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Distribution of periodic torus orbits and
Duke’s theorem for cubic fields
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Abstract

We study periodic torus orbits on spaces of lattices. Using the action of

the group of adelic points of the underlying tori, we define a natural equiva-

lence relation on these orbits, and show that the equivalence classes become

uniformly distributed. This is a cubic analogue of Duke’s theorem about

the distribution of closed geodesics on the modular surface: suitably inter-

preted, the ideal classes of a cubic totally real field are equidistributed in the

modular 5-fold SL3(Z)\SL3(R)/SO3. In particular, this proves (a stronger

form of) the folklore conjecture that the collection of maximal compact

flats in SL3(Z)\SL3(R)/SO3 of volume ≤ V becomes equidistributed as

V →∞.

The proof combines subconvexity estimates, measure classification, and

local harmonic analysis.
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1. Introduction

1.1. Historical perspective. In the preface to his book “Ergodic properties

of algebraic fields,” Linnik [32] writes

. . . In the present book other applications of the ergodic con-

cepts are presented. Constructing “flows” of integral points on

certain algebraic manifolds given by systems of integral poly-

nomials, we are able to prove individual ergodic theorems and

mixing theorems in certain cases. These theorems permit as-

ymptotic calculations of the distribution of integral points on

such manifolds and we arrive at results inaccessible up to now

by the usual methods of analytic number theory. Typical in this

respect is this theorem concerning the asymptotic distribution

and ergodic behavior of the set of integral points on the sphere

(∗) x2 + y2 + z2 = m

for increasing m.

This presents what Linnik called “the ergodic method”; it enabled Linnik

to show that solutions to (∗) become equidistributed upon projection to the

unit sphere — at least, for the m satisfying an explicit congruence condition.

Subsequently, using that method, Skubenko solved the related problem for the

solutions of the equation

(∗∗) y2 − xz = m

also under similar congruence conditions on m.

Both of these problems are related to the distribution of ideal classes of

orders in quadratic fields: in the case of points on the sphere (∗), one deals with

imaginary quadratic fields, while (∗∗) corresponds either to real or imaginary

quadratic fields depending on the sign of m. The latter problem for m > 0 is

also equivalent to the problem of the distribution of closed geodesics on the

modular surface SL(2,Z)\H.

Since the time of Linnik’s work, the tools of analytic number theory have

developed tremendously. In particular W. Duke [12], using a breakthrough

of H. Iwaniec, proved that the integer solutions of (∗) as well as (∗∗) become

equidistributed as m→∞.

In [32, Chaps. VI–VII], Linnik considers in detail the corresponding ques-

tions for number fields of higher degree, particularly cubic fields. However, he

was able to prove comparatively little compared to the quadratic case. In mod-

ern terms, he established, by a remarkable elementary calculation, a special

case of the equidistribution of Hecke points.
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In this paper, we revisit Linnik’s problems for cubic (and higher degree)

fields, settling them for totally real cubic fields (among other cases).

We give precise statements later in the introduction; for now, we note that

just as (∗∗) relates to the ideal class group of quadratic fields and to closed

geodesics on the modular surface, the higher rank analogues will pertain to

ideal class groups of higher degree fields and to periodic orbits of maximal tori

in the space of lattices Xn = PGLn(Z)\PGLn(R). We will, in fact, explain our

main result in this language in the introduction; there is also an interpretation

analogous to (∗∗), which we postpone to Corollary 3.3 in Section 3.

Interestingly, we do not know how to prove our main equidistribution re-

sult using purely analytic techniques, nor using purely ergodic theoretic tech-

niques, though each of these methods does give some partial information in this

direction. Our proof works by combining these two very different techniques;

to handle the case of nonmaximal orders we also have to prove new estimates

involving local Fourier analysis.1

This paper is part of a series of papers we have been writing on the distri-

bution properties of compact torus orbits on homogeneous spaces. In [18], we

present a general setup for the study of the periodic orbits and prove results

regarding the distribution of individual orbits as well as fairly arbitrary col-

lections of periodic orbits. In [17], we give a modern reincarnation of Linnik’s

original argument, giving in particular a purely dynamical proof of equidistri-

bution in the problem (∗∗)m>0; without an auxiliary congruence condition. We

still do not know how to give a purely dynamic proof of Duke’s theorems re-

garding the equidistribution of the solutions to (∗) or to (∗∗)m<0. Each of these

papers is self-contained and can be read independently; related discussions can

also be found in [16] and [36].

1.2. Geometric perspective. For clarity, we shall continue to focus on the

“R-split case” of our main questions (i.e. problem (∗∗)m>0, totally real fields,

orbits of R-split tori, etc.). We introduce our main result in geometric terms.

Later, in Section 3, we discuss interpreting it in “arithmetic” terms (akin to

the interpretations (∗) and (∗∗)).
Let M = Γ\H be a compact hyperbolic Riemann surface, and

X := S1M = Γ\PSL2(R)

the unit tangent bundle of M . Bowen and Margulis, independently [4], [34],

proved that the set of geodesics of length ≤ L, considered as closed orbits of

the geodesic flow on X, are equidistributed with respect to Liouville measure

as L→ +∞.

1It is also conceivable that an ergodic approach to these estimates may exist.
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On the other hand, for a Riemann surface, if the latter is “arithmetic” in

a suitable sense (see §4.5 below), then the results of Bowen/Margulis are valid

in a much stronger form. The most basic instance of an arithmetic surface is

the modular surface,

M = M2 = PSL2(Z)\H.

The equidistribution theorem of Duke already mentioned implies2 that the

collection of geodesics of fixed length ` becomes equidistributed in X = X2 as

` → ∞. Note that the lengths of closed geodesics can have high multiplicity;

indeed, the lengths are of the form log(d+
√
d2 − 1), for d ∈ N>0, and the set

of geodesics of this length is parametrized by the class group of the quadratic

order of discriminant d.

Our main result establishes the analogues of both of these equidistribution

theorems to the setting of the rank two Riemannian manifold

M3 = PGL3(Z)\PGL3(R)/PO3.

The role of “closed geodesics” is replaced by “maximal compact flats”, and the

role of “quadratic order” is replaced by “cubic order”.

At least with our present understanding, the rank two case seems to be

much more difficult than the rank one case. This difficulty manifests itself

from all the perspectives; crudely, the smaller the acting group, relative to the

ambient group, the more difficult the question.

1.3. Statement of results. Now let us give a precise statement of our main

result, at least in the “R-split, cubic field” case. (Our most general theorem is

stated in Theorem 4.9; what follows is a specialization of this.)

Let H be the diagonal subgroup of PGL3(R). In [18], we attached to each

closed orbit xH on

X3 = PGL3(Z)\PGL3(R)

a discriminant disc(xH) as a way to measure the “arithmetic complexity” of

that orbit; let us briefly recall how it is obtained. Writing xH into the form

Γ\ΓgH, we set T = Γ ∩ gHg−1Zar
; T is a maximal (anisotropic) Q-torus. The

discriminant is then closely related to the “denominator” of the Q-point T

inside the variety of maximal tori of PGL3. In Section 4, we will review this

construction in the adelic setting. We prove:

1.4. Theorem. The periodic orbits of H on X3 are grouped into equiva-

lence classes, equivalent orbits having the same volume and discriminant. For

2Strictly speaking, Duke’s theorem establishes equidistribution on the modular surface;

equidistribution at the level of the unit tangent bundle was established in the unpublished

Ph.D. thesis of R. Chelluri, [7].
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each periodic orbit xH , let YxH be the union of all compact orbits equivalent

to xH .

If {xiH}i is a sequence of compact orbits, with disc(xiH)→ +∞, then :

(1) vol(YxiH) = disc(xiH)1/2+o(1),

(2) the YxiH become uniformly distributed in X3.

In particular, for V > 0, let Y (V ) denotes the collection of all H-orbits with

volume V ; as Vi → ∞ through any sequence for which Y (Vi) 6= ∅, then the

Y (Vi) become uniformly distributed in X3.

Noting that the projection of Y (V ) to M3 is the collection of all maximal

compact flats on M3 of volume V , Theorem 1.4 implies (a stronger form of)

the rank two analogue of the Bowen/Margulis theorem, indicated above.

1.5. About the proof ; adelization. Viewed from the classical point of view,

the grouping of periodic torus orbits into packets is rather mysterious and can

be quite tricky to define in the nonmaximal case. It turns out that the adeles

give a powerful and concise language to describe these equidistribution results,

and we have written the bulk of this paper consistently in the adelic language.

In particular, as we shall see in Section 5 the full equivalence class YxiH
of a periodic H-orbit (H being a maximal split torus) is essentially the pro-

jection to the infinite place of a single periodic orbit of an adelic torus. The

precise connection between packets and adelic tori is contained in Theorem 5.2;

Theorem 1.4 is then immediate from the adelic results Theorems 4.8 and 4.9.

We will, indeed, go to some length to set equidistribution questions in a

genuinely adelic framework, which has the pleasing side effect that we are able

to address simultaneously many different equidistribution questions (cf. §4).

To aid the reader, we give an outline of the main ideas that enter into its

proof in purely classical terms in Section 2. For the moment, we only observe

an important contrast between X3 and X2: while for X2, the analogue of our

main Theorem is “purely” a result about L-functions, for X3 this is not so. To

fill this gap, we will need to combine results from measure rigidity, L-functions,

and harmonic analysis on Lie groups.

1.6. Scope of the method. We shall discuss certain natural generalizations

of Theorem 1.4 and interesting questions associated to them.

1.6.1. S-arithmetic variants. Theorem 1.4 is derived from the underlying

adelic result — Theorem 4.9 — and there is therefore no difficulty in replacing

PGL3(Z) by a congruence subgroup, or Q by a number field, or passing to an

S-arithmetic context.

However, although this is not apparent from the statement of Theorem 1.4,

the general statement Theorem 4.9 is not as satisfactory as the corresponding

statement for PGL2 (given in Theorem 4.6). Indeed, our general PGL3-theorem
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imposes local conditions, akin to a Linnik-type condition, which happen to be

automatically satisfied in the setting of Theorem 1.4.

To dispense with these local conditions seems to be a very interesting and

fundamental question.

1.6.2. Sparse equidistribution. Assuming a suitable subconvex estimate on

L-functions3 one can obtain the following “sparse equidistribution” result by

our methods:

Notation as in Theorem 1.4, there is α < 1/2 so that, if vol(xiH) >

disc(xiH)α then the xiH become uniformly distributed on X3.

Presumably assuming the full force of Generalized Riemann Hypothesis

(GRH) would yield α = 1/4, although to prove this requires more careful local

analysis than we have done.

Conjecturally, however, a much stronger statement should hold: we con-

jecture ([18]) that this equidistribution statement for single H-orbits remains

true for any α > 0. We refer to [18] for discussion of this conjecture, some

partial results towards it, and counterexamples to more optimistic conjectures.

1.6.3. Spaces of higher dimensional lattices. Much of our analysis carries

through from X3 to

Xn = PGLn(Z)\PGLn(R).

There are two obstacles, however, to obtaining a complete generalization of

Theorem 1.4:

(1) the lack of available subconvex bounds,

(2) the lack of suitable technology to rule out “intermediate limit mea-

sures.”

At the moment we have little to offer concerning the second point. In the

case when n is prime, the issue of intermediate measures does not occur; if we

suppose Hypothesis A.1 (i.e., a subconvex bound for Dedekind ζ-functions of

degree n number fields), then the analog of Theorem 1.4 holds; i.e., packets of

periodic torus orbits become equidistributed on Xn.

1.6.4. An almost-subconvexity bound for class group L-functions of cubic

fields. Let K be a real cubic field, and let ψ be a nontrivial character of the

class group of K.

We have an associated L-function

L(K,ψ, s) =
∑
a

ψ(a)NK/Q(a)−s,

3The specific case of subconvexity needed is subconvexity in the level aspect, on GL(3).
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the sum being extended over all integral ideals a, and NK/Q(a) denoting the

norm of a. This L-function has conductor DK , the discriminant of K.

One corollary to our main result is that, for any fixed δ > 0,

(1)

∣∣∣∑NK/Q(a)≤δ
√
DK

ψ(a)
∣∣∣∣∣∣∑NK/Q(a)≤δ

√
DK

1
∣∣∣ = o(1).

To put this in perspective, a subconvex bound for the degree 3 L-function

L(K,ψ, s) would guarantee that the same is true if we replace δ
√
DK by D0.499

K .

The result (1) could therefore be considered as a “nonquantitative” form of

subconvexity for this degree 3 L-function.

Since this paper was submitted, K. Soundararajan [41] proved a very

general weak subconvex bound, valid for a wide class of L-functions. His

result does not imply (1) with currently known bounds: what is needed is any

improvement of Stark’s result [42]:

ress=1ζK(s)� log(disc(K))−1;

e.g. any larger exponent would suffice.

1.6.5. The cocompact case. If one considers the quotient of PGLn(R) by

a lattice associated to a R-split division algebra, then one obtains a compact

quotient. One certainly believes the analogue of Theorem 1.4 to be valid, but

in this case the methods of the present paper which use Eisenstein series in an

essential way do not apply.

This is an instance in which the cocompact case seems harder that the

noncompact case. We refer to [18] where we obtain (weaker) results in the

cocompact case by different methods.

1.7. Connection to existing work. In the rank one case of PGL2, the

analogs of the questions we consider have been intensively studied from many

perspectives, both from the perspective of the work of Linnik and that of

Iwaniec and Duke.

Concerning PGLn for n ≥ 3, the direct ancestor of our work is that of

Linnik, who devotes several chapters of his book [32] to the question of distri-

bution of the packets YxiH . The paper of Oh and Benoist [2] considers problems

similar to those we consider. Both [32] and [2] give results about the problem

in the special case when the Q-torus attached to xiH remains constant.

1.8. Organization of the paper. In Section 2, we present an outline of the

proof of Theorem 1.4 in entirely classical language.

In Section 3, we discuss some of the arithmetic manifestations of our result.

In Section 4, we present a systematic framework for thinking about adelic

equidistribution problems. We then explain, in this context, our main results:



822 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, and A. VENKATESH

Theorems 4.8 and 4.9. These imply the first and second assertions of Theo-

rem 1.4.

In Section 5, we explain the grouping of periodic orbits into packets. This

uses the setup of Section 4.

In Section 6, we specialize to the case of the group G = PGLn and explain

the parametrization of packets of periodic orbits.

In Section 7, we give a brief recollection of properties of the building of

PGLn, over a local field.

In Section 9, we explain the local harmonic analysis that will be needed.

In Section 8, we set up notational conventions about number fields, ideles

and adeles (especially: normalizations of measures).

In Section 10, we set up general notation about Eisenstein series (these

are the generalization of the functions “Ef” discussed in §2).

In Section 11, we prove, in adelic language, the estimates for the integral of

an Eisenstein series over a torus orbit (this is the adelic version of (5) from §2).

In Section 12, we translate the results of Section 11 from the adelic to

the S-arithmetic context, obtaining Proposition 12.5 (this is the S-arithmetic

form of (5) from §2).

In Section 13, we complete the proofs of Proposition 4.8 and Theorem 4.9,

and therefore also of Theorem 1.4.

In Section A, we briefly recall basic facts about the subconvexity problem

for L-functions.
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2. An overview of the proof for PGL3(Z)\PGL3(R)

The majority of this paper is presented in an “adelized” framework, and

the results presented are substantially more general than Theorem 1.4. None-

theless, in this section, we would like to explain the ideas that go into Theo-

rem 1.4 in as classical a setting as possible.

2.1. Parametrizing compact orbits of maximal tori. Let us briefly recall

how, to a number field K with [K : Q] = n, we may associate a compact orbit

of a maximal torus inside PGLn(R), on the space PGLn(Z)\PGLn(R). If the

field K is totally real, the torus will be R-split, then we will be in the situation

described in Theorem 1.4, and the construction will specialize to that discussed

in our prior paper [18, Cor. 4.4].

Fix a subalgebra Ar,s ⊂ Mn(R) isomorphic to Rr ⊕ Cs. Then Hr,s :=

A×r,s/R× is a maximal torus in PGLn(R); as (r, s) vary through pairs satisfying

r + 2s = n, they exhaust maximal tori, up to conjugacy. In the case (r, s) =

(n, 0), Hn,0 is conjugate to the diagonal subgroup H.

Let [K : Q] = n. Let r and s be the number of real and complex embed-

dings of K, respectively. We shall say K has signature (r, s).

Suppose given data (K,L, θ), where K has signature (r, s), θ : K ⊗ R →
Ar,s is an algebra isomorphism, and L is a “K-equivalence class of lattices” in

K, i.e. a free Z-submodule of rank [K : Q], up to multiplication by K×.

We associate to this data the Hr,s-orbit ι(L)Hr,s; here ι is any map K ⊗
R → Rn satisfying (ab)ι = aι.θ(b). The resulting orbit is independent of

choice of ι. The stabilizer in Hr,s of any point in the orbit is θ(O×L ) where

OL = {λ ∈ K : λL ⊂ L}, and the volume of the orbit is reg(OL), the regulator

of OL.

As explained in [18, Cor. 4.4], in the totally real case (r, s) = (n, 0), all

compact H-orbits in Xn are obtained in that way. This does not hold for

the other signature (think of an imaginary quadratic field); to recover a form

of this property, one has to consider more general S-arithmetic quotients of

PGLn.

For clarity, we specialize in the remainder of this section to the case

(r, s) = (n, 0) and H = Hn,0 a maximal R-split torus. Interpreted in an

appropriate S-arithmetic context (cf. §12), most of the discussion carries over

to general signature so long as the field K admits a fixed split place, and this

is how our main result is proven in general.

2.2. Packets for PGLn. Consider an order O inside a totally real field K;

assume we have fixed an identification θ as above.
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Let us denote by ‹YO the set of H-orbits associated to data (K,L, θ) such

that OL = O. Varying K, O and θ, the collections ‹YO define a partition of the

set of compact H-orbits. As it turns out, these form a slightly coarser partition

of the compact H-orbits than the one alluded to in Theorem 1.4; i.e., there is a

further natural equivalence relation on the set of lattices with OL = O, which

is not trivial in general4. This equivalence is discussed and explicated in more

detail in Section 5.5, and we use the term packets to refer to its equivalence

classes, or to the associated collections of H-orbits.

Assuming this for now, let YO be any packet of compactH-orbits contained

in ‹YO , and let µO the corresponding measure.

It is not difficult to verify that reg(O) goes to infinity with disc(O). In

the totally real case, the equidistribution statement of Theorem 1.4 is thereby

equivalent to the statement, in the n = 3 case:

(2) As disc(O)→ +∞, µO approaches Haar measure on X3.

2.3. Overview of proof for X2 via analytic number theory. To put things

in perspective, it will be useful to recall the principle of Duke’s proof for X2.

Duke verifies Weyl ’s equidistribution criterion, i.e. for a suitable basis {ϕ}
for the functions in L2(PGL2(Z)\PGL2(R))with integral zero, he shows:

(3) µO(ϕ) :=

∫
X2

ϕ(g)dµO(g)→ 0, disc(O)→ +∞.

The basis is chosen to consist of automorphic forms – either cusp forms or

Eisenstein series. Duke proved (3) by interpreting the period integral µO(ϕ)

in terms of the disc(O)-th Fourier coefficient of an half-integral weight form

ϕ̃, proving nontrivial bounds for such coefficients by generalizing a method of

Iwaniec [26]. In its most general form, the formula relating the period integral

to Fourier coefficients is due to Waldspurger [47].

Soon thereafter, another proof emerged that turned out to work in greater

generality. Namely, by a result of Waldspurger [48], one has the relation

|µO(ϕ)|2 = IO(ϕ)
L(π, 1/2)L(π ⊗ χK , 1/2)

disc(O)1/2
,

where

(1) π is the automorphic representation to which ϕ belongs;

(2) L(π, s) and L(π ⊗ χK , s) are, respectively, the Hecke L-function of π

and the Hecke L-function of the twist of π by the quadratic character

associated with K;

4However, when O is a Gorenstein ring — e.g. when n = 2, or O is the maximal order, or

O is monogenic — this further equivalence is trivial; i.e. ỸO is a single packet in the sense of

Theorem 1.4.
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(3) IO(ϕ) is a product of local integrals supported at the place at ∞ and

at the primes dividing disc(O).

Then (3) is a consequence of the estimates

(4) L(π ⊗ χK , 1/2)� disc(OK)1/2−η, IO(ϕ)�
Ä disc(O)

disc(OK)

ä1/2−η
for some absolute η > 0; here OK denote the maximal order of K.

The first bound in (4) is called a subconvex bound and is due to Duke,

Friedlander and Iwaniec [13]; it is a special instance of the so-called subcon-

vexity problem for automorphic L-functions (see [27] for a discussion of that

problem).

The second bound in greater generality is due to Clozel and Ullmo [8] and

we will call it a local subconvex bound. It is somewhat easier than the first,

but it addresses the issue of O nonmaximal.

It is tempting to try to generalize this approach to the space Xn of lattices

of higher rank. However this does not seem within reach of the current tech-

nology. In particular, it is not expected that the corresponding “Weyl sums”

are related to (GLn) L-functions. Even were this the case, we do not know

how to solve the corresponding subconvexity problems.5 There is however an

exception to this which will turn out to be crucial for our coming argument.

2.4. Overview of the proof for X3. In summary, our strategy is to check

Weyl’s equidistribution criterion against test functions taken from a tiny por-

tion of L2(X3), by using/proving global and local subconvex bounds, and to

bootstrap this information to a full equidistribution statement using results on

measures invariant under higher rank torus actions.

The input we use from ergodic theory is the following measure classifi-

cation result regarding invariant measures in rank ≥ 2 — as well as a p-adic

variant of it — by the first two authors and A. Katok [15]:

2.5. Theorem. Let n ≥ 3 and let µ be an ergodic H-invariant probability

measure on Xn, where H denotes a maximal R-split torus in PGLn(R). As-

sume that for at least one a ∈ H the ergodic theoretic entropy hµ(a) is positive.

Then µ is homogeneous : there exists a reductive group H ( L ⊂ PGLn(R) such

that µ is the L invariant probability measure on a single periodic L-orbit. In

particular, if n is prime, µ is Haar measure on Xn.

5 Another possibility, more in line with Duke’s original proof would be to use results of

Gan, Gross and Savin [23] which relate the Weyl’s sums to Fourier coefficient to automorphic

forms on G2; unfortunately our state of knowledge concerning bounds for these Fourier

coefficients is rather limited.
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The main content of this paper will be to show that assumptions of this

theorem are satisfied when n = 3.

It is conjectured that the following substantially stronger statement holds:

2.6. Conjecture (Furstenberg, Katok-Spatzier [28], Margulis [33]). Let

n ≥ 3 and let µ be an ergodic H-invariant probability measure on Xn, H as

above. Then µ is homogeneous.

Note that in Conjecture 2.6, the measure µ can certainly be the natural

measure on a periodic H-orbit, a possibility that is ruled out in Theorem 2.5.

We refer the interested reader to [16] or to the original paper [15] for a historical

background and for an exposition of some of the ideas that enter into the proof.

Let µ∞ denote a weak∗ limit6 of the {µO}O . There are two main issues to

verify:

(A) The measure µ∞ is a probability measure (i.e. the sequence of measures

{µO}O is tight).

(B) Almost every ergodic component of µ∞ has positive entropy with re-

spect to some a ∈ H.

Even assuming the stronger conjectured measure classification given by

Conjecture 2.6, one needs to overcome pretty much the same obstructions; in

that case the following weaker form of (B) would suffice:

(B′) µ∞(xH) = 0 for any periodic H-orbit xH.

In the context of this paper (B′) does not seem to be much easier to verify

than the weaker statement in (B).

2.7. Weyl ’s equidistribution criterion. Our method for verifying both (A)

and (B) is by checking Weyl ’s equidistribution criterion for a special class of

functions from which follows a priori bounds for the µ∞-volumes of certain

sets. We shall be able to obtain such bounds on the mass of neighborhoods of

the cusp in X3 (which addresses (A)) or of ε-balls around any x ∈ X3 (which

addresses (B)).

2.7.1. The Siegel-Eisenstein series. Let us recall that we can identify X3

with the space of lattices in R3 of co-volume 1. We shall make use of this

identificaition throughout what follows. Let f be any continuous, compactly

supported function on R3 and let Ef be the Siegel-Eisenstein series

Ef (L) =
∑

λ∈L−{0}
f(λ);

6recall that a sequence of probability measures {µi}i weak∗ converge to some measure µ∞
if, for any compactly supported function f , µi(f)→ µ∞(f) as i→ +∞.
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we shall prove

(5) µ∞(Ef ) := lim
disc(O)→+∞

µO(Ef ) =

∫
R3
f(x)dx.

Observe that, by Siegel ’s formula, (see eg. [49]),
∫
R3 f(x)dx = µHaar(Ef ); in

particular (5) is consistent with (2).

By taking suitable choices of f , (5) yields the necessary a priori bounds.

Indeed, take v ∈ R3. Take f to be a smooth nonnegative function supported in

the 2ε-ball B(v, 2ε), which takes value 1 on B(v, ε). When v = 0, E(f) dom-

inates a neighborhood of the cusp (in fact approaches infinity near the cusp);

when v 6= 0, E(f) dominates the characteristic function of an ε-neighborhood

of any lattice class x that contains v. In the latter case, we deduce that for, ε

small enough

µ∞(B(x, ε))� ε3.

This improves over the trivial bound µ∞(B(x, ε)) � ε2, arising from the fact

that µ∞ is invariant by the two-parameter group H.

This improvement7 from 2 to 3 already shows that µ∞ cannot be sup-

ported along a compact H-orbit. More importantly, this implies that for a

generic a ∈ H, almost every ergodic component of µ∞ has positive entropy

with respect to the action of a from which we deduce the full equidistribution

by Theorem 2.5. To finish this section, we remark that the principle of test-

ing Weyl’s criterion against Einsenstein series appears in other contexts, for

example, in [20] and [45].

2.7.2. Connection to L-functions. The key point, for establishing (5), is

that the µO(Ef ) is indeed related to L-functions. One has the following for-

mula, which goes back to Hecke [25]8:

(6) µO(Ef ) =

∫
<s�1

f̂(s)
IO(f, s)ζK(s)

disc(O)1−s ds,

where f̂(s) is a certain Mellin-like transform of f , ζK(s) is the Dedekind zeta

function of K and IO(f, s) is a product of local integrals supported at the place

∞ and at the primes dividing disc(O).

Shifting the contour to <s = 1/2, we pick up a residue at s = 1 which

equals µHaar(Ef ); the fact that the remaining integral goes to 0 as disc(O)→

7In passing, we note that the test functions “Ef” considered are not invariant under the

maximal compact K = PO3(R), in general (unlike many problems using the classical theory

of modular forms). This feature is essential to improve the trivial bound µ∞(B(x, ε)) = O(ε2)

to O(ε3).
8Hecke proved that way the analytic continuation and the functional equation of

Grössencharacter L-functions.
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+∞ follows from the global and local subconvex bounds

(7) ζK(s)�s disc(OK)1/2−η,

(8) IO(f, s)�s

Ä disc(O)

disc(OK)

ä1/2−η
for some absolute η > 0 and <s = 1/2.

For n = 3 the bound (7) follows from the work of Burgess [6] if K is

abelian and (essentially) from the deep work of Duke, Friedlander and Iwaniec

if K is cubic not abelian ([3], [14], [37]).

The local bound (8) is new and occupies a good part of the present paper;

moreover, it is valid for any n. Let us describe how it is proved.

2.7.3. Local estimates : harmonic analysis on p-adic homogeneous spaces.

Our approach to bounding the local integrals IO is based on9, first of all,

relating IO to integrals of matrix coefficients (inspired by ideas of Waldspurger

and Ichino-Ikeda) and then bounding the integrals of matrix coefficients using

the local building (inspired by ideas of Clozel and Ullmo).

Let us make a remark in representation theory to explain this. Let V be

an irreducible, unitary representation of a group G, and let H ⊂ G be a sub-

group. Suppose that there exists a unique scaling class of invariant functionals

L : V → C invariant by H.

It is sometimes possible to understand something about functionals L

simply by studying matrix coefficients. Indeed, if convergent,
∫
h∈H〈hv1, v2〉

defines a functional (on v1) invariant by H and a conjugate-linear functional

(on v2) invariant by H. We conclude by the uniqueness assumption that:

(9)

∫
h∈H
〈hv1, v2〉dh = cV L(v1)L(v2)

for some constant cV . Thereby, L can be studied through matrix coefficients.

It turns out that computing IO amounts to computing with such function-

als L, when G = GL(n, k) and H is a maximal torus inside G; the representa-

tions V we are concerned with are those that occur inside L2(kn). Thereby, (9)

allows us to reduce understanding IO to computations with matrix coefficients.

3. Number theoretic interpretation

We discuss how our main result can be interpreted in terms of integral

points on varieties, generalizing the equations (∗) and (∗∗) from the introduc-

tion.

9In fact, the estimates needed can be proved in a direct and elementary way; this was the

original approach of the paper. However, the approach carried out, although requiring more

input, has the advantage of being very general.
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3.1. Integral points on homogeneous varieties. In this section, we interpret

our results in terms of distribution of algebraically defined sets of integral

matrices, which was one of Linnik’s original motivations. This is part of a

more general problem of studying the structure of the set of integral points

V(Z) on an algebraic variety V.

A particularly structured situation occurs when V is homogeneous; i.e.,

V(C) possesses a transitive action of a linear algebraic group G. In that case,

it is expected that there are many points which are rather well distributed.

Similar results are found in [19], [21], [22], [32], and [40].

3.2. Solving polynomial equations in matrices. To motivate what follows,

note that for (x, y1, y2, z) ∈ Z4 and m not a perfect square,Ç
y1 z

x y2

å2

= m Id⇐⇒ y1 = −y2, y
2
1 + xz = m.

Thereby, (∗∗) is a statement concerning 2 × 2 integral matrices satisfying a

prescribed quadratic equation.

Given P a monic integral irreducible polynomial of degree n with integral

coefficients, we let

ZP = {M ∈Mn, P (λ) = det(M − λI)}.

Thus integral points ZP (Z) can be identified simply with integral solutions to

P = 0 in n× n matrices.

The signature (r, s) of such a polynomial will be the number of real roots,

resp. conjugate pairs of complex roots; thus r + 2s = n. Let Zr,s be the space

of all splittings of Rn into r real lines and s complex planes.

If P has signature (r, s), the space ZP (R) is identified with Zr,s by, first,

fixing an ordering of the real and complex roots of P ; and then associating to

a matrix M ∈ ZP (R) its eigenspaces.10

The spaces Zr,s carry a PGLn(R)-invariant measure, unique up to scaling

(indeed, Zr,s ∼= PGLn(R)/Hr,s), which we denote by vol(·).

3.3. Corollary. Let {Pi}i be a sequence of cubic, monic, integral, irre-

ducible polynomials of signature (r, s) and of discriminant satisfying disc(Pi)→
+∞.

(1) If (r, s) = (3, 0), then ZPi(Z) becomes uniformly distributed on Z3,0.

(2) If (r, s) = (1, 1), and there exists a fixed prime number p so that Pi has

three p-adic roots, then ZPi(Z) becomes uniformly distributed on Z1,1.

10For a complex eigenvalue, we take the eigenspaces corresponding to that eigenvalue and

its complex conjugate, and intersect their sum with Rn.
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Here, we say, a sequence of discrete sets Zi ⊂ Zr,s ∼= G/Hr,s becomes

equidistributed on Zr,s if, for any compact sets Ω1,Ω2 ⊂ Zr,s with boundary

measure zero and vol(Ω2) > 0, one has

|Zi ∩ Ω1|
|Zi ∩ Ω2|

→ vol(Ω1)

vol(Ω2)
, as i→∞.

Implicit in this statement is the fact that |Zi ∩ Ω2| is nonzero if i is large

enough: for instance, in Corollary 3.3, one can show that for any ε > 0 and i

sufficiently large (depending on Ω2)

|ZPi(Z) ∩ Ω2| �ε disc(Pi)
1/2−εvol(Ω2).

3.4. Cube roots of integers in 3 × 3 matrices. Let us specialize further,

to make this even more concrete. For d > 0 not a perfect cube, consider the

polynomials Pd(X) = X3 − d and set Zd(Z) = ZPd(Z).

Here, it is convenient to explicitly interpret Z1,1
∼= G/H1,1 as the space of

“matrix cube roots of unity”:

Z1,1 = {M ∈M3(R), M3 = Id,M 6= Id}.

This being so, our previous corollary can be stated in terms of the “radial

projections” to the latter space:

3.5. Corollary. Let p > 3 be a fixed prime. As d → +∞ amongst the

integers which are not perfect cubes and such that

p is totally split in the field Q( 3
√
d),

then the sequence of sets 1
d1/3

.{M ∈ M3(Z),M3 = d} becomes equidistributed

in the space {M ∈M3(R), M3 = Id}.

3.6. Translations. Let us explain how the above corollaries follow, indeed,

from our main theorems. Set G = PGLn(R) and Γ = PGLn(Z).

Let P have signature (r, s); let OP be the ring Z[t]/P and KP = OP ⊗Q.

By a coarse ideal class for OP , we understand a lattice L ⊂ KP so that

OP .L ⊂ L, considered up to multiplication by K×P . With this convention,

there are maps:

Γ-orbits on ZP (Z)↔ coarse ideal classes for OP(10)

→ compact Hr,s-orbits on Xn.

The first map is a bijection. The composite of the two arrows amounts to

the identification between Γ-orbits on G/Hr,s, and Hr,s-orbits on Γ\G.

In arithmetic terms, we can understand the maps as follows:

(1) If we fix M ∈ ZP (Z), then the map t 7→M makes Zn into a OP -module;

there is a unique coarse ideal class L so that L and Zn are isomorphic

as OP -modules. (This is very classical; see, e.g. [31].)
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(2) The second injection associates to the class of L ⊂ KP the compact

orbit associated to (KP , L, θ), in the notation of Section 2.2. Here

θ : KP → Ar,s is the identification arising from the chosen ordering of

the roots of P .

The composite map associates to the set of Γ-orbits on ZP (Z) a set of Hr,s-

orbits on Xn; in the notation of Section 2.2, this set is:

(11) YP =
⋃

OP⊂O⊂OKP

ỸO ,

corresponding to all packets whose associated order in KP contains OP . The

possibility of intermediate orders corresponds to the fact that the ideals that

arise need not be proper OP -ideals.

Under these bijections, the equidistribution assertion about ZP translates

to an equidistribution assertion about YP , as we now recall.

3.7. Integral-points interpretations. As is well known (cf. [2, §8]) the (tau-

tological) equivalences

Γ\ΓgHr,s ←→ ΓgHr,s ←→ ΓgHr,s/Hr,s

can be used to transfer equidistribution results about periodic Hr,s-orbits on

Γ\G, to equidistribution of the corresponding Γ-orbits on G/Hr,s. Taking into

account (10), the first assertion of Corollary 3.3 reduces to the following:

3.8. Corollary. Let {Pi}i be a sequence of cubic, monic, integral, ir-

reducible, R-split polynomials of discriminant disc(Pi) → +∞. Then the

set of compact H-orbits defined by (11) becomes equidistributed on X3 (here

H = H3,0).

This is indeed a corollary to Theorem 1.4, taking into account the fact

that the total number of compact H-orbits on X3 with bounded volume is

finite.

Similarly, the other assertion of Corollary 3.3 follows from the more general

adelic Theorem 4.9.

4. Homogeneous subsets in the adelic context

This paper has been written consistently in the adelic framework. It

is therefore appropriate for us to discuss adelic equidistribution problems.

We confine ourselves to equidistribution problems associated to tori, although

much of the discussion applies in greater generality.

Let us emphasize that the adeles are simply a linguistic tool: all statements

and results could be readily stated in the S-arithmetic context. The advantage

of the adeles, rather, is that they provide a unified approach to broad classes
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of questions. For instance, consider the following equidistribution questions on

the modular surface:

(1) Equidistribution of CM points,

(2) Equidistribution of large hyperbolic circles, centered at the point i ∈ H,

(3) Equidistribution of closed geodesics (see §1.2),

(4) On PGL2(Z)\PGL2(R), equidistribution of the translate of a fixed

closed H-orbit by a “large” group element in PGL2(R).11

These situations are all closely related, although they are often treated

separately, and our aim is to discuss them as specializiations of a single adelic

context.

Similarly, in [8], two classes of equidistribution problems are considered:

“equidistribution on the group” and “equidistribution on the symmetric space”;

these two problems again become unified in our presentation.

Explicitly, the goals of this section are as follows. We define “homogeneous

toral sets:; roughly, as will be clarified in Theorem 5.2, these generalize the

groupings YxiH of compact orbits discussed in Theorem 1.4. We then define

two important invariants (“volume” and “discriminant”) for homogeneous toral

sets, formulate the main question about their distribution (§4.4) and state our

main theorems — Theorem 4.8 and Theorem 4.9 — in these terms. These

theorems imply immediately Theorem 1.4, and their proofs comprise most of

this paper.

4.1. Homogeneous sets : definitions. Let F be a number field with adele

ring A. Let G be a F -group with Lie algebra g. Set X = G(F )\G(A).

A homogeneous toral subset of XA will be, by definition, one of the form

Y = T(F )\T(A).gA,

when gA ∈ G(A) and T ⊂ G is a maximal torus. We shall consider only the

case where the torus T is anisotropic over F .

Then Y supports a natural probability measure µY : the pushforward of

the Haar probability measure on T(F )\T(A) by h 7→ hgA.

We shall associate to Y two additional invariants: a discriminant disc(Y ),

measuring its arithmetic complexity, and a volume vol(Y ), measuring how

“large” it is.

4.2. Discriminant. Let r = dim T. Let V be the affine space (∧rg)⊗2. We

fix a compatible system of norms ‖ · ‖v on V ⊗F Fv, for each place v (for a

discussion of norms, see Section 7; “compatible” means that, for almost all v,

the unit balls of the norms coincide with the closure inside V ⊗ Fv of a fixed

OF -lattice within V ).

11See [21] for very general theorems concerning this setting, and also [2] for related results.
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To the Lie algebra t of T, we associate a point in the affine space (∧rg)⊗2:

(12) ι(t) = (e1 ∧ · · · ∧ er)⊗2(detB(ei, ej))
−1,

where e1, . . . , er is a basis for t, and B the Killing form. We set

discv(Y ) = ‖Ad(g−1
v )ι(t)‖v.

The discriminant disc(Y ) is defined to be the product∏
v

discv(Y ).

4.3. Volume. The definition of “volume”, for a homogeneous toral subset,

will depend on the choice of a compact neighborhood Ω0 ⊂ G(A) of the iden-

tity. This notion depends on Ω0, but the notions arising from two different

choices of Ω0 are comparable to each other, in the sense that their ratio is

bounded above and below. We define

(13) vol(Y ) := vol
Ä
{t ∈ T(A) : g−1

A tgA ∈ Ω0}
ä−1

,

where we endow T(A) with the measure that assigns the quotient T(F )\T(A)

total mass 1.

4.4. Desideratum. We shall say that a measure on X is homogeneous if it

is supported on a single orbit of its stabilizer.

The kind of problem we are interested in is the following:

When disc(Yi)→∞ (equivalently vol(Yi)→∞), show that µYi converges

to an homogeneous measure.

There are certain cases of this problem which are easier. For instance (the

“depth” aspect) we might consider a sequence of homogeneous toral sets for

which there exists a fixed place v with discv(Yi) → ∞. In this case, a limit

of the µYis will be invariant under a unipotent subgroup. This special case is

interesting from the point of view of many applications, as for instance in the

work of Vatsal [44]. Eskin, Mozes and Shah [21], and also Benoist and Oh [2]

study this aspect.

4.5. The case of a quaternion algebra. The current state of knowledge

concerning quaternion algebras implies the following theorem:

4.6. Theorem. Let G be the projectivized group of units in a quaternion

algebra over a number field F . Let {Yi}i be a sequence of homogeneous toral

sets whose discriminant approaches ∞ with i→ +∞. Then

vol(Yi) = disc(Yi)
1/2+o(1), i→ +∞.

Moreover, any weak∗ limit of the measures µYi is a homogeneous probability

measure on G(F )\G(A), invariant under the image of ‹G(A) 7→ G(A).
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Here, ‹G denotes the simply-connected covering-group of G. Indeed, one

even knows this in a quantitative form: if f ∈ C∞(G(F )\G(A)) generates an

irreducible, infinite-dimensional G(A)-representation, then |µYi(f) − µ(f)| is

bounded by Of (disc(Yi)
−δ) for a positive δ.

The reason that we cannot simply assert that µYi converge to the Haar

measure has to do with “connected component issues.”

Theorem 4.6 is a consequence of works by several authors:

(1) Siegel’s lower bounds (for the statement concerning volumes),

(2) Iwaniec [26], Duke [12], Duke-Friedlander-Iwaniec [13], Cogdell-Piatetski-

Shapiro-Sarnak [9], and the fourth-named author [46] (for the pertinent

subconvexity bounds),

(3) Waldspurger [48] (see also [29]), Clozel-Ullmo [8], Popa [38], S.-W. Zhang

[51] and P. Cohen [10].

It conceals a unified statement of a large number of “instances” of that

theorem, corresponding to varying the parameter disc in different ways: e.g.

[7], [8], and [37]. For instance, if the quaternion algebra is defined over a to-

tally real field and the quaternion algebra is ramified at one place, then one

obtains in that way, equidistribution results for closed geodesics on an arith-

metic Riemannian surface. Another example: it implies the solution (outlined

by Cogdell-Piatetsky-Shapiro-Sarnak in [9]) to the representability question

for ternary quadratic forms over number fields.

4.7. Results for G = PGLn. Let {Yi}i be any sequence of homogeneous

(maximal) toral sets on X = PGLn(F )\PGLn(A) whose discriminant ap-

proaches ∞ with i→ +∞. Let Ti be the associated tori; then

Ti = ResKi/FGm,Ki/Gm,F ,

for a field extension Ki/F of degree n, unique up to isomorphism. We show:

4.8. Theorem. For {Yi}i as above, one has

vol(Yi) = disc(Yi)
1/2+o(1), as i→ +∞.

This result is easy given well-known (but difficult) bounds on class num-

bers. It shows that the definitions of adelic volume and discriminant proposed

are compatible.

Now let us describe our result on the distribution of homogeneous toral

sets. First suppose there exists a fixed place v with one of the following prop-

erties:

(1) The local discriminant discv(Yi)→∞,
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(2) Every Ti is split at v and a sub-convexity result in the discriminant

aspect is known for values, along the critical line, of the Dedekind-ζ-

functions associated to the fields Ki. (See (71) for the precise require-

ment.)

Then our results establish that any weak∗ limit of the measures µYi is a con-

vex combination of homogeneous probability measures. However, the precise

shape of such a homogeneous probability measure appears to be somewhat

complicated in the adelic setting.

Rather than attempt a precise statement of the above, let us simply give

the result in the simple case n = 3. It is simple for two reasons: first of all,

the necessary subconvexity is known; secondly, the fact that n is prime forces

there to be very few intermediate measures. We prove:12

4.9. Theorem. Suppose n = 3 and let {Yi}i be a sequence of homogeneous

toral sets such that disc(Yi) → +∞ with i; suppose there exists a place v so

that discv(Yi) → ∞ or so that each Ti is split at v. Then any weak∗ limit of

the µYi , as i→ +∞, is a homogeneous probability measure on X , invariant by

the image of SL3(A).

The equidistribution assertion of Theorem 1.4 is a consequence of Theo-

rem 4.9, applied with F = Q, v =∞; translation from Theorem 4.9 is provided

in the next section.

We conclude this section by observing that it remains a very interesting

problem to remove the usage of the place v in Theorem 4.9, i.e., obtaining for

PGL3 a result as strong as Theorem 4.6 (even without a rate).

5. Packets

In this section we will clarify the relationship between the adelic perspec-

tive of Section 4 and the classical perspective of [18].

We will therefore exhibit a natural equivalence relation on the set of com-

pact H-orbits on Γ\G for which the equivalence classes are (almost) finite

abelian groups.

The equivalence classes will be called packets, and the union of compact

torus orbits in a packet corresponds, roughly speaking, to an adelic torus orbit.

5.1. Notation. We recall the data prescribed in [18]. Let G be a semisim-

ple group over Q that is R-split; G = G(R),Γ ⊂ G a congruence lattice, and

12It should be observed that this relies on an extension of [14] that has been announced by

the latter two authors [36], and a theorem announced in [16], but neither of the proofs have

yet appeared. With F =Q, the proofs exist in print and are contained in [3], [14], and [15].



836 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, and A. VENKATESH

H a Cartan subgroup of G. To simplify notation we will write ΓgH for the

right H-orbit Γ\ΓgH ⊂ Γ\G.

We fix a lattice gZ ⊂ g that is stable by the (adjoint) action of Γ, as well

as a G-invariant bilinear form B(·, ·) on g with B(gZ, gZ) ⊂ Z. Finally, we fix

a Euclidean norm on gR.

Let r be the rank of G. Take V = ∧rg. For all finite p, we endow V ⊗Qp

with the norm which has as unit ball the closure of
Ä
∧rgZ

ä⊗2⊗Zp. For p =∞,

we give V ⊗ R the Euclidean norm derived from that on g. These choices

allow one to define the notion of discriminant of a homogeneous toral set, as

in Section 4.

In addition to this, we shall take as given one further piece of data. Let

Af be the ring of finite adeles. Choose a compact open subgroup Kf ⊂ G(Af )

so that Kf ∩ G(Q) = Γ and so that gZ is stable under the (adjoint) action

of Kf .

Let XA denote the double quotient XA := G(Q)\G(A)/Kf . Clearly G

acts on XA and we shall refer to its G-orbits as the components of XA and to

the orbit of the identity double coset as the identity component (these need not

be topologically connected); the identity component is identified with Γ\G.

The set of components is finite and is parametrized by the double quotient

G(Q)\G(Af )/Kf .

5.2. Theorem. (1) Each compact H-orbit ΓgH ⊂ Γ\G ⊂ XA is con-

tained in the projection to XA of a homogeneous toral set Y ⊂ G(Q)\G(A).

The set Y is unique up to translation by Kf ; in particular, all such Y ’s

have the same projection to XA. Moreover, the discriminant of ΓgH , in

the sense of [18], and the discriminant of Y , in the sense of Section 4,

coincide up to a positive multiplicative factor, the latter factor depending

only on H , on the choice of B(·, ·) and on the Euclidean norm on gR.

(2) Declare two compact H-orbits to be equivalent if they both are contained

in the projection to XA of a homogeneous toral set Y .

An equivalence class of compact H-orbits we refer to as a packet. Pack-

ets are finite; indeed, the packet of ΓgH is parametrized by the fiber of the

map

T(Q)\T(Af )/(Kf ∩T(Af ))→ G(Q)\G(Af )/Kf

above the identity double coset ; here T is the unique Q-torus so that

T(R) = gHg−1. In particular, if G(Q)\G(A)/Kf has a single compo-

nent, every packet naturally has the structure of a principal homogeneous

space for a finite abelian group.

(3) Compact orbits in the same packet have the same stabilizer and the same

discriminant.
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The proof of this theorem is straightforward. However, its content is

quite beautiful: the collection of compact Cartan orbits on Γ\G group them-

selves into equivalence classes, each (almost – see assertion (2) of the theorem)

parametrized by finite abelian groups, and the latter are themselves closely

related to ideal class groups in number fields.

As such, this is a natural generalization of the situation described in the

introduction to our paper: the set of geodesics of fixed length on SL2(Z)\H is

parametrized by the class group of a real quadratic field.

5.3. Proofs. In order to keep notation minimal, for g ∈ G(A) we shall

write [g] = G(Q).g.Kf ∈ XA for the associated double coset. If S ⊂ G(A) is

a subset, we often write simply [S] for [g] : g ∈ S.

Let us recall from [18]:

5.4. Proposition (Basic correspondence). There is a canonical bijection

between

(1) periodic H-orbits ΓgH on Γ\G,

(2) Γ-orbits on pairs (T, g) where T is an anisotropic torus defined over

Q and g ∈ G/H is so that gHg−1 = T(R).

The bijection associates to ΓgH the pair (T, g), where T is the unique

Q-torus whose real points are gHg−1.

Proof of the first statement of the theorem. Given (T, g), clearly ΓgH

is contained in the projection to XA of the homogeneous toral set Y0 :=

(T(Q)\T(A)).(g, 1). (Here (g, 1) ∈ G(A) is the element that equals g at the

real place, and is the identity elsewhere; in what follows we abbreviate it simply

to g.)

Now let us show that Y0 is the only such homogeneous toral set, up to

Kf . Take any homogeneous toral set Y = (T′(Q)\T′(A))g′A whose projection

to XA contains ΓgH = ΓT(R)g. Therefore,

T(R) ⊂
⋃

δ∈G(Q)

δT′(A)g′AKfg
−1.

It follows that there exists δ ∈ G(Q) so that

T(R)(0) ⊂ δT′(A)g′AKfg
−1.

Therefore there exists t′ ∈ T′(A) and k ∈ Kf so that δt′g′Akg
−1 = 1 and

T = δT′δ−1 and, moreover, we conclude that

(T′(Q)\T′(A))g′A = δ−1(T(Q)\T(A))δt′g′A = (T(Q)\T(A))gk−1

where we treated these as subsets of G(Q)\G(A).
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It follows that any homogeneous toral set Y , whose projection to XA
contains ΓgH, is necessarily of the form (T(Q)\T(A)).(g, 1), up to modification

by Kf .

The equality of discriminants asserted in the theorem is a direct conse-

quence of the definitions of the discriminant (see [18, (2.2)] for the definition

for compact Cartan orbits). For this note that the p-adic discriminant mea-

sures the power of p in the denominator of ι(t), while the discriminant at ∞
equals the norm of ι(h) and so is constant.

Proof of the second assertion of the theorem. Now let us observe that the

packet of the compact orbit ΓgH consists of all compact orbits ΓδgH with

δ ∈ G(Q) ∩KfT(Af ) (where the intersection is taken in G(Af )). Here T is

the torus corresponding to ΓgH. We shall verify that the packet of ΓgH is

parametrized by the fiber of the map

T(Q)\T(Af )/Kf ∩T(Af )→ G(Q)\G(Af )/Kf

above the identity double coset. The finiteness assertion is then an immediate

consequence of the finiteness of class numbers for algebraic groups over number

fields.

With notation being as above, two δ, δ′ ∈ G(Q) ∩ KfT(Af ) define the

same compact orbit ΓδgH if and only if ΓδT(Q) = Γδ′T(Q); therefore compact

orbits are parametrized by the double quotient

G(Q) ∩Kf\(G(Q) ∩KfT(Af ))/T(Q) = Kf\(KfG(Q) ∩KfT(Af ))/T(Q),

but this is (after inverting) precisely what is described by the theorem.

Proof of the final assertion of the theorem. Let ΓgH,ΓδgH be in the same

packet. We have already verified the equality of discriminants. To verify the

equality of stabilizers, we check that T(R) ∩ Γ = T(R) ∩ δ−1Γδ. By assump-

tion, Γ = G(Q)∩Kf . Thus T(R)∩Γ = G(Q)∩T(R)Kf and T(R)∩ δ−1Γδ =

G(Q) ∩ T(R)(δ−1
f Kfδf ), where δf is the image of δ under G(Q) ↪→ G(Af ).

There exists tf ∈ T(Af ), kf ∈ Kf so that δf = kf tf ; therefore, we need to

prove

G(Q) ∩T(R)Kf = G(Q) ∩T(R)(t−1
f Kf tf ).

An element on the left-hand side belongs to T(Q), so it automatically com-

mutes with tf , and also belongs to the right-hand side. Reversing this reasoning

shows the equality. �

5.5. Example: packets for GLn. Let us explain, by way of illustration, the

equivalence relation explicitly in the case of PGLn(Z)\PGLn(R).

More precisely, we take G = PGLn, Γ = PGLn(Z), H the diagonal sub-

group, and Kf the closure of Γ in PGLn(Af ). We may identify the Lie algebra

pgln with the quotient of n× n matrices by diagonal matrices; for gZ; we take
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then the projection of Mn(Z) to pgln. For B we take simply the Killing form,

and we take the Euclidean norm on pgln,R to be that derived from the Hilbert-

Schmidt norm on Mn(R). (This differs by a factor of 2 from that chosen in

[18, §4].)

As discussed in [18], and recalled previously, compact H-orbits are para-

metrized by data (K,L, θ).

The equivalence corresponding to packets can be described in elementary

terms as follows: Declare (K,L, θ) ∼ (K,L′, θ) whenever L,L′ are locally ho-

mothetic; here, we say that two lattices L,L′ ⊂ K are locally homothetic for

every prime number p, and there exists λp ∈ (K ⊗ Qp)
× so that Lp = λpL

′
p.

Here Lp, L
′
p denote their respective closures in K ⊗Qp.

Observe that L ∼loc L′ implies that OL = OL′ . However, the converse

is a priori not true (unless OL is Gorenstein, see e.g. [1, (6.2), (7.3)]: for

instance if OL is the maximal order). Thus, the grouping into packet refines

several plausible cruder groupings, e.g., grouping compact orbits with the same

volume, or grouping compact orbits for which the order OL is fixed.

Moreover, one can see at a heuristic level why the “packet” grouping

has better formal properties than the “fixed order” grouping. Namely the

set of proper OL ideals up to homothety (i.e. up to multiplication by K×) is

not a priori a group, nor a principal homogeneous space under a group. By

contrast, the set of lattices up to homothety, within the local-homothety class

of L, does form a principal homogeneous space for a certain abelian group,

the Picard group Pic(OL), i.e. the group of homothety classes of ideals locally

homothetic to OL. Of course, if OL happens to be Gorenstein, the packet is

parametrized simply by Pic(OL).

6. Homogeneous toral sets for GLn

We shall now consider explicitly the case of G = PGLn over a global

field F , introducing data D which parametrizes homogeneous toral sets, which

we term global torus data.

By localization, such data will give rise to certain local data over each

place of v, which we term local torus data. We shall explain how to compute

the discriminant of the homogeneous toral set — in the sense of Section 4 —

very explicitly in terms of the local torus data.

6.1. The local data. Local torus data D , over a local field k, consists simply

of an étale k-algebra A ⊂ Mn(k) of dimension n: i.e., a direct sum A = ⊕iKi

where the Ki are field extensions of k.

Set g = Mn(k)/k identified as the Lie algebra of PGLn. Let V be the

affine space

V = (∧n−1g)⊗2.
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To the data D/k, we associate a point in x ∈ V via:

(14) xD = [(f1 ∧ · · · ∧ fn−1)⊗2(detB(fi, fj))
−1],

where f1, . . . , fn−1 is a basis for A/k⊂Mn(k)/k, and B is the Killing form on g.

We set disc(D/k) := ‖xD‖V . Here ‖ · ‖V is (see §7)

– the norm on V whose unit ball is the closure of ∧rMn(Ok)/Ok, for k

non-archimedean;

– the norm on V which descends from the Hilbert-Schmidt norm on

Mn(k) for k archimedean.

Explicitely: let f0, f1, . . . , fn−1 be a k-basis of for A with f0 ∈ k and which

span Λ = A∩Mn(Ok) as an Ok-module (when k is nonarchimedean) or which

is orthonormal with respect to the Hilbert-Schmidt norm on Mn(k) (when k

is archimedean). If this is so, then one may compute disc(D/k) by the rule:

(15) disc(D/k) := |(2n)1−n det(tr(fifj))
−1|.

In particular, for k nonarchimedean, the discriminant of D/k differs, by a

constant, from the discriminant of the ring Λ.

6.2. Proof of equivalence between (15) and (14). This is, in essence, proved

in [18]. Let us reprise it here. Let fi be a basis for A, as chosen above. Let f̄i,

for 1 ≤ i ≤ n− 1, be the projection of fi to g. Norms as above,

‖(f̄1 ∧ · · · ∧ f̄n−1)⊗2‖V = 1.

In fact, in the nonarchimedean case, we may extend f̄i (1 ≤ i ≤ n − 1) to an

Ok-basis for Mn(Ok)/Ok, which makes the result obvious. In the archimedean

case, the claim is an immediate consequence of the fact that f0, . . . , fn are

orthonormal with respect to the Hilbert-Schmidt norm.

The Killing form on g evaluates to: B(f̄i, f̄j) = 2(ntr(fifj)− tr(fi)tr(fj)).

Therefore, the determinant detB(f̄i, f̄j)1≤i,j≤n−1 equals

(2n)n−1 det(tr(fifj)0≤i,j≤n−1.

The discussion of Section 4.2 associates to t = A/k ⊂ g the point

ι(t) = (2n)1−n det(tr(fifj)0≤i≤n−1)−1(f̄1 ∧ · · · f̄n−1)⊗2

The required compatibility follows.

6.3. Global data. Let F be a global field. We define global torus data D to

consist of a subfield K ⊂Mn(F ) and an element gA = (g∞, gf ) ∈ A×K\GLn(A).

To the global data we may associate (cf. §4):

(1) A homogeneous toral set YD = (TK(F )\TK(A))g, and the probability

measure µD on YD . Here TK is the unique subtorus of PGLn with Lie

algebra K/F .

(2) A (global) discriminant disc(D) := disc(YD), depending on K, gA.
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The global discriminant disc(D) can be computed in terms of our dis-

cussion above. Indeed, the global torus data D = (K, g) also gives rise to

a collection of local torus data (Dv)v: for every place v, Dv consists of the

subalgebra

Av = g−1
v (K ⊗ Fv)gv ⊂Mn(Fv)

and it follows from the definitions that

disc(D) =
∏
v

disc(Dv).

7. The local building

In this section, we are going to recall the basic theory of the building

attached to the general linear group, over a local field k. We will follow the

beautiful old ideas of Goldman and Iwahori, [24], interpreting this by norms

on a k-vector space.

7.1. Notation concerning local fields. We denote by k a local field. Let us

normalize once and for all an absolute value on it. If k = R or C, then let | · |
denote the usual absolute value and if k is non-archimedean, we normalize | · |
to be the module of k: | · | = q−vπ(·), where q is the cardinality of the residue

field and π ∈ k any uniformizer, and vπ(·), the corresponding valuation.

7.2. Definition of the building by norms. Let k be a local field and V vector

space over k of finite dimension. A norm on V is a function N : V → R+ into

the nonnegative reals that satisfies

N(v) = 0⇔ v = 0V , N(λx) = |λ|N(x), λ ∈ k

N(x+ y) ≤

N(x) +N(y) (if k is archimedean)

max(N(x), N(y)) (if k is nonarchimedean).

For N a norm, we denote its homothety class by [N ]:

[N ] = {µN, µ ∈ R>0}.

If k is real (respectively complex), then we call a norm on V good if it is

quadratic (respectively Hermitian). If k is nonarchimedean, we shall refer to

any norm as good.

We let B(V ) and B̄(V ) be the building of GL(V ) and PGL(V ) respectively;

specifically B(V ) is the set of good norms on V , and B̄(V ) the set of such norms

up to homothety.
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7.3. Action of the group. The group GL(V ) acts transitively on B(V ) via

the rule

g.N(x) = N(xg).

This induces a transtive action of PGL(V ) on B̄(V ).

If k is archimedean, then the stabilizer of a good norm is a maximal

compact subgroup, and any (good) norm is determined by its unit ball.

If k is nonarchimedean, then neither of these are true: consider, for in-

stance, the norm on Q2
p given by (x, y) 7→ max(|x|, p−1/2|y|). We say that a

norm is standard if is satisfies

N(x) = inf{|λ| : λ ∈ k,N(x) ≤ |λ|}.

A standard norm is determined by its unit ball, and its stabilizer is a max-

imal compact subgroup of GL(V ). Standard norms, are, equivalently (q the

cardinality of the residue field of k):

(1) Those which take values in qZ,

(2) Those which look like x = (x1, . . . , xn) 7→ maxi |xi| in suitable coordi-

nates,

(3) Those that correspond to (special) vertices of the building.

The action of GL(V ) preserves standard norms.

7.4. Direct sums. Apartments. Given norms NV on V and NW on W ,

they determine a norm NV ⊕ NW on V ⊕W , defined by
»
N2
V +N2

W if k is

archimedean, and max(NV (v), NW (w)) if k is nonarchimedean.

Any splitting of V into one-dimensional subspaces determines an apart-

ment. This consists of all norms that are direct sums of norms on the one-

dimensional subspaces. Any two norms belong to an apartment. Apart-

ments are in bijection with split tori within GL(V ): a splitting of V into

one-dimensional spaces determines a split torus, namely, those automorphisms

of V preserving each one-dimensional space.

If H is a split torus with co-character lattice X?(H), then the vector

space h := X?(H) ⊗ R acts simply transitively on the apartment. It suffices

to explicate this when V is one-dimensional; in that case, the action of the

tautological character Gm → GL(V ) = H on the set of norms is multiplication

by cardinality of the residue field if k is nonarchimedean, and multiplication

by (e.g.) e = 2.718, when k is archimedean.

In explicit terms, we can phrase this as follows: the apartment in the

building of kn, corresponding to the diagonal torus in GL(n, k), consists of all

norms of the following form:

N(x1, . . . , xn) =

maxi q
ti |xi|, nonarchimedean, q := size of residue field.(∑

i e
2ti |xi|2

)1/2
, archimedean,
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for some (t1, . . . , tn) ∈ Rn. Therefore, this apartment is parametrized by the

affine space Rn.

7.5. The canonical norm on an algebra. Let A be a (finite dimensional)

étale algebra over k, i.e. A = ⊕iKi is a direct sum of field extensions of k, we

equip it with a norm which we shall call the canonical norm.

– If k is nonarchimedean: let OA = ⊕iOKi denote the maximal compact

subring of A:

(16) NA(t) = inf{|λ|, λ ∈ k : t ∈ λOA}.

That norm is standard and has unit ball OA. Moreover, for t decom-

posing as t = (t1, . . . , ti, . . . ), ti ∈ Ki, one has

(17) NA(t) = max
i
NKi(ti).

Here NKi denote again the standard norm of the k-algebra Ki.

– If k is non-archimedean, A = ⊕Ki, for certain subfield Ki ⊂ C. We

define

NA(
∑
i

xi) =

(∑
i

|xi|2
)1/2

.

To keep our notation consistent with the non-archimedean case, we

define OA to be the unit ball of NA:

(18) OA = {x ∈ A, NA(x) ≤ 1}.

When A = kn, we denote the canonical norm by N0.

7.6. The metric and operator norms. We may equip B(V ) with a GL(V )-

invariant metric by using the notion of operator norm:

If N1, N2 are any two norms, then we let exp(dist(N1, N2)) be the smallest

constant α ≥ 1 such that N2 satisfies α−1N1 ≤ N2 ≤ αN1.

Given any two normsN1, N2, there exists an apartment that contains them

both; thus, to understand dist, it suffices to understand it on each apartment.

In Section 7.4, we explicitly parametrized each apartment by an affine space

(t1, . . . , tn) ∈ Rn. In terms of that parametrization,

dist((t1, . . . , tn), (t′1, . . . , t
′
n)) := log(q) max

i
|ti − t′i|.

Here we understand q = e for k archimedean. Therefore, this amounts to an

L∞-metric on each apartment.

We equip B̄(V ) with the quotient metric13. In particular, if N1, N2 are

two norms and [N1], [N2] the corresponding elements in B̄(V ), then, for any

13Recall that if X is a metric space and G acts by isometries on X, we may define the

metric on X/G via d(x1, x2) = infg∈G d(x1g, x2).
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v1, v2 ∈ V :

(19) dist([N1], [N2]) ≥ 1

2
log

N1(v1)N2(v2)

N2(v1)N1(v2)
.

Indeed, one may define dist as the supremum of the quantities appearing on

the right-hand side.

7.7. Harish-Chandra spherical function. We shall make use of the Harish-

Chandra spherical function on GL(V ). It is defined with reference to a maximal

compact subgroup K ⊂ GL(V ), which we take to be the stabilizer of a standard

norm N .

Fix an apartment containing N , and let H ⊂ GL(V ) be the split torus

corresponding to this apartment. Let B ⊃ H be Borel containing H, with

unipotent radical U corresponding to all positive roots. We have a decomposi-

tion GL(V ) = UHK. Let H : GL(V )→ H be the projection according to this

decomposition and let ρ : H → R+ be defined by

ρ : a 7→
∏
α∈Φ+

|α(a)|1/2

be the “half-sum of positive roots” character with respect to B.

The Harish-Chandra spherical function is defined as:

Ξ(g) :=

∫
k∈K

H(kg)ρdk,

where the measure on K is the Haar measure with total volume 1. We will be

needing the following bound: for any α < 1,

(20) Ξ(g)�α exp(−α.dist([gN ], [N ])).

Indeed, it suffices to prove (20) when gN belongs to a fixed apartment

containing N . Identifying this with an affine space, with N as origin, the point

gN has coordinates (t1, . . . , tn); without loss of generality, we may assume that

t1 ≤ t2 ≤ . . . tn, and (cf. [30, Prop. 7.15] for real semisimple Lie groups)

Ξ(g)�α

Ä
q−

1
2

∑
i<j

ti−tj
ä−α

for any α < 1. On the other hand, by (19)

dist([gN ], [N ]) =
1

2
log q.(tn − t1),

whence our conclusion.

7.8. Action of invertible linear maps. If ι : V → W is an invertible map

between vector spaces, which we understand as acting on the right (i.e. v.i or

vι ∈W ), and N is a norm on W , then we denote by ιN the norm v 7→ N(v.ι),

a norm on V .



DUKE’S THEOREM FOR CUBIC FIELDS 845

8. Notation

In this section, we set up some fairly standard notation concerning number

fields. We set up local notation first, and then global notation. In Section 9

we shall use only the local notation; in the rest of the paper, we make use of

the global notation.

8.1. Local notation and normalizations. Let k be a local field and A ⊂
Mn(k) local torus data, with [A : k] = n. The absolute value on k is normalized

as in Section 7.1.

We denote by | · |A the “module” of A, i.e., the factor by which the map

y 7→ yx multiplies Haar measure on A if x ∈ A× and |x|A = 0 if x ∈ A− A×.

Consequently, writing A = ⊕iKi,

|x|A =
∏
i

|xi|Ki , x = (. . . , xi, . . . ), xi ∈ Ki;

in particular, for14 x ∈ k ⊂ A, |x|A = |x|nk . Observe also that the module |x|A
coincide with |det(x)| when we view x as an element of Mn(k).

We fix an additive character e : k → C; it induces the additive character

on A
a→ eA(a) := e(trA/k(a)) = e(tr(a)), a ∈ A.

Observe that for a ∈ A, the A/k-trace coincide with the restriction to A ⊂
Mn(k) to the matrix trace; thus there is no ambiguity in refereing to the trace.

We fix Haar measure dx, da on k,A; for definiteness, we normalize them

to be self-dual with respect to the characters e(·) and e(tr(·)) respectively.

Sometimes we will write dkx and dAx to emphasize the measures on k and A

respectively. We will often write volk or volA for volume of a set with respect

to these measures.

Even though we have normalized volk and volA to be self-dual, it is oc-

casionally more conceptually clear and helpful — for instance, when working

with Fourier transforms — to introduce a separate notation for the dual mea-

sures. Thus, we shall denote by ‘volA the Haar measure dual to volA, with

respect to the character eA; ‘volk is defined similarly. Our normalizations are

so that ”vol = vol, but we try to keep the notions conceptually separate.

We normalize multiplicative Haar measure d×k x, d
×
Ax on k× and A×, re-

spectively, by the rules

d×k x = ζk(1)|x|−1
k dkx, d

×
Aa = ζA(1)|x|−1

A dAa.

(See §8.2 below, for a recollection of the definition of ζ.)

14At this point we must observe a small ugliness of notation: for x ∈ k, the “module”

|x|k coincides with our normalization of |x| from Section 7.1 if k 6= C. If k = C, however,

|x|C = |x|2. This unfortunate notational clash seems somewhat unavoidable, for the module

of C does not coincide with what is usually termed the absolute value.
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These normalizations have the following effect: for k nonarchimedean,

(21) volA×(O×A ) = volA(OA), volk×(O×k ) = vol(Ok).

For k archimedean, we shall not define O×A or O×k ; however, it will be convenient

(to uniformize notation) to define their volumes volA(O×A ) := volA(OA) and

volk(O
×
k ) := volk(Ok) so that the equality (21) remains valid. Recall that

OA,Ok in the archimedean case are defined by the convention (18).

8.2. Local ζ-functions. The local ζ-function of the field k and of A are

denoted ζk(s), ζA(s) (s ∈ C): for A = ⊕iKi,

ζA(s) =
∏
i

ζKi(s).

We recall that the local ζ-function of a local field k is defined by ζk(s) =

π−s/2Γ(s/2) if k = R, 2(2π)−sΓ(s) if k = C, and finally ζk(s) = (1 − q−s)−1,

where q is the size of the residue field, if k is nonarchimedean.

More generally for ψ a character of A× (ψ = (. . . , ψi, . . . ), ψi a character

of K×i ), we denote by L(A,ψ) the local L-function of ψ:

L(A,ψ) =
∏
i

L(Ki, ψi).

See [5, Chap. 3] for definition and discussion.

For s ∈ C, we will also write

L(A,ψ, s) := L(A,ψ| · |sA).

In particular ζA(s) = L(A, | · |sA).

If k is nonarchimedean, we attach to ψ a discriminant disc(ψ). This may

be defined directly as follows: we write A = ⊕Ki and ψ = (. . . , ψi, . . . ); for

each i, let ti be the largest integer so that ψi is trivial on 1 + qtiKi ; here qv is

the prime ideal of the ring of integers in Ki. Then disc(ψ) :=
∏
i q
ti
i , where qi

is the residue field size of Ki.

For k archimedean, we set by definition disc(ψ) ≡ 1.

8.3. Number fields. We now pass to a global setting.

Let F be a number field. We denote by A and AF,f the ring of adeles and

of finite adeles, respectively.

We will work with global data D , as in Section 6.3, which will consist of:

K ⊂Mn(F ) and gD ∈ A×K\GLn(A). We shall fix an identification ι : K → Fn

of right K-modules; this means that (ab)ι = aι.b, where, on the right-hand

side, we understand b ∈Mn(F ).

We obtain from this data an embedding of the F -torus

TK := ResK/FGm/Gm ↪→ PGLn,F .

Here PGLn,F denotes the algebraic group PGLn over the field F .
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We will use the letter v for a place of F and w for a place of K. If v is a

place of F , then we denote by Fv the completion of F at v, and Kv := K⊗F Fv.
By localization, the global data D gives rise to local data Dv (in the sense

of §6.1) for each place v of F ; i.e., we take Av = g−1
D ,vKvgD ,v ⊂ Mn(Fv). We

will write A instead of Av when the dependence on v is clear.

Let us note that the map

(22) ιv : a ∈ Av 7→ (gD ,vag
−1
D ,v)

ι.gD ,v

from Av to Fnv is then an identification for the Av-module structures.

8.4. Adeles, ideles and their characters. There is a natural norm map, the

module, A× |·|→ R>0. We write |x|A or sometimes simply |x|; this will cause no

confusion so long as it is clear that the variable x belongs to A×. We denote

by A(1) the kernel of the norm map, and similarly for AK .

Let Ω(CF ) resp. Ω(CK) denote the group of homomorphisms from A×/F×
resp. A×K/K× to C×. For ψ ∈ Ω(CK) we shall denote by ψ|F the restriction

of ψ to A×/F×.

The group C is identified with the connected component of Ω(CF ), via

identifying s ∈ C with the character x 7→ |x|sA. Given χ ∈ Ω(CF ), we set

χs(x) := χ(x)|x|sA. This C-action on Ω(CF ) gives Ω(CF ) the structure of a

complex manifold.

For any χ ∈ Ω(CF ), there exists unique s ∈ R so that |χ(x)| = |x|sA. We

shall denote this s by <χ, the “real part” of χ. Thus <χ = 0 if and only if χ

is unitary.

Finally, there is a natural map R>0 → CQ (inclusion at the infinite place).

Thus there is also a map R>0 → CK , CF . We say that a character of CK or

CF is normalized if its pullback to R>0 is trivial.

If ω : F×v → C× is a multiplicative character, then we denote by L(Fv, ω, s)

the corresponding L-factor, and by L(Fv, ω) its value when s = 0. In particular,

when ω = |x|sv, we get the local ζ-factor: L(Fv, ω) = ζFv(s). Corresponding

definitions also hold for K. If v is a place of F , we will write ζK,v :=
∏
w|v ζK,w.

8.5. Discriminants. Suppose ψ ∈ Ω(CK). For v any place of F , we have

discriminants:

discv(F ),discv(K/F ), discv(K), discv(Dv),discv(ψ|Kv).

Namely, discv(F ) is the discriminant of Fv/Qp (where p is the prime of Q
below v) and discv(K) the discriminant of Kv/Qp. We set

discv(K/F ) = discv(K)discv(F )−[K:F ].

By convention, we shall understand discv(F ) = discw(K) = 1 if v or w are

archimedean. discv(Dv) is as in Section 6 and discv(ψ|Kv) is defined in Sec-

tion 8.2.
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For any of the objects above, we set disc(. . . ) =
∏
v discv(. . . ). We note

that disc(D)�F,n disc(K); this will follow from Lemma 9.5 and the fact that

discv(D) is bounded from below at each archimedean place.

8.6. Measure normalizations. Let eQ : AQ/Q→ C be the unique character

whose restriction to R is x 7→ e2πix. Set eF = eQ◦trF/Q. We then normalize lo-

cal measures according to the prescription of Section 8.1 with k = Fv, A = Kv.

Let us explicate this to be precise.

We choose for each v the measure on Fv that is self-dual with respect

to eF . The product of these measures, then, assigns volume 1 to A/F . We

define a measure on F×v by d×x := ζF,v(1) dx
|x|v . We make the corresponding

definitions for K, replacing the character eF by the character eK := eF ◦trK/F .

Taking the product of these measures yields measures on A,AK ,A×,A×K . This

fixes, in particular, a quotient measure on TK(A) = A×K/A×.

We obtain a measure on Av through the identification x 7→ g−1
D ,vxgD ,v from

Kv to Av.

We will often denote by dKx the measure on Kv and by dFx the measure

on Fv or Fnv .

With these definitions, it is not difficult to verify that for finite places v, w:∫
O×K,w

d×Kx = discw(K)−1/2,

∫
O×F,v

d×Fx = discv(F )−1/2(23) ∫
OK,w

dKx = discw(K)−1/2,

∫
OF,v

dFx = discv(F )−1/2.(24)

Moreover, (24) remains valid for v archimedean, if we replace equality by

�, and we interpret OK,w resp. OF,v as the unit balls for the canonical norms

associated to Kw resp. Fv.

9. Local theory of torus orbits

In this section, we are going to explicate certain estimates over a local

field, which are what are needed for “local subconvexity” discussed in Section 2.

Indeed, the main result of this section, Proposition 9.9, is designed precisely to

bound the (general version of the) quantities “IO” that occur in (6) and (8).

Our methodology is quite general (i.e., would apply to estimates for more

general period integrals of automorphic forms) and is inspired, in part, by the

paper of Clozel and Ullmo [8].

9.1. Explanation in classical terms. A simple case of our estimates is the

following result:

Let Q be a positive definite quadratic form on R3. Consider:

(25) I(Q) =

∫
Q(x,y,z)≤1 |xyz|−1/2dx dy dz.

vol(x ∈ R3 : Q(x) ≤ 1)1/2
.
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It will transpire — this will follow from Lemma 10.4 that we prove later —

that the quantity IO , defined in (6), will be be bounded by products of integrals

like (25) and nonarchimedean analogues. (More precisely, in the notation of

(6): if the function f is invariant by the rotation group of Q, then we will be

able to bound IO(f, s) in terms of (25); the general case will reduce to this).

Our goal will be to get good bounds for I(Q). Evidently, the function I is

invariant under coordinate dilations, and thus our bounds should also be so.

9.2. The generalization to local fields. The general setting we consider will

be: we replace R,R3 by a local field k and an etale k-algebra A of dimension

n (say).

For an arbitrary norm N on A, we consider the integral

(26) I(N) :=

∫
x∈A:N(x)≤1 |x|

−1/2
A dAx

vol(x ∈ A : N(x) ≤ 1)1/2
,

where dAx denote a Haar measure on A and |x|A denote the “module” of A

(the factor by which dAx is transformed under y 7→ xy). We consider the

variation of I(N) with N . Again, I(N) is invariant by scaling and so defines

a function on the building of PGL(A).15 We shall show that:

(1) I(N) decays exponentially fast with the distance of N to a certain

subspace in the building, viz. the A×-orbit of the norm NA;

(2) The distance to this subspace measures the discriminant of local torus

data:

Choose an identification ι : A → kn which carries the unit ball for

N(x), to the unit ball of the standard norm on kn. The identification ι,

together with the action of A on itself by multiplication, can be used to

embed A ⊂Mn(k). Thus, we have specified local torus data. Roughly

speaking (Lemma 9.12), the discriminant of this local torus orbit, is

a measure of the distance of N to our distinguished subspace of the

building.

Our final result is presented in Proposition 9.9; the reader may find it

helpful to interpret it in terms of the language above, in order to better absorb

its content.

9.3. Local torus data. In the rest of this section, we fix local torus data D
consisting of A ⊂Mn(k); we shall follow the notation of Section 8. Throughout

this section, we allow the notation� and O(·) to indicate an implicit constant

that remains bounded, if k is restricted to be of bounded degree over R or Qp.

15Throughout this paper, we use GL(A) to denote k-linear automorphisms of A, thought

of as a k-vector space; similarly, PGL(A).
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By the inclusion, A ⊂Mn(k), kn is a right A-module. For the rest of this

section, we fix an identification of right A-modules ι : A→ kn; in other words,

(27) (ab)ι = aι.b, a ∈ A, b ∈ A

where, on the right-hand side, we regard b ∈ Mn(k). The identification ι is

unique up to multiplication by elements of A×. We write ι on the right to be

as consistent as possible with our other notation.

In this setting, we have described (cf. §7.5) two norms: the canonical norm

on the algebra A, to be denoted NA, and the canonical norm on the algebra

kn, to be denoted N0. We have denoted their unit balls by OA and Okn

respectively. These unit balls coincide with the maximal compact subgroups

of these algebras in the non-archimedean case.

We are going to introduce an element h ∈ GLn(k) with quantifies the

relation between these norms. Choose h ∈ GLn(k) so that:

(28) hN0(x)(:= N0(xh)) = NA(xι
−1

), x ∈ kn.

This is possible because, by choice, the norm NA corresponds to a vertex of the

building of GL(A), i.e. takes values in qZ in the nonarchimedean case. Observe

that choice of h depends on the choice of ι; given ι, the quantity | deth| is

uniquely determined.

This definition implies that OA
ι = Oknh

−1; thus

volA((Okn)ι
−1

) = volA(OA)| deth|,

or

(29)
ι∗volA
volkn

=
volA(OA)

volkn(Okn)
|deth|.

Similarly, we define hA ∈ GL(A) by the following rule:

(yhA)ι = yιh, y ∈ A.

This means that

(30) hAιN0 = NA = ιhN0,

and so | dethA|k = |deth|k.
With these conventions, and those of Section 7.8,

(31) tι−1NA = ι−1tNA, (t ∈ A×).

Let us be completely explicit, because t is acting in two different ways on the

two sides of this equation. According to the conventions set out in Section 7.8,

the left-hand side is the norm on kn defined by x 7→ NA(xtι−1); in particular,

t is acting as an endomorphism of kn. The right-hand side is the norm on kn

defined by x 7→ NA(xι−1t); here t is acting by right multiplication on A. The

coincidence of the two sides follows from (27).
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9.4. Discriminant vs. discriminant. We have two notions of “discrimi-

nant” attached to the local data A ⊂Mn(k):

On the one hand, we have the absolute discriminant, disc(A), of the k-

algebra A:

– If k is non-archimedean, then it is given by

disc(A) = [O∗A : OA] =
volA(O∗A)

volA(OA)
,

Here O∗A denote the dual lattice of OA in A

O∗A := {a ∈ A : |trA/k(aOA)| ≤ 1} ⊃ OA.

– If k is archimedean, then we set disc(A) = 1.

In particular in either case, we have

(32) disc(A) �n
volA(O∗A)

volA(OA)
.

On the other hand, in our previous discussion Section 6, we have defined a

notion of discriminant disc(D) which is relative to the embedding A ⊂Mn(k).

We shall presently compare the two notions and for this we shall interpret

disc(D) in more geometric terms.

Let Λ be the set of x ∈ A with operator norm ≤ 1 with respect to the

norm N0; here we regard kn as an A-module via the right multiplication of

A ⊂Mn(k). If k is nonarchimedean, then Λ is an order (and thus is contained

in OA); indeed, Λ = A ∩Mn(Ok). Let Λ∗ be the dual to Λ,

(33) Λ∗ = {y ∈ A : |trA/k(yΛ)| ≤ 1}.

9.5. Lemma. We have (compare with (32))

disc(D) �n
volA(Λ∗)

volA(Λ)
.

Moreover, �n may be replaced by equality if k is nonarchimedean, of residue

characteristic exceeding n.

Proof. The definition of disc(D) is explicated in (14). Choose, first of all,

a k-basis f0 = 1, f1, f2, . . . , fn−1 for A so that the unit cube C on basis fi; i.e.,

(34)
∑
i

λifi, |λi| ≤ 1,

is equal to Λ (nonarchimedean case) and comparable to Λ as a convex body

(archimedean case).

If f̄i denotes the projection of fi toA/k, then detB(f̄i,f̄j) and det(tr(fifj))

differ by (2n)n−1 (see [18, 4.1.3] or §6.2). Let f∗0 , f
∗
1 , . . . , f

∗
n−1 ∈ A be the dual

basis to the fi, that is to say: tr(fif
∗
j ) = δij .
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Then the unit cube C∗ on basis f∗i equals Λ∗ (nonarchimedean case) and

is comparable with Λ∗ as a convex body (archimedean case).

On the other hand, vol(C)/vol(C∗) = det tr(fifj). Our claimed conclusion

follows. �

9.6. Lemma. Suppose k is non-archimedean, of the residue characteristic

greater than n and that disc(D) = 1. Then A is unramified (i.e. a sum of

unramified field extensions of k) and Okn is stable under OA. In particular,

(Okn)ι
−1

= λOA, for some λ ∈ A×.

Proof. Since k is non-archimedean, we have the chain of inclusions

(35) Λ ⊂ OA ⊂ O∗A ⊂ Λ∗;

our assumption and the prior lemma shows that equality holds.

That is to say, OA is self-dual with respect to the trace form; this implies

that A is unramified over k.

As for the latter statement, Okn is stable by Λ by definition, and therefore

by OA since Λ = OA. It is equivalent to say that (Okn)ι
−1

is stable under OA,

whence the final statement. �
Therefore, the quantity disc(D) measures the distance of the data D from

the most pleasant situation.

9.7. Lemma. If k nonarchimedean, let Λ× be the units of the order Λ.

Then
volA(Λ×)

volA(O×A )
≥ c(n) max(1− n/q, q−n)

Ç
disc(D)

disc(A)

å−1/2

.

Here c(n) = 1 if the residue characteristic of k exceeds n.

Proof. We have by (35)

[Λ∗ : O∗A] =
volA(Λ∗)

volA(O∗A)
= [OA : Λ] =

volA(OA)

volA(Λ)
;

hence
volA(Λ)

volA(OA)
�
Ç

disc(D)

disc(A)

å−1/2

,

where � may be replaced by equality when the residue characteristic is greater

than n. On the other hand, our normalizations of measure are so that volA(O×A )

= volA(OA).

It remains (cf. (32)) to show

volA(Λ×) ≥ max(q−n, 1− n/q)volA(Λ).

That is effected by the following comments:

(1) Let π be any uniformizer of k. Then 1 + πΛ ⊂ Λ×.

(2) The fraction of elements in Λ which are invertible is ≥ 1− nq−1.
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Both of these statements would remain valid when Λ is replaced by any sub-

order of OA, containing Ok. (1) follows, because one may use the Taylor series

expansion of (1 + πλ)−1, for λ ∈ Λ, to invert it.

Note that OA has at most n maximal ideals. If λ ∈ Λ does not belong to

any of these ideal, then it is annihilated by a monic polynomial of degree ≤ n
with coefficients in Ok and constant term in O×k . Therefore λ−1 ∈ Λ also. The

volume of each maximal ideal is, as a fraction of the volume of OA, at most

q−1. This shows (2). �

9.8. Local bounds. For any Schwartz function Ψ on kn, we shall write ΨA

for the function ιΨ on A, that is to say,

ΨA : x 7→ Ψ(xι).

Our final goal is to discuss bounds for integrals of the form∫
x∈A×

ΨA(x)ψ(x)d×Ax,

where ψ is a character of A× (we will eventually normalize it to make it in-

dependent of ι). We wish to find useful bounds for this, when Ψ is fixed and

the data D is allowed to vary. We will do so in terms of the following norms:

let Ψ̌ to be the Fourier transform of Ψ, with respect to the character e; i.e.,

Ψ̌(y) =
∫
y∈kn Ψ(y)e(xy)dy. Put

‖Ψ‖ = max

Å∫
kn
|Ψ(x)|dvolk(x),

∫
kn
|Ψ̌(x)|d”volk(x)

ã
.

The following proposition presents bounds. The reader should ignore the

many constants and focus on the fact that these bounds decay as disc(A) or

disc(D) increase. In our present language, this is the analogue of the discussion

of (25).

9.9. Proposition (Local bounds). Let ψ be a unitary character of A×,

Ψ a Schwartz function on kn. Set :

I(Ψ) = |deth|−1/2
∫
A×

Ψ(xι)|x|1/2A ψ(x)d×Ax

(note that |I(Ψ)| is independent of the choice of ι). Then :

(1) We have

(36) |I(Ψ)| �n CΨ · CV ·
Ç

disc(D)

disc(A)

å− 1
16n2

where CV = vol(O×A ), and moreover, we may take CΨ = 1 when Ψ is

the characteristic function of Okn .



854 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, and A. VENKATESH

(2) We have

(37) |I(Ψ)| �e,n CV ‖Ψ‖(disc(ψ)disc(A))−1/4,

where CV =
(

vol(OA)
vol(Ok)n

)1/2
(the notion of disc(ψ) is defined in §8.2.)

In inequality (36) the implicit constant depends at most on n and the

degree16 of k over R or Qp; in (37) it depends at most on these and on, in

addition, the additive character e of k.

9.10. Local harmonic analysis and the local discriminant. We now work

on the building of PGLn(k) and on PGL(A). In particular, to simplify no-

tation, if N1 and N2 are norms either on A or kn, dist(N1, N2) refers to the

distance between their respective homothety classes, dist([N1], [N2]), as defined

in Section 7.

Let us recall that the norm N0, defined by N0(x1, . . . , xn) = max |xi|,
defines a point in the building of PGLn(k), and the norm NA defines a point

in the building of PGL(A).

9.11. Lemma. Write A = ⊕iKi as a direct sum of fields. Let ‖·‖i = ‖·‖Ki
be the absolute value on Ki extending | · | on k. 17 For t ∈ A×, set

‖t‖ := max
i
‖ti‖i/min

i
‖ti‖i,

where t = (t1, . . . , ti, . . . ) with ti ∈ K×i . Then, for any t ∈ A×, we have

dist(tNA, NA) ≥ 1

2
log ‖t‖.

Proof. It is a consequence of the definition of dist and (19).

Let K be any of the fields Ki let NK be the canonical norm attached to K.

It is easy to see that for any t ∈ K×,

(38) NK(t−1)−1 ≤ ‖t‖K ≤ NK(t).

Given t = (t1, . . . , ti, . . . ) ∈ A×, ti ∈ K×i . Let imax and imin be, re-

spectively, those values of i for which ‖t‖i is maximized and minimized. Let

xmax ∈ A be the element whose imax-th component is 1 and whose other com-

ponents are 0 and let xmin be the element whose imin-th component is t−1
imin

and

whose other components are 0. Then by (19) applied to v1 = xmax, v2 = xmin

16We have already remarked that the implicit constants in this section may depend on

this degree without explicit mention; thus this is not denoted explicitly in (36) or (37).
17Thus ‖ · ‖i = | · |1/[Ki:k]

Ki
, in the case when k 6= C; when k = C we have simply Ki = C

and the absolute value on both k and Ki is the usual absolute value on C, according to

Section 7.1.
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and by (17) and (38), one has

dist(tNA, NA) ≥ 1

2
log

Ç
NA(txmax)

NA(xmax)

NA(xmin)

NA(txmin)

å
=

1

2
log
Ä
NKimax

(timax)NKimin
(t−1
imin

)
ä

≥ 1

2
log

Ç
‖timax‖imax

‖timin‖imin

å
=

1

2
log ‖t‖. �

The following lemma shows that the discriminant of local torus data is

related to distance-measurements on the building.

9.12. Lemma. One has the lower bound

inf
t∈A×

dist(N0, tι
−1NA) ≥ 1

4n
log

Ç
disc(D)

disc(A)

å
+On(1);

here one may ignore the On(1) term when k is nonarchimedean and of residue

characteristic larger than n.

Proof. The action of PGLn(k) on the building is proper and so the infimum

is attained. Let t0 attain the infimum and put ∆ = dist(t0ι
−1NA, N0).

We are going to use the characterization of disc(D) from Lemma 9.5.

Adjusting t0 as necessary by an element of k×, we may assume:

(39) e−∆N0 ≤ t0ι−1NA ≤ e∆N0.

Suppose that x ∈ k satisfies |x| = exp(−2∆). Such an x exists (cf. (19)

and the subsequent comment; ∆ is a half-integral multiple of log q in the non-

archimedean case). If y ∈ A has operator norm ≤ 1 with respect to N0, then

(39) shows that xy has operator norm ≤ 1 with respect to t0ι
−1NA, and vice

versa.

The set of a ∈ A which have operator norm ≤ 1 with respect to N0 is

exactly Λ.

The set of a ∈ A which have operator norm ≤ 1 with respect to t0ι
−1NA

is by definition the set of a such that for all x ∈ kn

t0ι
−1NA(xa) ≤ t0ι−1NA(x);

that is by (31)

NA(xι
−1
at0) ≤ NA(xι

−1
t0).

Using that xι
−1
at0 = xι

−1
t0a and changing xι

−1
t0 to t, we see that this set is

the set of a ∈ A satisfying for any t ∈ A

NA(ta) ≤ NA(t)

which is precisely OA.
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We conclude:

xOA ⊂ Λ ⊂ OA, O∗A ⊂ Λ∗ ⊂ x−1O∗A.

The second equation is obtained by duality from the first; here Λ∗ and O∗A are

dual in the sense of (33). Thereby,

volA(Λ∗)

volA(Λ)
≤ exp(4n∆)

volA(O∗A)

volA(OA)
,

whence the result (cf. (32) and Lemma 9.5). �

9.13. Lemma. Let R ≥ 0. Then :

(40)
vol{t ∈ A×/k× : log ‖t‖ ∈ [R,R+ 1]}

volA(O×A )/volk(O
×
k )

�n (1 +R)n−1.

Here, ‖t‖ is as in the statement of Lemma 9.11.

Proof. The archimedean case may be verified by direct computation.

Consider k nonarchimedean. We may write A = ⊕ri=1Ki as a sum of r

fields. The map

a = ⊕ai 7→
log ‖ai‖i
log(q)

gives an isomorphism of A×/O×A with a finite index sublattice Q of 1
n!Z

r. More-

over, k×/O×k is identified with the sublatticeQ′ ⊂ Q generated by (1,1,1, . . . , 1)

∈ Zr. Finally, the norm log ‖t‖ on A×/k× descends to a function on Q/Q′ and

is described explicitly as:

(µ1, . . . , µr) ∈ Q 7→ log(q)

Å
max
i
µi −min

i
µi

ã
.

The left-hand side of (40) is thereby bounded by:

#

ß
µ ∈ 1

n!
Zr/Z :

Å
max
i
µi −min

i
µj

ã
≤ R+ 1

log 2

™
,

which is bounded as indicated, since r ≤ n. �

9.14. Lemma. For any α ∈ (0, 1),

(41)

∫
t∈A×/k× exp(−αdist(N0, tι

−1NA))

volA(O×A )/volk(O
×
k )

�α,n

Ç
disc(D)

disc(A)

å− α
8n

.

Proof. Let ∆, t0 be as in Lemma 9.12. Using it, (31), Lemma 9.11, and

the triangle inequality:

(42) dist(N0, tι
−1NA) ≥ dist(tι−1NA, t0ι

−1NA)− dist(t0ι
−1NA, N0)

≥ 1

2
log(‖t/t0‖)−∆.
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To estimate (41), we split the t-integral into regions when log ‖t/t0‖ ≤ [4∆]

and log ‖t/t0‖ ∈ [R,R+1], where R ranges through integers ≥ [4∆]. Here [4∆]

is the greatest integer ≤ 4∆. Thereby, the left-hand side of (41) is bounded by

C(n)

Ç
(1 + ∆)n exp(−α∆) +

∑
R≥[4∆]

exp(α(∆−R/2))(1 +R)n−1

å
.

To conclude, we bound ∆ from below using Lemma 9.12. �

9.15. The action of GL(A) on L2(A). Let V comprise −n/2-homogeneous

functions on A; i.e.,

V = {f : A→ C : f(λx) = |λ|−n/2k f(x), λ ∈ k, x ∈ A}.

The group PGL(A) acts on V , via

gf(x) = f(xg)|det g|1/2k .

The space V possesses a (unique up to scaling) natural GL(A)-invariant inner

product. We shall normalize it as follows: for any Schwartz function Φ on A,

let ‹Φ be its projection to V , defined as‹Φ(x) =

∫
λ∈k×

Φ(λx)|λ|n/2k d×λ.

We normalize the inner product 〈·, ·〉 on V so that for any v ∈ V :

〈v,‹Φ〉 =

∫
x∈A

v(x)Φ(x)dAx.

In particular, let Φ1,Φ2 be Schwartz functions on A. We have:

∫
t∈A×/k×

〈t ·›Φ1,›Φ2〉 =

∫
t∈A×

∫
x∈A

Φ1(xt)|t|1/2A Φ2(x)dAxd
×
At

(43)

=
(∫

y∈A×
Φ1(y)|y|1/2A d×Ay

)(∫
x∈A×

Φ2(x)|x|−1/2
A dAx

)
= ζA(1)

(∫
y∈A

Φ1(y)|y|−1/2
A dAy

)(∫
x∈A

Φ2(x)|x|−1/2
A dAx

)
.

Let us note that we use, in the above reasoning and at various other points in

the text, the evident fact that the measure of A−A× is zero.

Let K ⊂ GL(A) be a maximal compact subgroup, corresponding to the

stabilizer of ιN0, i.e. in the nonarchimedean case, the stabilizer of the lattice

(Okn)ι
−1

. Let Ξ0 : GL(A)→ C be the Harish-Chandra spherical function with

respect to K. For two vectors v1, v2 ∈ V , and σ ∈ GL(A), we have the bound
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(see [11] and also equation (20)):

(44) 〈σv1, v2〉 ≤ (dimKv1)1/2(dimKv2)1/2Ξ0(σ)1/n‖v1‖2‖v2‖2
�α (dimKv1)1/2(dimKv2)1/2 exp(−αdist(σιN0, ιN0))‖v1‖2‖v2‖2

for any α < 1/n. Here distances are measured between homothety classes of

norms.

9.16. Proof of the first estimate in Proposition 9.9. Since ψ is a unitary

character, it is sufficient (by taking absolute values) to assume that ψ is trivial

and Ψ, nonnegative.

Let Ψ be a nonnegative Schwartz function on kn; put ΨA := Ψ ◦ ι, Φ the

characteristic function of the unit ball of ιN0, and Φ2 = 1OA .

These are all Schwartz functions on A. In the nonarchimedean case Φ is

the characteristic function of (Okn)ι
−1

. Also, the definition of hA (see (29))

shows that Φ2 = hAΦ. Indeed, hAΦ is the characteristic function of

{x ∈ A : N0((xhA)ι) ≤ 1} = {x ∈ A : NA(x) ≤ 1} = OA.

Consequently, hA‹Φ = |deth|1/2k
fihAΦ = |deth|1/2k

‹Φ2.

We shall proceed in the case when k nonarchimedean, the archimedean

case being similar (the only difference: one needs to decompose Ψ as a sum of

K-finite functions in the archimedean case, and the implicit constant will be

bounded by a Sobolev norm of Ψ).

Let us observe that there is a constant CΨ ≥ 0, equal to 1 when Ψ = Φ,

so that

〈‹ΨA,‹ΨA〉 ≤ C2
Ψ〈‹Φ,‹Φ〉.

Indeed for some λΨ ∈ k, one has Ψ(x) ≤ ‖Ψ‖∞1Okn (λΨx), x ∈ kn; this

bounds ΨA in terms of Φ and leads to the above-claimed bound.

For t ∈ A×/k×,

(45) |deth|1/2k 〈tΨ̃A,›Φ2〉 = 〈tΨ̃A, hA‹Φ〉 = 〈h−1
A tΨ̃A,‹Φ〉

�α ‖Ψ̃A‖2‖‹Φ‖2 dim(KΨ̃A) exp(−αdist(h−1
A tιN0, ιN0)), α <

1

n
.

We have applied (44) with v1 = Ψ̃A, v2 = ‹Φ, σ = h−1
A t; observe that our choice

of Φ means dim(K‹Φ) = 1.

We observe, using the definitions (28), (29) and the compatibility (31),

that we have dist(h−1
A tιN0, ιN0) = dist(N0, t

−1ι−1NA). To write out every

step, this follows from the chain of equalities

dist(h−1
A tιN0, ιN0) = dist(tιN0, hAιN0) = dist(tιN0, NA) = dist(N0, ι

−1t−1NA)

= dist(N0, t
−1ι−1NA) = dist(tN0, ι

−1NA) = dist(N0, t
−1ι−1NA).
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We now integrate over t ∈ A×/k×. By (43) and (45) we have, for any

α < 1
n ,

(46)

∣∣∣∣∫ Ψ(xι)|x|−1/2
A dAx

∣∣∣∣ ∣∣∣∣∫ Φ2(x)|x|−1/2
A dAx

∣∣∣∣ = ζA(1)−1
∫
A×/k×

〈t‹Ψ,‹Φ〉
�n,α CΨ| deth|−1/2

k (dim GLn(Ok).Ψ)‖‹Φ‖22 ∫
t∈A×/k×

e−αdist(N0,t−1ι−1NA).

We show below that

(47)
‖‹Φ‖22∫

x∈A Φ2(x)|x|−1/2
A dAx

�n | deth|kvolk(O
×
k ).

Combining (46) and (47) with Lemma 9.14, we establish the first claim of

Proposition 9.9.

To prove (47), proceed as follows: First of all,∫
y

Φ2(y)|y|−1/2
A dAy =

∫
OA

|y|−1/2
A dAy = volA(O×A )ζA(1/2).

Noting that ‹Φ(x) = ιN0(x)−n/2
∫
|λ|k≤1 |λ|

n/2
k d×λ, we see:

‖‹Φ‖22 =

∫
|λ|k≤1

|λ|n/2k d×λ ·
∫
ιN0(x)≤1

ιN0(x)−n/2dAx

= volk(O
×
k )ζk(n/2)

∫
ιN0(x)≤1

ιN0(x)−n/2dAx.

Noting that ιN0 = h−1
A NA, we have∫

ιN0(x)≤1
ιN0(x)−n/2dAx =

∫
NA(xh−1

A )≤1
NA(xh−1

A )−n/2dAx,

so that, making the change of variable x′ = xh−1
A , the previous integral equals

|dethA|k
∫
NA(x)≤1

NA(x)−n/2dAx = |deth|k
∫

OA

NA(x)−n/2dAx.

For k nonarchimedean, the last integral equals (π denote an uniformizer of k)∑
j≥0

|πj |−n/2k

∫
NA(x)=|πj |k

dAx =
∑
j≥0

|πj |−n/2k

∫
NA(xπ−j)=1

dAx

= vol({x, NA(x) = 1})
∑
j≥0

|πjk|
n/2

= vol({x, NA(x) = 1})ζk(n/2).

Combining these, the left-hand side of (47) is bounded by:

�n | deth|kvolk(O
×
k )

volA({x ∈ A : NA(x) = 1})
volA(O×A )

.
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The last ratio is easily seen to be bounded above by (1 + n/(q − 1)); in par-

ticular, it is bounded above in terms of n and the claim (47) follows. �

9.17. Proof of the second estimate in Proposition 9.9. For any character

ψ of A× we set ψs(x) = ψ(x)|x|sA. Let us comment that the notation ψ−1
s

always denotes the character x 7→ ψ−1(x)|x|sA. In other words, we apply the

operation of twisting by |x|sA after the operation of inverting ψ.

The following result is proved in Tate’s thesis. See [43, (3.2.1), (3.2.6.3),

(3.4.7)].

9.18. Lemma (Local functional equation). Let Φ be a Schwartz function

on A, and set “Φ(x) =

∫
y∈A

eA(xy)Φ(y)dAy.

Then, for a unitary character ψ of A×,

(48) ε(A,ψ, s, eA)

∫
A× Φ(x)ψs(x)d×Ax

L(A,ψ, s)
=

∫
A×
“Φ(x)ψ−1

1−s(x)d×Ax

L(A,ψ−1, 1− s)
,

where s 7→ ε(A,ψ, s, eA) is a holomorphic function of exponential type. More

precisely, both sides of (48) are holomorphic, and

(1) If ”volA denotes the Haar measure dual to volA under the Fourier trans-

form18, then |ε(A,ψ, s, eA)|2 = volA
v̂olA

when <(s) = 1/2.

(2) |ε(A,ψ, s, eA)| = |ε(A,ψ, 0, eA)|(δ(e)ndisc(ψ)disc(A))−<(s), where δ(e)

is a positive constant depending on the additive character e of k.

We remark that one may take δ(e) = 1 in the unramified case, i.e. when

k is nonarchimedean and e is an unramified character of k.

We now proceed to the proof of the second estimate in Proposition 9.9.

Recall that ψ is unitary. To ease our notation, we suppose (as we may do,

without loss of generality) that ‖Ψ‖ = 1.

For <(s) = 1, we have:

(49)

∣∣∣∣∫
A×

ΨA(x)ψs(x)d×Ax

∣∣∣∣ ≤ ζA(1)
ι∗volA
volkn

�n
ι∗volA
volkn

.

For <(s) = 0 we apply (48) to reduce to (49), obtaining:

(50)

∣∣∣∣∣
∫
A× ΨA(x)ψs(x)d×Ax

L(A,ψ, s)/L(A,ψ−1, 1− s)

∣∣∣∣∣�e,n (disc(ψ)disc(A))−1/2,

where the constant implied depend at most on the additive character e of k

and on n

18With our choice of normalizations, v̂olA = volA, but we prefer to phrase the Lemma in

a fashion that is independent of choice of measures.
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We may now apply the maximum modulus principle to interpolate between

(49) and (50). The simplest thing to do would be to apply the maximum mod-

ulus principle to the holomorphic quotients that occur in (48). This would be

fine for nonarchimedean places; however, for archimedean places, this would

run into some annoyances owing to the decay of Γ-factors. We proceed in a

slightly different way.

Let F (s) be an analytic function in a neighbourhood of the strip 0 ≤
<(s) ≤ 1 so that F (s)L(A,ψ, s) is holomorphic. We shall choose F (s) momen-

tarily. Let U be the right-hand side of (49), and V the right-hand side of (50).

Take

h(s) := U−sV −(1−s)F (s)

∫
A×

ΨA(x)ψs(x)d×Ax.

Note that h(s) is holomorphic in 0 ≤ <(s) ≤ 1. We have

|h(s)| �e,n

|F (s)|,<(s) = 1.
|F (s)L(A,ψ,s)|
|L(A,ψ−1,1−s)| ,<(s) = 0.

(1) k nonarchimedean. We choose F (s) = L(A,ψ, s)−1. Then

sup
<(s)=1

|F (s)| �n 1,

whereas sup<(s)=0
|F (s)L(A,ψ,s)|
|L(A,ψ−1,1−s)| is also bounded by ζA(1).

Therefore, by the maximum modulus principle, one has for <(s) =

1/2, |h(s)| �e,n 1. On the other hand, for <(s) = 1/2, |F (s)| ≥
ζA(1/2)−1. Therefore, for <(s) = 1/2,∣∣∣∣∫

A×
ΨA(x)ψs(x)d×Ax

∣∣∣∣�n,e

√
UV .

(2) k archimedean. In explicit terms, L(A,ψs) is a product of a finite

number of Γ-factors ∏
i

ΓKi(s+ νi),

where <(νi) are nonnegative integers, and

(51) ΓK(s) =

π−s/2Γ(s/2) = ΓR(s) if K = R
2(2π)−sΓ(s) = ΓR(s)ΓR(s+ 1) if K = C.

We take F (s) =
∏
<(νi)=0(s+νi)(s+νi−100)−1. Then sup<(s)=1 |F (s)|

and sup<(s)=0
|F (s)L(A,ψ,s)|
|L(A,ψ̌,1−s)| are both bounded above by functions of

[A : R] ≤ 2n. The first is clear; for the second:

|F (s)L(A,ψ, s)|
|L(A, ψ̌, 1− s)|

=
∏

<(νi)=0

s+νi
(s+νi−100)

ΓKi(s+νi)

ΓKi(1−s+νi)
.
∏

<(νi)6=0

ΓKi(s+ νi)

ΓKi(1− s+ νi)
.
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It is not hard to see that the right-hand side is, indeed, bounded above

when <(s) = 0, by a function of [A : R].

We conclude that, for <(s) = 1/2, |h(s)| �e,n 1. But, for <(s) =

1/2, we also see |F (s)| �n 1. We conclude that for <(s) = 1/2:∣∣∣∣∫ ΨA(x)ψs(x)d×Ax

∣∣∣∣�n,e

√
UV .

We have therefore shown that, for ‖Ψ‖ = 1,

| deth|−1/2
∣∣∣∣∫ ΨA(x)ψ(x)|x|1/2A d×A(x)

∣∣∣∣
�e,n | deth|−1/2

Å
ι∗volA
volkn

ã1/2

(disc(ψ)disc(A))−1/4.

Taking into account (29), we see that the proof of the second assertion of

Proposition 9.9 is complete.

10. Eisenstein series: definitions and torus integrals

In this section, we define the Eisenstein series on GLn and give a formula

(Lemma 10.4) for their integrals over tori. This formula will later be used to

derive (6). This section is included merely to make the paper self-contained.

Indeed these computations go back to Hecke (see also [50]).

10.1. Eisenstein series — definition and meromorphic continuation. We

follow the notation of Section 8 throughout this section.

For each place v of F , let Ψv be a Schwartz function19 on Fnv . We suppose

that, for almost all v, the function Ψv coincides with the characteristic function

of On
F,v. Let Ψ :=

∏
v Ψv be the corresponding Schwartz function on An.

Put, for g ∈ GLn(A) and χ ∈ Ω(CF ),

(52) EΨ(χ, g) =

∫
t∈A×/F×

∑
v∈Fn−{0}

Ψ(vtg)χ(t)d×t.

The integral is convergent when <χ is sufficiently large. Note that EΨ(χ, g)

has central character χ−1.

To avoid conflicting notation, we shall set occasionally, for s ∈ C

EΨ(χ, s, g) := EΨ(χs, g) = EΨ(χ| · |sA, g).

Let [·, ·] be a nondegenerate bilinear pairing on Fn. The pairing [·, ·] gives

also a nondegenerate bilinear pairing An × An → A.

19Recall that this has the usual meaning if v is archimedean, and means: locally constant

of compact support, otherwise.
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Let g∗ be defined so that [v1g,v2g
∗] = [v1,v2]. Therefore |det g|A|det g∗|A

= 1 for g ∈ GLn(A). The pairing defines a Fourier transform:“Ψ(v∗) =

∫
An

Ψ(v)e[v,v∗] dv;

in particular, the Fourier transform of v 7→ Ψ(vtg) is

v 7→ |t|−nA | det g|−1
A
“Ψ(vt−1g∗).

Recall that Poisson summation formula shows that∑
v∈Fn

Ψ(v) =
∑

v∈Fn
“Ψ(v).

10.2. Proposition. EΨ(χ, g) continues to a meromorphic function in the

variable χ, with simple poles when χ = 1 and χ = | · |nA. One has

resχ=1EΨ(χ, g) = −vol(A(1)/F×)Ψ(0)

resχ=|·|nAEΨ(χ, g) = |det g|−1
A vol(A(1)/F×)

∫
An

Ψ(x)dx.

Moreover,

|det g|AEΨ(χ, g) = E
Ψ̂

(χ−1, n, g∗).

Proof. Split the defining integral EΨ(χ, g) into |t|A ≤ 1 and |t|A ≥ 1. Ap-

ply Poisson summation to the former, and then substitute t← t−1. The result,

valid for <χ� 1, is:

(53)

∫
|t|A≥1

d×t

( ∑
v∈Fn

Ψ(vtg)−Ψ(0)

)
χ(t)

+ |det g∗|A
∫
|t|A≥1

d×t

( ∑
v∈Fn

“Ψ(vtg∗)− “Ψ(0)

)
χ−1
n (t)

−Ψ(0)

∫
|t|A≥1

χ(t)d×t+ “Ψ(0)

∫
|t|A≤1

χ−n(t)d×t.

The last two terms can be explicitly evaluated. If χ is of the form |x|sA, then

they are equal to −Ψ(0)
s vol(A(1)/F×) and | det g∗|A

∫
Ψ

s−nvol(A(1)/F×), respec-

tively; otherwise, they are identically zero. The former two terms define holo-

morphic functions of χ. �

10.3. Torus integrals of Eisenstein series. Put ΨK = Ψ(xιgD), a function

on AK . Let us recall we have fixed global torus data D = (K ⊂ Mn(F ), gD ∈
GLn(A)).
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10.4. Lemma (Integration of Eisenstein series over a torus). Let ψ ∈
Ω(CK) be so that χ = ψ|F . Then :

(54)

∫
TK(F )\TK(A)

EΨ(χ, tgD)ψ(t)dt =

∫
A×K

ΨK(y)ψ(y)d×y.

Let us observe that, owing to the restriction χ = ψ|F , the map t 7→
EΨ(χ, tg)ψ(t) indeed defines a function on TK(F )\T(A).

The integral on the right-hand side can be expressed as a product over

places of K; for almost all places, the resulting (local) integral equals an L-

function. This is explicitly carried out in (62). Thus, the lemma indeed gives

the reduction of torus integrals of Eisenstein series to L-functions, as discussed

in Section 2.

Proof. We unfold.∫
TK(F )\T(A)

ψ(t)EΨ(χ, tgD)dt(55)

=

∫
u∈A×/F×

du

∫
t∈TK(F )\TK(A)

dtψ(t)
∑

x∈Fn−{0}
ΨgD (x.u.t)χ(u)

=

∫
t∈(A×K/K×)/(A×/F×)

∫
u∈A×/F×

∑
x∈K×

Ψ((x.u.t)ιgD)χ(u)ψ(t)dudt

=

∫
t∈A×K/K×

∑
x∈K×

ΨK(x.t)ψ(t)d×t =

∫
t∈A×K

ΨK(t)ψ(t)d×t. �

10.5. Lemma (Class number formula). The measure of TK(F )\TK(A)

equals

n
Ress=1ζK(s)

vol(A(1)/F×)
.

Proof. We set g = 1, ψ = | · |sAK , χ = | · |nsA and take residues in (54) as

s→ 1.

We first remark that, for almost all v, the local integral
∫
K×v

ΨK,v(t)|t|svd×t
equals the local zeta function ζK,v(s) :=

∏
w|v ζKw(s). Taking residues yields:

vol(TK(F )\TK(A)) · vol(A(1)/F×)

n
·
∫
An

Ψ

= Ress=1ζK(s).
∏
v

∫
K×v

ΨK,v(t)|t|vd×t
ζK,v(1)

,

where almost all factors in the infinite product are identically 1. The result

follows from the choice of the measure. �

11. Eisenstein series: estimates

Let us explain by reference to Section 2.7.2 the contents of this section:
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In Section 10 we have established the general form of (6). We are going

to assume known a subconvexity bound (57), which one can see as a general-

ization of the bound (7)) from the introduction. The results of Section 9 in

effect establish the analog of (8).

Putting these together, we shall obtain in the present section — Proposi-

tion 11.3 — a slightly disguised form of (5). This disguised form is translated

to a more familiar S-arithmetic context in the next section.

11.1. Assumed subconvexity. Our result makes the assumption of a certain

sub-convexity estimate. In order to state what this means, we need to recall

the notion of archimedean conductor. For a character ω of a archimedean local

field k, we define the archimedean conductor

(56) C(ω) =
∏
i

(1 + |νi|),

where the νi ∈ C are so that L(ω, s) =
∏
i ΓR(s + νi), say. (See (51) for def-

initions of ΓR.) If ω is unitary, then <(νi) ∈ 1
2N. For χ ∈ Ω(CF ), and v

archimedean, we put Cv(χ) to be the archimedean conductor of χ|Fv , and let

C∞(χ) =
∏
v|∞Cv(χ). Similarly, one defines C∞(ψ) for ψ ∈ Ω(CK).

Given a unitary character ψ ∈ Ω(CK), we shall assume known the follow-

ing bound

(57) |L(K, s, ψ)| � C∞(ψs)
Ndisc(K)1/4−θdisc(ψ)1/4−θ,<(s) = 1/2

for some constants N , θ > 0 which depend only on F and n = [K : F ].

The validity of (57) is a consequence of the generalized Riemann hypoth-

esis. The generality in which (57) is known unconditionally is fairly slim, but

it is enough for some applications. For a recollection of what is known uncon-

ditionally, see Appendix A.

11.2. The main estimate. In this section, we use notation as in Section 8.

We regard F, n as fixed throughout; thus we allow implicit constants � to

depend both on n and F . In particular, any discriminants depending only on

F , e.g. discv(F ), will often be incorporated into � notation.

For typographical simplicity, we write Dψ, DD , DK , DF in place of disc(ψ),

disc(D), etc. in the following Proposition.

11.3. Proposition. Let D be global torus data, given by K ⊂Mn(F ) and

gD ∈ A×K\GLn(A). Let Ψ be a Schwartz function on An and ψ ∈ Ω(CK) a

normalized unitary character, χ = ψ|F .
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Suppose known (57). There exists β > 0, depending on n and the exponent

θ of (57), so that : for <(s) = n/2 and any M ≥ 1, one has

(58)

∣∣∣∣∣∣ |det gD |
s/n
A

vol(TK(F )\TK(A))

∫
TK(F )\TK(A)

ψs/n(t)EΨ(χ, s, tg)dt

∣∣∣∣∣∣
�Ψ,M

C∞(ψs/n)N

C∞(χs)M
D−βψ D−βD .

The main point of this is the decay in Dψ, DD ; the reader should ignore the

various factors of C∞, which are a technical matter. In words, (58) asserts that

varying sequence of homogeneous toral sets, on GLn, become equidistributed

“as far as Eisenstein series are concerned,” if we suppose the pertinent sub-

convexity hypothesis.

In terms of the discussion of the introduction, it is (58) that proves (5).20

Proof. Let us begin by clarifying volume normalizations. As in Section 8,

we fix an identification ι : K → Fn which is an isomorphism for the right

K-module structures (see §8.3).

Define, for each v, local torus data Av and identifications ιv according to

the discussion around (22). It is important to keep in mind that Av is not

(K ⊗ Fv) but rather its conjugate by gv; similarly ιv is not simply “ι ⊗F Fv”
but is rather twisted by gv.

The discussion of (28) yields elements hv ∈ GLn(Fv); e.g., for v nonar-

chimedean, we have: On
Fv
h−1
v = (OAv)

ιv .

Observe that

(59)
∏
v

| dethv|v| det gD ,v|v � (disc(K/F ))1/2.

To verify (59), note that ι : K → Fn induces

ιA : AK = K ⊗F A→ An.

This identification is measure-preserving, because, with our choice of measures,

both A/F and AK/K have measure 1. In view of the definition (22) of ιv, this

remark implies
∏
v | det gD ,v|v

ιv∗volAv
volFnv

= 1. Therefore, taking product of (29)

over all places v, ∏
v

vol(OKv)

vol(On
Fv

)
=
∏
v

| det gD ,v|−1
v |dethv|−1

v

which, in combination with (23), yields our claim. (Recall that OF,v and OK,v

are defined, at archimedean places, by the unit balls for suitable norms; cf.

§9.3).

20(58) also delivers uniformity in the ψ-variable; e.g., Section 1.6.2 would use this aspect.
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Without loss of generality Ψ = Ψ∞×
∏
v Ψv where, for each finite place v,

Ψv is the characteristic function of an Ov-lattice in Fnv . (In the general case, one

may express Ψ as a sum of such, the implicit cost being absorbed into the�Ψ.)

Let B be the union of the following sets of places:

(1) B∞: v is archimedean.

(2) Bram: discv(ψ)discv(D) > 1, or Fv is ramified over Q, or the residue

field at v has size ≤ n.

(3) BΨ: Ψv does not coincide with the characteristic function of On
F,v.

Let us note that

(60) exp(|B|)�F,Ψ (DψDD)ε,

this being a consequence of the fact that the number of prime factors of an

integer N is o(logN).

We denote by L(B) an L-function with the omission of those places in-

side B. Suppose <(s) = n/2. In view of (54),

|det g|1/2A

∣∣∣∣∣
∫
TK(F )\TK(A)

EΨ(χ, s, tg)ψs/n(t)

∣∣∣∣∣
factors as:∏

v

|det gD ,v|1/2v

∣∣∣∣∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣(61)

= |L(B)(K,ψs/n)|

·
∏
v/∈B
|det gD ,v dethv|1/2v

∣∣∣∣∣∣∏v∈B | det gD ,v|1/2v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣∣
= |L(B)(K,ψs/n)|

·
∏
v

|det gD ,v dethv|1/2v

∣∣∣∣∣∣∏v∈B | dethv|−1/2
v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣∣ .
Here ΨK,v(x) := Ψv(x

ιgD ,v), so that
∏
v ΨK,v = ΨK . Moreover, we have

used the following evaluation for v /∈ B: For such v, Ψv is the characteris-

tic function of On
F,v, and Lemma 9.6 implies that (On

F,v)
ι−1
v = λ1OAv ,v (some

λ1 ∈ A×v ); because of the definition (22) of ιv, this means that there is λ ∈ K×v
with (λOK,v)

ιgD ,v = On
F,v. Thus x 7→ Ψv(x

ιgD ,v) coincides with the char-

acteristic function of λOK,v. Because, by assumption, both ψ and K/F are

unramified at such v,

(62) |det gD ,v|s/nv
∣∣∣∣∫ ΨK,v(t)ψs/n(t)d×t

∣∣∣∣ = |Lv(K,ψ, s/n)||λdet(gD ,v)|s/nv .

By (22) and the discussion preceding (29), (OK,v)
ιgD ,v = (OAv)

ιv = On
Fv
h−1
v .

Comparing this with (λOK,v)
ιgD ,v = On

F,v, we deduce that |λv|v = | det(hv)|v.
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The left-hand side of (62) thereby has the same absolute value as

|det gD ,v dethv|s/nv Lv(K,ψs/n),

concluding our justification of (61).

From the assumed subconvexity bound (57), together with (60),

(63) |L(B)(K,ψs/n)| �Ψ C∞(ψs/n)N (DKDψ)1/4−θ, <(s) = n/2.

Proposition 9.9, with our measure normalizations, and after identifying a

Kv-integral to an Av-integral in the obvious way, shows for arbitrary M ≥ 1:

(64)

∣∣∣∣∣∣∏v∈B |dethv|−1/2
v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣∣
�M,Ψ,ε (DψDD)ε

C∞(χs)
−MD

−1/4
K (DψDK)−1/4,

D
−1/2
K (DD/DK)−

1
16n2 .

The factor C∞(χs)
−M we have interposed on the right-hand side amounts

to “integrating by parts” at archimedean places, before applying Proposi-

tion 9.9; it will be useful for convergence purposes later. Indeed, suppose

v is archimedean. The integral of (64) is unchanged if we replace Ψv(x) by

ψs/n(λ)Ψv(λx), for λ ∈ F×v . On the other hand, ψ|F = χ, so ψs/n(λ) =

χv(λ)|λ|sv (λ ∈ F×v ). Thus if ν is any probability measure on F×v , the integral

of (64) is unchanged by the substitution:

Ψv 7→ Ψ′v,Ψ
′
v(x) =

∫
λ

Ψv(λx)χs(λ)dν(λ).

Now compare ‖Ψ′v‖ and ‖Ψv‖, the norm ‖ ·‖ being defined as in the the second

statement of Proposition 9.9. An elementary computation shows that, for a

smooth measure ν, we must have:

(65) ‖Ψ′v‖ �Ψv Condv(χs)
−M .

Let us note that the implicit constants here depend on higher derivatives of

Ψv; this is permissible.21

21 In explicit terms, (65) for v real amounts to a bound of the type:∫
x∈R

∣∣∣∣∣
∫
1/2.λ.2

f(λx)|λ|itdλ

∣∣∣∣∣�f (1 + |t|)−M ,

for a Schwartz function f , which is easily verified by integration by parts.
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Combining (63), (64) and (59), we see that for <(s) = n/2:

(66)

∣∣∣∣∣| det gD |
1/2
A

∫
TK(F )\TK(A)

EΨ(χ, s, tg)ψs/n(t)d×t

∣∣∣∣∣
�M,Ψ,ε C∞(ψs/n)N (DψDD)ε

C∞(χs)
−MD−θK D−θψ ,

D
1/4
ψ D−θK (DD/DK)−

1
16n2 .

Pick 0 < p < 1. Using the obvious fact min(U, V ) ≤ UpV 1−p, we may

replace the right-hand side (ignoring ε-exponents) by:

(67) C∞(ψs/n)NC∞(χs)
−pMD−θK D

−θp+ 1−p
4

ψ (DD/DK)−
1−p
16n2

≤ C∞(ψs/n)NC∞(χs)
−pMD−aD D−bψ ,

where a = min( 1−p
16n2 , θ), b = θp − 1−p

4 . For p sufficiently close to 1, these are

all positive. Making M arbitrarily large, and using Lemma 10.5 together with

bounds for Dedekind ζ-functions, yields the desired conclusion.

12. The reaping: a priori bounds

In this section, we translate Proposition 11.3 into a form that very explic-

itly generalizes (5).

The result is Proposition 12.5. The work has already been done; this

section simply translates between adelic and S-arithmetic.

We begin by explicating the connection of the Eisenstein series EΨ with the

classical “Siegel-Eisenstein” series, in the case when the base field is Q. We then

carry out the analogue in an S-arithmetic setting over an arbitrary base field F .

12.1. Explications over Q. The (Siegel)-Eisenstein series on the quotient

PGLn(Z)\PGLn(R) often appears in the following guise. Let f be a Schwartz

function on Rn. To each L ∈ PGLn(Z)\PGLn(R) thought of as a lattice

L ⊂ Rn of covolume 1, we associate the number

(68) Ef (L) :=
∑

v∈L−{0}
f(v).

We shall explicate the connection of this construction with the Eisenstein

series that we defined previously.

Specialize to the case F = Q, χ = | · |sA. We take Ψv to coincide with the

characteristic function of Znv for all finite v, and Ψ∞ = f . Define fs on Rn via

the rule

fs(v) =

∫
t∈R×

|t|sf(vt)d×t.
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Then fs satisfies the transformation property fs(λv) = |λ|−sfs(v). Taking

into account the fact that the natural map R>0×
∏
p Z×p → A×Q/Q× is a home-

omorphism, we see that for g∞ ∈ GLn(R),

| det g∞|s/nEΨ(| · |s, g∞) = | det g∞|s/n
∑

v∈Zn.g∞
fs(v).

Note that, by Mellin inversion, f =
∫
s fsds, where the s-integration is

taken over a line of the form <(s) = σ � 1. Consequently, the Siegel-Eisenstein

series (68) corresponds to the function on PGLn(Q)\PGLn(A) defined by

g 7→
∫
<(s)=σ�1

| det g|s/nA EΨ(s, g)ds.

12.2. S-arithmetic setup. We revert to the general setting of a number

field F . We shall henceforth pass from an adelic setup, to an S-arithmetic

setup.

Fix, therefore, a finite set of places S, containing all archimedean ones.

Set FS =
∏
v∈S Fv. We assume that S is chosen so large that

A× = F×F×S
∏
v/∈S

O×F,v.

Under these assumptions, we may identify A×/F×∏v/∈S O×F,v to F×S /O
×,

where O := F ∩∏v/∈S OF,v. By Dirichlet’s theorem, the quotient of O by roots

of unity comprises a free abelian group of rank |S| − 1.

Similarly, making use of the strong approximation theorem for the group

SLn, we can identify

PGLn(F )\PGLn(A)/
∏
v/∈S

PGLn(OF,v)

to the quotient

PGLn(O)\PGLn(FS).

If µ is a measure on PGLn(F )\PGLn(A), then we shall often abuse notation

and identify µ with the projected measure on PGLn(O)\PGLn(FS).

12.3. The S-arithmetic Eisenstein series. It will take us a little work

to unravel the Eisenstein series into a form which we can easily use in the

S-arithmetic case. There will be some complications arising from the failure

of strong approximation for PGLn.

Let F
(1)
S consist of those elements of F×S with |x| = 1. Then F×S can be

identified with F
(1)
S × R>0. In this way, we can identify a character of the

compact group F
(1)
S /O×, to a character of F×S /O

×: by extending trivially on

R>0. Thus the group of all normalized characters of CF , unramified away from

S, is identified to the character group of F
(1)
S /O×.
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We have already normalized measures on F×S . We normalize the measure

on F
(1)
S by differentiating along fibers of the map F×S → R>0 given by x 7→ |x|;

here we equip R>0 with the measure dλ
λ . The measure of F

(1)
S /O× then equals

the measure of A(1)/F×.

We now construct the S-arithmetic version of the Eisenstein series. Let

ΨS is a Schwartz function on FS ; put Ψ = ΨS×
∏
v/∈S 1Onv . Let χ be a character

of F
(1)
S /O×, identified, via the remarks above, with a character of A×/F×.

Set

EΨ(χ, g) =

∫
<(s)=2n

EΨ(χ, s, g)|det g|s/nA
ds

2πi
.

Then, for g ∈ GLn(FS), EΨ(χ, g) equals:

(69)

∫
t∈A×/F×:|t|nA=| det g|A

χ−1(t)
∑

v∈Fn−{0}
Ψ(vt−1g)

=

∫
t∈F×S /O×:|t|nFS=|det g|FS

χ−1(t)
∑

v∈On−{0}
ΨS(vt−1g).

In the first expression, the t-integral is taken with respect to the measure that

is transported from the measure on A(1)/F×; in the second expression, the

t-integral here is taken over a compact abelian Lie group of dimension |S| − 1,

with respect to the measure previously discussed.

Fix a ∈ F (1)
S and put, for g ∈ GLn(FS),

EΨ,a(g) =
1

vol(F
(1)
S /O×)

∑
χ:F

(1)
S /O×→S1

χ(adet g)EΨ(χn, g)(70)

=
∑

tn=a det g

t∈F×S /O×

∑
v∈On−{0}

ΨS(vt−1g).

Indeed, the χ-sum restricts to those t ∈ F×S /O× so that tn and adet g differ by

an element of R>0; however, since |tn|FS = |a det g|FS , this forces tn = adet g.

The t-sum is finite, for the quotient F
(1)
S /O× is a compact abelian Lie group.

The function EΨ,a(g) defines a function on PGLn(O)\PGLn(FS); it is the

S-arithmetic version of our degenerate Eisenstein series.

12.4. Bounding the mass of EΨ,a. In order to bound the µD -measures of

functions of the type EΨ,a, via Proposition 11.3, we require a subconvex bound

for the L-functions L(K,ψ), when ψ is pulled back from a fixed character of

F via the norm map, i.e. we require the following estimate for <(s) = 1/2:

(71) |L(K,χ ◦NK/F , s)| � (C∞(χs)Dχ)N D
1/4−η
K , χ ∈ Ω(CF ) unitary
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for some constants N, η > 0 which depend at most on F and n = [K : F ] .

The quantity C∞(χ) is defined as in (56). Notice that unlike (57), we do not

require in (71) a subconvex bound in the “Dχ-aspect”.

The bound (71) is known in more cases than (57). For instance, it is

known22 when F = Q and [K : Q] ≤ 3 (cf. Appendix A).

12.5. Proposition. Suppose (71) is known. Then, for homogeneous toral

data D ,

(72)

∣∣∣∣∣µD(EΨ,a)− δ
∫
AnF

Ψ

∣∣∣∣∣�Ψ disc(D)−β

for some β > 0 — depending on n and the exponent η of (71), and where

δ = δa ∈ Q belongs to a finite set of rational numbers, depending on S, F and n.

The δ arise from the “connected components.” We could be a little more

precise about their value, but there is no point. This result implies the gen-

eralization, to an arbitrary base field F and an S-arithmetic setting, of (5),

discussed in the introduction.

Proof. The data D is defined by a field K ⊂ Mn(F ) and an element

gD ∈ GLn(A).

Recall

EΨ(χ, g) =

∫
<(s)�1

EΨ(χ, s, g)|det g|s/nA
ds

2πi
,(73)

EΨ,a(g) =
1

vol(F
(1)
S /O×)

∑
χ:F

(1)
S /O×→S1

χ(a det g)EΨ(χn, g).

As we have already commented, we are going to identify µD with its

projection to PGLn(O)\PGLn(FS). This being so, let us consider µD(EΨ,a).

Shift contours to <(s) = n/2 in the defining integrals and apply the bounds

of Proposition 11.3. (There are no concerns with convergence; the support of

µD is compact.) The function EΨ(χn, s, g) has a pole (by Proposition 10.2)

precisely when χn is the trivial character and s ∈ {0, n}; moreover, Proposi-

tion 10.2 computes the residue in those cases.

The result is

(74) µD(EΨ,a) =
∑

χ:F
(1)
S

/O×→S1

χn=1

µD(χ(a det g))

∫
An

Ψ(x)dx+ Error

22even in the Dχ-aspect
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(note that g 7→ χ(a det g) indeed defines a function on PGLn(O)\PGLn(FS)),

and

|Error| � 1

vol(F
(1)
S /O×)

(75)

×
∑

χ:F
(1)
S /O×→S1

max
<(s)=1/2

(1 + |s|)2
∣∣∣µD

Ä
EΨ(χn, s, ·)χs/n ◦ det

ä∣∣∣ .
For χ as above, put ψ := χ ◦NK/F , a character of CK . We have

|µD

Ä
EΨ(χn, s, ·)χs/n ◦ det

ä
|

= | det gD |
s/n
A

∣∣∣∣∣
∫
TK(F )\TK(A) ψs/n(t)EΨ(χn, s, tgD)dt

vol(TK(F )\TK(A))

∣∣∣∣∣ .
By (the proof of) Proposition 11.3, we have under (71) for any M > 1 and

some β,N > 0

|µD

Ä
EΨ(χn, s, ·)χs/n ◦ det

ä
| �M,Ψ (C∞(χns ))−MDN

χ D
−β
D .

We have utilized the notation χns := (χn)s, the character x 7→ χ(x)n|x|s.
We have used the fact that, in the present context, C∞(χns ) and C∞(ψs/n) are

bounded within powers of each other.

Taking M large enough, we obtain the following bound:23

Error�Ψ D−βD .

Let us now analyze the right-hand side of (74). The set of elements of

CF of the form NK/F (x). det gD (for some x ∈ CK) is a coset of a subgroup

of CF of finite index. It projects to a coset of a subgroup of F×S /O
× which

contains the nth powers, which we may identify with a coset of a subgroup of

the finite group F×S /O
×(F×S )n. Call this subgroup Q and the pertinent coset

bQ. If χ : F×S /O
× → S1 is so that χn = 1, then

µD(χ(a det g)) =
1

|Q|
∑
x∈Q

χ(abx).

Therefore, the coefficient of
∫

Ψ, on the right-hand side of (74), is given by:∑
χn=1

1

|Q|
∑
x∈Q

χ(abx).

In particular, this lies in a finite set of rational numbers. �

23The number of possibilities for χ|F∞ is, in general, infinite. However, if χ contributes

nontrivially to Error, then Dχ is bounded above depending on Ψ. Moreover, the number of

such χs with inf<(s)=1/2 C∞(χns ) ≤ T is bounded polynomially in T .
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13. Proof of Theorem 4.9 and Theorem 4.8

Let F be a number field, and let Di be a sequence of homogeneous toral

data on PGLn over F . Let Yi be the associated homogeneous toral sets, and

µi = µDi the corresponding probability measures. Recall that Di is defined by

a torus Ti ⊂ PGLn together with gi ∈ PGLn(A). Let Ki be the corresponding

(degree n) field extensions. See Section 6.

When convenient we may drop the subscript i, referring simply to D , µD ,

K, T, etc.

13.1. Bounds on the mass of small balls and the cusp. Fix a set of repre-

sentatives 1 = a1, . . . , ar ∈ F (1)
S for F×S /(F

×
S )nO×. Such representatives may

indeed be chosen in F
(1)
S .

Take x ∈ PGLn(O)\PGLn(FS); we say that a lattice in FnS (i.e. an O-

submodule of rank n) corresponds to x if it is of the form On.g0t
−1
0 where g0 is

a representative for x in GLn(FS); and t0 ∈ F×S /O× is so that tn0 = det(g0)ai,

some 1 ≤ i ≤ r. There are only finitely many lattices corresponding to a

given x.

We say a set Q in FnS is nice if there exists a Schwartz function ΨS on FnS
so that ΨS ≥ 1 on Q with

∫
ΨS ≤ 2vol(Q).

13.2. Lemma. Let Q ⊂ FnS be nice; set LQ ⊂ PGLn(O)\PGLn(FS) to

comprise those x ∈ PGLn(O)\PGLn(FS) so that a lattice corresponding to x

contains an element of Q.

If (71) is known, then

(76) µD(LQ)�F,S,n vol(Q) +OQ(disc(D)−β).

Proof. Indeed, choose ΨS as remarked. As is clear from (70), the func-

tion
∑r
i=1EΨ,ai dominates the characteristic function of LQ. The result is a

consequence of Proposition 12.5. �
Let ε = (εv)v∈S be a choice of εv ∈ (0, 1) for each v ∈ S. Set ‖ε‖ =∏

v∈S |εv|v. For each v ∈ S, let Bv(εv) be an εv-neighbourhood of the identity

in PGLn(Fv). Here, we equip PGLn(Fv) with the metric that arises from the

adjoint embedding PGLn ↪→ Mn2 ; and we equip Mn2 with the metric that

arises from norm: supremum of all matrix entries.

Let

BS(ε) =
∏
v∈S

Bv(εv) ⊂ PGLn(FS).

The following is a consequence of Lemma 13.2, for a suitable choice of Q; we

leave the details to the reader.
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13.3. Lemma (Bounds for the mass of small balls). Suppose (71) is known.

Let x0 ∈ PGLn(O)\PGLn(FS). Then

µD(x0BS(ε))�F,S,n ‖ε‖n +Oε(disc(D)−β).

Moreover, the implicit constant in Oε(. . . ) is bounded uniformly when x0 be-

longs to any fixed compact.

Now let N0,v be the standard norm on Fnv (cf. §7). For g ∈ GLn(A), we set

ht(g)−1 = |det(g)|−1/n
A inf

λ∈Fn−{0}

∏
v

N0,v(λgv).

Let Kmax =
∏
v Stabilizer(N0,v) be the standard maximal compact sub-

group of GLn(A), and let K̄max be its image in PGLn. Then ht descends to a

proper map from PGLn(F )\PGLn(A)/K̄max to R>0. In particular, sets of the

type ht−1
Ä
[R,∞)

ä
, for large R > 0, define “the cusp.”

The next result is again a consequence of Lemma 13.2.

13.4. Lemma (Bounds for the cusp). Suppose (71) is known.

µD(ht−1[R,∞))� R−n +OR(disc(D)−β).

13.5. Proof of Theorem 4.8. The volume of the homogeneous toral set

associated to D is defined in (13). We take the set Ω0 to be the prod-

uct
∏
v|∞Ωv ×

∏
v finite PGLn(OF,v). Here, we set Ωv ⊂ PGLn(Fv), for v

archimedean, to equal the image, in PGLn, of exp(Ev); here

Ev := {Y ∈Mn(Fv) : Y has operator norm ≤ 1
10},

and the operator norm is taken with respect to the canonical norm on Fnv . Let

us note that exp : Ev → exp(Ev) is a diffeomorphism onto its image, being

inverted by log.

We claim that

(77) log vol(Y ) =
∑
v

log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0}−1 + o(log disc(D)),

where, on the right-hand side, the measure on T(Fv) is normalized as indi-

cated in Section 8; and we understand T(Fv) as being embedded in T(A) in

the natural way.

To verify (77) we need to consider our measure normalizations. In the def-

inition of “vol(Y )”, in Section 4.3, we endowed T(F )\T(A) with a probability

measure. If we normalize the measures on T(Fv) according to Section 8, the

product measure is not a probability measure on T(F )\T(A); its mass is given

by Lemma 10.5 to be a certain ζ-value. By a result of Siegel, log |ζK(1)| =

o(log discK), and, by Lemma 9.6, disc(K)� disc(D). This establishes (77).

Let v be a finite place. Let us recall that we defined an order Λv ⊂ g−1
v Kvgv

via Λv = g−1
v Kvgv ∩Mn(OF,v) (see Section 9.4). Therefore, Λ×v = g−1

v Kvgv ∩
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GLn(OF,v). Thus {t ∈ T(Fv) : g−1
v tgv ∈ Ω0} is identified, via t 7→ g−1

v tgv, to

Λ×v F
×
v /F

×
v . Since Λv ∩ Fv = OF,v, we see, given the measure normalizations

of Section 8, that vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0} = vol(Λ×v )/vol(O×F,v). Taking

into account Lemmas 9.5, 9.7 and (23), this becomes:

(78) log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0} =

1

2
log disc(Dv) +OF (1), v finite.

Here the error term oF (1) is identically zero if the residue characteristic of v

is larger than n, F is unramified at v, and discv(Dv) = 1.

Now we establish an (approximate) analog of (78) at archimedean places.

We claim that, for archimedean v,

log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0} = log vol(Λv) +OF (1)(79)

=
1

2
log discv(Dv) +OF (1).

The second equality follows readily from Lemma 9.5, so we need to verify the

first equality. Put Av = g−1
v (K⊗Fv)gv ⊂Mn(Fv). Because Av is a subalgebra,

we have exp(Av) ⊂ Av, and log(Av) ⊂ Av when log is defined. Therefore,

Av ∩ exp(Ev) = exp(Av ∩ Ev).

The set {t ∈ T(Fv) : g−1
v tgv ∈ Ω0} is identified, via t 7→ g−1

v tgv, to

F×v exp(Av∩Ev)/F×v . Its measure is therefore easily seen to be bounded above

and below by constant multiples by the Av-measure of exp(Av ∩ Ev).{F×v ∩
exp(Ev)}. This set contains exp(Av ∩ Ev) and is contained in exp(Av ∩ 2Ev).

The measure of exp(Av ∩ Ev) and exp(Av ∩ 2Ev) are bounded above and

below by constant multiples of the volume of Λv by constants, for the map

exp : Av → A×v preserves (up to a constant) measure. This establishes (79).

Combining (77), (78) and (79), we see that

log vol(Y ) =
1

2

∑
v

log disc(Dv) + oF (log discD).

The conclusion of Theorem 4.8 follows. �

13.6. Proof of Theorem 4.9. Let v be a place as indicated in the proof of

Theorem 4.9. Let S be a finite set of places of F as in Section 12.2; enlarging S,

we may suppose v ∈ S without loss of generality.

Let Hi = g−1
i,v Ti(Qv)gi,v. The measure µi := µDi , upon projection to

PGL3(O)\PGL3(FS), is invariant under Hi. Denote by µ̄i this projection.

Let µ̄∞ be any weak∗ limit of the measures µ̄Di , which we may assume is

the projection of a limit µ∞ of the original sequence. Because the bounds of

Lemma 13.4 are uniform in Di, the measure µ̄∞ is a probability measure.

It will suffice to show that µ̄∞ is SL3(Fv)-invariant. In fact, it then fol-

lows that µ̄∞ is SL3(FS)-invariant by irreducibility of the lattice PGL3(O) ⊂
PGL3(FS) and, S being arbitrary, that µ∞ is SL3(A)-invariant. Once µ∞
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is SL3(A)-invariant, it is determined by its projection to the compact group

A×F /F×(A×F )3. We are reduced to showing that limits of homogeneous measures

on a compact abelian group are of the same type, which is easy.

We use the following observation, which is a consequence of Lemma 13.2:

Let P ⊂ PGL3 be the stabilizer of a line in F 3; let P′ be the stabilizer of a

plane in F 3. Thus P,P′ are F -parabolic subgroups.

Let Z ⊂ P(Fw)\PGL3(Fw), Z ′ ⊂ P′(Fw)\PGL3(Fw) be the Fw-points of

varieties of dimension ≤ 1. Then:

(80) µ̄∞((P(O)\P(FS)) .Z) = 0, µ̄∞
(
P′(O)\P′(FS).Z ′

)
= 0.

Indeed, the first assertion of (80) follows directly from Lemma 13.2, taking for

Q a suitable sequence of sets. The second assertion may be deduced from the

first by applying the outer automorphism (transpose-inverse) of PGL3 to the

entire situation.

Case 1. Suppose discv(Di)→∞. Let hi = Lie(Hi); let h∞ be any limit of

hi inside the Grassmannian of pgl3. It is a two-dimensional commutative Lie

subalgebra. The measure µ̄∞ is invariant by exp(h∞). Necessarily h∞ contains

a nilpotent element.

Identify pgl3 with trace-free 3×3 matrices. There are two conjugacy classes

of nontrivial nilpotents in pgl3 according to the two possible Jordan blocks.

Suppose that h∞ contains a conjugate of
(

0 1 0
0 0 1
0 0 0

)
(i.e. a generic nilpotent ele-

ment). Then since the centralizer of this generic element is two-dimensional, it

follows in this case by commutativity of h∞ that h∞ is this centralizer. That is,

h∞ contains in any case a conjugate n of the Lie algebra spanned by
(

0 0 1
0 0 0
0 0 0

)
.

We make the following observation: Suppose j is a proper Lie subalgebra

of sl3 containing n. Then j is reducible over F̄ 3
v , i.e. fixes a line or a plane over

the algebraic closure. Indeed, the only proper Lie subalgebra of sl3 that acts

irreducibly over the algebraic closure is soq, for q a nondegenerate quadratic

form. But soq does not contain any conjugate of n.

By [35] and [39], µ̄∞ may be expressed as a convex linear combination of

Haar probability measures µι on closed orbits xιHι with ι belonging to some

probability space I; here Hι is a closed subgroup of PGL3(FS). Moreover, all

the measures µι are ergodic under the action of N = exp(n).

Suppose µ̄∞ is not SL3(Fv)-invariant. Then for a positive proportion of

the ι, say for ι ∈ I ′, the subgroup Hι does not contain SL3(Fv). Therefore, µ̄∞
dominates the convex combination:

µ̄∞ ≥
∫
I′
µι.
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Fix some ι ∈ I ′ and let xι = PGL3(O)g, where we may assume that xι
has dense orbit in xιHι under the action of N . We claim:

(81) There exists a proper F -subgroup J ⊂ PGL3

so that xιHι ⊂ (J(O)\J(FS)).g.

For the proof of the claim, consider first Hι as a subgroup of a product

of real and p-adic Lie groups: if S̄ is the set of places of Q below S, then

we consider PGL3(FS) =
∏
p∈S̄

∏
w|p,w∈S PGL3(Fw). It may be seen that, in

a neighbourhood of the identity Hι is itself a product of real and p-adic sub-

groups. We define the Lie algebra h of Hι to be the product of the real Lie

algebra and the various p-adic ones; this is, by definition, a QS̄-submodule

of ⊕w∈Spgl3(Fw). (Here, and in what follows, we use pgl3(k) to denote the

k-points of the vector space pgl3.)

In general, if the map S → S̄ is not bijective, h may not be a direct sum of

its projections to the pgl3(Fw). We claim, however, that the projection of h to

pgl3(Fv) is a proper subalgebra. Indeed, n is a Lie subalgebra of h∩pgl3(Fv); it

follows that all conjugates of n by elements of Hι again belong to h∩ pgl3(Fv).

Were the projection of h to pgl3(Fv) surjective, it would follow – by the sim-

plicity of pgl3(Fv) as a module over itself — that pgl3(Fv) is contained in h;

contradiction.

Next let J′ be the Zariski closure of gHιg
−1∩PGL3(O); by definition, this

is an F -algebraic subgroup of PGL3. J′ preserves the projection of Ad(g)h to

pgl3(Fv), and is therefore a proper subgroup of PGL3.

Just as in the Borel density theorem it follows that gNg−1 is contained

in J′(Fv). In fact, by Chevalley’s theorem there is an algebraic representation

φ of PGL3 on V and a vector vφ ∈ Vφ such that J′ is the stabilizer of the

line generated by vφ. Fix some parametrization nt of N as a one-parameter

unipotent group. Note that the line spanned by φ(gntg
−1)(vφ) approaches the

line spanned by an eigenvector vN of φ(gNg−1) if |t| → ∞. By our assumption

on xι we have a sequence tk ∈ Fv with |tk|v → ∞ for which xιntk → xι as

k → ∞. Therefore, there exists some sequence γk ∈ PGL3(O) ∩ gHιg
−1 and

gk ∈ PGL3(Fv) with gntk = γkggk and gk approaching the identity. This im-

plies that φ(gn−1
tk
g−1)(vφ) = φ(gg−1

k g−1γ−1
k )(vφ) both approaches vN and vφ,

i.e. that vN = Vφ and so gNg−1 ⊂ J′(Fv).

To prove (81), we proceed as follows. Let J′′ ⊂ J′ be the preimage, in

J′, of the commutator subgroup of J′/Ru(J′). Since J′′ is F -algebraic with-

out F -characters, it follows that PGL3(O)J′′(FS) is closed. Therefore, the

same holds for PGL3(O)J′′(FS)g which is invariant under N . We see that

PGL3(O)J′′(FS)g contains xιHι by our choice of xι. We can take J := J′′.

Next we claim that J is contained in an F -parabolic subgroup P. For this

we need to show that J preserves a line in F 3 or a line in the dual (F 3)∗. Indeed,
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as noted before Lie J⊗F F̄v preserves a line or a dual line in F̄ 3
v , and so Lie J

preserves a line or a dual line over the algebraic closure. If the Galois conjugates

of this line are not contained in a plane, then J would be a torus, contradicting

the fact it contains unipotents. Otherwise, the Galois conjugates of the line

span either a line or a plane; this yields a preserved line24 in F 3 or in (F 3)∗.

Therefore,

PGL3(O)J(FS)g ⊂ PGL3(O)P(FS)g,

for some F -parabolic subgroup P, the stabilizer of a line or a dual line.

Moreover, we know that n ⊂ Ad(g−1)p where p is the Lie algebra of P.

Thus the fixed line (or dual line) for the parabolic Ad(g−1
v )P(Fv) is also pre-

served by n acting on F 3 or (F 3)∗, i.e. belongs to the kernel of n. The kernel has

dimension 2, and so we see that the coset P.gv belongs to a one-dimensional

subvariety of P(Fv)\PGL3(Fv).

Applying (80) and noting that there are only countably many F -parabolic

subgroups, we derive a contradiction.

Case 2. There exists a place v so that the associated tori Ti are all Fv-

split. We may assume that discv(Di) remain bounded. The subgroups Hi then

remain in a compact set within the space of tori in PGL3(Qv). Let H be any

limit of the subgroups Hi. Then µ̄∞ is H-invariant and H is an Fv-split torus

inside PGL3(Fv).

By Lemma 13.3, every H-ergodic component of µ̄∞ has positive entropy

with respect to the action of a regular element in H. It follows by [16, Th.

2.6] (which generalizes [15] to the S-algebraic setting) that µ̄∞ is SL3(Fv)-

invariant. �

Appendix A. Recollections on subconvexity

In this section, we are going to briefly recall the subconvexity problem for

L-functions and some of the progress towards it. We refer to [27] for a more

complete description of the subconvexity problem.

Let L(π, s) denote an L-function attached to some arithmetic object π (of

degree n ≥ 1),

L(π, s) =
∏
p

L(πp, s) =
∏
p

n∏
i=1

(1− απ,i(p)p−s)−1.

L(π, s) is expected to have meromorphic continuation to C with (under an

appropriate normalization) finitely many poles located on the lines <s = 0, 1.

It satisfies a functional equation of the form

qs/2π L(π∞, s)L(π, s) = ω(π)q(1−s)/2
π L(π∞, 1− s)L(π, 1− s).

24Implicitly, we use Hilbert’s Theorem 90.
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Here

L(π∞, s) =
n∏
i=1

ΓR(s+ µπ,i), ΓR(s) = π−s/2Γ(s/2),

qπ ≥ 1 is an integer (the conductor of π) and |ω(π)| = 1.

A subconvex bound (in the conductor aspect), is a bound of the form

(82) L(π, s)� (C∞(πs))
Nq1/4−θ

π

for some absolute constants N > 0 and θ > 0. Here we denote by C∞(πs) the

quantity

(83) C∞(πs) =
d∏
i=1

(1 + |µπ,i + s|).

The bound (82) is named subconvex by comparison with the (easier) con-

vexity bound — which may be deduced from the Phragmén-Lindelöf convexity

principle — in which the exponent 1/4− δ is replaced by any exponent > 1/4.

In this paper the main class of L-functions for which we consider the

subconvexity problem are the Dedekind ζ-function of a number field K: the

Dedekind ζ-function of K is a function of a single complex variable. For

<(s) > 1 it is defined by the rule

ζK(s) =
∑

a⊂OK

NK/Q(a)−s,

the sum being taken over the nonzero ideals of OK . It extends to a meromor-

phic function of s with a simple pole at s = 1. In that case the conductor of

ζK is the (absolute value of the) discriminant of K:

A.1. Hypothesis. Let K be a number field of fixed degree n. There exists

θ,N > 0 (depending at most on n) such that for <s = 1/2,

ζK(s)�n |s|Ndisc(K)1/4−θ.

By now Hypothesis A.1 is known for a restriced class of number fields K:

– when K is an abelian extensions of Q of fixed degree (n say); this

follows from the Kronecker-Weber theorem and from Burgess’s sub-

convex bound for Dirichlet L-functions [6]. More generally, Hypothesis

5.1 holds if K varies through the abelian extensions of a fixed number

field F by the work of fourth named author [46].

– when K is a cubic extension of Q: when K is not abelian, ζK(s) fac-

tors as ζ(s)L(ρ, s) where ρ is a dihedral (two-dimensional) irreducible

complex Galois representation of Gal(Q/Q); more precisely L(ρ, s) is

the L-function of a cubic ring class character of the unique quadratic

extension contained in the closure of K. By quadratic base change,
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L(ρ, s) is the L-function of a GL2,Q-automorphic form and the subcon-

vex bound for the latter class of L-functions follows from the works

of Duke, Friedlander, Iwaniec [14] and Blomer, Harcos and the third

author [3]. By the work of the third and fourth named authors [37],

this now holds when K is a cubic extension of a fixed number field F .

– More generally, by the above quoted works, Hypothesis A.1 is known

if K/Q is contained in a ring class field of an arbitrary quadratic ex-

tension of an arbitrary ground field F .

We also need to consider the L-function, L(K,ψ, s), associated to a Hecke

Grössencharacter of K ψ (in other words a character of the idèles of K,

A×K/K×). The conductor of L(K,ψ, s) is the product of disc(K) and the “dis-

criminant of ψ.” (Usually, the conductor of ψ is defined as a certain integral

ideal of K; the norm of this ideal is the discriminant of ψ.)

A.2. Hypothesis. Let K be a number field of degree n and ψ a unitary

character of the idèles of K . Then there exists θ,N > 0 (depending at most

on n) so that for <s = 1/2,

L(K,ψ, s)�n C∞(ψ, s)N (disc(ψ)disc(K))1/4−θ,

where disc(ψ) denote the conductor of ψ.

Hypothesis A.2 is known in even fewer cases:

– when K is an fixed number field and ψ is varying : this is a consequence

of Burgess work if K = Q and of [46] in general.

– when K is a (possibly varying) quadratic extension of the base field F :

again this follows (by quadratic base change) from the works [14], [3]

and [37].

– when K/F is an extension of given degree which is either, abelian, cu-

bic or contained in a ring class field of an arbitrary quadratic extension

of F and ψ factors through the norm map: that is ψ = χ ◦ NK/F for

some Hecke character (over F ). In that case L(K,ψ, s) (viewed as an

L-function “over” F ) equals the twist of ζK(s) by the character χ and

the subconvex bound follows from a combination of the above quoted

works.
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