
DOI: 10.4018/JCIT.20211001.oa10

Journal of Cases on Information Technology
Volume 23 • Issue 4 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

HTAP With Reactive Streaming ETL
Carl Camilleri, University of Malta, Malta

Joseph G. Vella, University of Malta, Malta

Vitezslav Nezval, University of Malta, Malta

ABSTRACT

In database management systems (DBMSs), query workloads can be classified as online transactional 
processing (OLTP) or online analytical processing (OLAP). These often run within separate DBMSs. 
In hybrid transactional and analytical processing (HTAP), both workloads may execute within the same 
DBMS. This article shows that it is possible to run separate OLTP and OLAP DBMSs and still support 
timely business decisions from analytical queries running off fresh transactional data. Several setups 
to manage OLTP and OLAP workloads are analysed. Then, benchmarks on two industry standard 
DBMSs empirically show that, under an OLTP workload, a row-store DBMS sustains a 1000 times 
higher throughput than a columnar DBMS, whilst OLAP queries are more than four times faster on 
a columnar DBMS. Finally, a reactive streaming ETL pipeline is implemented which connects these 
two DBMSs. Separate benchmarks show that OLTP events can be streamed to an OLAP database 
within a few seconds.

Keywords
Column-Store, DBMS, ETL, HTAP, OLAP, OLTP, Reactive Streams, Row-Store

1. INTRODUCTION

In database management systems (DBMS), query workloads are segmented into two broad modes 
(Elnaffar et al., 2002; Li et al., 2019). Online transactional processing (OLTP) workloads typically 
consist of write queries that modify small amounts of data, and queries that read a few records 
whilst projecting the majority of the attributes available (Bach & Werner, 2016). In OLTP, queries 
are expected to have short response times, often in the order of microseconds (Harizopoulos et al., 
2018), in order to avoid user frustration and business impact (Poggi et al., 2014). At the other end of 
the spectrum, Online analytical processing (OLAP) workloads typically consist of read-only queries 
which traverse a large amount of records, performing aggregations and projecting a narrow set of 
attributes (Bach & Werner, 2016). A system dedicated to OLAP queries is also known as a Business 
Intelligence (BI) or Decision Support System (DSS), since such queries often aim to elicit information 
from a data warehouse to support making decisions.

Traditionally, longer response times for OLAP queries have been tolerated, and such queries 
tend to execute within a dedicated data warehouse which is periodically loaded by data coming from 
operational (OLTP) systems, typically via extract-transform-load (ETL) processes. On the other hand, 
modern business requirements are refusing the bounds of these assumptions. The phenomenon of 
perishable insights (E. A. Lee, 2018), as illustrated in Figure 1, indicates that, in some application 



Journal of Cases on Information Technology
Volume 23 • Issue 4

2

domains such as fraud detection, data might lose value for decision making as time passes. In such 
use cases, increasing the data freshness in the OLAP database is beneficial.

2. PROBLEM DEFINITION

Running transactional and analytical workloads efficiently on the same dataset is an open problem 
which attracts research and commercial interests (Yang et al., 2020). Referred to as Hybrid 
Transactional and Analytical Processing (HTAP), several approaches are proposed to tackle the 
ostensibly conflicting demands of preserving the performance of transactional workloads whilst at 
the same time running analytical queries efficiently on fresh data to facilitate time-critical business 
decisions.

Several HTAP systems presented in the literature are bespoke DBMSs. These vary from adopting 
the Single System for OLTP and OLAP approach (Yang et al., 2020) that typically rely on support 
from cutting-edge hardware (Appuswamy et al., 2017) to handle both OLTP and OLAP workloads 
on the same hardware, to those adopting the Separate OLTP and OLAP Systems approach, which 
deploy loosely-coupled OLTP an OLAP DBMSs.

Several problems are identified. Firstly, although data freshness is largely improved by taking 
the Single System for OLTP and OLAP approach, OLTP and OLAP workloads running on the same 
hardware conflict, with some systems reporting a reduction of OLTP throughput by three times when 
running OLAP queries concurrently (J. Lee et al., 2018). 

Secondly, reliance on cutting-edge hardware, such as fast non-volatile memory (NVM), restricts 
DBMS users from exploiting commodity hardware for their workloads and may therefore be either 
an infeasible solution if the hardware is not available, or require a costlier hardware setup (Neumann 
& Freitag, 2020). 

Lastly, an approach based on bespoke solutions forces the use of specific DBMSs, which might 
not be compatible with the rest of the software ecosystem or require specialised expertise on the 
database administrator (DBA) team, increasing the complexity of the information system (IS). 

3. APPROACH

The primary objective of this article is to present and empirically evaluate an HTAP setup that takes 
the Separate OLTP and OLAP Systems approach and which is based on DBMSs that are commercially 
available and supported. This HTAP approach tackles the problems outlined in Section 2, namely by 

Figure 1. Perishable Insights (E. A. Lee, 2018)



Journal of Cases on Information Technology
Volume 23 • Issue 4

3

ensuring that OLTP and OLAP workloads can run on separate hardware, and by using commercially-
available DBMSs deployed on commodity hardware without the need of specialised DBA expertise. 

To the authors’ knowledge this study is a novel approach in presenting a solution to these problems, 
backed with empirical analysis. The article gives some background in Section 4, discussing different 
DBMS architectures, standard benchmarks quoted in the literature and used in this article to measure 
the performance of RDBMSs, as well as discussing other works in the literature in the same research 
area. Two contributions are subsequently presented. 

In the first contribution, discussed in Section 5, empirical experiments are run, using repeatable 
workloads, on commercially available instances of two types of DBMSs, systematically quantifying 
and illustrating the difference between them. Besides allowing the calibration of a test bed for the 
subsequent benchmarks, these experiments quantify and illustrate the aptness of row-based and 
columnar DBMS to handle OLTP and OLAP workloads, and provide insights to IS DBAs as to the 
applicability of each type of DBMS when running on commodity hardware deployed in a public 
cloud infrastructure.

Section 6 discusses the second contribution, where ETL processes based on change data capture 
(CDC) and reactive streaming approaches are designed and implemented. Empirical experiments 
then measure the degree of data freshness of this approach, or the time taken for a change in the 
OLTP database to be visible in the OLAP database for decision support workloads. The results are 
then compared to state of the art systems in related literature, and provide insights on the trade-offs 
involved in taking the Separate OLTP and OLAP Systems approach (Yang et al., 2020) using OLTP 
and OLAP DBMSs that are commercially available and supported. 

4. Background 

Relational DBMSs (RDBMS) have traditionally been put forward as general-purpose systems that can 
be deployed to handle different types of workloads. Nonetheless, seminal studies (Michael Stonebraker 
et al., 2007; Michael Stonebraker & Cetintemel, 2005) as well as recent literature (Butterstein et al., 
2020; Rompf & Amin, 2019) support the notion that systems that allow the configuration of the 
DBMS to target a specific type of workload perform better. 

4.1 DBMS Architectures
ACID-compliant databases that conceptually represent data in the relational model, and that can be 
queried using SQL (Bach & Werner, 2016; Dhindsa, 2012), although challenged by the rise of various 
newer technologies such as NoSQL (Strauch, 2011) and NewSQL (Pavlo & Aslett, 2016), have often 
been found to be apt technology for a variety of workloads (Sridhar, 2017; Mike Stonebraker et al., 
2005). Table 1 illustrates a simple data model (Dhindsa, 2012). A DBMS’s physical storage is typically 
a one-dimensional structure of pages having a pre-defined size, which defines the granularity of I/O 
operations (Sridhar, 2017).

4.1.1 Row-Store
In a row-store DBMS, each page stores several rows, or tuples, from a particular table, or relation. 
Values of the columns, or attributes, of a tuple stored in a page are serialised sequentially. This 
assertion holds in general for values of simple data types, although specific approaches are taken for 
values of types which are larger than the size of a page. 

With this type of physical storage organisation, a request for the value of a column X within a row 
N results in a specific operation (Dhindsa, 2012; Ordonez & Bellatreche, 2018; Sridhar, 2017) that: 

1. 	 Reads the whole page where N is stored from persistent storage; 
2. 	 Finds row N containing all attributes; and 



Journal of Cases on Information Technology
Volume 23 • Issue 4

4

3. 	 Finds the value of column X and returns its value 

The way a row-store DBMS would physically store the data is illustrated in Figure 2 (Dhindsa, 
2012).

4.1.2 Column-Store
Column stores, or columnar DBMSs, were first introduced in the 1970s (D. Raab, 2007) and have 
recently become popular with DBMSs such as Vertica (Lamb et al., 2012). In contrast to a row-
store RDBMS, a columnar RDBMS vertically partitions a table, physically storing each column in 
a separate page. Each page contains values organised in an order that reflects the order of the rows 
(Sridhar, 2017). Figure 3 illustrates the same data model referred to in Table 1, as stored by a columnar 
RDBMS (Dhindsa, 2012). 

Table 1. The relational model (Dhindsa, 2012)

EmpId LastName FirstName Salary

1 Wilson Joe 40000

2 Yaina Mary 50000

3 John Cathy 44000

Figure 2. The relational data model as stored in one page by a row-store DBMS (Dhindsa, 2012)

Figure 3. The relational data model as stored across four pages by a columnar DBMS (Dhindsa, 2012)



Journal of Cases on Information Technology
Volume 23 • Issue 4

5

Taking the same example, a request for the value of a column X within a row N results in an 
operation that:

1. 	 Reads the page where X of N resides; and 
2. 	 Finds the value of column X and returns its value. 

Especially in large data sets and with data compression techniques employed efficiently, this 
results in much less I/O overheads than the equivalent operation in a row-store RDBMS (Dhindsa, 
2012; Ordonez & Bellatreche, 2018; Sridhar, 2017). 

Conversely, data modification operations (namely INSERT, UPDATE and DELETE operations) 
need to span multiple pages and hence tend to be more expensive than the equivalent operation in a 
row-store DBMS. Although, in principle, it is possible to vertically partition a table in a row-store 
RDBMS to achieve a columnar data organisation, a database engine aware of the columnar data 
storage can be finely tuned to achieve other benefits, such as improved compression capabilities and 
late materialization (Abadi et al., 2008; Macyna & Kukowski, 2020), that are not feasible to achieve 
in a database engine which is tuned for row storage.

4.1.3 Hybrid transactional/analytical processing (HTAP)
Besides performance considerations, HTAP RDBMSs introduce the axis of data freshness in DSS 
(Raza et al., 2020) in order to improve data freshness for DSS. 

There are a number of approaches to HTAP (Raza et al., 2020), including:

1. 	 OLTP active instance switching, where the OLTP DBMS is deployed in a Master/Slave (Active/
Passive) configuration, with OLAP queries executing on the passive instance. 

2. 	 Co-located OLTP and OLAP, which can be like OLTP active instance switching but the two 
separate DBMS engines are deployed on the same infrastructure, sharing memory and CPUs. 
Active instance switching happens at hardware level, with OLAP queries executing in a segment 
of memory that is separate from OLTP, and that contains a version of the database at a particular 
point in time in memory. In general, these approaches build on the strengths of both row-stores 
and column-stores (Arulraj, Pavlo, et al., 2016; Makreshanski et al., 2017; Pavlo et al., 2017), 
such DBMSs rely on:
a. 	 data being stored in shared memory, accessible by OLTP and OLAP requests; 
b. 	 multiple layers of caching and cache coherence algorithms to provide consistency guarantees; 

and
c. 	 parallelism to concurrently execute OLTP and OLAP queries.

3. 	 Isolated OLTP and OLAP, where the OLTP and OLAP DBMS engines run in complete isolation 
and are as de-coupled as possible. 

4.2 Benchmark Workloads
In this work, several empirical experiments to analyse the different approaches are performed. 
Standard workloads are used to ensure repeatability of these benchmarks, and to allow results to be 
comparable with other works in the literature that also present results based on the same workloads.

4.2.1 OLTP Workloads
Similar to several related works in the literature (Harizopoulos et al., 2018; Huang et al., 2020; 
Prasaad et al., 2020), in this article transactional workloads are simulated using the TPC-C synthetic 
benchmark (F. Raab, 1993). This benchmark simulates a database that models several geographically 
distributed brick and mortar warehouses, each associated to one or more districts. Several terminals 



Journal of Cases on Information Technology
Volume 23 • Issue 4

6

perform transactions on stock available in each warehouse. The logical schema for the database 
created by the TPC-C benchmark is illustrated in Figure 4.

A TPC-C workload is characterised by five transactions, namely a) NewOrder (45%), b) Payment 
(43%), c) OrderStatus (4%), d) Delivery (4%) and e) StockLevel (4%). Each transaction consists of 
several queries. The workload can be throttled by two parameters. The scale factor (sf) specifies the 
number of records that are generated within the database. The scale factor determines the number of 
warehouses available, which in turn determines the number of records generated in the other tables, as 
per the multiplier factor shown in Figure 4. Conversely, the number of terminals determines the number 
of parallel threads that the workload generator spawns to execute concurrent transactions. Hence, 
larger scale factors imply that TPC-C queries are heavier (e.g. record selections operators applied 
to larger tables), but possibly less contentious (a larger number of records reduces the probability 
of contention), whilst a larger number of terminals increases the number of concurrent transactions, 
and thus the probability of contention.

4.2.2 OLAP Workloads
Analytical workloads are simulated using the TPC-H synthetic benchmark (Council, 1999), which 
is purposely defined by its authors to validate the performance of a decision support workload and 
is applicable to both row stores and a column stores. The choice of TPC-H to run OLAP workloads 
in this article also follows best practices adopted by recent, related works in the literature, that either 
use TPC-H (Halfpap & Schlosser, 2020; Raza et al., 2020), or CH-benCHmark (Huang et al., 2020), 
which is a combination of both TPC-C and TPC-H (Cole et al., 2011).

The TPC-H workload simulates a set of ad-hoc queries that aid decision support of a nationwide 
wholesale supplier. The logical schema for the database of this benchmark is illustrated in Figure 5 
(Council, 1999).

Figure 4. TPC-C Logical Schema and Scale Factor for OLTP (Council, 2010)



Journal of Cases on Information Technology
Volume 23 • Issue 4

7

The benchmark is throttled by a single parameter, the scale factor (sf). Like TPC-C, the scale 
factor determines the number of records that are generated within the OLAP database before the DSS 
workload queries are executed. In TPC-H, the scale factor roughly determines the size of the database 
in GB. For example, a scale factor of 1 means a database size of approximately 1 GB, whilst a scale 
factor of 10 means a database size of approximately 10 GB.

4.3 Related Work
A number of approaches to HTAP (Arulraj et al., 2016; Makreshanski et al., 2017; Pavlo et al., 2017) 
advocate a Single System for OLTP and OLAP approach, and are typically based upon an in-memory 
bespoke DBMS (Babeanu & Ciobanu, 2015). 

Other literature is closer to the approach taken in this article in adopting the Separate OLTP and 
OLAP Systems approach, and some of these recent works are discussed here in more detail.

Integrated Synchronisation (Raza et al., 2020) is an HTAP solution for separate, shared-nothing 
OLTP and OLAP DBMSs. The solution is specific to the IBM DB2 DBMS engine, and employs 
engine-specific approaches to efficiently transfer transactional data stored in a row-store DBMS to 
a column-store DBMS that is efficient for OLAP workloads. The authors benchmark the solution 
using a tailored workload and report that it takes a maximum of 10 seconds to make transactional 
data available for OLAP queries.

F1 Lightning (Yang et al., 2020) is described as a loosely-coupled HTAP solution. It encapsulates 
three core components, namely: 1) the Change Pump that reads CDC events from the OLTP database; 
2) Lightning that receives data from the Change Pump and is responsible to maintain Log-Structured 
Merge trees on distributed file systems, stored in a column-store format that is optimal for OLAP 
queries; and 3) the SQL Processor, which accepts F1 SQL queries and sends them to Lightning for 
processing. F1 Lightning supports OLTP workloads in Google Spanner and F1 DB and allows OLAP 
queries specifically through the F1 Query engine. The authors present metrics from Google-specific 
products, such as Adwords, and report that data could be available for OLAP queries within 10 minutes.

TiDB (Huang et al., 2020) is an approach to HTAP which uses a row-store DBMS and a column-
store DBMS for OLTP and OLAP workloads respectively. In this approach, multiple row-store DBMS 
replicas, based on the TiKV distributed DBMS, are deployed as a cluster to handle transactional 
queries. The cluster is kept synchronised using a Raft-based algorithm. TiDB introduces TiFlash, 
composed of learner nodes in the Raft cluster that receive only asynchronous updates from the 
leader node of the Raft cluster. More importantly, the learner nodes transform the transactional 

Figure 5. TPC-H Logical Schema and Scale Factor for OLAP (Council, 1999)



Journal of Cases on Information Technology
Volume 23 • Issue 4

8

data to column-store, and therefore become available to handle OLAP queries efficiently. TiDB is 
benchmarked using CH-benCHmark, to run TPC-C and TPC-H workloads to simulate concurrent 
OLTP and OLAP queries. Using a scale factor of 10 and 100, and between 64 and 1024 terminals, 
the authors report that data is replicated between TiKV and TiFlash in less than 1.5 seconds. 

5. ROW STORES VS. COLUMN STORES

Several works in the literature show that row-store DBMSs and column-store DBMSs are more 
apt for OLTP workloads and OLAP workloads respectively. Other works analyse the performance 
of a columnar design within a row-store DBMS (Andurkar, 2012). Here, the performance of two 
commercially available RDBMSs is empirically analysed and quantified, namely Postgres (Michael 
Stonebraker & Rowe, 1986), a row-store RDBMS, and Vertica (Lamb et al., 2012; Mike Stonebraker 
et al., 2005), a columnar RDBMS.

5.1 Methodology
The experiments were executed on PostgreSQL 11.4, and Vertica 9.2.1. PostgreSQL was deployed in 
a n1-standard-16 machine in Google Cloud Platform (GCP), having 16 vCPUs, 60GB RAM and 2TB 
SSD disk, running with default configuration on Debian GNU/Linux 9. PostgreSQL is configured 
with the default READ COMMITTED transaction isolation level. Vertica was similarly deployed 
with default configuration on a n1-standard-16 machine, with the management console deployed on 
a n1-standard-4 machine (4 vCPUs, 15GB RAM and 15GB standard disk). Like PostgreSQL, the 
default READ COMMITTED transaction isolation level is kept for Vertica.

A third n1-standard-16 machine was deployed to run benchmark workloads. OLTP-Bench 
(Difallah et al., 2013) was used to run different workloads, applied to both OLTP and OLAP, with 
minor modifications to support Vertica. Each experiment was executed three times, and the aggregate 
output of OLTP-Bench was retained in each run. The average duration from each run is reported in 
the results.

5.2 OLTP Performance Evaluation
OLTP performance of each DBMS was measured on the infrastructure using the TPC-C workload. 
Figure 6 and Figure 7 show the throughput achieved, in terms of requests/second when running the 
TPC-C benchmark via OLTP-Bench against PostgreSQL and Vertica respectively.

5.3 OLAP Performance Evaluation
OLAP performance was analysed using TPC-H workloads, executed in two phases. 

The first phase is the data loading phase, where TPC-H data for the corresponding scale factor 
was generated using the DBGen tool (Gray & Barkhatov, 1994; Phillips, 2011). OLTP-Bench was 
then used to create and load a database with the output of DBGen. In the case of PostgreSQL only, 
the indexes defined by the TPC-H specification were created on the tables after the data was loaded. 
The second phase is the query execute phase, where all the 44 TPC-H queries were executed in series.

The duration of each phase was recorded, and each benchmark was executed three times for each 
varying degree of scale factors 1, 2, 5, 10, 20 and 50. Results for data loading and query execution 
phases are shown in Figure 8 and Figure 9 respectively.

5.4 Observations
Although the experiments use TPC workloads, the results of these experiments are not presented 
as valid and official TPC results for the systems under test. On the other hand, given that the same 
experiments are executed on two different systems running on the same hardware, the results are 



Journal of Cases on Information Technology
Volume 23 • Issue 4

9

deemed valid comparative benchmark results as the throughput of PostgreSQL and Vertica for OLTP 
and OLAP workloads.

Figure 6 shows that the throughput of PostgreSQL increase as the number of terminals increase, 
up to a point where the resources are saturated (i.e. CPU and I/O usage is maxed out) that adding more 
terminals does not yield a larger throughput. These results also illustrate that this behaviour remains 
consistent across different values of the benchmark’s scale factor, and therefore, across different sizes 
of the database. A larger number of terminals also increases the difference in throughput across scale 
factors, with larger scale factors exhibiting smaller throughput. This is expected in a TPC-C workload.

Figure 7 on the other hand shows that the throughput of Vertica decreases as the number of 
terminals increase. Furthermore, when compared to PostgreSQL, the maximum throughput seen for 
a TPC-C workload is orders of magnitude lower than that achieved when running the same workload 
on PostgreSQL. These results are therefore consistent with the literature, such as the “house pattern” 
(Psaroudakis et al., 2014), where column-store DBMSs are not advocated for transactional workloads. 
In this case, the experiments go a step further in also quantifying the throughput of a column-store 
DBMS under the TPC-C workload.

Specifically, for Vertica, this behaviour is also consistent with the lock modes available in the 
DBMS (HPE Vertica, 2021). Vertica requires an I (Insert) object lock during an INSERT operation, 
and an X (Exclusive) object lock when performing DELETE and UPDATE operations. In Vertica, 
object locks apply to tables and projections. Particularly, I locks are compatible with each other, so 
INSERT operations on the same object can run concurrently. Conversely, X locks are not compatible 
with either X or I locks. Therefore, a DELETE or UPDATE operation coming from an equivalent 
OLTP operation locks a table exclusively, resulting in a greater probability of contention.

Figure 6. TPC-C Query Execution on PostgreSQL



Journal of Cases on Information Technology
Volume 23 • Issue 4

10

Subsequently, the behaviour observed for the TPC-H workload is opposite that of the TPC-C 
workload, as shown in Figure 8 and Figure 9. Specifically, loading a dataset within PostgreSQL 
becomes orders of magnitude slower than Vertica as the size of the dataset (defined by the scale factor 
sf ) being imported increases, as shown in Figure 8. This is considered a significant metric, since 
DBs serving OLAP workloads are typically populated via batch ETL processes, during which large 
amounts of data need to be ingested. Therefore, the results show that such ETL processes would run 
much faster against Vertica than PostgreSQL, and this is consistent across data sets of different sizes.

Furthermore, the duration of the TPC-H query workload is also better when running against 
Vertica, and the performance gap grows as the size of the dataset increases, as illustrated in Figure 
9. These results show that, as well as quantify by how much, OLAP query workloads execute faster 
in Vertica than PostgreSQL. Interestingly, in these benchmarks, the duration of the OLAP query 
workload against a scale factor of 50 was shorter when compared to the same test against a scale 
factor of 20. This behaviour requires further analysis, at least to ascertain whether it is also consistent 
for larger datasets.

6. HTAP WITH STREAMING ETL: AN IMPLEMENTATION

In Section 5, it was ascertained, and quantified, that the PostgreSQL row-store RDBMS and the 
Vertica column-store RDBMS are suited for OLTP and OLAP workloads respectively. As discussed 
previously, the time taken for a change in the OLTP database to be available to support decisions in 

Figure 7. TPC-C Query Execution on Vertica



Journal of Cases on Information Technology
Volume 23 • Issue 4

11

Figure 8. TPC-H Data load times

Figure 9. TPC-H Query execution times



Journal of Cases on Information Technology
Volume 23 • Issue 4

12

the OLAP database is crucial. Thus, an approach to measure this latency is designed, implemented 
and benchmarked.

6.1 Methodology 
A streaming ETL pipeline as illustrated in Figure 10 was designed. The primary objective of this 
streaming pipeline is to capture changes happening in the OLTP database and construct and execute 
the equivalent SQL statements necessary to reflect the same change in the OLAP database.

The implementation therefore focuses on problem domains where business decisions can be 
made from results of queries that operate upon the same data schema as the transactional one. These 
would therefore be domains where the “transform” step in the ETL process is trivial. However, the 
approach can also be generalised to more complex data transformation steps. 

Debezium (Hauch, 2020) is plugged on to the DBMS handling the OLTP, such that write 
operations from the OLTP workload are turned into an event stream of CDC events. 

A number of studies (Molina et al., 2018; Shen et al., 2019) employ Apache Kafka (Goodhope et 
al., 2012; Kafka, 2014) as a storage layer for events, and the same approach is taken to use Kafka as 
a fast, append-only log for the events generated by Debezium. For this purpose, Kafka is configured 
with a single topic in the OLTP database, in turn having one partition. Through Kafka’s message 
ordering guarantees, this configuration ensures that events are streamed in the same order as they 
happen within the OLTP database.

Finally, a custom streaming ETL module was built. The responsibility of this module is to consume 
events from Kafka, translate them to relevant SQL statements and execute the resultant operation to 
the OLAP database. The streaming ETL module consists of around 400 lines of Scala code, and is 
built upon reactive principles (Bonér et al., 2014) using Akka streams (Lightbend, 2020). Figure 11 
illustrates the reactive stream implemented in the Streaming ETL module, where:

1. 	 The Kafka Consumer source step pulls events from Kafka;
2. 	 The Event to SQL Convertor flow step generates the relevant INSERT, UPDATE or DELETE 

statement;
3. 	 The Statement Batcher flow step concatenates up to 1000 statements within a maximum of 100 

milliseconds;

Figure 10. Streaming ETL pipeline

Figure 11. Reactive Stream stages of the Streaming ETL component



Journal of Cases on Information Technology
Volume 23 • Issue 4

13

4. 	 The Statement Executor sink step sends a batch of events to Vertica.

This implementation, through the Akka streams module, follows the Reactive Streams 
specification and specifically addresses the issues of:

1. 	 Concurrency between the three main steps of the ETL pipeline: Kafka event consumption, SQL 
translation and Vertica query execution.

2. 	 Flow control, by enforcing a back-pressure mechanism to protect against the “fast producer, slow 
consumer” problem.

6.2 Evaluation
The streaming ETL pipeline was deployed in a 3-node Kubernetes cluster in GCP, each of type n1-
standard-4 (4 vCPUs, 15 GB memory). OLTP and OLAP databases were deployed as PostgreSQL and 
Vertica, in the same configuration detailed previously. Two metrics were analysed in this evaluation, 
namely:

1. 	 The CDC delay i.e. the duration between the time a record is committed to the log of the OLTP 
database, and the time it is stored in Kafka and made available for the first stage of the ETL 
stream;

2. 	 The OLAP loading time, which is the time taken for the Statement Executor to commit a batch 
of statements to Vertica.

Figure 12 illustrates the mean duration and the relative probability density plot superimposed on 
the cumulative probability density plot, for the second metric, as measured against a TPC-C workload, 
executed for varying values of TPC-C terminals. Figure 13 shows the corresponding statistics for 
the first metric. The TPC-C workload was used for this benchmark, using a scale factor of 1. The 
workload executes for a duration of 60 seconds in each run.

6.3 Observations
The results presented show that CDC delay in the streaming ETL process is both minimal and largely 
invariant. Specifically, in these experiments a maximum of 5.15ms average delay was experienced 
between a transaction being committed in the OLTP Postgres database, and the data being available 
for consumption in Kafka. The box plot in Figure 13 also shows that latency at the 95th percentile 
varies by a maximum of 8.1 milliseconds from the mean.

The process of loading the data inside Vertica takes longer, and the durations are distributed 
across a wider range. From Figure 12, the average duration of this step of the ETL process varies 
between 11.8 seconds and 17.7 seconds. This analysis shows that although the mean duration does 
not vary significantly with the number of TPC-C terminals, or with the amount of CDC events being 
replicated to Vertica, the distribution of values is impacted more significantly:

1. 	 The delay at the 90th percentile varies in the range of 25.6 and 40.8 seconds;
2. 	 At the 99th percentile the range of variation is between 33.3 and 61.3
3. 	 The maximum delay observed in the experiments is 93.2 seconds.

The experiments also show that both the number of concurrent terminals, as well as the number 
of CDC events captured during the experiment, have a bearing on the OLAP loading times.

Firstly, the amount of CDC events being replicated has a bearing on the duration of the OLAP 
loading times: the target OLAP DBMS (Vertica) generates exclusive table locks for UPDATE 



Journal of Cases on Information Technology
Volume 23 • Issue 4

14

and DELETE operations and therefore, a higher number of CDC events increase the likelihood of 
contention.

Secondly the experiment with 10 TPC-C terminals generated more CDC events than the 
experiment with 20 TPC-C terminals. This is because the OLTP database became saturated with 20 
TPC-C terminals and therefore less transactions were accepted during the benchmark. This situation 
also impacts the CDC delay: the benchmark with 20 TPC-C terminals had a much higher maximum 

Figure 12. OLAP loading times and corresponding CDC delay

Figure 13. CDC delay within the 5% and 95% range



Journal of Cases on Information Technology
Volume 23 • Issue 4

15

CDC delay (257 seconds) compared to the benchmark with 10 TPC-C terminals (81 seconds), caused 
by the fact that the OLTP database was saturated and hence the replication speed also suffered. The 
experiment with 10 TPC-C terminals exhibits a higher latency at the 90th and 99th percentile than 
the experiment with 20 TPC-C terminals, however the latter exhibits a slightly higher maximum 
latency at the tail-end.

This observation indicates that an OLTP workload that is not uniformly distributed across time 
(i.e. the amount of CDC events that need to be replicated to an OLAP database spike for a short 
period of time) can experience higher latencies at the tail end, compared to OLTP workloads which 
generate more CDC events but are more uniformly distributed across an equivalent period of time.

7. CONCLUSION

Through this work, two contributions have been put forward. Firstly, the strengths and weaknesses 
for row-stores and column-stores for OLTP and OLAP workloads were empirically shown using 
standard TPC workloads running on a public cloud infrastructure. 

Secondly, a generic reactive data streaming pipeline was built to connect a row store DBMS with 
a column store DBMS, and the behaviour of the data capture and data transfer stages of this pipeline 
were illustrated. This work has also contributed a small extension to the popular open-source utility, 
OLTP Bench, to allow connection to the Vertica DBMS.

It was observed that it is possible to have a setup of loosely coupled, shared-nothing OLTP and 
OLAP DBMSs, but still achieve data freshness supporting actionable and reactive decisions. This 
contrasts with traditional batch ETL processes, where typically only historical decision support is 
possible.

Solutions that adopt the Single System for OLTP and OLAP approach for HTAP can support 
real-time decisions and can be considered simpler solutions where a single DBMS needs to be 
maintained. The state of the art systems that also adopt the Separate System for OLTP and OLAP 
based on bespoke DBMSs, such as the ones described in Section 4.3, report results showing that they 
can also support quasi-real-time and actionable decisions.

Conversely, the contributions of this article constitute a novel approach in tackling the problems 
identified in Section 2, and achieve the primary objective set out in Section 3.

Firstly, the solution can be deployed using robust and commercially supported DBMSs that 
implement the well-known relational data model, and which can be hosted on commodity hardware, 
in contrast to studies around bespoke DBMSs referred to in Section 4.3. The benchmarks were 
executed on a public cloud, showing that this approach does not require specialised hardware like 
other in-memory DBMSs. 

This approach also provides maximum flexibility in picking the right tool for the right job. The 
reactive streaming pipeline approach can generalise to connect any DBMSs of equivalent functionality, 
also applying to scenarios where decisions need to be taken based on data coming from multiple OLTP 
databases. The approach therefore fits well in a wide variety of IS ecosystems, without requiring 
specialised DBA expertise. This is thus in contrast to the state of the art systems reviewed in Section 
4.3, which are based on very specific DBMSs, or built around specific cloud services.

Finally, a secondary objective is also achieved in achieving implicit resiliency from two separate 
systems. For example, the OLAP DBMS can be taken offline for maintenance without impacting OLTP 
workloads, which is harder to achieve with a single-DBMS HTAP setup handling both workloads. 
The presented reactive streaming pipeline supports such scenarios, as CDC events can be queued 
until the target DBMS is ready to accept requests. 

The results of the empirical benchmarks presented therefore show that dedicated, shared-nothing 
OLTP and OLAP database installations, based on commercially available DBMSs and running on 
commodity hardware, can support actionable and reactive decisions when connected via an efficient 
ETL pipeline built on the principles of the Reactive Manifesto. Deploying the streaming ETL solution 



Journal of Cases on Information Technology
Volume 23 • Issue 4

16

and running concurrent OLTP and OLAP workloads using CH-benCHmark for repeatable and 
comparable benchmarks on different DBMSs is left as an area of future research.

ACKNOWLEDGMENT 

This work is partly funded by the ENDEAVOUR Scholarship Scheme (Malta), part-financed by the 
European Union – European Social Fund (ESF) under Operational Programme II – Cohesion Policy 
2014-2020.



Journal of Cases on Information Technology
Volume 23 • Issue 4

17

REFERENCES 

Abadi, D. J., Madden, S. R., & Hachem, N. (2008). Column-stores vs. row-stores: how different are they 
really? Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 967–980. 
doi:10.1145/1376616.1376712

Andurkar, A. D. (2012). Implementation of column-oriented database in PostgreSQL for optimization of read-
only queries. Computer Science and Information Technology, 2(3), 437–452.

Appuswamy, R., Karpathiotakis, M., Porobic, D., & Ailamaki, A. (2017). The case for heterogeneous HTAP. 
8th Biennial Conference on Innovative Data Systems Research, CONF.

Arulraj, J., Perron, M., & Pavlo, A. (2016). Write-behind logging. Proceedings of the VLDB Endowment 
International Conference on Very Large Data Bases, 10(4), 337–348. doi:10.14778/3025111.3025116

Babeanu, R., & Ciobanu, M. (2015). In-memory databases and innovations in Business Intelligence. Database 
Systems Journal, 6(1), 59–67.

Bach, M., & Werner, A. (2016). Hybrid column/row-oriented DBMS. In Man—Machine Interactions 4 (pp. 
697–707). Springer. doi:10.1007/978-3-319-23437-3_60

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014). The reactive manifesto. Dosegljivo: Http://Www. 
Reactivemanifesto. Org/

Butterstein, D., Martin, D., Stolze, K., Beier, F., Zhong, J., & Wang, L. (2020). Replication at the speed of change: 
A fast, scalable replication solution for near real-time HTAP processing. Proceedings of the VLDB Endowment 
International Conference on Very Large Data Bases, 13(12), 3245–3257. doi:10.14778/3415478.3415548

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., Kuno, H., Nambiar, R., Neumann, 
T., & Poess, M. et al. (2011). The mixed workload CH-benCHmark. Proceedings of the Fourth International 
Workshop on Testing Database Systems, 1–6.

Council, T. P. (1999). TPC Benchmark H, Revision 2.18. http://www.tpc.org/tpch/

Council, T. P. (2010). TPC Benchmark C, Revision 5.11. http://www.tpc.org/tpcc/

Dhindsa, P. B. S. K. (2012). A comparative study of database systems. International Journal of Engineering 
and Innovative Technology, 1(6).

Elnaffar, S., Martin, P., & Horman, R. (2002). Automatically classifying database workloads. Proceedings 
of the Eleventh International Conference on Information and Knowledge Management, 622–624. 
doi:10.1145/584792.584898

Goodhope, K., Koshy, J., Kreps, J., Narkhede, N., Park, R., Rao, J., & Ye, V. Y. (2012). Building LinkedIn’s 
Real-time Activity Data Pipeline. IEEE Data Eng. Bull., 35(2), 33–45.

Gray, J., & Barkhatov, A. (1994). DBGen synthetic data generator for SQL tables and text files on Windows 
platforms. Proc of SIGMOD, 243–252.

Halfpap, S., & Schlosser, R. (2020). Exploration of Dynamic Query-Based Load Balancing for Partially Replicated 
Database Systems with Node Failures. Proceedings of the 29th ACM International Conference on Information 
& Knowledge Management, 3409–3412.

Harizopoulos, S., Abadi, D. J., Madden, S., & Stonebraker, M. (2018). OLTP through the looking glass, and 
what we found there. In Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker (pp. 409–439). 
doi:10.1145/3226595.3226635

HauchR. (2020). Debezium. https://debezium.io/

Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L., Zhou, Y., Huang, M., Wei, W., Liu, 
C., Zhang, J., Li, J., Wu, X., Song, L., Sun, R., Yu, S., Zhao, L., & Tang, X. et al. (2020). TiDB: A Raft-based 
HTAP database. Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 
13(12), 3072–3084. doi:10.14778/3415478.3415535

Kafka, A. (2014). A high-throughput distributed messaging system. Kafka. Apache. Org

http://dx.doi.org/10.1145/1376616.1376712
http://dx.doi.org/10.14778/3025111.3025116
http://dx.doi.org/10.1007/978-3-319-23437-3_60
Http://Www.Reactivemanifesto.Org/
Http://Www.Reactivemanifesto.Org/
http://dx.doi.org/10.14778/3415478.3415548
http://www.tpc.org/tpch/
http://www.tpc.org/tpcc/
http://dx.doi.org/10.1145/584792.584898
http://dx.doi.org/10.1145/3226595.3226635
https://debezium.io/
http://dx.doi.org/10.14778/3415478.3415535


Journal of Cases on Information Technology
Volume 23 • Issue 4

18

Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., & Bear, C. (2012). The vertica analytic 
database: C-store 7 years later. Proceedings of the VLDB Endowment International Conference on Very Large 
Data Bases, 5(12), 1790–1801. doi:10.14778/2367502.2367518

Lee, E. A. (2018). What Is Real Time Computing? A Personal View. IEEE Design & Test, 35(2), 64–72. 
doi:10.1109/MDAT.2017.2766560

Lee, J., Han, W.-S., Na, H. J., Park, C. G., Kim, K. H., Kim, D. H., Lee, J. Y., Cha, S. K., & Moon, S. (2018). 
Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory databases. 
The VLDB Journal, 27(3), 421–444. doi:10.1007/s00778-018-0503-z

Li, L., Wu, G., Wang, G., & Yuan, Y. (2019). Accelerating Hybrid Transactional/Analytical Processing Using 
Consistent Dual-Snapshot. International Conference on Database Systems for Advanced Applications, 52–69. 
doi:10.1007/978-3-030-18576-3_4

Lightbend. (2020). An introduction to Reactive Streams, Akka Streams and Akka HTTP for Enterprise Architects. 
https://info.lightbend.com/rs/558-NCX-702/images/COLL-white-paper-akka-reactive-streams.pdf

Macyna, W., & Kukowski, M. (2020). Flash-Aware Storage of the Column Oriented Databases. Fundamenta 
Informaticae, 173(1), 47–72. doi:10.3233/FI-2020-1915

Makreshanski, D., Giceva, J., Barthels, C., & Alonso, G. (2017). BatchDB: Efficient isolated execution of hybrid 
OLTP+ OLAP workloads for interactive applications. Proceedings of the 2017 ACM International Conference 
on Management of Data, 37–50. doi:10.1145/3035918.3035959

Molina, J. M., Garcia, J. F., & Jiménez, C. K. (2018). Archer: An Event-Driven Architecture for Cyber-Physical 
Systems. 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC 
Companion), 335–340. doi:10.1109/UCC-Companion.2018.00077

Neumann, T., & Freitag, M. J. (2020). Umbra: A Disk-Based System with In-Memory Performance. CIDR.

Ordonez, C., & Bellatreche, L. (2018). A Survey on Parallel Database Systems from a Storage Perspective: Rows 
Versus Columns. International Conference on Database and Expert Systems Applications, 5–20. doi:10.1007/978-
3-319-99133-7_1

Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon, P., Mowry, T. C., Perron, M., & Quah, I. et al. 
(2017). Self-Driving Database Management Systems. CIDR, 4, 1.

Pavlo, A., & Aslett, M. (2016). What’s really new with NewSQL? SIGMOD Record, 45(2), 45–55. 
doi:10.1145/3003665.3003674

Phillips, D. (2011). TPC-H dbgen. In GitHub repository. GitHub.

Poggi, N., Carrera, D., Gavalda, R., Ayguadé, E., & Torres, J. (2014). A methodology for the evaluation of high 
response time on E-commerce users and sales. Information Systems Frontiers, 16(5), 867–885. doi:10.1007/
s10796-012-9387-4

Prasaad, G., Cheung, A., & Suciu, D. (2020). Handling Highly Contended OLTP Workloads Using Fast Dynamic 
Partitioning. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 527–542. 
doi:10.1145/3318464.3389764

Psaroudakis, I., Wolf, F., May, N., Neumann, T., Böhm, A., Ailamaki, A., & Sattler, K.-U. (2014). Scaling up 
mixed workloads: a battle of data freshness, flexibility, and scheduling. Technology Conference on Performance 
Evaluation and Benchmarking, 97–112.

Raab, D. (2007). How to Judge a Columnar Database. Information & Management, 17(12), 33.

Raab, F. (1993). TPC-C-The Standard Benchmark for Online transaction Processing. In The Benchmark Handbook 
(2nd ed.). Morgan Kaufmann Publishers Inc.

Raza, A., Chrysogelos, P., Anadiotis, A. C., & Ailamaki, A. (2020). Adaptive HTAP through elastic resource 
scheduling. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 
2043–2054. doi:10.1145/3318464.3389783

http://dx.doi.org/10.14778/2367502.2367518
http://dx.doi.org/10.1109/MDAT.2017.2766560
http://dx.doi.org/10.1007/s00778-018-0503-z
http://dx.doi.org/10.1007/978-3-030-18576-3_4
https://info.lightbend.com/rs/558-NCX-702/images/COLL-white-paper-akka-reactive-streams.pdf
http://dx.doi.org/10.3233/FI-2020-1915
http://dx.doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1109/UCC-Companion.2018.00077
http://dx.doi.org/10.1007/978-3-319-99133-7_1
http://dx.doi.org/10.1007/978-3-319-99133-7_1
http://dx.doi.org/10.1145/3003665.3003674
http://dx.doi.org/10.1007/s10796-012-9387-4
http://dx.doi.org/10.1007/s10796-012-9387-4
http://dx.doi.org/10.1145/3318464.3389764
http://dx.doi.org/10.1145/3318464.3389783


Journal of Cases on Information Technology
Volume 23 • Issue 4

19

Rompf, T., & Amin, N. (2019). A SQL to C compiler in 500 lines of code. Journal of Functional Programming, 
29, 29. doi:10.1017/S0956796819000054

Shen, L., Lou, Y., Chen, Y., Lu, M., & Ye, F. (2019). Meteorological Sensor Data Storage Mechanism Based on 
TimescaleDB and Kafka. International Conference of Pioneering Computer Scientists, Engineers and Educators, 
137–147. doi:10.1007/978-981-15-0118-0_11

Sridhar, K. T. (2017). Modern column stores for big data processing. International Conference on Big Data 
Analytics, 113–125. doi:10.1007/978-3-319-72413-3_8

Stonebraker, M., & Rowe, L. A. (1986). The design of Postgres (Vol. 15, Issue 2). ACM.

Stonebraker, M., & Cetintemel, U. (2005). “One size fits all”: an idea whose time has come and gone. 21st 
International Conference on Data Engineering (ICDE’05), 2–11. doi:10.1109/ICDE.2005.1

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., 
& O’Neil, E. (2005). C-store: a column-oriented DBMS. Proceedings of the 31st International Conference on 
Very Large Data Bases, 553–564.

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N., & Helland, P. (2007). The end of an 
architectural era:(it’s time for a complete rewrite). Proceedings of the 33rd International Conference on Very 
Large Data Bases, 1150–1160.

Strauch, C. (2011). NoSQL databases. Lecture selected topics on software-technology ultra-large scale sites. 
Stuttgart Media University.

Vertica, H. P. E. (2021). Vertica Database. Vertica Administration Guide. https://www.vertica.com

Yang, J., Rae, I., Xu, J., Shute, J., Yuan, Z., Lau, K., Zeng, Q., Zhao, X., Ma, J., Chen, Z., Gao, Y., Dong, 
Q., Zhou, J., Wood, J., Graefe, G., Naughton, J., & Cieslewicz, J. (2020). F1 Lightning: HTAP as a Service. 
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 13(12), 3313–3325. 
doi:10.14778/3415478.3415553

http://dx.doi.org/10.1017/S0956796819000054
http://dx.doi.org/10.1007/978-981-15-0118-0_11
http://dx.doi.org/10.1007/978-3-319-72413-3_8
http://dx.doi.org/10.1109/ICDE.2005.1
https://www.vertica.com
http://dx.doi.org/10.14778/3415478.3415553

