many generalized
continued fraction convergents coincide with simple convergents, we just do
that for simplicity. For instance, Raney did not have such restriction in his
algorithm:

Theorem 3.3 (Raney [R]). Let ∆ ∈ Z≥2 and define the set of doubly
balanced matrices with determinant ∆ as

DB∆ =

{(
w x

y z

)
:w, x, y, z ∈ Z≥0, wz − xy = ∆, min{w, z} > max{x, y}

}
.

If M ∈ DB∆ and W ∈ {L,R}∆, then there exists a non-empty prefix P
of W (P = W allowed), N ∈ DB∆ and Q ∈ {L,R}δ, 1 ≤ δ ≤ ∆, such that

MP = QN.

The set DB∆ is finite, so Raney could use these matrix products to
construct a transducer (a finite state automaton that produces an output
word) that transforms the infinite wordMW ,M ∈ DB∆,W ∈ {L,R}∞, into
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another infinite word V ∈ {L,R}∞. This is determining the simple continued
fraction expansion of the image of another simple continued fraction under
the linear fractional transformation corresponding to the matrix M (with
some additional theory a bit more flexible than Lemma 3.2).

Example 3.4. Take ∆ = 2 and DB2 = {M2,M
′
2}. Then the matrix

products of Theorem 3.3 up to taking the double transpose are
M2R = R2M2,

M2L
2 = LM2,

M2LR = RLM ′2.

We may now rewrite the proof of the example given in [HLMT] of the

generalized continued fraction Cantor set E
{1,2}
{1} containing elements of any

prescribed asymptotic irrationality exponent from {1}∪ [2,∞]. The proof is
the same but this time we keep the underlying word play visible.

Since

M2LM
′
2RL = M2L

2RM2 = LM2RM2 = LR2M2
2 ,

for any h we have

(3.1) (M2LM
′
2R)hL = L(R2M2

2 )h = LRf(h)M2h
2 ,

where

f(h) = 2 · 1 + 2 · 4 + · · ·+ 2 · 4h−1 =
2(4h − 1)

3
.

Taking the false transpose both sides of (3.1) gives

L(RM2LM
′
2)
h = (M ′2)

2hRf(h)L,

and therefore

(M2LM
′
2R)hLRL(RM2LM

′
2)
hR = LRf(h)M2h

2 R(M ′2)
2hRf(h)LR

∈ Sp(LR2f(h)+4hLR) ∩ Lw({1, 2}, {1}).
By combining blocks like this and using Lemma 3.2 we see that

1

1 +

1

2f(h1) + 4h1 +

1

1 +

1

1 +

1

1 +

1

2f(h2) + 4h2 +

1

1 +

1

1 + · · ·
∈ E{1,2}{1}

for any sequence (hi)
∞
i=1 of positive integers. Obviously we can now make

the numbers dn+1, n ≡ 1 (mod 4), as big as we please regardless of the size
of Dn, so by Lemma 2.1 all the irrationality exponents in [2,∞] are possible.
Finally, the irrationality exponent 1 is also possible since

2

1 +

2

1 + · · ·
= 1.

This method is generalized in Theorem 4.2.
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4. Results. We start by presenting general conditions under which the
set EAB contains elements with any prescribed asymptotic irrationality ex-
ponent. In Example 3.4 the numbers constructed were quite close to the
expansion

1 =
2

1 +

2

1 + · · ·
.

This raises the question whether it would be possible to construct our num-
bers from rational numbers in EAB . It turns out that under a few assumptions
it is:

Lemma 4.1. Let p/q ∈ EAB be a rational number with a periodic gener-
alized and a finite simple expansion

p

q
=
a1
b1 +

a2
b2 + · · ·+

am
bm +

a1
b1 +

a2
b2 + · · ·

= d0 +
1

d1 +

1

d2 + · · ·+
1

dn
,

where m is the least possible even period length. Denote λ1 = Bm+pBm−1/q,
λ2 = Bm − qAm/p, Λ = diag(λ1, λ2) and

k =
qAmDn−1 + pBm−1Cn−1

pqBm − q2Am
.

Then

EmFn =

{
FnR

kΛ when n is odd,

FnL
kΛ′ when n is even.

Proof. Assume that n is odd. By the periodicity of the generalized con-
tinued fraction expansion of p/q we have

p

q
=
pAm−1 + qAm
pBm−1 + qBm

.

It can now be easily verified that λ1 and λ2 are the eigenvalues of the matrix
Em with corresponding eigenvectors (p, q) and (qAm,−pBm−1), respectively.
Since λ1 6= λ2, the eigenvectors are linearly independent and

(4.1) EmQ = QΛ

where

Q =

(
p qAm

q −pBm−1

)
.

Since Cn = p and Dn = q, by (2.1) we have

(4.2) Q = FnW = Fn

(
1 x

0 −y

)
,
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where x = qAmDn−1 + pBm−1Cn−1 and y = q2Am + p2Bm−1. Further

WΛW−1 =

(
1 x

0 −y

)(
λ1 0

0 λ2

)(
1 x/y

0 −1/y

)
=

(
λ1 x(λ1 − λ2)/y
0 λ2

)
(4.3)

=

(
1 x(λ1 − λ2)/(λ2y)

0 1

)(
λ1 0

0 λ2

)
= RkΛ.

It follows from equations (4.1)–(4.3) that

EmFn = FnWΛW−1 = FnR
kΛ.

The proof for the case when n is even is analogous.

Theorem 4.2. Let p/q ∈ EAB be a rational number with a periodic gen-
eralized and a finite simple expansion

p

q
=
a1
b1 +

a2
b2 + · · ·+

am
bm +

a1
b1 +

a2
b2 + · · ·

= d0 +
1

d1 +

1

d2 + · · ·+
1

dn
,

where m is the least possible even period length. Denote λ1 = Bm+pBm−1/q,
λ2 = Bm − qAm/p and

k =
qAmDn−1 + pBm−1Cn−1

pqBm − q2Am
,

and require that λ = λ1/λ2 and 2k are integers. Further, denote Y = R
when n is odd and Y = L when n is even.

If there exist l ∈ Q≥0 and T ∈ Sp(FnY
lF ′n) such that λhl ∈ Z for all

h ∈ Z≥1 big enough and EmTE
′
mR

b ∈ Lw(A,B) for some b ∈ B, then
for any s ∈ {1} ∪ [2,∞] there exists τs ∈ EAB with asymptotic irrationality
exponent µI(τs) = s.

Proof. Since p/q ∈ EAB , there is an element in EAB with asymptotic
irrationality exponent s = 1.

Assume that n is odd.
Denote Λ = diag(λ1, λ2). By Lemma 4.1 we have EmFn = FnR

kΛ. Since
ΛRz = RzλΛ, for all h ∈ Z≥1 we inductively get

EhmFn = FnR
k(1+λ+···+λh−1)Λh.

Using false transpose gives

EhmFnR
lF ′n(E′m)h ∈ Sp(FnR

f(h)F ′n),

where f(h) = 2k(1 +λ+ · · ·+λh−1) +λhl. Since Am/Bm < p/q for even m,
we have λ2 > 0 and k > 0. Hence our assumptions imply that f(h) ∈ Z≥1
for all large enough h ∈ Z≥1. We get

EhmT (E′m)hRb ∈ Sp(EhmFnR
lF ′n(E′m)hRb) ∩ Lw(A,B)(4.4)

= Sp(FnR
f(h)F ′nR

b) ∩ Lw(A,B)
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for any b ∈ B. Using (4.4) and Lemma 3.2 we can now construct generalized
continued fractions in EAB with known simple continued fraction expansions.

Let s ∈ R≥2 and denote N = 2n + 2. Consider the simple continued
fraction

τs = d̂0 +
1

d̂1 +

1

d̂2 + · · ·
with

d̂i =


dj when i ≡ j (mod N) and j ∈ {1, . . . , n},
f(gi) when i ≡ n+ 1 (mod N),

dN−j when i ≡ j (mod N) and j ∈ {n+ 2, n+ 3, . . . , 2n+ 1},
2d0 + b when i ≡ 0 (mod N)

and

(4.5) gi =

 log
D̂s−2

i−1+β

l+β

log λ

 , β =
2k

λ− 1
,

where D̂i is the denominator of the ith convergent of τs. By Lemma 2.1
the asymptotic irrationality exponent of a simple continued fraction is de-
termined by its tail, and so we may assume that d̂i ∈ Z for all i, omitting
some multiple of N first d̂i if the first values of f(gi) are not integral. By

equation (4.4) the number τs is in EAB . Since the partial denominators d̂i
are bounded when i 6≡ n+ 1 (mod N) and

D̂s−2
i−1 ≤ d̂i ≤ λD̂

s−2
i−1 + 2k

when i ≡ n+ 1 (mod N), we get

lim sup
i→∞

log d̂i+1

log D̂i

= lim sup
j→∞

log d̂Nj+n+1

log D̂Nj+n

= s− 2.

Hence µ(τs) = s by Lemma 2.1.
When we define τ∞ by replacing s with i in (4.5), we have

D̂i−2
i−1 ≤ d̂i ≤ λD̂

i−2
i−1 + 2k

when i ≡ n+ 1 (mod N), so

lim sup
i→∞

log d̂i+1

log D̂i

= lim sup
j→∞

log d̂Nj+n+1

log D̂Nj+n

=∞,

and hence τ∞ is a Liouville number.
The proof for n even is analogous.

Example 4.3. Consider
4

7
=

6

7 +

30

8 +

6

7 +

30

8 + · · ·
=

1

1 +

1

1 +

1

3
∈ E{6,30}{6,7,8}.
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Now we have λ1 = 90, λ2 = 2 and k = 25/2. The choices l = 14/5 and

T = M6L
8M ′30R

7M30L
6M ′6R

8M6L
6M ′30R

7M30L
8M ′6 = 1802F3R

14/5F ′3

fulfill the conditions of Theorem 4.2. Hence the set E
{6,30}
{6,7,8} contains numbers

for any possible asymptotic irrationality exponent.

Despite acquiring all the possible asymptotic irrationality exponents,
a generalized continued fraction Cantor set can be arbitrarily small in the
sense of Hausdorff dimension. Recall that if F ⊆ R and

Hs
δ (F ) = inf

{ ∞∑
i=1

diam(Ai)
s : F ⊆

∞⋃
i=1

Ai, diam(Ai) ≤ δ for all i
}
,

where diam(Ai) = sup{|x − y| : x, y ∈ Ai}, and Hs(F ) = limδ→0H
s
δ (F ),

then the Hausdorff dimension of F is defined as

dimH(F ) = inf{t : Ht(F ) <∞}.
Theorem 4.4. Let a ∈ Z≥3, A = {a} and B = {a−1, b}, where b = a or

b = 2a. Then for any s ∈ {1} ∪ [2,∞] there exists τs ∈ EAB with asymptotic
irrationality exponent µI(τs) = s. Further, lima→∞ dimH(EAB ) = 0.

Proof. The Cantor set EAB contains the rational number
a

a− 1 +

a

a− 1 + · · ·
= 1 ∈ EAB ,

which gives

E2 =

(
a a(a− 1)

a− 1 a2 − a+ 1

)
, F0 =

(
1 1

0 1

)
,

and we calculate λ1 = a2, λ2 = 1 and k = a− 1. For b = a the choices l = 1
and T = RMaL

aM ′aR = aF0LF
′
0 fulfill the conditions of Theorem 4.2. For

b = 2a we choose l = 0 and T = R2.
Let T1(x) = a/(b1 + x) = a/(b+ x), T2(x) = a/(b2 + x) = a/(a− 1 + x)

and I = [τm, τM ], where

τm = minEa =
a

b +

a

a− 1 +

a

b +

a

a− 1 + · · ·

=
−(a− 1) + (a− 1)

√
1 + 4a

b(a−1)

2
,

τM = maxEa =
a

a− 1 + τm
=
−b+ b

√
1 + 4a

b(a−1)

2
.

For i = (i1, . . . , iK), ij ∈ {1, 2}, denote Ti(x) = (Ti1 ◦ · · · ◦ TiK )(x). Now

EAB =
⋂
K≥1

⋃
|i|=K

Ti(I) ⇒ EAB ⊆
⋃
|i|=K

Ti(I)
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for all K ≥ 1. Also Ti(I) ⊂ I for all i. Since

|Ti(x)− Ti(y)| =
∣∣∣∣ a

bi + x
− a

bi + y

∣∣∣∣ =
a|x− y|

(bi + x)(bi + y)

≤ a

(a− 1)2
|τM − τm|︸ ︷︷ ︸

<1

<
a

(a− 1)2
< 1

for i ∈ {1, 2} and x, y ∈ I, inductively |Ti(τm)−Ti(τM )| < (a/(a− 1)2)K for
every i such that |i| = K ≥ 1.

Now if δ > 0, choose K ≥ 1 such that (a/(a− 1)2)K ≤ δ. Then

Hs
δ (EAB ) ≤

∑
|i|=K

diam(Ti(I))s <
∑
|i|=K

(
a

(a− 1)2

)Ks

= 2K
(

a

(a− 1)2

)Ks
=

(
2

(
a

(a− 1)2

)s)K
.

When

2

(
a

(a− 1)2

)s
= 1 ⇔ s =

log 2

log((a− 1)2/a)
,

then Hs
δ (EAB ) ≤ 1K = 1 for all δ > 0, so Hs(EAB ) = limδ→0H

s
δ (EAB ) ≤ 1.

Hence

dimH(EAB ) ≤ log 2

log((a− 1)2/a)

and dimH(EAB )→ 0 as a→∞.

In the assumptions of Theorem 4.2 the matrix T can be replaced by T̂
if EmT̂E

′
mR

b ∈ Lw(A,B) and T̂ ∈ Sp(FnĤF
′
n), where

Rk(1+λ+···+λ
h−1)ΛhĤ(Λ′)hRk(1+λ+···+λ

h−1) ∈ Sp(Vh)

and Vh ∈ {L,R}∗ contains as a subword an increasing power of L or R with
respect to h, otherwise being of bounded length. The length of Vh must be
controlled so that in the construction we can choose d̂i+1 to be arbitrarily
large regardless of D̂i. Still, as long as the growth rate of the length of the
word Vh without the increasing power of L or R is linear and the growth
rate of the exponent in the increasing power is exponential, the resulting
approximants remain unusually while not arbitrarily good. This is the basic
idea of our last theorem:

Theorem 4.5. Let A,B be finite sets of positive integers and ∆ ∈ Z≥2
be such that b∆h/a ∈ Z for some a ∈ A, b ∈ B and h ∈ Z≥1 large enough.
Define

DB∆ =

{(
w x

y z

)
:w, x, y, z ∈ Z≥0, wz − xy = ∆, min{w, z} > max{x, y}

}
.
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Suppose that for any X ∈ DB∆, P ∈
⋃
δ<∆{L,R}δ, and Y ∈ {L,R} there

exist WY (X,P ) such that either WY (X,P ) or its double transpose is in
Lw(A,B) and WY (X,P ) ends with Y , and UY (X,P ) ∈ {L,R}∗ such that

(4.6) XPWY (X,P )′ =
√

det(XPWY (X,P )′)UY (X,P )′.

Define

Γ = max
X,P,Y

{
1√

det(XPWY (X,P )′)
‖WY (X,P )‖∞

}
,

where the L∞-norm ‖ · ‖∞ means the maximal row sum. Then there exists
τ ∈ EAB with

µI(τ) ≥ 2 +
log∆

log(∆Γ )
> 2.

Proof. For convenience, denote

Lw(A,B) = Lw(A,B) ∪ {E′Tm : m ∈ Z≥0, τ ∈ EAB }.

We start by constructing infinite sequences (Wi)
∞
i=1 consisting of the

matrices WY (X,P ), and (Vi)
∞
i=1 with Vi ∈ {L,R}∗, in such a way that

(4.7) WhWh−1 · · ·W1 ∈ Sp(VhM
h
∆) ∩ Lw(A,B)

for all h ∈ Z≥1. Set {
W1 = WL(M∆, I),

V1 = UL(M∆, I).

Then W1 ∈ Lw(A,B), and taking the false transpose of (4.6) with X = M∆

and P = I and multiplying by M∆ from the right yields W1 ∈ Sp(V1M∆).

Suppose the matrices Wk and Vk are defined and (4.7) is true for k ≤ h.
By Raney’s Theorem 3.3 there exists X ∈ DB∆ and P ∈

⋃
δ<∆{L,R}δ such

that

M∆V
′
h = T ′hXP, Th ∈ {L,R}∗.

Choose Y ∈ {L,R} in such a way that WY (X,P )Wh ∈ Lw(A,B) and define{
Wh+1 = WY (X,P ),

Vh+1 = UY (X,P )Th.

Now Wh+1Wh · · ·W1 ∈ Lw(A,B) by construction. The condition (4.6) gives
√

det(XPW ′h+1)V
′
h+1 =

√
det(XPWY (X,P )′)T ′hUY (X,P )′(4.8)

= T ′hXPWY (X,P )′ = M∆V
′
hW

′
h+1.

Now we can use the induction hypothesis (4.7) to obtain

Wh+1Wh · · ·W1 ∈ Sp(Wh+1VhM
h
∆) = Sp(Vh+1M

h+1
∆ ).
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We can mirror the left hand side of (4.7) using the false transpose and
glue the pieces together with permitted blocks M ′aR

bMa and Yh ∈ {Lb, Rb}
to get

Sh = WhWh−1 · · ·W1M
′
aR

bMaW
′
1 · · ·W ′h−1W ′hYh ∈ Lw(A,B).

Using (4.7) and the matrix identities MzR = RzMz and MzM
′
z = zI we

deduce

(4.9) Sh ∈ Sp(VhR
b∆h/aV ′hYh).

Consider the generalized continued fraction τ corresponding to the in-
finite word Ŝg1Ŝg2 · · · , where the sequence (gi)

∞
i=1 will be described shortly

and Ŝgi stands for either Sgi or its double transpose, determined by the

requirement Ŝg1 · · · Ŝgi ∈ Lw(A,B) for all i. By the construction we have
τ ∈ EAB , and provided that all the numbers b∆gi/a are integral, Lemma 3.2
together with (4.9) describes the simple continued fraction expansion

τ = d0 +
1

d1 +

1

d2 + · · ·
of τ . Define the sequence (γi + 1)∞i=1 of the indices of the exceptionally high
partial numerators in (4.9) so that dγi+1 ≥ b∆gi/a. This inequality might
be strict because Vgi could end with R, making the partial numerator dγi+1

higher. However, if Vgi was a perfect power of R, the bottom left element
of VgiM

gi
∆ would be zero. When gi > 1, this is impossible by (4.7), because

no WY (X,P ) is the identity matrix. This means that the indices γi+1 form
a well defined strictly increasing sequence. In order to use Lemma 2.1 we
need to estimate Dγi in terms of gi.

We begin by estimating the elements of Vh. From (4.8) we get

Vh+1 =
1√

det(XPWY (X,P )′)
WY (X,P )VhM

′
∆.

If we label the elements of WY (X,P ) by wij and the elements of Vh by vij ,
this becomes

Vh+1 =
1√

det(XPWY (X,P )′)

(
w11v11 + w12v21 ∆(w11v12 + w12v22)

w21v11 + w22v21 ∆(w21v12 + w22v22)

)
,

meaning that the maximal element of Vh+1 is at most ∆ times Γ times the
maximal element of Vh. In other words, the elements of Vh are bounded from
above by (∆Γ )h.

By Lemma 3.1, Dγi is an element of the matrix Fγi = Zi−1V̂gi , where

Zi−1 =
1√

det(Ŝg1 · · · Ŝgi−1)
Ŝg1 · · · Ŝgi−1
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and V̂gi is either Vgi or its double transpose. If zi−1 stands for the maximal

element of Zi−1 and vgi for the maximal element of V̂gi (also the maximal
element of Vgi), we get the bound Dγi ≤ 2zi−1vgi ≤ 2zi−1(∆Γ )gi . Now

(4.10)
log dγi+1

logDγi

≥ log b∆gi/a

log(2zi−1(∆Γ )gi)
=

log b− log a+ gi log∆

log 2 + log zi−1 + gi log
(
∆Γ

) .
The choice of gi is completely independent of the number zi−1, so we can pick
any g1 satisfying b∆g1/a ∈ Z and each gi, i > 1, so large that b∆gi/a ∈ Z and
the difference between the right hand side of (4.10) and log∆/log(∆Γ ) is
at most 1/i. The claim follows from Lemma 2.1 after estimating the lim sup
by the lower bound of the limit of the subsequence indexed by γi.

In particular, there exist generalized continued fraction Cantor sets that
contain very well approximable numbers but no Liouville numbers.

Example 4.6. Let a, b ∈ Z≥1, A = {a, 2a}, B = {ba} and ∆ = 2. Then
we have DB2 = {M2,M

′
2} and

⋃
δ<2{L,R}δ = {I, L,R}. We will need the

equations

M2LR = RLM ′2, MzL
z = LMz,

and the equations obtained from these by taking the transpose and/or the
false transpose of both sides.

If ba is odd, the matrices WY (M2, P ) and UY (M2, P ) required in Theo-
rem 4.5 are:

Y P WY (M2, P ) UY (M2, P )

L I M ′2aR
baMaL

ba R(b−1)/2LRL(ba−1)/2

R I MaL
baM ′2aR

baMaL
baM ′aR

ba LbR(ba−1)/2LRL(b−1)/2R2ba

L L M ′aR
baM2aL

ba RbL(ba+1)/2

R L MaL
baM ′2aR

ba LbR(ba−1)/2LR

L R M ′2aR
baMaL

ba R(b−1)/2LRL(ba−1)/2R2

R R MaL
baM ′2aR

baMaL
baM ′aR

ba LbR(ba−1)/2LRL(b−1)/2R2ba+2

Assume next that ba is even. When b is odd, the matrices WY (M2, P )
and UY (M2, P ) are:

Y P WY (M2, P ) UY (M2, P )

L I M ′aR
baM2aL

ba RbLba/2

R I M2aL
baM ′aR

baMaL
baM ′aR

ba L(b−1)/2RLR(ba−2)/2LRL(b−1)/2R2ba

L L M ′2aR
baMaL

ba R(b−1)/2LRLba/2

R L M2aL
baM ′aR

ba L(b−1)/2RLR(ba−2)/2LR

L R M ′aR
baM2aL

ba RbLba/2R2

R R M2aL
baM ′aR

baMaL
baM ′aR

ba L(b−1)/2RLR(ba−2)/2LRL(b−1)/2R2ba+2
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The case of b even is a bit more complicated. Denote

G = M ′2aR
baMaL

ba.

Let b = 2nc, where n ∈ Z≥1 and c is odd. It can be shown by induction that

Gk = ak
( k∏
i=1

R2n−icL2n+iac
)
M ′2k = akJkM

′
2k

for all 0 ≤ k ≤ n. Then

M2LG
k = ak

( k∏
i=1

RLR2n−i−1c−1LRL2n+i−1ac−1
)
M2LM

′
2k

= akKkM2LM
′
2k .

Now the matrices WY (M2, P ) and UY (M2, P ) are:

Y P WY (M2, P ) UY (M2, P )

L I M ′aR
baM2aL

ba RbLba/2

R I M2aL
baM ′aR

ba Lb/2R2ba

L L GnM ′2aR
baM2a(G′)n−1Lba JnR

(c−1)/2LRK′n−1L
ba/2

R L (G′T )nM2aL
baM ′2a(GT )n−1Rba J ′Tn L(c−1)/2RLKT

n−1R
(ba−2)/2LR

L R M ′aR
baM2aL

ba RbLba/2R2

R R M2aL
baM ′aR

ba Lb/2R2ba+2

In all the cases above we may choose

WY (M ′2, P ) = WY T (M2, P
′T )′T ,

UY (M ′2, P ) = UY T (M2, P
′T )′T .

By Theorem 4.5 there exists τ ∈ EAB with

µI(τ) ≥ 2 +
log 2

log(2Γ )
,

where

Γ = max
X,P,Y

{
1√

det(XPWY (X,P )′)
‖WY (X,P )‖∞

}
.

Note that when b ≥ 2, then the asymptotic irrationality exponent µI(τ) is
bounded for every τ ∈ EAB by Theorem 1.1. For example when a = 1 and
b = 2, then Γ = 13 and 2.21 ≤ µI(τ) ≤ 5.69.

The set EAB does not always contain very well approximable numbers: all

the sets E
{1}
B consist of badly approximable numbers, which have asymptotic

irrationality exponent 2. Also, for example E
{2}
{2,4} ⊆ E

{1}
{1,2,4}, which shows

that the upper bound in Theorem 1.1 is not always optimal.
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DK-8000 Aarhus C, Denmark
E-mail: kalle.m.leppala@gmail.com

Topi Törmä
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Abstract (will appear on the journal’s web site only)

We study which asymptotic irrationality exponents are possible for num-
bers in generalized continued fraction Cantor sets

EAB =

{
a1

b1 +
a2

b2 + · · ·
: an ∈ A, bn ∈ B for all n

}
,

where A and B are some given finite sets of positive integers. We give suf-
ficient conditions for EAB to contain numbers for any possible asymptotic
irrationality exponent and show that sets with this property can have ar-
bitrarily small Hausdorff dimension. We also show that it is possible for
EAB to contain very well approximable numbers even though the asymptotic
irrationality exponents of the numbers in EAB are bounded.
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