
INTRODUCTION

Hair follicles are composed of cells that possess self-re-
newal capacity, which can undergo a repetitive regeneration 
process during hair growth (Yu et al., 2008). The ‘hair growth 
cycle’ has three phases: the anagen (growth), catagen (re-
gression) and telogen (rest) phases (Stenn and Paus, 2001). 
During the anagen phase, the pigmented hair shaft is actively 
generated and the follicle reaches its maximal length and vol-
ume. At the end of the anagen phase, the hair follicle enters 
the catagen phase, during which production of new hair shafts 
and pigmentation ceases and the club hair starts to form. In 
the telogen phase, a relatively quiescent state, keratin produc-
tion ceases and the club hair matures. After completion of the 
telogen phase, the hair begins to shed and the hair cycle re-
starts (Paus and Foitzik, 2004). It is known that the regulation 
of follicular morphogenesis and hair growth partly depends 

on the interaction between the epithelial and mesenchymal 
cells in hair follicles. The dermal papilla, a mesenchymal cell 
population located at the base of the hair follicle, plays an im-
portant role in regulating hair growth and cycling (Botchkarev 
and Kishimoto, 2003). Factors secreted by dermal papilla cells 
(DPCs) directly promote the surrounding matrix cells either to 
proliferate and differentiate or to stimulate hair stem cells to 
initiate a new anagen phase (Kang et al., 2010).

Recent studies in transgenic and knockout mouse models 
have revealed that the WNT/β-catenin-mediated signaling 
pathway plays a pivotal role in the regulation of hair follicle 
morphogenesis, hair shaft differentiation and follicular recy-
cling (Kishimoto et al., 2000; Andl et al., 2002; Kitagawa et 
al., 2009; Soma et al., 2012; Tsai et al., 2014). Reddy et al. 
(2001) demonstrated that certain WNT ligands, e.g. WNT-10a 
and WNT-10b, are overexpressed at the onset of the anagen 
phase and WNT-5a is selectively expressed in the dermal folli-
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cle at a later stage of follicular differentiation in a sonic hedge-
hog (SHH)-dependent manner. A WNT downstream signal-
ing molecule, β-catenin has established a link between WNT 
signaling and SHH expression: the stabilization of epidermal 
β-catenin induced the formation of ectopic hair follicles and 
SHH expression (Gat et al., 1998), whereas the expression 
of SHH was lost in the absence of epidermal β-catenin (Huel-
sken et al., 2001). While the deletion of Wnt/β-catenin reduced 
the proliferation of hair follicle progenitor cells and induced the 
early onset of the catagen phase (Reddy et al., 2001), upregu-
lation of WNT/β-catenin signaling resulted in a more extensive 
hair growth in mice (Andl et al., 2002). Another critical intracel-
lular signaling pathway involved in the regulation of hair cycle 
is mediated by signal transducer and activator of transcription 
(STAT) and its upstream regulator, Janus-activated kinase 
(JAK). A previous study demonstrated that mutation of mouse 
STAT3 prevents normal progression of telogen follicles into 
anagen (Sano et al., 2000). Pharmacological inhibition of the 
JAK-STAT pathway promoted rapid hair regrowth in alopecia 
areata (AA) in both mice and humans (Xing et al., 2014). Com-
plying with this result, a clinically-approved JAK inhibitor, rux-
olitinib, was also reported to reverse AA (Xing et al., 2014). In 
addition, another JAK inhibitor tofacitinib increases the growth 
rate of anagen hair shafts (skin grafts and organotypic culture 
assays) and enhances the inductivity of human dermal papilla 
spheres (neogenesis assays) (Zeidler et al., 2016). Investiga-
tion of the molecular effects of tofacitinib treatment revealed 
that the treatment causes a molecular restoration of a subset 
of genes that are disrupted in culture but are present in fully 
inductive dermal papilla cells (HDPCs) (Harel et al., 2015).

3-Deoxysappanchalcone (3-DSC) is a naturally-occurring 
chalcone compound (Fig. 1A) isolated from Caesalpinia sap-
pan L. (Leguminosae). C. sappan it is commonly used as a 
herbal medicine to reduce inflammation and improve blood 
circulation (Shen et al., 2007; Liu et al., 2009; Yodsaoue et al., 
2009). Several studies have demonstrated that 3-DSC exerts 
several biological properties, including anti-allergic (Liu et al., 
2009), anti-influenza virus (Yang et al., 2012), anti-inflamma-
tory (Yodsaoue et al., 2009), and antioxidant activities (Youn 
et al., 2011). In an effort to identify novel natural products that 
might promote hair growth, we observed that 3-DSC exerts 
stimulatory effects on hair growth in mice. Our study also 

demonstrates the potential molecular mechanisms of action 
of 3-DSC in the proliferation of HDPCs with a special focus on 
modulation of STAT and WNT/β-catenin signaling.

MATERIALS AND METHODS

Cell culture
The human hair follicle dermal papilla cells (HDPCs; Promo 

cell: ABM Inc., Richmond, BC, Canada) were cultured in Pri-
GrowIII (ABM Inc.) medium supplemented with 10% fetal bo-
vine serum (FBS) and 100 U/ml penicillin and 100 μg/ml strep-
tomycin. WNT reporter NIH3T3 cells lines were obtained from 
Enzo Life Sciences (Farmingdale, NY, USA) for TCF/LEF tran-
scription factor to activate Wnt target gene expression. Stable 
STAT3 Luciferase-(LUCPorter™) reporter gene-expressing 
HEK293 cell lines were purchased from Novus (Littleton, CO, 
USA). Cells were incubated in accordance with the product 
manual and maintained in an incubator in a humidified atmo-
sphere of 5% CO2 at 37°C.

Chemicals and antibodies
3-DSC (purity >98%) was purchased from AK Scientific, Inc 

(Union City, CA, USA). CellTiter-Glo®Luminescent Cell Viabil-
ity Assay kit was purchased from Promega Corporation (Madi-
son, WI, USA). DMEM and fetal bovine serum (FBS) were 
procured from Invitrogen (Carlsbad, CA, USA). Interleukin 
(IL)-6 and IL-4 were purchased from R&D systems (Minne-
apolis, MN, USA). β-actin antibody was obtained from Sigma-
Aldrich (St. Louis, MO, USA). Polyclonal antibodies against 
total β-catenin, phospho-specific β-catenin (Thr41/Ser45), 
total STAT3, STAT6, phospho-specific STAT3 (Tyr705) and 
STAT6 (Tyr641) were purchased from Cell Signaling Technol-
ogy (Beverly, MA, USA). All other chemicals used in our ex-
periments were molecular biology grade.

Real-time cell analyzer (RTCA) system
The xCELLigence System (ACEA Biosciences; San Diego, 

CA, USA) allows for label-free and real-time monitoring of cel-
lular processes, such as cell proliferation, cytotoxicity, adhe-
sion, viability, invasion, and migration, using the electronic 
cell sensor array technology (Ke et al., 2011). Electrode im-

Fig. 1. Effects of 3-DSC on hair cell growth. (A) Chemical structures of 3-DSC. Effects of 3-DSC on hair cell growth was examined by (B) 
real-time xCELLigence system and (C) CellTiter-Glo® luminescent cell growth assay as described in the Methods. All experiments were per-
formed in triplicate. The asterisk indicates a significant statistical significance (*p<0.05).
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pedance, which is displayed as cell index (CI) values, was 
used to provide quantitative information about the biological 
status of cells, including cell number, viability, and morphol-
ogy. Changes in the cell status, such as cell morphology, cell 
adhesion, or cell viability led to a change in the CI, which is a 
quantitative measure of the number of cells present in a well. 
Subsequently, 150 μl of cell culture media at room tempera-
ture was added to each well of E-plate 8 in the xCELLigence 
System. After that, the E-plate 8 was connected to the system 
and checked in the cell culture incubator for proper electrical 
contacts and the background impedance was measured dur-
ing 24 hrs. Meanwhile, the HDPCs were resuspended in cell 
culture medium and adjusted to a cell number of 20,000 cells/
well. Cell suspension (50 μl) was added to the 150 μl me-
dium-containing wells in E-plate 8, in order to determine the 
optimum cell concentration. After 30-min incubation at room 
temperature, E-plate 8 was placed in the cell culture incuba-
tor. Then, adhesion, growth and proliferation of the cells were 
monitored every 1 h for a period of up to 24 h via the incorpo-
rated sensor electrode arrays in the E-Plate 8. After 24 hr, 0-3 
μM of 3-DSC was added to 200 μl cell culture medium and live 
cells were monitored every 15 min for a period of up to 96 hr. 
Electrical impedance was measured by the RTCA-integrated 
software of the xCELLigence system as a dimensionless pa-
rameter termed CI.

CellTiter-Glo® luminescent cell growth assay
Cell proliferation and cytotoxicity were assessed using a 

CellTiter-Glo® Luminescent Cell Viability Assay Kit (Promega 
Corporation), which is a homogeneous method to determine 
the number of viable cells in culture based on quantitation 
of the ATP present. Briefly, cells were seeded for 24 h in a 
96-well plate (10,000 cells/well) and then attached cells were 
treated with 3-DSC (0-3 μM) in serum free medium for 48 h. A 
volume of CellTiter-Glo® Reagent equal to the volume of cell 
culture medium present in each well was added and incubated 
at room temperature for 10 minutes to stabilize the lumines-
cent signal. Amounts of ATP were determined by recording 
luminescence on a LuBi microplate luminometer (Micro Digital 
Ltd., Seoul, Republic of Korea).

RNA isolation and Quantitative real-time PCR (qPCR)
Cells were seeded for 24 h and then attached cells were 

treated with 3-DSC (0-3 μM) in a serum free medium for 48 
h. For mRNA quantification, total RNA was extracted using 
NucleoSpin® RNA Kit (Macherey-Nagel Gmbh & Co., Düren, 
Germany). cDNA was synthesized using iScript™ cDNA Syn-
thesis Kit (Bio-Rad, Hercules, CA, USA) according to the ma
nufacturer’s instructions. Briefly, 2 μg of total RNA was used 
for cDNA preparation. The synthesized cDNA was ampli-
fied separately using primers for β-catenin, Lef/TCF, STAT3, 
STAT6, cyclin-dependent kinase (CDK)-4, fibroblast growth 
factor (FGF), vascular endothelial growth factor (VEGF) and 
GAPDH using GeneAmp PCR 9700 thermocycler (Thermo 
Fisher Scientific, Waltham, MA, USA). PCR products were an-
alyzed by 1% agarose gel using 1X TAE buffer. Relative mRNA 
levels were quantified using myECL imager analysis software 
(Thermo Fisher Scientific). Quantitative real-time PCR was 
performed using the iQ™ SYBR® Green Supermix (Bio-Rad) 
specific for each gene. All reverse transcription reactions were 
run on a CFX96™ Real-Time System (Bio-Rad) using the fol-
lowing steps: 3 min at 95°C, 42 cycles of 10 s at 95°C, 15 s at 

55°C, 30 s at 72°C, and then 10 s at 95°C. Relative expres-
sion levels were determined using the Bio-Rad CFX Manager 
3.0 (Bio-Rad). The expression of target genes was normalized 
to that of GAPDH. The primer pairs for RT-PCR were as fol-
lows: β-catenin forward 5’-CCCACTAATGTCCAGCGTTT-3’, 
reverse 5’-AACCAAGCATTTTCACCAGG-3’; glycogen syn-
thase kinase (GSK)-3β forward 5’-AACTGCCCGACTAACA- 
ACAC-3’, reverse 5’-ATTGGTCTGTCCACGGTCTC-3’; lym-
phoid enhancer factor (Lef)-1/T Cell factor (TCF) forward 
5’-AATCATCCCGGCCAGC A-3’, reverse 5’-TGTCGT GG-
TAGGGCTCCTC-3’; BAX forward 5’-GTTGTCGCCCTTTT 
CTACT-3’, reverse 5’-GAAGTCCAATGTCCAGCC-3’; BCL2 
forward 5’-CACCAGAATCA AGTGTTCC-3’, reverse 5’-GC-
TATTTTATTGGATGTGCTTTG-3’, STAT1 forward 5’-ACA TC- 
ATTCGCAATTACAAAGTC-3’, reverse 5’-TCAAGTTCCATT- 
GGCTCTG-3’; STAT3 for ward 5’-GTTATTGTTGTTGTTGTT- 
CTTAGAC-3’, reverse 5’-AATGCCAGGAGTATGTAG C-3’;  
STAT4 forward 5’-AACCTACTCTTGATACACAATCTAA-3’,  
reverse 5’-TCTCCTCT CTTCCCTTAAACA-3’; STAT5A for- 
ward 5’-CTTTGCCCTCCTAAGAGAGA-3’, reverse 5’-TGAA- 
TCGGTTACATCAACACAT-3’, STAT5B forward 5’-TATTCTC- 
TCTTTGTCCTC T CTCC-3’, reverse 5’-CGGCATTGGCACTG-
TAAG-3’; STAT6 forward 5’-CCAGGATGGCT CTCCACAG-3’, 
reverse 5’-CATGGAGGAATCAGGGGC-3’; Axin forward 5’- 
GCAACTCA GTAACAGCCCGA-3’, reverse 5’-AAGTCAG-
CAGGGGCTCATCT-3’; SOX9 forward 5’-AGACCTTTGGGCT-
GCCTTAT-3’, reverse 5’-TAGCCTCCCTCACTCCAAGA-3’; 
BMP4 forward 5’-CACTGGCTGACCACCTCAAC-3’, reverse 
5’-GGCACCCACATCCCTCTACT -3’; FGF forward 5’-GCTCT-
TAGCAGACATTGGAAG-3’, reverse 5’-GTGTGTGCTAAC C 
GTTACCT-3’, VEGF forward 5’-GGAGAGATGAGCTTCCTA-
CAG-3’, reverse 5’-TCACC GCCTTGGCTTGTCACA-3’; CDK4  
forward 5’-ACCTGAGATGGAGGAGTC-3’, reverse 5’-AAG- 
GCAGAGATTCGCTTG-3’, and GAPDH forward 5’-TGGC- 
AAATTCCATGCAC-3’, reverse 5’-CCATGGTGGTGAAGAC-
GC-3’. 

Measurement by luciferase-reporter assay
WNT reporter NIH3T3 cells permanently transfected with 

TCF/LEF-luciferase constructor and HEK293 cells stably 
transfected with STAT3-luciferase constructs were seeded at 
2×104 cells in a 96-well plate and maintained in DMEM media 
containing puromycin (3 mg/ml) and 5% FBS for 24 h. WNT 
reporter cells were then exposed to WNT3a and/or 3-DSC 
(0.01-10 mM) for 24 h. The stable STAT3-luciferase-express-
ing HEK293 cells were seeded in a 96-well plate and treated 
with IL-6 (10 ng) alone or in combination with 3-DSC (0.1-10 
mM) for 24 h. HEK293 cells were permanently transfected 
with IL-4Rsite-TKluc/STAT6 containing the IL-4 receptor 
site (5’-AGCTTCTTCATCTGAAAAGGG-3’) (Kotanides and  
Reich, 1996). Cells were seeded at 1×104 cells in each well 
of a 96-well plate in DMEM containing 5% FBS for 24 h. Cells 
were then treated with IL-4 (10 ng) alone or in combination 
with 3-DSC (0.1-10 mM) for 24 h. The supernatant was dis-
carded and passive lysis buffer was added and incubated for 
10 min in an orbital shaker. The luciferase activity was mea-
sured by LuBi microplate luminometer (Micro Digital Ltd.). All 
experiments were repeated at least three times and the aver-
age values together with standard deviations are depicted. 

Western blot
Cells treated with 3-DSC (0-3 μM) for 48 h in a serum free 
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medium were homogenized with a cell lysis buffer (100 mM 
Tris pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 
5 mM DTT, 0.1 mM PMSF, 10% Glycerol, protease inhibi-
tor) and lysed with 2 h incubation on ice. The cell lysate was 
centrifuged at 13,000 rpm for 15 min at 4°C. Equal amounts 
of proteins (20 μg) were separated on a SDS/8%-polyacryl-
amide gel, and then transferred to a polyvinylidene difluoride 
(PVDF) membrane (Thermo Scientific). Blots were blocked for 
1 h at room temperature with 5% (w/v) non-fat dried milk in 
Tris-Buffered Saline Tween-20 [TBS-T: 10 mM Tris (pH 8.0) 
and 150 mM NaCl solution containing 0.05% Tween-20]. After 
a short washing in TBST, the membranes were immunoblot-
ted with specific antibodies. To detect target proteins, specific 
antibodies against stat3, stat6, phospho-stat3, phospho-stat6, 
β-catenin, phospho-β-catenin (1:1000, Cell Signaling Technol-
ogy) and β-actin (1:5000, Sigma-Aldrich) were used. The blots 
were then incubated with the corresponding conjugated goat 
anti-rabbit or goat anti-mouse or donkey anti-goat IgG-horse-
radish peroxidase (HRP) (1:5000; Santa Cruz Biotechnology 

Inc., Santa Cruz, CA, USA) secondary antibodies. Immunore-
active proteins were detected with an enhanced chemilumi-
nescence western blotting detection system (myECL imager, 
Thermo Scientific).

Hair growth activity in mice 
Seven-week-old female C57BL mice were purchased 

from Oriental Bio Co (Seoul, Republic of Korea). After a 7 
day acclimation period for being automatically maintained at 
21-25°C and a relative humidity of 45-65% with a controlled 
light-dark cycle, the animals were divided into 2 randomized 
groups (n=4) to investigate the hair growth promoting activ-
ity of 3-DSC. Two hundred microliters of 3-DSC (3 mM) were 
applied twice daily for 15 days. Reagents used for the hair 
growth test were dissolved in a vehicle containing 50% etha-
nol. All animals were cared for by using protocols approved by 
the Institutional Animal Care and Use Committee (Chungbuk, 
Republic of Korea). 

Fig. 2. Effects of 3-DSC on hair growth regulating gene expression. (A) The gene expression of hair growth regulating factors was detected 
by real-time qPCR using specific primers in HDPCs. (B) The level of hair growth regulating factors was detected by gel electrophoresis us-
ing specific primers in HDPCs. GAPDH was used as an internal control. All experiments are presented three independent experiments. The 
asterisk indicates a significant statistical significance (*p<0.05).
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RESULTS

The effects of 3-DSC on hair follicle dermal papilla cell 
growth

Since 3-DSC has been reported to elicit the activation of 
cell survival pathways (Kim et al., 2014), we examined the 
effects of 3-DSC on growth of HDPCs. Analysis of real-time 
cell proliferation using xCELLigence system revealed that the 
proliferation of HDPCs was promoted by 3-DSC treatment in a 

concentration-dependent manner (Fig. 1B). Likewise, 3-DSC 
resulted in a dose-dependent increase in the viability of HD-
PCs (Fig. 1C). Tofacitinib, which has been reported to promote 
growth of the hair shaft (Harel et al., 2015), was used as a 
positive control. 

Effects of 3-DSC on the expression of genes involved in 
hair growth regulation

To investigate the effect of 3-DSC on hair growth regulation 
factors, we analyzed the transcriptional expression changes in 
various genes, using a conventional and quantitative reverse-
transcriptase PCR (RT-PCR). As a result, 3-DSC caused tran-
scriptional activation of β-catenin, tcf, fgf, vegf, cdk4 and stat3, 
whereas it decreased the level of stat4, stat5A/B and stat6 
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gene assay as determined by luciferase activity. Each assay is rep-
resentative for 3 experiments. The asterisk indicates a significant 
statistical significance (*p<0.05).
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mRNAs (Fig. 2A). We observed that the expression of Bax, 
Bcl-2, Sox-9 and BMP4 mRNAs was unaltered. This finding 
was further confirmed by conventional RT-PCR analysis and 
tofacitinib elicited a similar pattern of gene expression chang-
es in HDPCs (Fig. 2B). 

Effects of 3-DSC on the transcriptional activity of TCF, 
STAT3 and STAT6 in HDPCs 

Next, we analyzed the effects of 3-DSC on TCF/LEF-medi-

ated reporter activity, using NIH3T3-WNT-luciferase cells (Fig. 
3A). As a result, we observed that 3-DSC resulted in TCF/
LEF luciferase activation. In order to determine the effects 
of 3-DSC on STAT3-mediated transcriptional activity, we ex-
posed the cells to 3-DSC and measured the STAT3-mediat-
ed luciferase activity in HEK293 cells that stably expressed 
a STAT3-regulated luciferase reporter plasmid (Fig. 3B). As 
a result, we observed that IL-6 stimulated STAT3 transcrip-
tional activity in a concentration-dependent manner. In or-

A

50% Et-OH

B

3-DSC (3 mM)

1 2 3 4

1 2 3 4

Fig. 5. Effect of 3-DSC on hair growth in C57BL/6 mice. After synchronizing the telogen phase, shaved backs of C57BL/6 mice were topi-
cally treated with 3-DSC or ethanol for 15 days. (A) Control, ethanol (50%). (B) 3-DSC (3 mM). Typical photos of dorsal skin (upper panel), 
histopathological analysis (lower panel). (C) A representative scheme of 3-DSC regulation of WNT/ β-catenin and JAK-STAT pathway in hu-
man hair dermal follicle papilla cells. The treatment of 3-DSC not only increased β-catenin and TCF/LEF, a cell growth regulatory transcrip-
tional factor in nucleus, but also interfered with IL-4-JAK3-STAT6 pathway, which activated STAT6 transcription factor.
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der to determine whether the inhibitory effects of 3-DSC on 
STAT6 phosphorylation can be ascribed to the attenuation of 
the STAT6 transcriptional response, we analyzed the effects 
of 3-DSC on IL-4 receptor site-mediated reporter gene ex-
pression using a stably transfected HEK293 cell line that ex-
presses the IL-4R site-TKluc/STAT6 regulated luciferase gene 
after treatment with IL-4 (Fig. 3C). 3-DSC decreased the IL-
4R site-TKluc/STAT6 luciferase activity in a dose-dependent 
manner. It seems that 3-DSC increased the TCF/LEF activ-
ity by stabilizing β-catenin through the inhibition of β-catenin 
phosphorylation. 3-DSC also decreased IL-4-induced phos-
phorylation of STAT6 via interfering with the JAK1/3 pathway, 
and it activated phosphorylation of STAT3 via the IL-6-induced 
JAK2 pathway. These results indicate that 3-DSC-induced 
hair growth promotion is caused by regulating the molecular 
target of hair dermal follicular papilla cells.

Effects of 3-DSC on phosphorylation of β-Catenin, STAT3 
and STAT6 in HDPCs

Based on the effects of 3-DSC on the mRNA expression of 
certain hair growth regulatory genes, we examined whether 
3-DSC can modulate the phosphorylation of several key regu-
lators of hair growth. As shown in Fig. 4A, 3-DSC decreased 
constitutive phosphorylation of β-catenin (Thr41 and Ser45). 
Treatment of HDPCs with WNT3a, which stabilizes β-catenin, 
also abolished constitutive β-catenin phosphorylation. Similar 
inhibition of β-catenin phosphorylation was noted when HD-
PCs were exposed to the standard drug tofacitinib. To exam-
ine the effects of 3-DSC on STAT3 and STAT6 phosphoryla-
tion, HDPCs were stimulated with IL6 and IL4, respectively, 
because STATs are not constitutively phosphorylated in HD-
PCs. As a result, 3-DSC exhibited inhibitory effects on IL6-
induced STAT3 phosphorylation at the Tyr705 residue at lower 
concentrations (0.1 and 0.3 mM), but STAT3 phosphorylation 
was unchanged at a higher concentration of the compound 
(Fig. 4B). However, 3-DSC attenuated IL4-induced STAT6 
phosphorylation at the Tyr641 residue in a concentration-de-

pendent manner and it was comparable to tofacitinib (Fig. 4C). 

Effects of 3-DSC on hair growth in mice
Finally, we attempted to examine the effects of 3-DSC on 

hair growth in mice. The back of C57BL/6 mice was shaved 
and topically treated with a vehicle (ethanol) or 3-DSC for 15 
days. Compared to the vehicle control, 3-DSC promoted rapid 
and intense hair growth in mice (Fig. 5A, 5B). Histopathologi-
cal analysis of mouse skin including the follicular and dermal 
layers at autopsy showed that the diameter and depth of the 
hair follicles were remarkably higher in mice that were admin-
istered with 3-DSC. A representative scheme of 3-DSC regu-
lation of WNT/β-catenin and JAK-STAT pathway in human hair 
dermal follicle papilla cells (Fig. 5C).

DISCUSSION

Caesalpinia sappan L. has been reported to have various 
beneficial pharmacological activities such as immune func-
tion modulation, depression of the central nervous system, 
anti-inflammation, and vasorelaxation. The present study was 
designed to investigate the effect of 3-DSC on hair growth 
and it revealed that 3-DSC promoted in vivo hair growth and 
modulated intracellular signaling pathways, implicated in hair 
cycle regulation. The remodeling of hair follicles involves cy-
clical periods of growth (anagen), regression (catagen), rest 
(telogen) and shedding (exogen) (Paus and Cotsarelis, 1999). 
Many follicles undergo programmed cell death during catagen 
that leads to reduced hair size at the beginning of the telogen 
phase (Cotsarelis, 1997). Follicular regeneration at the onset 
of the subsequent anagen phase requires activation of rarely 
cycling epithelial stem cells located in the permanent, bulge 
region of the follicle (Cotsarelis et al., 1990). This stem cell 
progeny forms a new follicular matrix during early anagen, and 
the hair shaft and inner root sheath are derived from these 
relatively undifferentiated matrix cells (Oshima et al., 2001). 
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The size and length of the hair shaft correspond to the size 
of the hair follicle and to the duration of anagen, respectively. 
It is well established that STAT3 is one of the factors required 
for anagen onset (Sano et al., 2000). Activation of another in-
tracellular signal pathway mediated via WNT-β-catenin is also 
required for the proliferation and differentiation of the hair shaft 
(Millar et al., 1999; Kishimoto et al., 2000; Cotsarelis and Mil-
lar, 2001). In fact, the volume of the dermal papilla reflects the 
number of matrix cells and it determines the size of the result-
ing hair shaft (Hardy, 1992). Because the size of the follicle 
is determined during the early stages of anagen, this could 
be a critical time for hair follicles undergoing miniaturization in 
androgenetic alopecia. Some factors (e.g. hormones, drugs, 
morphogens) might act by enhancing or preventing miniatur-
ization only during this span of time at anagen onset, thereby 
requiring prolonged periods of time to alter a significant num-
ber of follicles. This might partially explain why the process of 
miniaturization takes years to both develop and treat. 

During the progression of anagen stage, the maintenance 
of follicular epithelium requires transduction of signals from 
the dermal papilla to the follicular epithelium. Interestingly, 
dermal papilla cells cultured in the presence of β-catenin 
protein maintain their inductive abilities over many rounds of 
culture, suggesting that the epithelial signal is comprised of 
one or more WNT/β-catenin family members (Kishimoto et 
al., 2000; Cotsarelis and Millar, 2001). Thus, the activation of 
STAT3 and β-catenin appears to be the underlying mechanism 
of hair growth stimulation by 3-DSC. Besides STAT3, several 
other members of the STAT family and their upstream JAK ki-
nase have been known to regulate hair growth. Several stud-
ies have reported that suppression of JAK signaling in mice 
activates a pro-growth/anti-quiescence signal during telogen 
(Plikus et al., 2008; Festa et al., 2011; Jahoda and Christiano, 
2011), thereby allowing entry into anagen. In particular, Harel 
et al. (2015) reported that inhibition of JAK-STAT signaling 
promotes hair growth by stimulating the activation and/or pro-
liferation of hair follicular stem cells, highlighting the role of 
this pathway in maintenance of hair follicular quiescence. In-
creased proliferation or differentiation of stem/progenitor cells 
upon inhibition of JAK-STAT signals is not unique only for hair 
follicular cells, but it has also been observed in other types of 
progenitor cells to the hair follicles. For example, the loss of 
STAT5 in hematopoietic stem cells induces exit from a qui-
escent state, leading to increased bone marrow-repopulating 
capacity after irradiation (Wang et al., 2009). Likewise, inhibi-
tion of JAK-STAT signaling improves skeletal muscle regen-
eration in aged mice by promoting expansion of symmetric 
satellite cells in culture and their engraftment in vivo (Price et 
al., 2014). These findings are consistent with the involvement 
of the JAK-STAT pathway in the maintenance of quiescence in 
the hair follicular cells (Lin et al., 2004) and the role of Stat3 in 
progression of the normal hair cycle in adult mice (Sano et al., 
2000). Moreover, recent studies have shown that increased 
JAK-STAT signaling in aged mice inhibits hair follicular stem 
cell function in vitro (Doles et al., 2012). Goldstein et al. (2014) 
reported that quiescence of hair growth during pregnancy and 
lactation was partly mediated through prolactin-induced phos-
phorylation of Stat5. Therefore, JAK-STAT signaling appears 
to play a generalized role in promoting quiescence in adult 
stem cell populations. 

As a first report, our study revealed that 3-DSC attenuated 
mRNA expression, and IL-4-induced phosphorylation and re-

porter gene activity of STAT6, which is a signaling molecule 
downstream of JAK3 in cultured HDPCs. Although our study 
showed that tofacitinib, a known JAK inhibitor, suppressed 
mRNA expression and IL4-induced phosphorylation of STAT6, 
whether 3-DSC, which has a similar effect, can attenuate JAK 
activation is yet to be examined. However, the present study 
delineates the effects of 3-DSC on STATs, which are effec-
tor signaling molecules downstream of JAK, thus indicating 
the key molecular aspect of hair follicle stimulation by 3-DSC 
via modulation of STATs. Histopathological analysis of mouse 
dermis also revealed that 3-DSC increased the diameter and 
depth of the hair follicle in the dermis. In conclusion, our study 
suggests that 3-DSC promotes proliferation of dermal papil-
lae and stimulates hair growth partly via activation of Wnt/β-
catenin signaling and inhibition of STAT6-mediated quies-
cence of hair follicular cells.
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