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1. Introduction. Let λ denote the Carmichael function. For a natu-
ral number n, λ(n) is the universal exponent modulo n. Equivalently, it
is the largest multiplicative order of elements modulo n. Given the prime
factorization pν11 · · · p

νk
k of n > 1 we can explicitly give λ(n) as follows:

λ(n) = lcm[λ(pν11 ), . . . , λ(pνkk )],

where for any prime power pν > 1 one has

λ(pν) =

{
pν−1(p− 1) if p ≥ 3 or ν ≤ 2,

2ν−2 if p = 2 and ν ≥ 3.

We also have λ(1) = 1. In this paper we shall be concerned with estimating
the counting function for the distinct values of λ. Put

Vλ(x) = #{λ(n) ≤ x : n ≥ 1}.
Denote by Vϕ(x) the corresponding counting function for Euler-function
values in [1, x]. It has been known now for almost 80 years that

Vϕ(x) = x/(log x)1+o(1) as x→∞
(Erdős [4]). Due to the similarity of λ and ϕ (they are almost identical on
prime powers, and for every n, both λ(n) and ϕ(n) share the same prime fac-
tors), one might guess that their values are distributed in a similar fashion.

Here is what was known prior to this paper. Since p−1 = λ(p), it follows
that Vλ(x) ≥ π(x+1) ≥ (1+o(1))x/log x as x→∞. In [2] a somewhat larger

lower bound is found, but still of the shape x/(log x)1+o(1) and similar to the
lower bound for Vϕ(x) in [8] and [13]. It is a simple exercise to see that at least
Vϕ(x) = o(x) as x → ∞, but the corresponding result for Vλ(x) is trickier.
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In [6], a proof was outlined (using a result from [7]) that Vλ(x)� x/(log x)κ0

for some constant κ0 > 0. This was worked out explicitly in [9], namely κ0
may be taken as any number smaller than 1− (e log 2)/2 = 0.0579153 . . . .

In this paper, we prove the following bounds on Vλ(x).

Theorem 1.1. As x→∞,

Vλ(x) ≤ x

(log x)η+o(1)
,

where η = 1− (1 + log log 2)/log 2 = .0860713 . . . is the Erdős–Tenenbaum–
Ford constant.

Theorem 1.2. For all large values of x we have

Vλ(x) ≥ x

(log x).359052
.

In particular, Theorem 1.2 shows that Vλ(x) is much larger than Vϕ(x).
We present a heuristic argument that the “correct” exponent on log x is

that in Theorem 1.1, namely the Erdős–Tenenbaum–Ford constant.
It is perhaps also of interest to estimate #{λ(n) : n ≤ x}. Here the count

is closer to Vϕ(x). We prove the following result.

Theorem 1.3. As x→∞,

#{λ(n) : n ≤ x} =
x

(log x)1+o(1)
.

In an Appendix we present several algorithms for computing Vλ(x), dis-
cuss their complexity, and give some modest numerical data.

Our proof of Theorem 1.2 depends strongly on careful estimates involving
the number of prime factors of numbers 1 less than a prime. This kind of
thought has been present since the dawn of this subject in the 1935 paper of
Erdős [4], but the argument here is considerably more difficult. It is perhaps
of interest that our lower bound actually holds for the smaller set of numbers
of the form λ(pq), where p, q are primes. It may even sound wrong that there
could be so many λ-values of this form, since the number of integers pq ≤ x is
O(x log log x/log x). However, the number of integers pq with λ(pq) ≤ x can
be seen to be of magnitude x. Since, in general, the number of integers n with
λ(n) ≤ x is an enormous function of x, growing faster than any fixed power
of x (see [6, p. 384]), we not only see why it is plausible that there are so
many more λ-values to x than there are ϕ-values, but we also see a possible
path to improving Theorem 1.2 and closing the gap with Theorem 1.1. For
more in this vein see the discussion at the end of Section 2.1.

In what follows, we use the Vinogradov symbols �, � and � and the
Landau symbols O and o with their usual meaning. We use p, q and r with
or without subscripts for prime numbers. We write Ω(n) for the number of
prime power divisors (> 1) of n. For a real number z > 1, we write Ωz(n)
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for the number of prime powers pj |n with j > 0, p ≤ z. Let P (n) denote the
largest prime divisor of n > 1 (with P (1) = 1) and let P2(n) = P (n/P (n)).
We write (a, b) for the greatest common divisor of the two integers a, b,
and [a, b] for their least common multiple. For integers k ≥ 2 we put logk x
for the k-fold iterate of the natural logarithm evaluated at x (and we shall
assume that the argument of logk is large enough so that this iteration is
defined and positive).

2. The upper bound and a heuristic. In this section we prove The-
orem 1.1, followed by a heuristic argument that it is best possible.

To begin the proof, we first show that certain sets of integers are negli-
gible. Let x be large and set

S1 = {n ≤ x : P (n) ≤ x1/log log x}.

By a well-known estimate of de Bruijn (see [3]),

(1) #S1 ≤
x

(log x)10

for all sufficiently large values of x.

Next, set α = 1/log 2 and

S2 = {n ≤ x : n 6∈ S1, Ω(n) ≥ 1 + α log log x}.

Every integer n ∈ S2 is of the form pm where p > x1/log log x is prime and
Ω(m) ≥ α log log x, and so

#S2 ≤ x
∑

m≤x1−1/log log x

Ω(m)≥α log log x

∑
p≤x/m

1� x log log x

log x

∑
m≤x1−1/log log x

Ω(m)≥α log log x

1

m
.

This last sum was estimated in [11, Corollary 2.5] (though this estimate is
well-known). One thus gets

(2) #S2 ≤
x log log x

(log x)η
,

where η is the Erdős–Tenenbaum–Ford constant.

Therefore, we may consider the set S3 of values of λ in [1, x] that are
neither in S1 nor in S2. Set k = dα log log xe. Let n ∈ S3, so that Ω(n) ≤ k.
Since P (n) > x1/log log x and n = λ(N) for some integer N , it follows that
P (N) > x1/log log x. Set p = P (N), and so n is of the form (p − 1)m. Write
Ω(p− 1) = i, Ω(m) = j, so that i+ j ≤ k. We have

#S3 ≤
∑
i+j≤k

∑
m≤2x1−1/log log x

Ω(m)=j

∑
p≤x/m+1
Ω(p−1)=i

1.
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It follows from Timofeev [14, Theorem 1] that the inner sum here is

O

(
x(log log x+ κ1)

i−1

(i− 1)!m(log(x/m))2

)
= O

(
x(log log x+ κ1)

i+1

(i− 1)!m(log x)2

)
for an absolute positive constant κ1. By a suitable adjustment of κ1 if nec-
essary, it follows from equation (2) of [14] (due to Halász) and partial sum-
mation that

#S3 �
x log log x

(log x)2

∑
i+j≤k

(log log x+ κ1)
i+j

(i− 1)!j!

� x(log log x)2

(log x)2

∑
i+j≤k−1

(log log x+ κ1)
i+j

i!j!

=
x(log log x)2

(log x)2

∑
l≤k−1

(2 log log x+ 2κ1)
l

l!
.

Using 1/log 2 < 2 and Stirling’s formula, we get

#S3 �
x(log log x)2

(log x)2
· (2 log log x+ 2κ1)

k−1

(k − 1)!
� x(log log x)2

(log x)η
,

where η is the Erdős–Tenenbaum–Ford constant. With (1) and (2), this
shows that

Vλ(x)� x(log log x)2

(log x)η
,

completing our proof of Theorem 1.1.

2.1. A heuristic lower bound. Fix a positive integer k. We consider
numbers n = λ(p1 . . . pk) ≤ x where the primes p1, . . . , pk are distinct, and
each pi−1 is squarefree. Thus, n is squarefree. Consider the set Si of primes
dividing pi − 1. The Venn diagram of these k sets has 2k − 1 subset inter-
sections (we do not consider the empty subset), and so we have an ordered
factorization of n into 2k−1 factors. We ask when an ordered factorization of
an even squarefree number n into 2k − 1 factors corresponds to an equation
n = λ(p1 . . . pk) in this way. Suppose n ≤ x and Ω(n) > β log log x. Then n
has more than

(2k − 1)β log log x = (log x)β log(2k−1)

ordered factorizations into 2k − 1 factors. There are k different subsets of
these factors, each of size 2k−1, that we wish to express as pi − 1. The
“chance” that all of these are shifted primes is about (log x)−k. Thus, we
“expect” n to be a λ value in this way if

β log(2k − 1) > k.
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If β > 1/log 2 + ε, this last inequality holds for all large values of k, so
we “expect” an even squarefree n with Ω(n) > (1/log 2 + ε) log log x to be
a λ value. The number of such n ≤ x is greater than x/(log x)η+δ for all
sufficiently large values of x, where η is the Erdős–Tenenbaum–Ford constant
and δ → 0+ as ε → 0+. This argument then suggests that Theorem 1.1 is
best possible.

Let V
(k)
λ (x) denote the number of integers in [1, x] of the form λ(n),

where Ω(n) = k. Our proof of Theorem 1.2 actually shows that

V
(2)
λ (x) ≥ x

(log x).359052

for all sufficiently large values of x. On the other hand, the above heuristic
argument suggests that

V
(2)
λ (x) =

x

(log x)β2+o(1)
, where β2 := 1− 2

log 3
(1− log 2 + log log 3).

Note that β2 = .270169 . . . . To make further progress, it seems reasonable
to try and prove this estimate.

3. Some sieve estimates. We shall use some standard upper bound
sieve methods such as are found in [10], and also some non-standard ones
that follow as consequences. We have the following results.

Lemma 3.1. Uniformly for all positive integers a and real numbers t > 1,
the number of integers n ≤ t with an+ 1 prime is

O

(
a

ϕ(a)
· t

log t

)
.

In addition, the number of primes p ≤ t with ap+ 1 also prime is

O

(
a

ϕ(a)
· t

(log t)2

)
.

The first part follows from the Brun–Titchmarsh inequality. Both parts
can be found in [10, Chapter 2].

Lemma 3.2. Uniformly for all pairs of positive integers a < b and real
numbers t > 1, the number of integers n ≤ t with both an + 1 and bn + 1
prime is

O

(
ab(b− a)(a, b)

ϕ(ab(b− a))ϕ((a, b))
· t

(log t)2

)
.

If we ask in addition that n be prime, the estimate is the same but with
(log t)3 instead of (log t)2.

These too are standard results, see [10].
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We consider variants of these two lemmas where we restrict the number
of primes dividing n. Before stating these results we consider the following
useful fact.

Lemma 3.3. Uniformly for 0 < α ≤ 1 we have∑
P (n)≤x

Ω(n)≤α log log x

1

ϕ(n)
� (log x)α−α logα.

Proof. By essentially the same proof as [11, Lemma 2.4], for 0 < z < 2
we have

(3)
∑

P (n)≤x

zΩ(n)

ϕ(n)
� (log x)z

2− z
.

Applying this with z = α as in [11, Corollary 2.5], we have∑
P (n)≤x

Ω(n)≤α log log x

1

ϕ(n)
≤

∑
P (n)≤x

αΩ(n)−α log log x

ϕ(n)
� (log x)α−α logα.

Lemma 3.4. Let α, s, t be real numbers with 0 < α ≤ 1 and 3 ≤ s ≤ t.
Uniformly in α, s, t and each positive integer a, the number of integers n ≤ t
with an+ 1 prime and Ωs(n) ≤ α log log s is

O

(
a

ϕ(a)
· t(log log t)2

(log t)(log s)1+α logα−α

)
.

Proof. Write n = pm where p = P (n). If p ≤ t1/log log t, then (1) shows
that these values of n are negligible. So assume that p > t1/log log t, and thus
m < t1−1/log log t. Further, we may assume that Ωs(m) ≤ α log log s. For each
such m we count the number of primes p ≤ t/m with apm + 1 prime. By
the second part of Lemma 3.1, this count is

O

(
am

ϕ(am)
· t/m

(log(t/m))2

)
= O

(
a

ϕ(a)ϕ(m)
· t(log log t)2

(log t)2

)
.

But, writing m = m1m2, where P (m1) ≤ s and p |m2 implies p > s, we get∑
m≤t

Ωs(m)≤α log log s

1

ϕ(m)
≤

∑
P (m1)≤s

Ω(m1)≤α log log s

1

ϕ(m1)

∑
m2≤t

(m2,bsc!)=1

1

ϕ(m2)

� (log s)α−α logα log t

log s
,

where we used Lemma 3.3 for the sum over m1, and the fundamental lemma
of the sieve (see [10, Theorem 2.5]) for the sum over m2. The present lemma
now follows by summing the prior estimate over m.
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Lemma 3.5. Let α, s, t be real numbers with 0 < α ≤ 1 and 3 ≤ s ≤ t,
and let a, b be positive integers with a < b. Uniformly, the number of integers
n ≤ t with an+ 1 and bn+ 1 both prime and Ωs(n) ≤ α log log s is

O

(
ab(b− a)(a, b)

ϕ(ab(b− a))ϕ((a, b))
· t(log log t)3

(log t)2(log s)1+α logα−α

)
.

Proof. This follows in the same way as Lemma 3.4 except that we use
the second part of Lemma 3.2 instead of the second part of Lemma 3.1.

4. Preliminaries for the lower bound. We use the following result
which follows directly from [1, Theorem 2.1].

Proposition 4.1. There is an absolute constant M0 such that, for all
sufficiently large values of x, there is a set M0(x) of at most M0 integers
all at least log x such that, if d ≤ x1/3 is a positive integer not divisible by
any member of M0(x) and z is a number with dx2/3 ≤ z, then the number
of primes p ≤ z with p ≡ 1 (mod d) is at least z/(2ϕ(d) log z).

Associated with the parameter x we have a secondary parameter y that
is chosen optimally at the end of the proof. We shall always have

(4) exp((log x)1/10) ≤ y ≤ x1/4.
When we write the expression o(1) it is always under the assumption that
x→∞, which is equivalent to the assumption that y →∞. It is uniform in
other parameters. For two real numbers A,B, when we write

A ≈y B
we mean that |A−B| ≤ (log log y)2/3.

We let P(y) denote the set of primes p such that

• y1−1/log log y < p ≤ y,
• Ω(p− 1) ≈y log log y,

• P2(p− 1) > y1/log log y,
• for m the largest divisor of p−1 with P (m) ≤ log y, we have (p−1)/m

squarefree and Ω(m) ≤ 5 log3 y,
• p− 1 is not divisible by any member of M0(x).

Lemma 4.2. We have, as y →∞,∑
p∈P(y)

1

p
=

1 + o(1)

log log y
.

Proof. This estimate holds for the primes p that satisfy the first item in
the definition of P(y), so it suffices to show that the latter four conditions
do not eliminate too many primes. That is, we will show that for t in the
interval [y1−1/log log y, y], the number of primes p ≤ t such that any of the
remaining conditions in the definition of P(y) fails is o(t/log t) as y →∞.
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The number of primes p ≤ t where the second item in the definition of
P(y) fails is o(t/log t), as can be seen by the method of Erdős [4], or more
explicitly by Timofeev [14] (see also [5, Lemmas 2.1 and 2.2]).

We consider primes p ≤ t for which the third item in the definition of
P(y) fails. For y1−1/log log y ≤ t ≤ y, the number of integers n ≤ t with
P (n) ≤ y1/log log y is O(t/(log t)10) as can be seen by the theorem of de
Bruijn used for (1). Write an integer 1 < n ≤ t as mq where q = P (n) and
assume that q > y1/log log y. Suppose that P (m) ≤ y1/log log y. If m > y1/2,
then the number of such integers mq ≤ t is at most∑

q<y1/2

∑
m≤t/q

1�
∑
q<y1/2

t

q(log t)10
� t

(log t)9
.

It thus suffices to count integers mq ≤ t with m ≤ y1/2, P (m) ≤ y1/log log y,
and both q and mq+ 1 prime. For a fixed m, the number of primes q ≤ t/m
with mq + 1 prime is, by Lemma 3.1, at most

O

(
t

ϕ(m)(log t)2

)
.

It remains to note that, with r running over primes,∑
P (m)≤y1/log log y

1

ϕ(m)
=

∏
r≤y1/log log y

(
1 +

1

r − 1
+

1

r(r − 1)
+ · · ·

)

=
∏

r≤y1/log log y

(
1 +

r

(r − 1)2

)
� log y

log log y
� log t

log log t
.

Thus, the number of primes p ≤ t where the third item in the definition of
P(y) fails is O(t/(log t log log t)) = o(t/log t).

Now consider primes p ≤ t where the fourth condition fails. Even without
the primality requirement, the number of n ≤ t such that n− 1 is divisible
by the square of a prime exceeding log y is O(t/(log y log log y)) = o(t/log t)
as x → ∞. If Ω(m) > 5 log3 y, let m0 be the smallest divisor of m with
Ω(m0) > 5 log3 y, so that m0 < (log y)1+5 log3 y = yo(1) as y → ∞. It then
follows from Lemma 3.1 that the number of primes p ≤ t with p−1 divisible
by such a number m0 is bounded by a constant times

t

log t

∑
P (m0)≤log y
Ω(m0)>5 log3 y

1

ϕ(m0)
.

We now use (3) to estimate this sum, with z = 2− 1/(5 log3 y), getting∑
P (m0)≤log y
Ω(m0)>5 log3 y

1

ϕ(m0)
≤ z−5 log3 y

∑
P (m0)≤log y

zΩ(m0)

ϕ(m0)
� (log2 y)2−5 log 2 log3 y.
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Since 2 − 5 log 2 < −1, it follows that the number of primes p ≤ t where
Ω(m) > 5 log3 y is O(t/(log t log2 y)) = o(t/log t).

For primes p ≤ t where the fifth item in the definition of P(y) fails, we
see immediately from Proposition 4.1 and the Brun–Titchmarsh inequality
that the number of them is O(t/(log t log x)) = o(t/log t). This completes
the proof of Lemma 4.2.

We shall consider integers j chosen so that

(5) 1
10 log log y ≤ j ≤ 9

10 log log y.

For such an integer j and p ∈ P(y), we let Dp,j,y denote the set of divisors
d of p− 1 such that

• P (p− 1) | d and P2(p− 1) | (p− 1)/d,
• all of the prime factors of (p− 1)/d exceed log y,
• Ω(d) = j.

For 0 < c < 1, let

∆(c) = −c log c− (1− c) log(1− c).

Lemma 4.3. For an integer j satisfying (5) and a prime p ∈ P(y), we
have #Dp,j,y = (log y)∆(c)+o(1), where c = j/log log y.

Proof. Let k = Ω(p− 1) and let i = 2 +Ωlog y(p− 1). Then

#Dp,j,y =

(
k − i

j − (i− 1)

)
.

Indeed, by the various properties of p, the top two prime factors of p − 1
are distinct as are all of the prime factors of p− 1 exceeding log y. Thus for
d ∈ Dp,j,y, it already has i − 1 primes (1 from the top two and all i − 2 of
them, with multiplicity, dividing p− 1 that are at most log y), so there are
j − (i − 1) left to choose from the remaining k − i primes in p − 1, and all
of these primes appear with exponent 1 in the prime factorization of p− 1.
An elementary estimate using k ≈y log log y, j = c log log y, i ≤ 2 + 5 log3 y,
and Stirling’s formula completes the proof.

5. The lower bound. In this section we prove Theorem 1.2. In doing so
we shall count only a subset of λ-values; all of the values we count are of the
form λ(pq). Given x, y satisfying (4) and j satisfying (5), let r(n) = rj,y(n)
denote the number of triples a, b, d of positive integers with

• n = abd, (a, b) = 1,
• p := ad+ 1 ∈ P(y), d ∈ Dp,j,y,
• bd+ 1 is prime,
• Ωy(b) ≈y log log y.
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If n = abd as above with p = ad+ 1 and q = bd+ 1, then λ(pq) = n. Thus,

Vλ(x) ≥
∑
n≤x
r(n)>0

1,

and so, from the Cauchy–Schwarz inequality, we have

(6) Vλ(x) ≥
(
∑

n≤x r(n))2∑
n≤x r(n)2

.

Thus, our strategy is to get a lower bound for
∑

n≤x r(n), an upper bound

for
∑

n≤x r(n)2, and then choose our parameters j, y optimally with respect
to our bounds.

5.1. The sum
∑

n≤x r(n). For p ∈ P(y) and d ∈ Dp,j,y, we count choices
for b. Thus,

(7)
∑
n≤x

r(n) =
∑

p∈P(y)

∑
d∈Dp,j,y

∑
b≤x/(p−1)

(b,(p−1)/d)=1
Ωy(b)≈y log log y
bd+1prime

1.

For p ∈ P(y) and d ∈ Dp,j,y, write p = ad + 1. From the definition of
P(y) it follows that d is not divisible by any member of M0(x), defined in
Proposition 4.1. It thus follows from the size restrictions for p and y that
the number of choices for an integer b ≤ x/(p − 1) with bd + 1 prime is at
least

x/a

2ϕ(d) log(x/a)
� x

aϕ(d) log x
.

Further, from Lemma 3.1, this lower bound also stands as an upper estimate;
that is, ∑

b≤x/(p−1)
bd+1prime

1 � x

aϕ(d) log x
.

This ignores the other two conditions on b, namely Ωy(b) ≈y log log y and
(b, a) = 1. From the definitions of P(y) and Dp,j,y it follows that a has all of
its O(log log y) prime factors greater than log y, so that by Lemma 3.1, the
number of choices for b ≤ x/ad with bd+ 1 prime and (b, a) > 1 is

O

(
x log log y

aϕ(d) log x log y

)
,

which is negligible compared with the prior estimate.
Showing that the restriction Ωy(b) ≈y log log y does not significantly

affect the count takes a little more work. The argument is similar to the proof
of Lemma 3.4; we give the details. The number of integers b ≤ x/(ad) with
P (b) ≤ x1/log log x/(ad) is O(x/(ad(log x)10)), by the result (1) of de Bruijn,
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so these values of b are negligible. For the remaining values of b, write them
as b = b′r where r = P (b), and so Ωy(b) = Ωy(b

′) or Ωy(b) = 1 +Ωy(b
′). For

each choice of b′ ≤ x1−1/log log x, we count primes r ≤ x/adb′ with b′rd + 1
prime. By Lemma 3.1, this is

(8) O

(
x(log log x)2

aϕ(db′)(log x)2

)
= O

(
x(log log x)3

aϕ(d)b′(log x)2

)
.

We have, with w := log2 y − (log2 y)2/3,∑
b′≤x

Ωy(b′)≤w

1

b′
≤

∑
P (b1)≤y
Ω(b1)≤w

1

b1

∑
b2≤x

(b2,byc!)=1

1

b2
.

For the sum over b1 we use Lemma 3.3 with α = w/log2 y, and for the sum
over b2 we use the fundamental lemma of the sieve (in [10]), so that∑

b′≤x
Ωy(b′)≤w

1

b′
� (log y)1−1/(2(log log y)

2/3) · log x

log y
=

log x

exp
(
1
2(log log y)1/3

) .
Putting this into our prior calculation (8), we find that the number of choices
for b ≤ x/ad with bd+ 1 prime and Ωy(b) ≤ w is of order at most

x(log log x)3

aϕ(d)(log x) exp
(
1
2(log log y)1/3

) � x

aφ(d)(log x) exp
(
1
5(log log x)1/3

)
(using (4)), which is negligible. A similar calculation shows the same in-
equality holds for the number of b’s with Ωy(b) ≥ z := log2 y + (log2 y)2/3.
Hence, the inner sum in (7) satisfies

(9)

x

aϕ(d) log x
�

∑
b≤x/(p−1)

(b,(p−1)/d)=1
Ωy(b)≈y log log y
bd+1prime

1� x

aϕ(d) log x
� x log log y

ad log x
� x log log y

p log x
.

Using (7), we conclude that, with c = j/log log y,

(10)
∑
n≤x

r(n) =
x(log log y)O(1)

log x

∑
p∈P(y)

1

p

∑
d∈Dp,j,y

1 =
x

log x
(log y)∆(c)+o(1),

where for the last estimate we used Lemmas 4.2 and 4.3.

5.2. The sum
∑

n≤x r(n)2. In the argument above, we counted triples
a, b, d of positive integers with abd ≤ x as in (7), with a = (p − 1)/d.
Note that

∑
n≤x r(n)2 counts the number of 6-tuples a, b, d, a′, b′, d′ with
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abd = a′b′d′ ≤ x, with both a, b, d and a′, b′, d′ as in
∑

n≤x r(n). There are
four possibilities:

1. a = a′ and b = b′,
2. a 6= a′ and b = b′,
3. a = a′ and b 6= b′,
4. a 6= a′ and b 6= b′.

Let Rν(x, y) denote the number of 6-tuples in cases ν = 1, 2, 3, 4. Thus,

(11)
∑
n≤x

r(n)2 = R1(x, y) +R2(x, y) +R3(x, y) +R4(x, y).

Our task now is to find upper estimates for each Rν(x, y).

The case of ν = 1 is simple, since R1(x, y) is equal to
∑

n≤x r(n), which
we have already estimated in (10). So,

(12) R1(x, y) = S1(x, y)(log y)o(1), where S1(x, y) :=
x

log x
(log y)∆(c).

The estimation for R2(x, y) is also easy. Here we have λ(pq) = λ(pq′) with
q 6= q′. Looking at the triple summation in (7), we amend this by choosing
two unequal divisors d, d′ of p− 1 in Dp,j,y in the middle summation, which
can be done in (log y)2∆(c)+o(1) ways (Lemma 4.3). Then we choose an integer
b ≤ x/(p−1) coprime to both (p−1)/d and (p−1)/d′, and with both bd+1
and bd′ + 1 prime. By Lemma 3.2, the number of choices for b is at most
x(log log x)O(1)/p(log x)2. Thus, using Lemma 4.2, and an argument similar
to the one we used to estimate (9) and (10), we get

(13) R2(x, y) ≤ S2(x, y)(log y)o(1), where S2(x, y) :=
x

(log x)2
(log y)2∆(c).

We will work harder in estimating R3(x, y). Here we are counting the
number of quadruples a, d, d′, q with p = ad + 1, p′ = ad′ + 1 ≤ y unequal
primes, Ω(d) = Ω(d′) = j = c log log y, Ω(a) ≈y (1 − c) log log y, q prime,
q ≤ x/a+ 1, q ≡ 1 (mod [d, d′]) and Ωy((q − 1)/d) ≈y log log y. Further, we
have a > y1/log log y. (There are also the conditions that a is coprime to both
(q−1)/d and (q−1)/d′, but we shall ignore these.) Let u = (d, d′) and write
d = uv, d′ = uv′. Let i, θ be such that Ω(v) = i = θc log log y, so that

(14) Ω(v) = Ω(v′) = i = θc log log y, θ ∈ [0, 1].

Note that [d, d′] = uvv′, so that Ωy((q − 1)/[d, d′]) ≈y (1 − θc) log log y.
Lemma 3.4 implies that the number of such primes q ≤ x/a+ 1 is at most

x

auvv′ log x
(log y)−1−(1−θc) log(1−θc)+1−θc+o(1).
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Thus, the contribution to R3(x, y) corresponding to the parameter θ is at
most

(15)
x

log x
(log y)−θc−(1−θc) log(1−θc)+o(1)

∑
a,u,v,v′

1

auvv′
.

For the summation, we first sum over a given u, v, v′. The important
conditions for us are that a > y1/log log y, Ω(a) ≈y (1− c) log log y, and both
auv + 1 and auv′ + 1 are prime. Since v 6= v′ in this case, Lemma 3.5 and
partial summation imply that∑

a,u,v,v′

1

auvv′
≤ (log y)−2−(1−c) log(1−c)+1−c+o(1)

∑
u,v,v′

1

uvv′
.

To complete the estimate we use Ω(u) = (c − θc) log log y and (14). Thus,
using Lemma 3.3,∑

u,v,v′

1

uvv′
≤ (log y)−(c−θc) log(c−θc)+c−θc−2θc log(θc)+2θc+o(1).

Putting this estimate together with the previous one, we have∑
a,u,v,v′

1

auvv′
≤ (log y)−1−(1−c) log(1−c)−(c−θc) log(c−θc)+θc−2θc log(θc)+o(1),

and together with (15) we have the contribution to R3(x, y) corresponding
to the parameter θ being

x

log x
(log y)−1−(1−θc) log(1−θc)−(1−c) log(1−c)−(c−θc) log(c−θc)−2θc log(θc)+o(1).

We consider all integers i ∈ [0, j] which correspond to evenly spaced values
of θ ∈ [0, 1], the spacing being 1/j = 1/(c log log y). However, it can only
give a larger estimate if we consider θ as a continuous variable in [0, 1], and
so we seek that value of θ (as a function of c) which maximizes the above
expression. A short calculation shows this occurs when θ = 1/(1+c), and so
using this one value of θ in the above expression and multiplying by log log y
gives us our estimate for R3(x, y). After a little algebraic simplification this
gives us

(16) R3(x, y) ≤ S3(x, y)(log y)o(1),

where S3(x, y) :=
x

log x
(log y)−1+(1+c) log(1+c)−c log c+∆(c).

Now we estimate R4(x, y). This quantity is the number of solutions to
adb = a′d′b′ ≤ x where p = ad+ 1, p′ = a′d′ + 1 ∈ P(y) as in the definition
of r(n) and bd + 1 = q ≤ x/a + 1, b′d′ + 1 = q′ ≤ x/a′ + 1 again as in the
definition of r(n), where p, p′, q, q′ are primes with p 6= p′, q 6= q′. Further,
as before, we assume that Ω(d) = Ω(d′) = j = c log log y. Dividing the
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equation adb = a′d′b′ by u = (ad, a′d′), we see that there is an integer h
with

b =
a′d′

u
h, b′ =

ad

u
h.

Assume that Ω(u) = i. We have 1 ≤ i ≤ z = log2 y + (log2 y)2/3. We again
use an auxiliary variable θ ∈ [0, 1], this time defined by the equation i = θz.
Since

Ω(ad), Ω(a′d′), Ωy(b), Ωy(b
′) ≈y log log y

and Ω(u) = θz, it follows that

|Ωy(h)− θz| ≤ 2(log log y)2/3.

Since b ≤ x/(ad), the variable h ranges up to x/[ad, a′d′] = x/[p− 1, p′− 1].
Further,

a′d′d

u
h+ 1 and

add′

u
h+ 1

are the different primes q and q′, respectively. Thus, the number of integers
h with these conditions is, by Lemma 3.5, at most

x

[ad, a′d′](log x)2
(log y)−1+θ−θ log θ+o(1).

We now sum on a, d, a′, d′. By Lemma 4.3, this gives

(17)
x

(log x)2
(log y)2∆(c)−1+θ−θ log θ+o(1)

∑
p,p′

1

[p− 1, p′ − 1]
.

We compute this sum over primes p, p′ ∈ P(y). Recall that u = (p−1, p′−1)
and Ω(u) = θz. Write p−1 = uv, p′−1 = uv′, so that Ω(v), Ω(v′) ≈y (1−θ)z.
We are to consider

∑
1/uvv′ under these conditions. Either u > y1/3 or both

v, v′ > y1/3. Assume first that u > y1/3. Given v 6= v′, we note that u has the
properties that u > y1/3, uv + 1 is prime, uv′ + 1 is prime, and Ω(u) = θz.
Thus, by Lemma 3.5 and partial summation,∑

u,v,v′

u>y1/3

1

uvv′
≤ (log y)−2+θ−θ log θ+o(1)

∑
v,v′

1

vv′
.

To complete the estimate, we use Ω(v), Ω(v′) ≈y (1 − θ)z, giving us the
upper bound

(log y)−2+θ−θ log θ+2(1−θ)−2(1−θ) log(1−θ)+o(1)

= (log y)−θ−θ log θ−2(1−θ) log(1−θ)+o(1),
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where we have used Lemma 3.3. Now we assume that u ≤ y1/3 so that both
v, v′ > y1/3. We have, by Lemma 3.4 and partial summation,∑

u,v,v′

v,v′>y1/3

1

uvv′
≤ ((log y)−1+(1−θ)−(1−θ) log(1−θ)+o(1))2

∑
u

1

u
.

Using Lemma 3.3, this final sum is at most (log y)θ−θ log θ+o(1), so that we
end up with the same estimate for

∑
1/(uvv′) =

∑
1/[p − 1, p′ − 1] as in

the case u > y1/3, namely

(log y)−θ−θ log θ−2(1−θ) log(1−θ)+o(1).

Thus, by (17), we have

R4(x, y) ≤ x

(log x)2
(log y)2∆(c)−1+2∆(θ)+o(1).

We now choose θ in [0, 1] so as to maximize this exponent; this is when
θ = 1/2. Hence,

(18) R4(x, y) ≤ S4(x, y)(log y)o(1),

where

S4(x, y) :=
x

(log x)2
(log y)2∆(c)−1+log 4.

Using (11), (12), (13), (16), and (18), we have∑
n≤x

r(n)2 ≤ (S1(x, y) + S2(x, y) + S3(x, y) + S4(x, y))(log y)o(1).

Since S2(x, y) ≤ S1(x, y), we may simplify this a little to

(19)
∑
n≤x

r(n)2 ≤ (S1(x, y) + S3(x, y) + S4(x, y))(log y)o(1).

5.3. Choosing parameters. Using∑
n≤x

r(n) = S1(x, y)(log y)o(1)

(which follows from (10) and the definition of S1(x, y)), (6), and (19), we
have

Vλ(x) ≥ S1(x, y)2

S1(x, y) + S3(x, y) + S4(x, y)
(log y)o(1).

Dividing the numerator and denominator by x(log y)2∆(c)/(log x)2, we get

Vλ(x) ≥ x

S′(x, y)
(log y)o(1),
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where

S′(x, y) := (log x)(log y)−∆(c)

+ (log x)(log y)−1+(1+c) log(1+c)−c log c−∆(c) + (log y)−1+log 4.

We choose the parameter c so that the first two terms in S′(x, y) are
equal. This gives c as a solution of the equation

1 = (1 + c) log(1− c)− c log c,

so that c = .5422114 is a reasonable choice. (Namely, we choose the in-
teger j as a function of y so that c → .5422114 as y → ∞.) Next we
choose y to equate the first and third terms in S′(x, y), so that log y is
(log x)1/(∆(c)−1+log 4), which is approximately (log x).929477. Thus, (4) holds.
We thus get

Vλ(x) ≥ x/(log x)(−1+log 4)/(∆(c)−1+log 4)+o(1),

so that

Vλ(x) ≥ x

(log x).359052

for all sufficiently large values of x. This completes our proof of Theorem 1.2.

6. Proof of Theorem 1.3. Since λ(p) = p− 1, we trivially have

#{λ(n) : n ≤ x} ≥ π(x),

so that the lower bound implicit in Theorem 1.3 follows immediately from
the prime number theorem.

It thus remains to prove that

(20) #{λ(n) : n ≤ x} ≤ x

(log x)1+o(1)
as x→∞.

Let M =
√

log log x and, for a positive integer n, let

FM (n) =
∏
p≤M

pvp(ϕ(n)), LM (n) =
∏
p≤M

pvp(λ(n)).

Here, vp(m) denotes the integer ν with pν ‖m. Suppose that we have both
FM (n) > (log x)2 and LM (n) ≤ log x. Then

λ(n) = ϕ(n) · λ(n)

ϕ(n)
≤ x · LM (n)

FM (n)
<

x

log x
.

Thus, to prove (20) it suffices to show that both

#{n ≤ x : FM (n) ≤ (log x)2} ≤ x

(log x)1+o(1)
,

#{λ(n) : n ≤ x, LM (n) > log x} ≤ x

(log x)1+o(1)

as x→∞.
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For the first inequality, we use [12, Proposition 2] with the parameter λ
set at 2 and with Q as the set of primes up to M . Then the quantity R is
o(1) and it follows that the number of n ≤ x with FM (n) ≤ (log x)2 is at
most x/(log x)1+o(1).

If LM (n) > log x, then λ(n) is divisible by a number m > log x with
P (m) ≤M . The number of such integers in [1, x] is at most∑
P (m)≤M
m>log x

x

m
≤ x

(log x)1−1/M

∑
P (m)≤M

1

m1/M
=

x

(log x)1−1/M

∏
p≤M

(
1− 1

p1/M

)−1

≤ x

(log x)1−1/M
(1− 2−1/M )−π(M) ≤ x

log x
eO(M).

Thus, the number of integers n ≤ x with LM (x) > log x is at most
x

log x
exp

(
O(
√

log log x)
)

=
x

(log x)1+o(1)
as x→∞.

This completes our proof of Theorem 1.3.

7. Appendix: Algorithms. Here we present three algorithms for com-
puting Vλ(x), all with complexity x(log x)O(1). The first two, which we have
implemented, require a similar amount of space, while the third requires
x1/2(log x)O(1) space.

The first two algorithms are based on the following easy observation. If
v = λ(n) and n is minimal with this property, then for each prime p ‖n, we
have λ(n/p) a proper divisor of v.

Let Vλ = λ(N), the set of all values of λ. The first algorithm assumes
that v > 1 and one knows all members of Vλ smaller than v, and the issue
is whether v ∈ Vλ. Let p = P (v). If p − 1 | v and v/p ∈ Vλ, then v ∈ Vλ. If
pα ‖ v and there is a divisor upα of v with q := upα + 1 prime and a divisor
d > 1 of u with (v/(q − 1), d) = 1 and v/d ∈ Vλ, then v ∈ Vλ. If neither of
these cases occur, then v 6∈ Vλ.

To see the complexity of a procedure based on this plan, one can use
a version of the sieve of Eratosthenes to find the prime factorizations of
all numbers up to x. For each candidate v there are at most τ(v) checks
of primality, where τ(v) is the number of divisors of v. These checks of
primality are done by looking up the candidate prime in our sieved interval,
and the pairs of divisors d, u that one searches over are found using the
prime factorization at hand for the candidate v. The number of pairs d, u
is at most τ(v)2, and since the sum of τ(v)2 for v up to x is of magnitude
x(log x)3, our complexity estimate follows.

The second algorithm recursively builds up the set

Vλ(x) := Vλ ∩ [1, x].
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Let V1 denote the set of numbers λ(q) ≤ x where q runs over primes and
prime powers. This is easily accomplished via the sieve of Eratosthenes.
Our initial choice for Vλ(x) is V1. We then run through the members of
the current choice for Vλ(x) looking to see if we can append new members.
When we get to member v, for each d | v with d > 1 we look for members
λ(q) ∈ V1 with λ(q) ≤ dx/v and λ(q) = kd for some integer k coprime
to v/d. For each such k found, we append vk to Vλ(x). When we reach x
(actually x/2), the current set Vλ(x) is the correct set.

Since the number of members of V1 up to dx/v divisible by d is at
most x/v, summing this over d | v and v ≤ x gets us to x(log x)2. In fact,
a factor of log x can be saved since there are usually about x/(v log x)
members of V1 up to dx/v divisible by d. However, it seems to be more
advantageous to consider the x(log x)2 version by having an array of the
even numbers up to x, each with the label “0”. We then change some
of these labels to “1”, and at the end we have the characteristic func-
tion for Vλ(x) \ {1}. We begin by labeling the members of V1 with “1”.
Then one cycles through even integers d. For each d, one visits sequen-
tially the multiples of d in the table. If the entry there is 0, it is passed
over. If it is 1, say the location is ad, then one has a (we are at the ath
multiple of d in our tour). For this value of a we visit the succeeding
multiples of d, starting at (a + 1)d and stopping before surpassing x/a.
For each bd found with label 1, one computes (a, b), and if (a, b) = 1
with the label in location adb being 0, the label there is changed to 1.
(One might look first at location adb and if the label is 1, no gcd calcu-
lation need be done and no changes need be made.) As above, the com-
plexity is the number of triples d, a, b with adb ≤ x, which is of mag-
nitude x(log x)2, with all of the arithmetic (after the initial construction
of V1) very simple. In this variant, for a given d, one need take a only up
to (x/d)1/2.

Here is a third algorithm that requires less space. It can compute the
number of λ-values in an interval of length x1/2 contained in [1, x] in time
and space x1/2(log x)O(1). With a modified sieve of Eratosthenes, one finds
the complete prime factorizations of the numbers in the interval, and using
this, the list of divisors of the numbers in the interval. Then, via some fast
primality test, one finds a list of divisors of the form λ(q), where q is a prime
or prime power, for each number in the interval. One then recognizes if a
candidate v is a λ-value since it is one if and only if

v = lcm{λ(q) : λ(q) | v, q a prime or prime power}.

We have run the first algorithm with Mathematica up to 107 and the
second algorithm with Sage up to 5 · 108; our counts follow. Define c(x) by
the equation Vλ(x) = x/(log x)c(x).



Range of Carmichael’s function 307

x Vλ(x) c(x) x Vλ(x) c(x)

104 2933 .5524 5 · 106 1238634 .5100

2 · 104 5696 .5478 107 2445343 .5066

5 · 104 13836 .5395 2 · 107 4830396 .5035

105 27155 .5335 5 · 107 11891820 .4995

2 · 105 53242 .5290 108 23523516 .4967

5 · 105 130116 .5229 2 · 108 46558154 .4940

106 256158 .5187 5 · 108 114882775 .4907

2 · 106 504850 .5147
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and
School of Mathematics
University of the Witwatersrand
P.O. Box Wits 2050
Johannesburg, South Africa
E-mail: fluca@matmor.unam.mx

Carl Pomerance
Department of Mathematics

Dartmouth College
Hanover, NH 03755–3551, U.S.A.

E-mail: carl.pomerance@dartmouth.edu

Received on 23.1.2013 (7430)

http://dx.doi.org/10.1007/BF02304422

	1 Introduction
	2 The upper bound and a heuristic
	2.1 A heuristic lower bound

	3 Some sieve estimates
	4 Preliminaries for the lower bound
	5 The lower bound
	5.1 The sum nx r(n)
	5.2 The sum nxr(n)2
	5.3 Choosing parameters

	6 Proof of Theorem 1.3
	7 Appendix: Algorithms
	References

